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Abstract

We present decidability results for a sub-class of “non-interactive” simulation problems,
a well-studied class of problems in information theory. A non-interactive simulation problem
is specified by two distributions P (x, y) and Q(u, v): The goal is to determine if two players,
Alice and Bob, that observe sequences Xn and Y n respectively where {(Xi, Yi)}ni=1 are drawn
i.i.d. from P (x, y) can generate pairs U and V respectively (without communicating with each
other) with a joint distribution that is arbitrarily close in total variation to Q(u, v). Even when
P and Q are extremely simple: e.g., P is uniform on the triples {(0, 0), (0, 1), (1, 0)} and Q is a
“doubly symmetric binary source”, i.e., U and V are uniform ±1 variables with correlation say
0.49, it is open if P can simulate Q.

In this work, we show that whenever P is a distribution on a finite domain and Q is a
2 × 2 distribution, then the non-interactive simulation problem is decidable: specifically, given
δ > 0 the algorithm runs in time bounded by some function of P and δ and either gives a non-
interactive simulation protocol that is δ-close to Q or asserts that no protocol gets O(δ)-close
to Q. The main challenge to such a result is determining explicit (computable) convergence
bounds on the number n of samples that need to be drawn from P (x, y) to get δ-close to Q.
We invoke contemporary results from the analysis of Boolean functions such as the invariance
principle and a regularity lemma to obtain such explicit bounds.

∗Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge MA
02139. Supported in part by NSF CCF-1420956, NSF CCF-1420692 and CCF-1217423. badih@mit.edu.
†Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge MA

02139. Supported in part by NSF CCF-1420956 and NSF CCF-1420692. pritish@mit.edu.
‡Harvard John A. Paulson School of Engineering and Applied Sciences. Part of this work was done while at Mi-

crosoft Research New England. Supported in part by NSF Award CCF 1565641. madhu@cs.harvard.edu.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 104 (2016)



Contents

1 Introduction 1
1.1 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Roadmap of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 4
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The non-interactive simulation problem . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Reformulation of GAP-NON-INT-SIM . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Fourier analysis and multi-linear polynomials . . . . . . . . . . . . . . . . . . . . 7
2.5 Hypercontractivity and moment bounds . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Maximal Correlation and Witsenhausen’s rounding . . . . . . . . . . . . . . . . . 10
2.7 2-dimensional Berry-Esseen theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Main Technical Lemma and Overview 12
3.1 Proof overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Decidability of GAP-NON-INT-SIM . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Smoothing of Strategies 13

5 Joint Regularity Lemma for Fourier Concentrated Functions 14
5.1 Regularity Lemma for Constant Degree Polynomials . . . . . . . . . . . . . . . . . 15
5.2 Joint Regularity Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Applying correlation bounds for low-influence functions 18

7 Simulating Correlated Gaussians 20

8 Putting it all together! 21
8.1 Generalizing to arbitrary binary targets . . . . . . . . . . . . . . . . . . . . . . . . 23

9 Open Questions 24

10 Acknowledgments 24



1 Introduction

Given a sequence of independent samples (x1, y1), (x2, y2), . . . from a joint distribution P on
A × B where Alice observes x1, x2, . . . and Bob observes y1, y2, . . . , what is the largest corre-
lation that they can extract if Alice applies some function to her observations and Bob applies
some function to his? The continuous version of this question – where the extracted correlation
is required to be in Gaussian form – was solved by Witsenhausen in 1975 who gave (roughly) a
poly(|A|, |B|, log(1/δ))-time algorithm that estimates the best such correlation up to an additive
δ [Wit75]. When the target distribution is Gaussian, the best possible correlation that is attain-
able is exactly the well-known “maximal correlation coeffcient” which was first introduced by
Hirschfeld [Hir35] and Gebelein [Geb41] and then studied by Rényi [Rén59]. However, when
the target distribution is not Gaussian, the best correlation is not well-understood and this is
the question explored in this paper. Specifically, we study the Boolean version of this ques-
tion where the extracted correlation is required to be in the form of bits with fixed specified
marginals. We give an algorithm that, given δ > 0, computes the best such correlation up to an
additive δ.

Questions such as the above are well-studied in the information theory literature under the
label of “Non-Interactive Simulation”. The roots of this exploration go back to classical works
by Gács and Körner [GK73] and Wyner [Wyn75]. In this line of work, the problem is described
by a source distribution P (X,Y ) and a target distribution Q(U, V ) and the goal is to determine
the maximum rate at which samples of P can be converted into samples of Q. (So the goal is to
start with n samples from P and generateR·n samples fromQ, for the largest possibleR.) Gács
and Körner considered the special case where Q required the output to be a pair of identical
uniformly random bits, i.e., U = V = Ber(1/2) and introduced what is now known as the
Gács-Körner common information of P (X,Y ) to characterize the maximum rate in terms of this
quantity. Wyner, on the other hand considered the “inverse” problem whereX = Y = Ber(1/2)
and Q was arbitrary. Wyner characterized the best possible conversion rate in this setting in
terms of what is now known as the Wyner common information of Q(U, V ). There is a rich
history of subsequent work (see, for instance, [KA15] and the references within) exploring more
general settings where neither P nor Q produces identical copies of some random variable. In
such settings, even the question of when can the rate be positive is unknown and this is the
question we explore in this paper.

The Non-Interactive Simulation problem is also a generalization of the Non-Interactive
Correlation Distillation problem which was studied by [MO04, MOR+06]1. Our setup can be
thought of as a “positive-rate” version of the setup of Gács and Körner. Namely, for a known
source distribution P (X,Y ), Alice and Bob are given an arbitrary number of i.i.d. samples and
wish to generate one sample from the distributionQ(U, V ) which is given by U = V = Ber(1/2).
(This is possible if and only if the Gács-Körner rate is positive.)

Motivation. Our motivation for studying the best discrete correlation that can be produced
is twofold. On the one hand, this question forms part of the landscape of questions arising
from a quest to weaken the assumptions about randomness when it is employed in distributed
computing. Computational tasks are often solved well if parties have access to a common
source of randomness and there has been recent interest in cryptography [AC93, AC98, BS94,
CN00, Mau93, RW05], quantum computing [Nie99, CDS08, DB14] and communication com-
plexity [BGI14, CGMS14, GKS16] to study how the ability to solve these tasks gets affected
by weakening the source of randomness. In this space of investigations, it is a very natural
question to ask how well one source of randomness can be tranformed to a different one, and
Non-Interactive Simulation studies exactly this question.

On the other hand, from the analysis point of view, the Non-Interactive Simulation problem
forms part of “tensor power” questions that have been challenging to analyze computationally.
Specifically, in such questions, the quest is to understand how some quantity behaves as a func-
tion of the dimensionality of the problem as the dimension tends to infinity. Notable examples
of such problems include the Shannon capacity of a graph [Sha56, Lov79] where the goal is to
understand how the independence number of the power of a graph behaves as a function of

1which considered the problem of maximizing agreement on a single bit, in various multi-party settings.
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the exponent. Some more closely related examples arise in the problems of local state transfor-
mation of quantum entanglement [Bei12, DB13] and the problem of computing the entangled
value of a game (see for eg, [KKM+11] and also the open problem [ope]). A more recent ex-
ample is the problem of computing the amortized communication complexity of a communi-
cation problem. Braverman-Rao [BR11] showed that this equals the information complexity of
the communication problem, however the task of approximating the information complexity
was only recently shown to be computable [BS15]. In our case, the best non-interactive simu-
lation to get one pair of correlated bits might require many copies of (x, y) drawn from P and
the challenge is to determine how many copies get us close. Convergence results of this type
are not obvious. Indeed, the task of approximating the Shannon capacity remains open to this
day [AL06]. Our work is motivated in part by the quest to understand tools that can be used
to analyze such questions where rate of convergence to the desired quantity is non-trivial to
bound.

Estimating Binary Correlations: Previous Work and our Result. In his work gener-
alizing the results of Gács and Körner, Witsenhausen [Wit75] gave an efficient algorithm that
achieves a quadratic approximation to the Non-Interactive Simulation problem when Q(U, V )
is the distribution where U and V are marginally uniform over ±1 and U is an ρ-correlated
copy of V , i.e. E[UV ] = ρ (henceforth, we refer to this distribution as DSBS(ρ)).2 Indeed, Wit-
senhausen introduced the Gaussian correlation problem as an intermediate step to solving this
problem and his rounding technique to convert the Gaussian random variables into Boolean
ones is essentially the same as that of the Goemans-Williamson algorithm for approximating
maximum cut sizes in graphs [GW95]. Already implicit from the work of Witsenhausen is that
“maximum correlation” gives a way to upper bound the best achievable ρ when simulating
DSBS(ρ). Recent works in the information theory community [KA12, KA15, BG15] enhance
the collection of analytical tools that can be used to show stronger impossibility results. While
these works produce stronger bounds, they do not necessarily converge to the optimal limit
and indeed basic questions about simulation remain open. For instance, till our work, even the
following question was open [Kam15]: If P is the uniform disribution on {(0, 0), (0, 1), (1, 0)}
and Q = DSBS(.49) (i.e. U, V are uniformly ±1, with E[UV ] = .49), can P simulate Q arbitrar-
ily well? Our work answers such questions in principle. (Specifically we do give a finite time
procedure to approximate the best ρ to within arbitrary accuracy. However, we have not run
this algorithm to determine the answer to this specific question.)

Below we state our main theorem informally (see Theorem 2.5 for the formal statement).

Theorem 1.1 (Informal). There is an algorithm that takes as inputs a source distribution P , a pa-
rameter ρ > 0 and an error parameter δ > 0, runs in time bounded by some computable function of P ,
ρ and δ, and either outputs a non-interactive protocol that simulates DSBS(ρ) up to additive δ in total
variation distance, or asserts that there is no protocol that gets O(δ)-close to DSBS(ρ) in total variation
distance.

More generally, the proof techniques extend to deciding the non-interactive simulation
problem for an arbitrary 2 × 2 target distribution. In particular, we also show the following
(see Theorem 2.3 for the formal statement).

Theorem 1.2 (Informal). There is an algorithm that takes as inputs a source distribution P , a 2 × 2
target distribution Q and an error parameter δ > 0, runs in time bounded by some computable function
of P , Q and δ, and either outputs a non-interactive protocol that simulates Q up to additive δ in total
variation distance, or asserts that there is no protocol that getsO(δ)-close toQ in total variation distance.

The crux of Theorems 1.1 and 1.2 is to prove computable bounds on the number of copies of
(X,Y ) that are needed in order to come δ-close to the target distribution. We now describe the
challenges towards achieving such bounds, and the techniques we use.

2Henceforth, we assume that bits are in the set {±1}. By a quadratic approximation, we mean an algorithm distin-
guishing between the cases (i) ρ ≥ 1− η and (ii) ρ < 1−O(

√
η) for any given parameter η > 0.
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low-correlation component
probability 1− α

high-correlation component
probability α

Figure 1: Example source distribution for which many copies need to be considered.

1.1 Proof Overview

We start by describing some illustrative special cases of the problem. In the case where P =
DSBS(ρ), maximal correlation based arguments imply that DSBS(ρ) is the ‘best’ DSBS distri-
bution that can simulated [Wit75]. Thus, in this case, dictators functions achieve the optimal
strategy. Consider now the case where P is a pair of ρ-correlated zero-mean unit-variance
Gaussians3. Then, Borell’s isoperimetric inequality implies that the strategy where each of
Alice and Bob outputs the sign of her/his Gaussian achieves the best possible DSBS [Bor85].

Given the above two examples where a single-copy strategy is optimal, it is tempting to try to
determine the best DSBS that can be simulated using a single copy of P and hope that it would
be close to the optimal DSBS (i.e., to the one that can be simulated using an arbitrary number
of copies of P ). But this approach cannot work as is illustrated by the following example
which shows that using many copies of P is in some cases actually needed. Consider the source
joint distribution corresponding to the bipartite graph in Figure 1 with α > 0 being a small
parameter (we interpret the distribution as the one obtained by sampling a random edge in the
graph). This graph is the union of two components: a low-correlation component which has
probability 1−α and a perfect-correlation component which has probability α. If we use a small
number of copies of µ, the corresponding samples will most likely fall in the low-correlation
component, and hence the best DSBS that can be produced in such a way would have a small
correlation. On the other hand, as the number of used copies becomes larger than 1/α, with
high probability at least one of the corresponding samples will fall in the perfect-correlation
component, and hence the resulting DSBS would have correlation very close to 1. As another
example, consider the distribution that is uniform on triples {(0, 0), (0, 1), (1, 0)}. It follows
from [Wit75] that it is possible to simulate DSBS(1/3) using many copies of this distribution.
However, it can be shown that using only a single copy of this distribution (along with private
randomness), Alice and Bob can at best simulate DSBS(1/4).

We now describe at a high level, the main ideas that give us the computable bound on the
number of samples of the joint distribution that are sufficient to obtain a δ-approximation to
a given DSBS(ρ). First, we observe that the problem of deciding if one can come δ-close to
simulating DSBS(ρ), is equivalent to checking if Alice and Bob can non-interactively come up
with a distribution (X,Y ) on [−1, 1] × [−1, 1] such that the marginals of X and Y have means
close to 0, but E[XY ] is large.

The results on correlation bounds for low-influence functions (obtained using the invari-
ance principle) [MOO05, Mos10], say that if Alice and Bob are using only low-influential func-
tions, then in fact the correlation that they get cannot be much better than that obtained by
taking appropriate threshold functions on correlated gaussians. Moreover, Alice and Bob can
in fact simulate correlated gaussians using only a constant number of samples from the joint
distribution, by applying the maximal correlation based technique of Witsenhausen [Wit75].

In the general case, we show that we can first convert Alice and Bob’s functions to have
low degree, after which we apply a regularity lemma (inspired from that of [DSTW10]) to con-
clude that after fixing a constant number of coordinates, the restricted function is in fact low-

3allowing here continuous distributions for the sake of intuition
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influential. This reduces the general case to the special case of having low-influential functions
and which is handled as described in the previous paragraph.

The more general case of simulating arbitrary 2 × 2 distribution also follows a similar out-
line. For a more technical overview of the proof, we refer the reader to Section 3.1.

1.2 Roadmap of the paper

In Section 2, we give some of the basic definitions, etc.. Our main theorems are also presented
in this section as Theorems 2.3 and 2.5. In Section 3, we state our main technical lemma (Theo-
rem 3.1), which is used to prove Theorem 2.5. We also give a proof overview for Theorem 3.1.
In Sections 4, 5, 6 and 7, we state and prove the technical lemmas involved in proving Theo-
rem 3.1. Finally, in Section 8, we put together everything to prove Theorem 3.1. We end with
some open questions in Section 9.

2 Preliminaries

2.1 Notation

We use script letters A, B, etc. to denote finite sets, and µ will usually denote a probability
distribution. (A × B, µ) is a joint probability space. We use µA and µB to denote the marginal
distributions of µ. We use letters x, y, etc to denote elements of A, and bold letters x, y, etc. to
denote elements in An. We use xi, yi to denote individual coordinates of x, y, respectively.

For a probability space (A, µ), we will use the following definitions and notations borrowed
from [AH11].

• (An, µ⊗n) denotes the product space A × A × · · · × A endowed with the product distri-
bution.

• Supp(µ)
def
= {x : µ(x) > 0} is the support of µ. We would generally assume without loss

of generality that Supp(µ) = A.

• α(µ)
def
= min {µ(x) : x ∈ Supp(µ)} denotes the minimum non-zero probability of any atom

in A under the distribution µ.

• L2(A, µ) denotes the space of functions from A to R.

• The inner product on L2(A, µ) is denoted by 〈f, g〉µ := E
x∼µ

[f(x)g(x)].

• The `p-norm by
∥∥f∥∥

p
:=

[
E
x∼µ
|f(x)|p

]1/p
. Also,

∥∥f∥∥∞ := maxµ(x)>0 |f(x)|.

• It is easy to verify that
∥∥f∥∥

p
≤
∥∥f∥∥

q
for 1 ≤ p ≤ q.

• For two distributions µ and ν, dTV(µ, ν) is the total variation distance between µ and ν.

2.2 The non-interactive simulation problem

The problem of non-interactive simulation is defined as follows,

Definition 2.1 (Non-interactive simulation [KA15]). Let (A× B, µ) and (U × V, ν) be two proba-
bility spaces. We say that the distribution ν can be non-interactively simulated using distribution µ,
if there exists a sequence of functions {fn}n∈N and {gn}n∈N such that,

fn : An → U gn : Bn → V

and the distribution νn ∼ (fn(x), gn(y))µ⊗n over U × V is such that lim
n→∞

dTV(νn, ν) = 0.

The notion of non-interactive simulation is pictorially depicted in Figure 2. We formulate a
natural gap-version of the non-interactive simulation problem defined as follows,

Problem 2.2 (GAP-NON-INT-SIM((A× B, µ), (U × V, ν), δ)). Given probability spaces (A× B, µ)
and (U × V, ν), and an error parameter δ > 0, distinguish between the following cases:

4



Alice

Bob

Xn

Y n

U

V

Figure 2: Non-Interactive simulation as studied in [KA12, KA15]

(i) there existsN , and functions f : AN → U and g : BN → V , the distribution ν′ = (f(x), g(y))µ⊗N
is such that dTV(ν′, ν) ≤ δ.

(ii) for all N and all functions f : AN → U and g : BN → V , the distribution ν′ = (f(x), g(y))µ⊗N
is such that dTV(ν′, ν) > 8δ. 4

The main result in this paper is the following theorem showing that the problem of GAP-NON-INT-SIM
is decidable when |U| = |V| = 2.

Theorem 2.3 (Decidability of GAP-NON-INT-SIM for binary targets). Given probability spaces
(A×B, µ) and (U ×V, ν) such that |U| = |V| = 2, and an error parameter δ, there exists an algorithm
that runs in time T ((A×B, µ), δ) (which is an explicitly computable function), and decides the problem
of GAP-NON-INT-SIM((A× B, µ), (U × V, ν), δ).
The run time T ((A× B, µ), δ) is upper bounded by,

exp exp exp

(
poly

(
1

δ
,

1

1− ρ0
, log

(
1

α

)))
where ρ0 = ρ(A,B;µ) is the maximal correlation of (A×B, µ) (defined in Section 2.6) and α def

= α(µ)
is the minimum non-zero probability in µ.

Doubly Symmetric Binary Source

In order to ease the presentation of ideas in proving the above theorem, we restrict to a special
case, where the distribution (U × V; ν) is a doubly symmetric binary source defined below.

Definition 2.4 (Doubly Symmetric Binary Source). The distribution DSBS(ρ) is the joint distribu-
tion on ±1 random variables (U, V ) given by the following table,

V = +1 V = −1
U = +1 (1 + ρ)/4 (1− ρ)/4
U = −1 (1− ρ)/4 (1 + ρ)/4

In particular, E[U ] = E[V ] = 0 and E[UV ] = ρ.

We will prove a special case of Theorem 2.3, where the probability space (U × V, ν) is the
distribution DSBS(ρ) for some ρ (see Theorem 2.5 below). Even though we are proving only
this special case, the main ideas involved here easily generalize to the proof of Theorem 2.3.
We give a proof-sketch of this generalization in Section 8.1.

Theorem 2.5 (Decidability of GAP-NON-INT-SIM for DSBS targets). Given a probability space
(A × B, µ), and parameters ρ and δ, there exists an algorithm that runs in time T ((A × B, µ), δ)
(which is an explicitly computable function), and decides the problem of GAP-NON-INT-SIM((A ×
B, µ),DSBS(ρ), δ).

4 for sake of definition, the constant 8 could be replaced by any constant greater than 1. For a minor technical reason
however our decidability results (Theorems 2.3 and 2.5) will require this constant to be strictly greater than 2. We
choose to go ahead with 8 for convenience.
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The run time T ((A× B, µ), δ) is upper bounded by,

exp exp exp

(
poly

(
1

δ
,

1

1− ρ0
, log

(
1

α

)))
where ρ0 = ρ(A,B;µ) is the maximal correlation of (A×B, µ) (defined in Section 2.6) and α def

= α(µ)
is the minimum non-zero probability in µ.

We will use GAP-NON-INT-SIM((A × B, µ), ρ, δ) as a shorthand for GAP-NON-INT-SIM((A ×
B, µ),DSBS(ρ), δ). Theorem 2.5 will follow easily from the main technical lemma (Theorem 3.1).
The proof of Theorem 2.5, assuming Theorem 3.1 is present in Section 3.2.

2.3 Reformulation of GAP-NON-INT-SIM

With the end goal of proving Theorem 2.5, we introduce a new problem of Gap-Balanced-
Maximum-Inner-Product, to which we show a reduction from GAP-NON-INT-SIM. This new
formulation will be better suited for applying our techniques.

Problem 2.6 (GAP-BAL-MAX-INNER-PRODUCT((A×B, µ), ρ, δ)). Given a probability space (A×
B, µ), and parameters ρ and δ, distinguish between the following cases:

(i) there exists N , and functions f : AN → [−1, 1] and g : BN → [−1, 1], satisfying |E[f(x)]| ≤ δ
and |E[g(y)]| ≤ δ, such that the following holds,

E[f(x)g(y)] ≥ ρ− δ

(ii) for all N and all functions f : AN → [−1, 1] and g : BN → [−1, 1], satisfying |E[f(x)]| ≤ 2δ
and |E[g(y)]| ≤ 2δ, the following holds,

E[f(x)g(y)] < ρ− 4δ

The following proposition gives a reduction from the problem of GAP-NON-INT-SIM to the
problem of GAP-BAL-MAX-INNER-PRODUCT.

Proposition 2.7. For any probability space (A× B, µ) and ρ, δ > 0, the following reduction holds,

1. Case (i) of GAP-NON-INT-SIM((A× B, µ), ρ, δ) holds =⇒
Case (i) of GAP-BAL-MAX-INNER-PRODUCT((A× B, µ), ρ, 2δ) holds

2. Case (ii) of GAP-NON-INT-SIM((A× B, µ), ρ, δ) holds =⇒
Case (ii) of GAP-BAL-MAX-INNER-PRODUCT((A× B, µ), ρ, 2δ) holds

Proof. Both directions are relatively straight-forward.

1. If case (i) of GAP-NON-INT-SIM((A×B, µ), ρ, δ) holds, then there exists N and functions
f : AN → {1,−1} and g : BN → {1,−1} such that the distribution (f(x), g(y))µ⊗N
is δ-close to DSBS(ρ) in total variation distance. It follows easily from the definition
of total variation distance that |E[f(x)]| ≤ 2δ, |E[g(y)]| ≤ 2δ and E[f(x)g(y)] ≥ ρ − 2δ.
This is exactly the conditions needed in case (i) of GAP-BAL-MAX-INNER-PRODUCT((A×
B, µ), ρ, 2δ).

2. We show the contrapositive that if case (ii) of GAP-BAL-MAX-INNER-PRODUCT((A ×
B, µ), ρ, 2δ) does not hold, then in fact case (ii) of GAP-NON-INT-SIM((A×B, µ), ρ, δ) also
does not hold. Suppose there exists N and functions f : AN → [−1, 1] and g : BN →
[−1, 1] such that |E[f ]| ≤ 4δ, |E[g]| ≤ 4δ and E[f(x)g(y)] ≥ ρ− 8δ. First, we observe that
without loss of generality we can assume that E[f(x)g(y)] ≤ ρ. This is because, if that
was not the case, we can suitably modify f and g to get f1 = αf and g1 = αg such that
|E[f1(x)]| ≤ 4δ, |E[g1(y)]| ≤ 4δ and E[f1(x)g1(y)] = α2 · E[f(x)g(y)]. We can choose α
suitably such that E[f1(x)g1(y)] ≤ ρ.
To show that case (ii) of GAP-NON-INT-SIM((A × B, µ), ρ, δ) does not hold, we obtain
randomized functions f ′ : AN → {1,−1} and g′ : BN → {1,−1} as follows, f ′(x) is equal
to 1 with probability (1+f(x))/2 and−1 otherwise and g′(y) is equal to 1 with probability
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(1 + g(y))/2 and −1 otherwise. [The randomness needed can be simulated using some
additional copies of A and B.] Note that we have the following, (i) E[f ′(x)] = E[f ] (ii)
E[g′(y)] = E[g] and (iii) ρ− 8δ ≤ E[f ′(x)g′(y)] ≤ ρ.
Define ei,j for i, j ∈ {1,−1} as follows,

e1,1 = Pr[f ′(x) = +1 and g′(y) = +1]− (1 + ρ)/4

e1,−1 = Pr[f ′(x) = +1 and g′(y) = −1]− (1− ρ)/4

e−1,1 = Pr[f ′(x) = −1 and g′(y) = +1]− (1− ρ)/4

e−1,−1 = Pr[f ′(x) = −1 and g′(y) = −1]− (1 + ρ)/4

From (i), (ii) and (iii) above, we have the following,

|e1,1 + e1,−1 − e−1,1 − e−1,−1| ≤ 4δ

|e1,1 − e1,−1 + e−1,1 − e−1,−1| ≤ 4δ

|e1,1 − e1,−1 − e−1,1 + e−1,−1| ≤ 8δ

In addition, we have e1,1 + e1,−1 + e−1,1 + e−1,−1 = 0. Combining all this, it is easy to
infer that |ei,j | ≤ 4δ for any i, j ∈ {1,−1}. Hence for ν = (f(x), g(y))µ⊗N , we get that
dTV(ν,DSBS(ρ)) ≤ 8δ.

2.4 Fourier analysis and multi-linear polynomials

We recall some background in Fourier analysis that will be useful to us. Let q be any positive
integer and let (A, µ) be a finite probability space with |A| = q. Let X0, · · · ,Xq−1 : A → R be an
orthonormal basis for the space L2(A, µ) with respect to the inner product 〈., .〉µ. Furthermore,
we require that this basis has the property that X0 = 1, i.e., the function that is identically 1 on
every element of A.

For σ = (σ1, · · · , σn) ∈ Znq , define Xσ : An → Rn as follows,

Xσ(x1, . . . , xn) =
∏
i∈[n]

Xσi(xi)

It is easily seen that the functions {Xσ}σ∈Znq form an orthonormal basis for the product
space L2(An, µ⊗n). Thus, every function f ∈ L2(An, µ⊗n) can be written as

f(x) =
∑
σ∈Znq

f̂(σ)Xσ(x)

where f̂ : Znq → R can be obtained as f̂(σ) = 〈f,Xσ〉µ. The function f̂ is the Fourier trans-
form of f with respect to the basis {Xi}i∈Zq . Although we will work with an arbitrary (albeit
fixed) basis, many of the important properties of the Fourier transform are basis-independent.
The most basic properties of f̂ are summarized in the following fact which follows from the
orthonormality of {Xσ}σ∈Znq .

Fact 2.8. We have that:

• Plancherel Identity : E[f(x)g(x)] =
∑
σ
f̂(σ)ĝ(σ).

• As a special case, we have Parseval’s identity, E[f(x)2] =
∑
σ
f̂(σ)2.

• E[f ] = f̂(0).

• Var[f ] =
∑
σ 6=0

f̂(σ)2.
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In this paper, we will deal with joint probability spaces of the type (A×B, µ). In such cases,
we will denote the marginal probability spaces as (A, µA) and (B, µB). We will abuse notations,
to use Xσ to denote the orthonormal basis vectors for both L2(An, µ⊗nA ) as well as L2(Bn, µ⊗nB ).
The space of σ will be Zn|A| or Zn|B| accordingly, and will be clear from context.

For σ ∈ Znq , the degree of σ is denoted by
∣∣σ∣∣ def

=
∣∣{i ∈ [n] : σi 6= 0}

∣∣. We say that the degree
of a function5 f ∈ L2(An, µ⊗n), denoted by deg(f), is the largest value of |σ| such that f̂(σ) 6= 0.

Definition 2.9 (Influence). For every coordinate i ∈ [n], Infi(f) is the i-th influence of f , and Inf(f)
is the total influence, which are defined as

Infi(f)
def
= E

x−i

[
Var
xi

[f(x)]

]
Inf(f)

def
=

n∑
i=1

Infi(f)

The basic properties of influence are summarized in the following fact.

Fact 2.10. For any function f ∈ L2(An, µ⊗n), we have the following:

(i) Infi(f) =
∑

σ:σi 6=0

f̂(σ)2 and hence, for all i, Infi(f) ≤ Var(f)

(ii) Inf(f) =
∑
σ
|σ| · f̂(σ)2

(iii) If deg(f) = d, then Inf(f) ≤ d ·Var[f ].

Restrictions of polynomials

We will often use restrictions of polynomials. For any subset H ⊆ [n], we will use xH to
denote the tuple of variables in x with indices in H . For any function P ∈ L2(An, µ⊗n), and
any ξ ∈ AH , we will use Pξ to denote the function obtained by restriction of xH to ξ, that is,
Pξ(xT ) = P (xH ← ξ,xT ) (where T = [n]\H); whenever we use such terminology, the subsetH
will be clear from context. We will use the phrase “ξ fixesH overA” to mean such a restriction.
We will use {σH} to denote all degree sequences in ZHq , and similarly {σT } to denote all degree
sequences in ZTq . We use σH ◦σT to denote σ ∈ Znq such that σi = (σH)i if i ∈ H or (σT )i if i ∈
T .
We now state a lemma that will be needed,

Lemma 2.11 (cf. Lemma 3.3 in [DSTW10]). For any function P ∈ L2(An, µ⊗n), consider a ran-
dom assignment ξ ∼ µHA to the variables xH . Let T = [n] \ H . Then, for all i ∈ T , it holds that
Eξ[Infi(Pξ)] = Infi(P ). Also, Eξ[Var(Pξ)] ≤ Var(P ).

To prove the lemma, we first recall the following fact about the expected value of Fourier
coefficients under random restrictions.

Fact 2.12. Let P ∈ L2(An, µ⊗n). For any subset H ⊆ [n], consider an assignment ξ to the variables
xH . Let T = [n] \H . Then, we have

P̂ξ(σT ) =
∑
σH

P̂ (σH ◦ σT ) · XσH (ξ)

and therefore
E
ξ

[
P̂ξ(σT )2

]
=
∑
σH

P̂ (σH ◦ σT )2

Proof. The first part follows from simply substituting Pξ(xT ) = P (xH ← ξ,xT ), and taking
inner product with XσT (xT ).

P̂ξ(σT ) =

〈 ∑
σH◦σ′T

P̂ (σH ◦ σ′T ) · XσH (ξ)Xσ′T
(xT ) , XσT (xT )

〉
µ

=
∑
σH

P̂ (σH ◦ σT ) · XσH (ξ)

5we will interchangeably use the word polynomial to talk about any function in L2(An, µ⊗n).
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The second part simply follows from the orthonormality of the characters XσH and Xσ′H
for

σH 6= σ′H . In particular, we have the following,

E
ξ

[
P̂ξ(σT )2

]
= E

ξ

(∑
σH

P̂ (σH ◦ σT ) · XσH (ξ)

)2


= E
ξ

 ∑
σHσ′H

P̂ (σH ◦ σT ) · P̂ (σ′H ◦ σT ) · XσH (ξ) · Xσ′H
(ξ)


=

∑
σHσ′H

P̂ (σH ◦ σT ) · P̂ (σ′H ◦ σT ) · E
ξ

[
XσH (ξ) · Xσ′H

(ξ)
]

=
∑
σH

P̂ (σH ◦ σT )2

Intuitively, the above fact says that all the Fourier weight on degree sequences {σH ◦ σT }σH
collapses down onto σT in expectation. Consequently, the influence of an unrestricted variable
does not change, and the variance does not increase in expectation under random restrictions,
as both these quantities are sums of Fourier weight on certain σT ’s.

Proof of Lemma 2.11. We simply use Facts 2.8 and 2.10 in addition to Fact 2.12 to prove the
lemma.
Basically, from Facts 2.8 and 2.12 we get,

E
ξ
[Var(Pξ)] = E

ξ

 ∑
σT 6=0

P̂ξ(σT )2

 =
∑

σT 6=0

E
ξ

[
P̂ξ(σT )2

]
=
∑

σT 6=0

∑
σH

P̂ (σH ◦ σT )2 ≤ Var(P )

Similarly, from Facts 2.10 and 2.12 we get that for all i ∈ T ,

E
ξ
[Infi(Pξ)] = E

ξ

 ∑
σT :

(σT )i 6=0

P̂ξ(σT )2

 =
∑
σT :

(σT )i 6=0

E
ξ

[
P̂ξ(σT )2

]
=

∑
σT :

(σT )i 6=0

∑
σH

P̂ (σH ◦ σT )2 = Infi(P )

�

2.5 Hypercontractivity and moment bounds

The following moment bound for low-degree polynomials appears as Theorem 2.7 in [AH11],
which in turn follows from hypercontractivity.

Theorem 2.13 ([Wol07]). Let (A, µ) be a finite probability space in which the minimum non-zero
probability is α(µ) ≤ 1/2. Then, for p ≥ 2, every degree-d polynomial f ∈ L2(An, µ⊗n) satisfies∥∥f∥∥

p
≤ Cp(α)d/2

∥∥f∥∥
2

Here, Cp is defined by

Cp(α) =
A1/p′ −A−1/p′

A1/p −A−1/p
where A = (1 − α)/α and 1/p + 1/p′ = 1. The value at α = 1/2 is taken to be the limit of the above
expression as α→ 1/2, i.e., Cp(1/2) = p− 1.

We will use the following known concentration bound for low-degree polynomials.

Theorem 2.14 ([AH11]; Theorem 2.12). Let f ∈ L2(An, µ⊗n) be a degree-d polynomial. Then, for
any t > ed/2,

Pr[|f | > t ·
∥∥f∥∥

2
] ≤ exp(−ct2/d)

where c := α(µ)d
e .
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Definition 2.15 (Bonami-Beckner operator). For any ρ ∈ [0, 1], the Bonami-Beckner operator Tρ on
a probability space (A, µ) is given by its action on any f : A → R, as follows,

(Tρf)(x) = E[f(Y )|X = x]

where the conditional distribution of Y givenX = x is ρδx+(1−ρ)µwhere δx is the delta measure on x.
In other words, given X = x, Y is obtained by either setting it to x with probability ρ or independently
sampling from µ with probability (1− ρ).

For the product space (An, µ⊗n), we define the Bonami-Beckner operator Tρ as, Tρ = ⊗ni=1T
(i)
ρ ,

where T (i)
ρ is the Bonami-Beckner operator on the i-th coordinate (A, µ).

2.6 Maximal Correlation and Witsenhausen’s rounding

The “maximal correlation coeffcient” was first introduced by Hirschfeld [Hir35] and Gebelein
[Geb41] and then studied by Rényi [Rén59].

Definition 2.16 (Maximal correlation). Given a joint probability space (A × B, µ), we define the
maximal correlation of the joint distribution ρ(A,B;µ) as follows,

ρ(A,B;µ) = sup

{
E

(x,y)∼µ
[f(x)g(y)]

∣∣∣∣ f : A → R, E[f ] = E[g] = 0
g : B → R, Var(f) = Var(g) = 1

}
Maximal correlation has the following properties which imply necessary conditions for when
non-interactive simulation could be possible.

Fact 2.17 (Properties of maximal correlation (cf. [BDK05])).

1. (Tensorization) : For all joint probability spaces (A× B, µ), it is the case that ρ(An,Bn;µ⊗n) =
ρ(A,B;µ).

2. (Data processing) : For all joint probability spaces (A × B, µ), and any functions f : A →
U and g : B → V , it is the case that ρ(A,B;µ) ≥ ρ(U ,V; ν), where ν is the distribution
(f(x), g(y))(x,y)∼µ.

3. (Lower Semi-Continuous) : If distributions (U × V; νn) are such that limn→∞ νn = ν, then
limn→∞ ρ(U ,V; νn) ≥ ρ(U ,V; ν).

Corollary 2.18 (Necessary condition for non-interactive simulation). Let (A×B, µ) and (U×V, ν)
be two probability spaces. If the distribution ν can be non-interactively simulated using distribution
µ, then it must be the case that ρ(A,B;µ) ≥ ρ(U ,V; ν).

A simple fact that can be easily verified is that the maximal correlation of the distribution
DSBS(ρ) is ρ. And hence if (A × B, µ) can non-interactively simulate DSBS(ρ∗), then ρ∗ ≤
ρ(A,B;µ). In addition, Witsenhausen[Wit75] showed that any joint probability space (A ×
B, µ) can simulate DSBS(ρ∗) for ρ∗ = 1 − 2 arccos(ρ(A,B;µ))

π . All together, we have the following
theorem,

Theorem 2.19 (Witsenhausen [Wit75]). For any joint probability space (A×B, µ), with ρ = ρ(A,B;µ),
then the largest ρ∗ for which (A×B, µ) can non-interactively simulate DSBS(ρ∗) is bounded as follows,

1− 2 arccos(ρ)

π
≤ ρ∗ ≤ ρ

Note that, maximal correlation is an easily computable quantity, namely, it is the second
largest singular value of the Markov operator6 corresponding to (A× B, µ).

Remark 2.20. The astute reader might have noticed a strong resemblance between Theorem 2.19 and
the random hyperplane rounding of Goemans-Williamson [GW95] used in the approximation algorithm
for MAX-CUT. This is not a coincidence and indeed the bounds in Theorem 2.19 come from morally the
same technique as in [GW95].

In this context we will use the following shorthand for ρ-correlated 2-dimensional gaussian.

Definition 2.21 (2-dimensional Gaussian). Let G(ρ) denote a 2-dimensional gaussian distribution

with mean
[
0
0

]
and covariance matrix

[
1 ρ
ρ 1

]
.

6The Markov operator corresponding to (A× B, µ) is a |A| × |B|matrix T which is given by T (x, y) = µ(y|X = x).
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2.7 2-dimensional Berry-Esseen theorem

We will need the following 2-dimensional Berry-Esseen theorem. The proof is very similar
to Theorem 68 of [MORS10]. The main difference is that in our case the random variables
are not necessarily binary-valued, but they do have finite support. We include the proof for
completeness.

Lemma 2.22 (2-dimensional Berry-Esseen). Let (X,Y ) be any pair of correlated real-valued random
variables with finite support such that, E[X] = E[Y ] = 0 and Var(X) = Var(Y ) = 1 and E[XY ] = ρ.
For every ζ > 0, there exists w def

= w((X,Y ), ζ) ∈ N, such that for every a, b ∈ R, it is the case that,∣∣ Pr[X ≤ a, Y ≤ b] − Pr[G1 ≤ a,G2 ≤ b]
∣∣ ≤ ζ

where X =
∑w
i=1Xi√
w

, Y =
∑w
i=1 Yi√
w

(with (Xi, Yi) draw i.i.d. from (X,Y )) and (G1,G2) ∼ G(ρ).

In particular, one may take w = O
(

1+ρ
α·(1−ρ)3·ζ2

)
, where α is the minimum non-zero probability in

the distribution (X,Y ).

In order to prove Lemma 2.22, we need the following statement that appears as Theorem
16 in [KKMO07] and as Corollary 16.3 in [BR86].

Theorem 2.23. Let Z1, . . . , Zw be independent random variables taking values in Rk and satisfying:

• E[Zj ] is the all-zero vector for every j ∈ {1, . . . , w}.
•
∑w
j=1 Cov[Zj ]/w = V where Cov denotes the covariance matrix.

• λ is the smallest eigenvalue of V and Λ is the largest eigenvalue of V .

•
∑w
j=1 E

[∥∥Zj∥∥3] /w = ρ3 <∞.

Let Qw denote the distribution of (Z1 + · · · + Zw)/
√
w, let Φ0,V denote the distribution of the k-

dimensional Gaussian with mean 0 and covariance matrix V , and let η = Cλ−3/2ρ3w
−1/2, where C is

a certain universal constant. Then, for any Borel set A,∣∣Qw(A)− Φ0,V (A)
∣∣ ≤ η +B(A)

where B(A) is the following measure of the boundary of A: B(A) = 2 supy∈Rk Φ0,V ((∂A)η
′

+ y),
η′ = Λ1/2η and (∂A)η

′
denotes the set of points within distance η′ of the topological boundary of A.

Proof of Lemma 2.22. We apply Theorem 2.23 with k = 2. Let Z = (X,Y ), and hence we have
that,

E[Z] =

[
0
0

]
and Cov[Z] =

[
1 ρ
ρ 1

]
LetZi = (Xi, Yi). Since allZi are i.i.d. distributed according toZ, we have V =

∑w
j=1 Cov[(Xj , Yj)]/w

is also
[
1 ρ
ρ 1

]
. It follows that the smallest and largest eigenvalues of V are λ = 1 − ρ and

Λ = 1 + ρ respectively. Moreover, since the underlying distribution has finite support, we have
that,

w∑
j=1

E
[∥∥Zj∥∥3]
w

= E
[∥∥Z∥∥3] < max

∥∥Z∥∥ · E [∥∥Z∥∥2] ≤ 1/
√
α

(where α is the smallest atom in the distribution (X,Y )). Thus, we get ρ3 ≤ 1/
√
α. Hence,

η = O((1− ρ)−3/2α−1/2w−1/2). As in [KKMO07], one can check that the topological boundary
of any set of the form (−∞, a]×(−∞, b] isO(η′), where η′ = (1+ρ)1/2η. Thus, from Lemma 2.22
it follows by choosing w sufficiently large so thatO

(
(1+(1+ρ)1/2)(1−ρ)−3/2α−1/2w−1/2

)
≤ ζ.

In particular it suffices to choose w = O
(

(1+(1+ρ)1/2)2

α·(1−ρ)3·ζ2

)
= O

(
1+ρ

α·(1−ρ)3·ζ2

)
. �
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3 Main Technical Lemma and Overview

In this section we state the main technical lemma which will be used to solve GAP-BAL-MAX-INNER-PRODUCT.
We also give a high level overview of the proof techniques.

Theorem 3.1. Given any joint probability space (A×B, µ) and any δ > 0, there exists n0 = n0((A×
B, µ), δ) such that for any n and any functions f : An → [−1, 1] and g : Bn → [−1, 1], there exist
functions f̃ : An0 → [−1, 1] and g̃ : Bn0 → [−1, 1] such that

∣∣∣E[f̃ ]− E[f ]
∣∣∣ ≤ δ/3,

∣∣E[g̃]− E[g]
∣∣ ≤

δ/3 and
E

(x,y)∼µ⊗n0

[
f̃(x) · g̃(y)

]
≥ E

(x,y)∼µ⊗n
[f(x) · g(y)]− δ

Most importantly, n0 is a computable function in the parameters of the problem. In particular, one may
take,

n0 = exp

(
poly

(
1

δ
,

1

1− ρ
, log

(
1

α

)))
where ρ def

= ρ(A,B;µ) is the maximal correlation of (A×B, µ) and α def
= α(µ) is the minimum non-zero

probability in µ.

3.1 Proof overview

The proof of Theorem 3.1 goes through a series of intermediate steps, which we describe at a
high level here. At each step we lose only a small amount in the correlation. The first three
steps preserve the marginals E[f ] and E[g] exactly, while the fourth step incurs a small additive
error in the same. The full proof is presented in Section 8.

Step 1: Smoothing of strategies. We transform f and g into functions f1, g1 such that f1 and g1
have ‘most’ of their Fourier mass concentrated on terms of degree at most d, where d is
a constant that depends on the distribution (A × B, µ) and a tolerance parameter, but is
independent of n. This transformation is described in Section 4.

Step 2: Regularity lemma for low degree functions. We first prove a regularity lemma (similar to the
one in [DSTW10]) which roughly shows that for any degree-d polynomial, there exists a
h-sized subset of variables, such that under a random restriction of the variables in this
subset, the resulting function on the remaining variables has low individual influences
(i.e. ≤ τ ). Note that h will be a constant depending on the degree d and τ , but will be
independent of n.
We apply this regularity lemma on the degree-d truncated versions of both f1 and g1
obtained from Step 1. We take the union of the subsets obtained for f1 and g1. We show
that with high probability over random restrictions of the variables in this subset, the
resulting restriction of f1 and g1 on the remaining variables has low individual influences.
This step is described in Section 5.
Note that this step does not change the functions f1 and g1 at all, but we gain some
structural knowledge about the same.

Step 3: Correlation bounds for low influence functions. We use results about correlation bounds for
low influential functions [MOO05, Mos10]. Intuitively, these results suggest that if the
functions f1 and g1 were low influential functions to begin with, then the correlation
E[f1(x)g1(y)] will not be ‘much’ better than the correlation between certain threshold
functions applied on correlated gaussians.
We apply the above correlation bounds for the low influential functions obtained by re-
strictions of the small subset of variables in f1 and g1, to obtain functions f2 : Ah × R →
[−1, 1] and g2 : Bh × R→ [−1, 1], where Alice and Bob together have access to h samples
from (A× B, µ) and a single copy of ρ-correlated gaussians, that is, G(ρ) (see Defn. 2.21).
Here the correlation ρ is same as the maximal correlation ρ(A,B;µ). This step is described
in Section 6.
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Step 4: Simulating correlated gaussians. Finally, Alice and Bob can non-interactively simulate the
distribution G(ρ) using constantly many samples from (A× B, µ). This is done using the
technique of Witsenhausen [Wit75], which primarily uses a 2-dimensional central limit
theorem. This step is described in Section 7.

3.2 Decidability of GAP-NON-INT-SIM

Assuming Theorem 3.1, we now give the algorithm as described in Theorem 2.5.

Proof of Theorem 2.5. We have from Proposition 2.7 that, in order to decide GAP-NON-INT-SIM((A×
B, µ), ρ, δ), it suffices to decide GAP-BAL-MAX-INNER-PRODUCT((A× B, µ), ρ, 2δ).

If we were in the YES case of GAP-BAL-MAX-INNER-PRODUCT((A × B, µ), ρ, 2δ), then we
have that there exists an n and functions f : An → [−1, 1] and g : Bn → [−1, 1], such that
|E[f(x)]| ≤ 2δ, |E[g(y)]| ≤ 2δ and E[f(x) · g(y)] ≥ ρ− 2δ. Using Theorem 3.1, with parameter
δ, we get that there exists functions f̃ : An0 → [−1, 1] and g̃ : Bn0 → [−1, 1] such that

∣∣∣E[f̃(x)]
∣∣∣ ≤

8δ/3,
∣∣E[g̃(y)]

∣∣ ≤ 8δ/3 and E[f̃(x) · g̃(y)] ≥ ρ− 3δ.
In the NO case of GAP-BAL-MAX-INNER-PRODUCT((A × B, µ), ρ, 2δ), we have that for all

n, in particular for n = n0, there do not exist functions f : An → [−1, 1] and g : Bn → [−1, 1]
such that |E[f(x)]| ≤ 4δ, |E[g(y)]| ≤ 4δ and E[f(x) · g(y)] ≥ ρ− 8δ.

This naturally gives us a brute force algorithm: Analyze all possible functions f̃ : An0 →
[−1, 1] and g̃ : Bn0 → [−1, 1] to check if there exist functions satisfying

∣∣∣E[f̃(x)]
∣∣∣ ≤ 8δ/3,∣∣E[g̃(y)]

∣∣ ≤ 8δ/3 and E[f̃(x) · g̃(y)] ≥ ρ − 3δ. For purposes of our algorithm we can treat the

range [−1, 1] as a discrete set R def
=
{
kδ2/10 : k ∈ Z, |k| < 10/δ2

}
. This ensures that if indeed

such a desired f̃ and g̃ exist, then we will find functions f̃ ′ : An0 → R and g̃′ : Bn0 → R such
that

∣∣∣E[f̃ ′(x)]
∣∣∣ , ∣∣E[g̃′(y)]

∣∣ ≤ 8δ/3 +O(δ2) and E[f̃ ′(x) · g̃′(y)] ≥ ρ− 3δ −O(δ2). In the YES case,

we will find such functions, whereas in the NO case, f̃ ′ and g̃′ as above simply don’t exist.
It is easy to see that this brute force can be done in

(
1
δ2

)O((|A|·|B|)n0 ) time, which is upper
bounded by the running time claimed in Theorem 2.5. �

4 Smoothing of Strategies

The first step in our approach is to obtain smoothed versions of the functions f : An → [−1, 1]
and g : Bn → [−1, 1], which have small Fourier tails, without hurting the correlation by much.
In particular, we show the following lemma.

Lemma 4.1 (Smoothing of strategies). Given any joint probability space (A× B, µ) and parameters
λ, η > 0, there exists d = d((A× B, µ), λ, η) such that for any n and any functions f : An → [−1, 1]
and g : Bn → [−1, 1], there exist functions f1 : An → [−1, 1] and g1 : Bn → [−1, 1] such that
E[f1] = E[f ] and E[g1] = E[g], and∣∣E(x,y)∼µ⊗n [f1(x) · g1(y)]− E(x,y)∼µ⊗n [f(x) · g(y)]

∣∣ ≤ λ

such that f1 and g1 have low energy Fourier tails, namely,∑
|σ|>d

f̂1(σ)2 ≤ η and
∑
|σ|>d

ĝ1(σ)2 ≤ η

In particular, one may take d = log η
2 log γ , where γ = 1− C (1−ρ)λ

log(1/λ) , and ρ = ρ(A,B;µ).

To prove Lemma 4.1, we use Lemma 6.1 of Mossel [Mos10]. We state a specialized version of
Mossel’s lemma, which suffices for our application.

Lemma 4.2 ([Mos10]). Let (A× B, µ) be finite joint probability space, such that ρ(A× B, µ) ≤ ρ.
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Let P ∈ L2(An, µ⊗nA ) and Q ∈ L2(Bn, µ⊗nB ) be multi-linear polynomials. Let ε > 0 and γ be chosen
sufficiently close to 1 so that,

γ ≥ (1− ε)log ρ/(log ε+log ρ)

Then: ∣∣E[P (x)Q(y)]− E[TγP (x)TγQ(y)]
∣∣ ≤ 2εVar[P ] Var[Q]

In particular, there exists an absolute constant C such that it suffices to take

γ
def
= 1− C (1− ρ)ε

log(1/ε)

Proof of Lemma 4.1. Given parameters λ and η, we first choose ε and γ in Lemma 4.2, such
that ε = λ/2 and γ = 1− C ((1− ρ)ε) / (log(1/ε)) as required. We choose d to be large enough
such that γ2d ≤ η, that is, d = (log η)/(2 log γ). Now, given functions f : An → [−1, 1] and
g : Bn → [−1, 1], we obtain functions f1 and g1 as follows: f1(x) = Tγf(x) and g1(y) = Tγg(y).
It is easy to see that, E[f1(x)] = E[f(x)] and E[g1(y)] = E[g(y)]. From Lemma 4.2, and the fact
that Var[f ],Var[g] ≤ 1, we get

∣∣E[f1(x)g1(y)]− E[f(x)g(y)]
∣∣ ≤ 2ε = λ as desired. Also, note

that f̂1(σ) = f̂(σ) · γ|σ| (similarly for ĝ1(σ)). Thus, we get that,∑
|σ|>d

f̂1(σ)2 ≤ γ2d ·
∑
|σ|>d

f̂(σ)2 ≤ γ2d ≤ η

∑
|σ|>d

ĝ1(σ)2 ≤ γ2d ·
∑
|σ|>d

ĝ(σ)2 ≤ γ2d ≤ η

�

5 Joint Regularity Lemma for Fourier Concentrated Functions

The second step in our approach is to apply a regularity lemma on the functions f1 : An → [−1, 1]
and g1 : Bn → [−1, 1] obtained from the previous step of smoothing. Regularity lemma is a
loosely referred term which shows that for various types of combinatorial objects, an arbitrary
object can be approximately decomposed into a constant number of “pseudorandom” sub-
objects.

Our version of the regularity lemma draws inspiration from that of [DSTW10]; in fact our
proofs also closely follow theirs. Formally, we show the following lemma.

Lemma 5.1 (Joint regularity lemma for Fourier-concentrated functions). Let (A×B, µ) be a joint
probability space. Let d ∈ N and τ > 0 be any given constant parameters. There exists an η def

= η(τ) > 0

and h def
= h((A× B, µ), d, τ) such that the following holds:

For all P ∈ L2(An, µ⊗nA ) and Q ∈ L2(Bn, µ⊗nB ) satisfying
∑
|σ|>d P̂ (σ)2 ≤ η,

∑
|σ|>d Q̂(σ)2 ≤

η, and Var[P ] ≤ 1 and Var[Q] ≤ 1: there exists a subset of indices H ⊆ [n] with |H| ≤ h, such
that the restrictions of the functions P and Q obtained by evaluating the coordinates in H according to
distribution µ, satisfy the following (where we denote T = [n] \H),

• With probability at least 1 − τ over ξ ∼ µ⊗hA , the restriction Pξ(xT ) is such that for all i ∈ T , it
is the case that Infi(Pξ(xT )) ≤ τ

• With probability at least 1− τ over ξ ∼ µ⊗hB , the restriction Qξ(xT ) is such that for all i ∈ T , it
is the case that Infi(Qξ(xT )) ≤ τ

In particular, one may take η = τ2/16 and h = d
τ2 ·

(
C4(α)
α log C4(α)

α·d·τ

)O(d)

which is a constant that

depends on d, τ and α def
= α(µ), which is the minimum non-zero probability in µ.
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5.1 Regularity Lemma for Constant Degree Polynomials

We first prove a version of the above regularity lemma for degree-d functions, as opposed to
Fourier-concentrated functions.

Lemma 5.2 (Regularity Lemma for degree-d functions). Let (A, µA) be a probability space. Let
d ∈ N and τ > 0 be any given constant parameters. There exists h def

= h((A, µA), d, τ) such that the
following holds:

For all degree-d multilinear polynomials P ∈ L2(An, µ⊗nA ) with Var[P ] ≤ 1, there exists a subset
of indicesH0 ⊆ [n] with |H0| ≤ h, such that for any supersetH ⊇ H0, the restrictions of P obtained by
evaluating the coordinates in H according to distribution µA, satisfies the following (where we denote
T = [n] \H):

Pr
ξ∼µ⊗|H|A

[∀i ∈ T : Infi(Pξ(xT )) ≤ τ ] ≥ 1− τ

In other words, with probability at least 1 − τ over the random restriction ξ ∼ µ
⊗|H|
A , the restricted

function Pξ(xT ) is such that Infi(Pξ(xT )) ≤ τ for all i ∈ T .

In particular, one may take h = d
τ ·
(
C4(α)
α log C4(α)

α·d·τ

)O(d)

which is a constant that depends on d, τ and

α
def
= α(µA).

The intuitive explanation of the regularity lemma is as follows: If P is a degree d polynomial
with Var(P ) ≤ 1, then the total influence of P is at most d. Hence for all β > 0, there can only be

at most h def
= d/β variables with influence greater than β. Indeed, our subsetH0 will essentially

be the set of all the variables with influence at least β (we will choose β to be suitably smaller
than τ , but with no dependence on n). Clearly, |H0| ≤ h. For any superset H ⊇ H0, and
for a random restriction of xH to ξ, it will follow from well known hypercontractivity bounds
(Theorem 2.14) and a careful union bound, that the influence of all the remaining variables will
be less than τ with high probability.

Our regularity lemma draws inspiration from the one in [DSTW10]. In fact, our proof of
the above regularity lemma also closely follows the proof steps in [DSTW10]. However their
regularity lemma was much more involved as they were dealing with low-degree polynomial
threshold functions, whereas we are directly dealing with low-degree polynomials. In particu-
lar, a major difference in our regularity lemmas is that [DSTW10] obtain a (potentially) adaptive
decision tree, whereas we obtain just a single subset H . Also, our notion of ‘regularity’ is much
simpler in that we only need all influences to be small. Another aspect of our regularity lemma
is that it is robust enough to also work for Fourier concentrated functions, as opposed to only
low-degree functions (potentially, [DSTW10] could also be modified to have this feature, al-
though it was not required for their application). Another minor difference is that our Fourier
analysis is for functions in L2(An, µ⊗nA ), as opposed to functions on the boolean hypercube.
But this is not really a significant difference and the proof steps go through as it is, albeit with
slightly different parameters which depend on the hypercontractivity parameters of the distri-
bution (A, µA).

Before we give a proof of Lemma 5.2, we would need the following claim.

Claim 5.3 (cf. Claim 3.12 in [DSTW10]). Let P ∈ L2(An, µ⊗nA ) be a degree-d polynomial. Let
H ⊆ [n] and T = [n] \H . Let ξ be a random restriction fixing H . For all r ≥ ed and all i ∈ T , we have
the following,

Pr
ξ

[Infi(Pξ) > r · C4(α)d · Infi(P )] ≤ exp(−c · r1/d)

where, c = α(µA)d/e (see Theorem 2.14) and C4(α) is obtained as in Theorem 2.13.

Proof. The identity Infi(Pξ) =
∑

σT :(σT )i 6=0 P̂ξ(σT )2 and Fact 2.12 imply that Infi(Pξ) is a
degree-2d polynomial in ξ. Hence, the claim would follow from the concentration bound for
low-degree polynomials, i.e., Theorem 2.14, if we can appropriately upper bound the `2-norm
of the polynomial Infi(Pξ). So, to prove Claim 5.3, it suffices to show that∥∥Infi(Pξ)

∥∥
2
≤ C4(α)d · Infi(P ) (1)

15



By the triangle inequality for norms we have that,

∥∥Infi(Pξ)
∥∥
2

=

∥∥∥∥ ∑
σT :(σT )i 6=0

P̂ξ(σT )2
∥∥∥∥
2

≤
∑

σT :(σT )i 6=0

∥∥∥P̂ξ(σT )2
∥∥∥
2

Since P̂ξ(σT ) is a degree-d polynomial, the moment bound for low-degree polynomials, i.e.,
Theorem 2.13, yields that∥∥∥P̂ξ(σT )2

∥∥∥
2

=
∥∥∥P̂ξ(σT )

∥∥∥2
4
≤ C4(α)d

∥∥∥P̂ξ(σT )
∥∥∥2
2

and hence ∥∥Infi(Pξ)
∥∥
2
≤ C4(α)d

∑
σT :(σT )i 6=0

∥∥∥P̂ξ(σT )
∥∥∥2
2

= C4(α)d
∑

σT :(σT )i 6=0

E
ξ

[
P̂ξ(σT )2

]
= C4(α)d · E

ξ
[Inf(Pξ)]

= C4(α)d · Infi(P )

where the last equality follows from Lemma 2.11. Thus, Equation (1) and the claim follows
from Theorem 2.14.

Proof of Lemma 5.2. Let P ∈ L2(An, µ⊗nA ) be the given degree-d multilinear polynomial with
Var[P ] ≤ 1. From part (iii) of Fact 2.10, we have that Inf(P ) ≤ d. Let H0 ⊂ [n] be the set of
indices i ∈ [n] such that Infi(f) ≥ β. Since, d ≥ Inf(P ) ≥

∑
i Infi(P ), we have that |H0| ≤ d/β.

We will choose β as a suitable constant less than τ , but with no dependence on n.
Fix H ⊇ H0 and let T = [n] \H . From Claim 5.3, we have for any i ∈ T , that Prξ [Infi(Pξ) >

r · C4(α)d · Infi(P )] ≤ exp(−Ω(c · r1/d)). However, to prove that Infi(Pξ) ≤ τ for all i ∈ T ,
with high probability, we cannot simply use a naïve union bound over all i ∈ T , as that will
introduce a dependence of n in β and thereby in h. Instead, we use a bucketing argument, as
done in [DSTW10], as follows:

We partition the indices i ∈ T into buckets {Bj}j∈N as Bj =
{
i ∈ T : Infi(P ) ∈

(
β

2j+1 ,
β
2j

]}
.

Since Inf(P ) ≤ d, we have that |Bj | ≤ 2j+1d/β. For all i ∈ Bj , we use the concentration
Pr
ξ

[Infi(Pξ) ≤ r · C4(α)d · Infi(P )] ≥ 1− exp(−c · r1/d) by choosing r = τ ·2j
β·C4(α)d

. We then do a

union bound over all the buckets. Thus, we get that,

Pr
ξ

[∀i ∈ T : Infi(Pξ(xT )) ≤ τ ] ≥ 1−
∞∑
j=0

Pr
ξ

[∃i ∈ Bj : Infi(Pξ(xT )) > τ ]

≥ 1−
∞∑
j=0

exp

(
−c
(

τ · 2j

β · C4(α)d

)1/d
)
· 2j+1d

β

It can be verified that for 1
β = (2·C4(α))

d

cd·τ · log
(

(2·C4(α))
d

cd·τ

)d
it holds that,

∞∑
j=0

exp

(
−c
(

τ · 2j

β · C4(α)d

)1/d
)
· 2j+1d

β
≤ τ

Thus, we have the regularity lemma as desired with |H0| ≤ h = d
β = d

τ ·
(
C4(α)
α log C4(α)

α·d·τ

)O(d)

which is a constant that depends on d, τ and α def
= α(µA).

�
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5.2 Joint Regularity Lemma

In this section, we use Lemma 5.2 to prove the joint regularity lemma, namely Lemma 5.1.
Proof of Lemma 5.1. We have P ∈ L2(An, µ⊗nA ) andQ ∈ L2(Bn, µ⊗nB ) satisfying

∑
|σ|>d P̂ (σ)2 ≤

η,
∑
|σ|>d Q̂(σ)2 ≤ η, and Var[P ] ≤ 1 and Var[Q] ≤ 1. First, we split P and Q into low and high

degree components. That is, P (x) = P `(x) + Ph(x) and Q(y) = Q`(y) + Qh(y), where P `(x)
and Q`(y) contain all the monomials of degree at most d in P (x) and Q(y) respectively. Note
that Var[P `] ≤ Var[P ] ≤ 1. Similarly, Var[Q`] ≤ 1.

We apply the regularity lemma for degree-d functions (Lemma 5.2), with parameter τ equal
to τ/4, on functions P ` and Q` separately, to obtain subsets HA, HB ⊆ [n] respectively. The
subset H is then obtained as HA ∪HB . Note that, |H| ≤ h((A, µA), d, τ/4) + h((B, µB), d, τ/4),
which is a computable in terms of the parameters of the problem, but more importantly has no
dependence on n.
From Lemma 5.2, we know that for T = [n] \H (note that H ⊇ HA and H ⊇ HB),

Pr
ξ∼µ⊗|H|A

[
∀i ∈ T : Infi(P

`
ξ (xT )) ≤ τ/4

]
≥ 1− τ/4 (2)

Pr
ξ∼µ⊗|H|B

[
∀i ∈ T : Infi(Q

`
ξ(yT )) ≤ τ/4

]
≥ 1− τ/4 (3)

Now, we show that after adding Ph to P `, the influences Infi(Pξ(xT )) are still upper bounded
by τ , with high probability over ξ.

Infi(Pξ(xT )) =
∑

σT :(σT )i 6=0

(∑
σH

P̂ (σH ◦ σT ) · χσH (ξ)

)2

=
∑

σT :(σT )i 6=0

(∑
σH

P̂ `(σH ◦ σT ) · χσH (ξ) +
∑
σH

P̂h(σH ◦ σT ) · χσH (ξ)

)2

≤ 2 ·
∑

σT :(σT )i 6=0

(∑
σH

P̂ `(σH ◦ σT ) · χσH (ξ)

)2

+

(∑
σH

P̂h(σH ◦ σT ) · χσH (ξ)

)2

= 2 ·
(
Infi(P

`
ξ (xT )) + Infi(P

h
ξ (xT ))

)
(4)

Since Eξ
[
Var(Phξ (xT ))

]
≤ Var(Ph(xT )) ≤ η (see Lemma 2.11), we have by Markov’s inequal-

ity that,

Pr
ξ∼µ⊗|H|A

[
Var(Phξ (xT )) ≤ 4η/τ

]
≥ 1− τ/4

Since for all i ∈ T , we have Infi(P
h
ξ (xT )) ≤ Var(Phξ (xT )) (see Fact 2.10), we get that

Pr
ξ∼µ⊗|H|A

[
∀i ∈ T : Infi(P

h
ξ (xT )) ≤ 4η/τ

]
≥ 1− τ/4 (5)

We will choose η = (τ/4)2, and thus, by union bound (using Equations 4, 3 and 5), we have
that,

Pr
ξ∼µ⊗|H|A

[∀i ∈ T : Infi(Pξ(xT )) ≤ τ ] ≥ 1− τ/2 > 1− τ

By exactly same flow of calculations for Q(y), we can have,

Pr
ξ∼µ⊗|H|B

[∀i ∈ T : Infi(Qξ(yT )) ≤ τ ] ≥ 1− τ/2 > 1− τ

This completes the proof of Lemma 5.1.
�
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6 Applying correlation bounds for low-influence functions

The third step in our approach is to use correlation bounds for low-influence functions obtained
from the invariance principle [MOO05, Mos10], to convert the functions f1 : An → [−1, 1] and
g1 : Bn → [−1, 1] into functions f2 : Ah × R → [−1, 1] and g2 : Bh × R → [−1, 1] using the
following lemma.

Lemma 6.1 (Applying correlation bounds for low-influence functions). Let (A×B, µ) be a joint
probability space. Let γ > 0 be any given constant parameter. There exists a τ def

= τ((A×B, µ), γ) > 0
such that the following holds:

For all functions f1 : An → [−1, 1] and g1 : Bn → [−1, 1], and a subset H ⊆ [n] with |H| =
h, such that the restrictions of the functions f1 and g1 obtained by evaluating the coordinates in H
according to distribution µ, satisfy the following (where we denote T = [n] \H),

• With probability at least 1− τ over ξ ∼ µ⊗hA , the restriction (f1)ξ(xT ) is such that for all i ∈ T ,
it is the case that Infi((f1)ξ(xT )) ≤ τ

• With probability at least 1− τ over ξ ∼ µ⊗hB , the restriction (g1)ξ(xT ) is such that for all i ∈ T ,
it is the case that Infi((g1)ξ(xT )) ≤ τ

There exist functions f2 : Ah × R→ [−1, 1] and g2 : Bh × R→ [−1, 1], such that,

E
x∼µ⊗nA

f1(x) = E
x∼µ⊗hA

rA∼N (0,1)

f2(x, rA) and E
y∼µ⊗nB

g1(y) = E
y∼µ⊗hB

rB∼N (0,1)

g2(y, rB)

and,

E
(x,y)∼µ⊗h

(rA,rB)∼G(ρ)

[f2(x, rA) · g2(y, rB)] ≥ E
(x,y)∼µ⊗n

[f1(x) · g1(y)]− γ

Additionally, f2 and g2 will have the following special form: there exist functions f ′2 : Ah → R and
g′2 : Bh → R such that,

f2(x, r) =

{
1 r ≥ f ′2(x)
−1 r < f ′2(x)

and g2(y, r) =

{
1 r ≥ g′2(y)
−1 r < g′2(y)

Also, one may take τ = γO( log(1/γ) log(1/α)
(1−ρ)γ ), where ρ = ρ(A,B;µ) and α def

= α(µ) is the minimum
non-zero probability in µ.

As mentioned before, the main technical tool in proving Lemma 6.1 is a result about correla-
tion bounds for low influence functions (which are generalizations of the ‘Majority is Stablest’
theorem). Before we state that theorem, we need the following definition, which is a slightly
modified version of Definition 1.12 in [Mos10].

Definition 6.2 (Gaussian stability). Let Φ be the cumulative distribution function (CDF) of a stan-
dard N (0, 1) Gaussian. Given ρ ∈ [−1, 1] and µ, ν ∈ [−1, 1], we define,

Γρ(µ, ν) = E[Pµ(X) ·Qν(Y )]

Γρ(µ, ν) = −E[Pµ(X) ·Q−ν(Y )]

where (X,Y ) is distributed according to G(ρ) and

Pµ(X) =

{
1 X ≤ Φ−1( 1+µ

2 )
−1 otherwise and Qν(X) =

{
1 Y ≤ Φ−1( 1+ν

2 )
−1 otherwise

Note that for (X,Y ) ∼ G(ρ), we have that,

E
X

[
Pµ(X)

]
= µ and E

Y

[
Qν(Y )

]
= ν = E

Y

[
−Q−ν(Y )

]
With this definition in hand, we can state the correlation bounds for low influential functions
that are obtained from invariance principle.
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Theorem 6.3 (Correlation bounds from invariance principle; [MOO05, Mos10]). Let (A×B, µ)
be a joint probability space. As before, let α = α(µ) be the minimum probability of any atom in A× B.
Let ρ = ρ(A,B;µ) be the maximal correlation of the joint probability space (see Definition 2.16).

Then, for all ε > 0, there exists τ def
= τ((A× B, µ), ε) > 0 such that if

P : An → [−1, 1] and Q : Bn → [−1, 1]

satisfy Infi(P ) ≤ τ and Infi(Q) ≤ τ for all i ∈ [n], then

Γρ

(
E
x

[P (x)] , E
y

[Q(y)]

)
− ε ≤ E

(x,y)∼µ⊗n
[P (x)Q(y)] ≤ Γρ

(
E
x

[P (x)] , E
y

[Q(y)]

)
+ ε

Furthermore, one may take

τ = εO( log(1/ε) log(1/α)
(1−ρ)ε )

Intuitively, this theorem says that if P and Q are low-influential, then their correlation is not
much more than that of appropriate threshold functions applied on ρ-correlated gaussians.
With this tool in hand, we are now ready to prove Lemma 6.1.

Proof of Lemma 6.1. Suppose we have f1 : An → [−1, 1] and g1 : Bn → [−1, 1], and a subsetH ⊆
[n] with |H| = h, such that the restrictions of the functions f1 and g1 obtained by evaluating the
coordinates in H according to distribution µ, satisfy the properties as stated in the lemma. We
construct function f2 : Ah × R → [−1, 1] and g2 : Bh × R → [−1, 1] by replacing the functions
obtained after restricting the variables in H by appropriate threshold functions acting on ρ-
correlated gaussians, namely,

∀ (x, r) ∈ Ah × R : f2(x, r) = P ν1(r) where ν1
def
= E

xT∼µ⊗n−hA

[f1(xH ← x,xT )]

∀ (y, r) ∈ Bh × R : g2(y, r) = Qν2(r) where ν2
def
= E

yT∼µ⊗n−hB

[f1(yH ← y,yT )]

where P ν and Qν are as defined in Definition 6.2.7

It follows from definition, that E[f2(x, r)] = E[f1(x)] and E[g2(y, r)] = E[g1(y)]. That is, this
process has not changed the individual means of f1 and g1. We now need to prove that the
correlation is not hurt by much. From Lemma 5.1 and a simple union bound, we know that
with probability 1− 2τ , a random restriction (xH ,yH) for the coordinates in H is such that,

∀i ∈ T : Infi((f1)xH (xT )) ≤ τ and Infi((g1)yH (yT )) ≤ τ

Let’s call all the tuples (xH ,yH) for which the above happens as ‘good’.

7For simplicity, we will abuse notations in the followng sense: when we say f1(x), we mean x ∈ An, but when we
say f2(x, r), we mean x ∈ Ah and r ∈ R.
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E
x,y

f1(x)g1(y)

= E
xH ,yH

[
E

xT ,yT
f1(xH ,xT ) · g1(yH ,yT )

]
= Pr[(xH ,yH) is not ‘good’] · E

xH ,yH

[
E

xT ,yT
f1(xH ,xT ) · g1(yH ,yT )

∣∣∣∣(xH ,yH) is not ‘good’
]

+ Pr[(xH ,yH) is ‘good’] · E
xH ,yH

[
E

xT ,yT
f1(xH ,xT ) · g1(yH ,yT )

∣∣∣∣(xH ,yH) is ‘good’
]

≤ Pr[(xH ,yH) is not ‘good’] · 1

+ Pr[(xH ,yH) is ‘good’] · E
xH ,yH

[
E

rA,rB
f2(xH , rA) · g2(yH , rB) + ε

∣∣∣∣(xH ,yH) is ‘good’
]

= Pr[(xH ,yH) is not ‘good’] ·
(

1− E
xH ,yH

[
E

rA,rB
f2(xH , rA) · g2(yH , rB) + ε

∣∣∣∣(xH ,yH) is not ‘good’
])

+ E
xH ,yH

[
E

rA,rB
f2(xH , rA) · g2(yH , rB) + ε

]
≤ E

xH ,yH

[
E

rA,rB
f2(xH , rA) · g2(yH , rB)

]
+ 2τ · (2− ε) + ε

≤ E
xH ,yH

[
E

rA,rB
f2(xH , rA) · g2(yH , rB)

]
+ 2ε

Step 3 above is due to the definition of f2 and g2 and Theorem 6.3. The last step follows because
τ � ε, and so we can upper bound 2τ · (2− ε) ≤ ε.

Thus, finally we choose ε = γ/2 for Theorem 6.3, and we get τ = τ(γ) accordingly, thereby
getting the final requirement of Lemma 6.1, that is,

E
(xH ,yH)∼µ⊗h
(rA,rB)∼G(ρ)

f2(xH , rA) · g2(yH , rB) ≥ E
(x,y)∼µ⊗n

f1(x) · g1(y)− γ

�

7 Simulating Correlated Gaussians

In this section, we use the technique due to Witsenhausen [Wit75] which shows that for any
joint probability space (A×B, µ) with maximal correlation ρ, Alice and Bob can non-interactively
simulate ρ-correlated gaussians upto arbitrarily small 2-dimensional Kolmogorov distance. We ob-
tain the following lemma.

Lemma 7.1 (Witsenhausen’s rounding). Let (A × B, µ) be a joint probability space, and let ρ =

ρ(A,B;µ) be its maximal correlation. Let ζ > 0 be any given parameter. Then, there exists w def
=

w((A× B, µ), ζ) ∈ N, such that the following holds:
For all functions f2 : Ah × R → [−1, 1] and g2 : Bh × R → [−1, 1] having the following special

form: there exist functions f ′2 : Ah → R and g′2 : Bh → R such that,

f2(x, r) =

{
1 r ≥ f ′2(x)
−1 r < f ′2(x)

and g2(y, r) =

{
1 r ≥ g′2(y)
−1 r < g′2(y)

there exist functions f3 : Ah+w → [−1, 1] and g3 : Bh+w → [−1, 1], such that,

∣∣∣∣∣ E
x∼µ⊗(h+w)

A

f3(x)− E
x∼µ⊗hA

rA∼N (0,1)

[f2(x, rA)]
∣∣∣∣∣ ≤ ζ and

∣∣∣∣∣ E
y∼µ⊗(h+w)

B

g3(y)− E
x∼µ⊗hB

rB∼N (0,1)

[g2(y, rB)]
∣∣∣∣∣ ≤ ζ

and,
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∣∣∣∣∣ E
(x,y)∼µ⊗(h+w)

[f3(x) · g3(y)]− E
(x,y)∼µ⊗h

(rA,rB)∼G(ρ)

[f2(x, rA) · g2(y, rB)]
∣∣∣∣∣ ≤ ζ

In particular, one may take w = O
(

1+ρ
α·(1−ρ)3·ζ2

)
, where α def

= α(µ) is the minimum non-zero probabil-
ity in µ.

The main idea in obtaining the functions f3 and g3 is the technique of Witsenhausen [Wit75],
of simulating ρ-correlated gaussians from many copies of (A× B, µ).

Lemma 7.2 (Simulating gaussians [Wit75]). Let (A × B, µ) be a joint probability space, and let
ρ = ρ(A,B;µ) be its maximal correlation. Let ζ > 0 be any given parameter. Then, there exists
w

def
= w((A× B, µ), ζ) ∈ N, such that the following holds,
For all ν1, ν2 ∈ [−1,+1], there exist functions Pν1 : Aw → [−1, 1] and Qν2 : Bw → [−1, 1] such

that |E[Pν1(x)]− ν1| ≤ ζ/2, |E[Qν2(y)]− ν2| ≤ ζ/2 and∣∣E(x,y)∼µ⊗w [Pν1(x)Qν2(y)]− Γρ(ν1, ν2)
∣∣ ≤ ζ

In particular, one may take w = O
(

1+ρ
α·(1−ρ)3·ζ2

)
, where α def

= α(µ).

Proof. Since ρ = ρ(A,B;µ), we have that there exist functions f : A → R and g : B → R such
that Ex∼µA f(x) = Ey∼µB g(y) = 0, Var(f) = Var(g) = 1 and E(x,y)∼µ[f(x) · g(y)] = ρ.
We define F (x) =

∑w
i=1 f(xi)√

w
and G(y) =

∑w
i=1 g(yi)√

w
. And define Pν1 and Qν2 as follows,

Pν1(x) =

{
1 F (x) ≤ Φ−1( 1+ν1

2 )
−1 otherwise and Qν2(y) =

{
1 G(y) ≤ Φ−1( 1+ν2

2 )
−1 otherwise

We apply Lemma 2.22 for the pair of random variables (f(x), g(y)) with parameter ζ being ζ/4,
to obtain the appropriate w. It easily follows that, |E[Pν1(x)]−ν1| ≤ ζ/2 and |E[Qν2(y)]−ν2| ≤
ζ/2 and ∣∣E(x,y)∼µ⊗w [Pν1(x)Qν2(y)]− Γρ(ν1, ν2)

∣∣ ≤ ζ
We are now ready to prove Lemma 7.1.

Proof of Lemma 7.1. Given (A× B, µ) and ζ, we obtain w as in Lemma 7.2. Given functions f2
and g2, of the said form, we construct functions f3 : Ah+w → [−1, 1] and g3 : Bh+w → [−1, 1]
by invoking Lemma 7.2 for every assignment to the first h variables with parameter ζ. In
particular for every x1 ∈ Ah,x2 ∈ Aw, we define f3(x1,x2) = Pf ′2(x1)(x2). Similarly, for
y1 ∈ Bh,y2 ∈ Aw, we define g3(y1,y2) = Qg′2(y1)(y2).
This gives us that |E[f3(x)]− E[f2(x, rA)]| ≤ ζ/2 and |E[g3(y)]− E[g2(y, rB)]| ≤ ζ/2 and,∣∣∣∣∣ E

(x,y)∼µ⊗(h+w)
[f3(x) · g3(y)]− E

(x,y)∼µ⊗h
(rA,rB)∼G(ρ)

[f2(x, rA) · g2(y, rB)]
∣∣∣∣∣ ≤ ζ

Thus, we have f3 and g3 as desired. �

8 Putting it all together!

In this section we finally use all the lemmas we have developed to prove Theorem 3.1.

Proof of Theorem 3.1. Given (A × B, µ) and δ > 0 and functions f : An → [−1, 1] and g :
Bn → [−1, 1], we wish to apply Lemma 6.1 with parameter γ = δ/3 followed by Lemma 7.1
with parameter ζ = δ/3. Lemma 6.1 will dictate a value τ = τ((A×B, µ), γ). We wish to apply
the Joint regularity lemma (Lemma 5.1), with this parameter τ , which will dictate a value of
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(A× B, µ), δ

Correlation Bounds
(Lemma 6.1)

γ = δ
3

Witsenhausen Rounding
(Lemma 7.1)

ζ = δ
3

Joint Regularity Lemma
(Lemma 5.1)

τ = τ(γ)

Smoothing
(Lemma 4.1)

λ = δ
3

η = η(τ)

d = d(λ, η)
n0 = h+ w

h = h(d, τ)

w = w(ζ)

Figure 3: Dependency of parameters in the proof of Theorem 3.1

η = η(τ). Using this value of η, and λ = δ/3, we apply the Smoothing lemma (Lemma 4.1),
which will dictate a value of d = d((A×B, µ), λ, η). We use this d to feed into the joint regularity
lemma (Lemma 5.1), to obtain a value of h. The final value of n0 is the sum of h((A×B, µ), d, τ)
given by the joint regularity lemma (Lemma 5.1) and w((A×B, µ), ζ) given by Witsenhausen’s
rounding procedure (Lemma 7.1). This dependency of parameters is pictorially described in
Figure 3 (the dependencies on (A × B, µ) are suppressed, for sake of clarity). It can be shown
by putting everything together that n0 = exp

(
poly

(
1
δ ,

1
1−ρ , log

(
1
α

)))
.

Once we have all the parameters set, we are now able to apply them to any pair of functions
f : An → [−1, 1] and g : Bn → [−1, 1]. In particular, we proceed as described in the overview
(Section 3).

Step 1: We apply Lemma 4.1 to functions f and g with parameters λ and η as obtained above.
This gives us a degree d and functions f1 and g1, such that,

∑
|σ|>d f̂(σ)2 < η and∑

|σ|>d ĝ(σ)2 < η.

Step 2: We apply the joint regularity lemma (Lemma 5.1) on functions f1 and g1, with parameters
d and τ as obtained above (note that, the conditions involving η are satisfied, because
we chose precisely this η to be given to the Smoothing lemma). This gives us a subset
H ⊆ [n] such that |H| ≤ h and with high probability over restrictions to this subsetH , the
restricted versions of both f1 and g1 have all individual influences to be at most τ .

Step 3: We apply the correlation bounds result (Lemma 6.1) to functions f1 and g1 (note that all
the conditions involving τ are satisfied already because we chose precisely this τ to be
given to the joint regularity lemma).
This gives us functions f2 : Ah ×R→ [−1, 1] and g2 : Bh ×R→ [−1, 1] of the form: there
exist functions f ′2 : Ah → R and g′2 : Bh → R such that,

f2(x, r) =

{
1 r ≥ f ′2(x)
−1 r < f ′2(x)

and g2(y, r) =

{
1 r ≥ g′2(y)
−1 r < g′2(y)

Step 4: Functions f2 and g2 are exactly in the form for which Lemma 7.1 is applicable, which we
use with parameters ζ as obtained above. This gives us functions f3 : Ah+w → [−1, 1]
and g3 : Bh+w → [−1, 1].

Note that, E f = E f1 = E f2 and
∣∣E f3 − E f2

∣∣ ≤ ζ = δ/3 and similarly E g = E g1 = E g2 and
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∣∣E g3 − E g2
∣∣ ≤ ζ = δ/3. Moreover, we have from Lemmas 7.1, 6.1 and 4.1 that,

E
(x,y)∼µ⊗(h+w)

[f3(x) · g3(y)] ≥ E
(x,y)∼µ⊗h

(rA,rB)∼G(ρ)

[f2(x) · g2(y)]− ζ

≥ E
(x,y)∼µ⊗n

[f1(x) · g1(y)]− γ − ζ

≥ E
(x,y)∼µ⊗n

[f(x) · g(y)]− λ− γ − ζ

= E
(x,y)∼µ⊗n

[f(x) · g(y)]− δ

Hence, taking f̃ = f3 and g̃ = g3, proves Theorem 3.1.
�

8.1 Generalizing to arbitrary binary targets

We now give a proof sketch of Theorem 2.3. Even though this is not a black-box application of
Theorem 2.5, it follows the same proof steps. We highlight the main differences in this section.

We consider two cases, (I) E[UV ] ≥ E[U ] · E[V ] and (II) E[UV ] ≤ E[U ] · E[V ].

Case (I) : E[UV ] ≥ E[U ] · E[V ]

We need to modify the GAP-BAL-MAX-INNER-PRODUCT problem 2.6, by replacing the con-
ditions on

∣∣E[f(x)]
∣∣ by

∣∣E[f(x)]− E[U ]
∣∣, and similarly replacing the conditions on

∣∣E[g(y)]
∣∣ by∣∣E[g(y)]− E[V ]

∣∣ and replacing ρ by E[UV ]. The reduction between GAP-NON-INT-SIM and
GAP-BAL-MAX-INNER-PRODUCT works in almost exactly the same way.

It is easy to see that using the main technical theorem 3.1 and following the same proof as
of Theorem 2.5, we also get decidability for GAP-NON-INT-SIM((A× B, µ), (U × V, ν), δ).

Case (II) : E[UV ] ≤ E[U ] · E[V ]

As in the previous case, we need to modify the GAP-BAL-MAX-INNER-PRODUCT problem
2.6, by replacing the conditions on

∣∣E[f(x)]
∣∣ by

∣∣E[f(x)]− E[U ]
∣∣, and similarly replacing the

conditions on
∣∣E[g(y)]

∣∣ by
∣∣E[g(y)]− E[V ]

∣∣. The condition on E[f(x)g(y)] will however change
as, E[f(x)g(y)] ≤ E[UV ] + δ in case (i) vs. E[f(x)g(y)] ≥ E[UV ] + 4δ in case (ii). The reduction
between GAP-NON-INT-SIM and GAP-BAL-MAX-INNER-PRODUCT works in almost exactly
the same way.

The main difference in this case however is that, we want each of the steps to ‘increase’
correlation by a small amount as opposed to ‘decrease’ the correlation. In particular, the main
condition in Theorem 3.1 will change as follows,

E
(x,y)∼µ⊗n0

[
f̃(x) · g̃(y)

]
≤ E

(x,y)∼µ⊗n
[f(x) · g(y)] + δ

The steps of Smoothing (Lemma 4.1) and Joint Regularity (Lemma 5.1) and Witsenhausen
rounding (Lemma 7.1) don’t need any modification as they approximately preserve the corre-
lation in both directions. However, in the step of applying Correlation Bounds (Lemma 6.1),
we need to use the lower bound of Γρ(·, ·) instead of the upper bound of Γρ(·, ·). In particular,
the lemma will change slightly resulting in functions such that,

E
(x,y)∼µ⊗h

(rA,rB)∼G(ρ)

[f2(x, rA) · g2(x, rB)] ≤ E
(x,y)∼µ⊗n

[f1(x) · g1(y)] + γ

Additionally, f2 and g2 will have the following special form: there exist functions f ′2 : Ah → R
and g′2 : Bh → R such that,

f2(x, r) =

{
1 r ≥ f ′2(x)
−1 r < f ′2(x)

and g2(y, r) =

{
−1 r ≥ g′2(y)
1 r < g′2(y)
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This structural difference in f2 and g2 affects the Witsenhausen Rounding step (Lemma 7.1)
slightly, but it is easy to see that the same proof strategy works.

It is also easy to see that using this modified main theorem (analog of Theorem 3.1) and fol-
lowing the same proof steps as of Theorem 2.5, we also get decidability for GAP-NON-INT-SIM((A×
B, µ), (U × V, ν), δ) in this case.

9 Open Questions

In this work, we proved computable bounds on the non-interactive simulation of any 2 × 2
distribution. We now conclude with some interesting open questions.

The running time of our algorithm is at least doubly-exponential in the input size8. It would
be very interesting to understand the computational complexity of the non-interactive simu-
lation problem. We point out that the question of generating the best DSBS can be thought of
as a tensored version of the following “MIN-BIPARTITE-BISECTION” problem: We are given a
weighted bipartite graphG = (L∪R,E), and we wish to find a subset S of L∪R such that S∩L
roughly contains half the vertices of L, and S ∩R roughly contains half the vertices of R, while
minimizing the total weight of edges crossing the cut (S, S). While it follows from [RST12] that
MIN-BIPARTITE-BISECTION is hard to approximate, the same is not necessarily true about its
tensored version.

Another interesting open question is to generalize our decidability results to larger alpha-
bets, which seems to require new technical ideas. Indeed, our proof of Theorems 1.1 and 1.2
relied on the fact that for (X,Y ) being correlated random Gaussians, the maximum possible
agreement of any pair of ±1-valued functions f(X) and g(Y ) is at most that of two appro-
priate dictator threshold functions F (X1) and G(Y1) where F only depends on the marginals
of f (i.e., the probability that f takes the values −1 and +1), and similarly G only depends
on the marginals of g. The analogous statement for the ternary case is not true. Namely, let
f(X), g(Y ) ∈ {0, 1, 2}, and assume that the marginals of f are (1/3, 1/3, 1/3). Then, depend-
ing on whether the marginals of g are (1/3, 1/3, 1/3) or (1/2, 1/2, 0), the largest agreement of
(f, g) would be achieved by very different functions f , assuming the “Standard Simplex Con-
jecture” (see [IM12] and Proposition 2.10 of [HMN15]). This example shows that in the ternary
case Alice cannot replace f by a function of a very small number of copies without taking the
marginals of Bob’s function g into account, and this is a major obstacle in generalizing our
approach for proving Theorems 1.1 and 1.2 to larger alphabets.

Yet another interesting open question is to generalize our computability results to more
than two players, which also seems to require new technical ideas.

Finally, it will be very interesting to see if these techniques could apply to other ‘tensored’
problems. The most relevant problems seem to be (i) deciding a quantum version of our prob-
lem, namely that of local state transformation of quantum entanglement [Bei12, DB13] and (ii)
approximately computing the entangled value of a 2-prover 1-round game ([KKM+11]; also
see the open problem [ope]).
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