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Abstract

The minrank of a graph G is the minimum rank of a matrix M that can be obtained from the
adjacency matrix of G by switching some ones to zeros (i.e., deleting edges) and then setting all
diagonal entries to one. This quantity is closely related to the fundamental information-theoretic
problems of (linear) index coding (Bar-Yossef et al., FOCS’06), network coding and distributed
storage, and to Valiant’s approach for proving superlinear circuit lower bounds (Valiant, Boolean
Function Complexity ’92).

We prove tight bounds on the minrank of random Erdős-Rényi graphs G(n, p) for all regimes
of p ∈ [0, 1]. In particular, for any constant p, we show that minrk(G) = Θ(n/ log n) with high
probability, where G is chosen from G(n, p). This bound gives a near quadratic improvement
over the previous best lower bound of Ω(

√
n) (Haviv and Langberg, ISIT’12), and partially

settles an open problem raised by Lubetzky and Stav (FOCS ’07). Our lower bound matches
the well-known upper bound obtained by the “clique covering” solution, and settles the linear
index coding problem for random graphs.

Finally, our result suggests a new avenue of attack, via derandomization, on Valiant’s ap-
proach for proving superlinear lower bounds for logarithmic-depth semilinear circuits.
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1 Introduction

In information theory, the index coding problem [BK98, BYBJK06] is the following: A sender
wishes to broadcast over a noiseless channel an n-symbol string x ∈ Fn to a group of n receivers
R1, . . . , Rn, each equipped with some side information, namely, a subvector xKi of x indexed by
a subset Ki ⊆ {x1, . . . , xn}. The index coding problem asks what is the minimum length m
of a broadcast message that allows each receiver Ri to retrieve the ith symbol xi, given his side-
information xKi and the broadcasted message. The side information of the receivers can be modeled
by a directed graph Kn, in which Ri observes the symbols Ki := {xj : (i, j) ∈ E(Kn)}. Kn is
sometimes called the knowledge graph. A canonical example is where Kn is the complete graph
(with no self-loops) on the vertex set [n], i.e., each receiver observes all but his own symbol. In this
simple case, broadcasting the sum

∑n
i=1 xi (in F) allows each receiver to retrieve his own symbol,

hence m = 1.
This problem is motivated by applications to distributed storage [AK15], on-demand video

streaming (ISCOD, [BK06]) and wireless networks (see, e.g., [YZ99]), where a typical scenario
is that clients miss information during transmissions of the network, and the network is inter-
ested in minimizing the retransmission length by exploiting the side information clients already
possess. In theoretical computer science, index coding is related to some important communi-
cation models and problems in which players have overlapping information, such as the one-way
communication complexity of the index function [KNR95] and the more general problem of net-
work coding [ACLY00, ERL15]. Index coding can also be viewed as an interesting special case
of nondeterministic computation in the (notoriously difficult to understand) multiparty Number-
On-Forehead model, which in turn is a promising approach for proving data structure and circuit
lower bounds [Pat10, PRS97, JS11]. The minimum length of an index code for a given graph has
well-known relations to other important graph parameters. For instance, it is bounded from below
by the size of the maximum independent set, and it is bounded from above by the clique-cover
number (χ(Ḡ)) since for every clique in G, it suffices to broadcast a single symbol (recall the ex-
ample above). The aforementioned connections also led to algorithmic connections (via convex
relaxations) between the computational complexity of graph coloring and that of computing the
minimum index code length of a graph [CH14].

In the context of circuit lower bounds, Riis [Rii07] observed that a certain index coding problem
is equivalent to the so-called shift conjecture of Valiant [Val92] (see Subsection 1.1 below). If true,
this conjecture would resolve a major open problem of proving superlinear size lower bound for
logarithmic-depth circuits.

When the encoding function of the index code is linear in x (as in the example above), the corre-
sponding scheme is called a linear index code. In their seminal paper, Bar-Yossef et al. [BYBJK06]
showed that the minimum length m of a linear index code is characterized precisely by a param-
eter of the knowledge graph Kn, called the minrank (minrkF(Kn)), first introduced by Haemers
[Hae79] in the context of Shannon capacity of graphs.1 Namely, minrkF(Kn) is the minimum rank
(over F) of an n × n matrix M that “represents” Kn. By “represents” we mean a matrix M that
contains a zero in all entries corresponding to non-edges, and non-zero entries on the diagonal.
Entries corresponding to edges are arbitrary. (Over F2 this is equivalent to being the adjacency
matrix of a subgraph of Kn, with diagonal entries set to one.) Note that without the “diagonal

1To be precise, this holds only for graphs without self-loops. We will ignore this minor issue in this paper as it
will not affect any of our results.
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constraint”, the above minimum would trivially be 0, and indeed this constraint is what makes
the problem interesting and hard to analyze. While linear index codes are in fact optimal for a
large class of knowledge graphs (including directed acyclic graphs, perfect graphs, odd “holes” and
odd “anti-holes” [BYBJK06]), there are examples where non-linear codes outperform their linear
counterparts [LS07]. In the same paper, Lubetzky and Stav [LS07] posed the following question
about typical knowledge graphs, namely,

What is the minimum length of an index code for a random knowledge graph Kn = Gn,p?

Here, Gn,p denotes a random Erdős-Rényi directed graph, i.e., a graph on n vertices in which each
arc is taken independently with probability p. In this paper, we partially answer this open problem
by determining the optimal length of linear index codes for such graphs. In other words, we prove
a tight lower bound on the minrank of Gn,p for all values of p ∈ [0, 1]. In particular,

Theorem 1 (Main theorem, informal). For any constant 0 < p < 1 and any field F of cardinality
|F| < nO(1), it holds with high probability that

minrkF(Gn,p) = Θ

(
n

log n

)
.

The formal quantitative statement of our result can be found in Corollary 2 below. We note
that our general result (see Theorem 2) extends beyond the constant regime to subconstant values
of p, and this feature of our lower bound is crucial for potential applications of our result to circuit
lower bounds (we elaborate on this in the next subsection). Theorem 1 gives a near quadratic
improvement over the previously best lower bound of Ω(

√
n) [LS07, HL12], and settles the linear

index coding problem for random knowledge graphs, as an Op(n/ log n) linear index coding scheme
is achievable via the clique-covering solution (see Section 1.2).

In the following subsection, we propose a concrete (yet admittedly still quite challenging) ap-
proach for proving superlinear circuit lower bounds based on a potential “derandomization” of
Theorem 1.

1.1 Connections to circuit lower bounds for semilinear circuits

General log-depth circuits. In his seminal line of work, Valiant [Val77, Val83, Val92] proposed
a path for proving superlinear lower bounds on the size of circuits with logarithmic depth, one
of the main open questions in circuit complexity. Informally speaking, Valiant’s “depth reduc-
tion” method [Val77, Vio09] allows, for any constant ε, to reduce any circuit of size O(n) and
depth O(log n) (with n inputs and n outputs), to a new circuit with the same inputs and outputs,
where now each output gate is an (arbitrary) Boolean function of (i) at most nε inputs which
are “hard-wired” to this output gate, and (ii) an additional fixed set of m = Oε(n/ log log n)
“common bits” b1(x), . . . , bm(x) which in general may be arbitrary Boolean functions of the in-
put x = x1, . . . , xn. Therefore, if one could exhibit a function that cannot be computed in this
model using O(n/ log log n) common bits, this would imply a superlinear circuit lower bound for
logarithmic depth circuits.

Valiant [Val92] proposed a concrete candidate hard function for this new model, namely the
function whose input is an n-bit string x and a number i ∈ {0, . . . , n − 1} and whose output is
the ith cyclic shift of x. Valiant conjectured that no “pre-wired” circuit as above can realize all
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n cyclic shifts using m = O(n/ log logn) common bits (in fact, Valiant postulated that m = Ω(n)
common bits are required, and this still seems plausible). This conjecture is sometimes referred
to as Valiant’s shift conjecture. As noted earlier in the introduction, Riis [Rii07] observed that
a certain index coding problem is equivalent to this conjecture. Let G = (V,A) be a directed
graph, and i ∈ {0, . . . , n − 1}. We denote by Gi the graph with vertex set V and arc set Ai =
{(u, v + i(mod n)) : (u, v) ∈ A}. Riis [Rii07] showed that the following conjecture is equivalent to
Valiant’s shift conjecture:

Conjecture 1. There exists ε > 0 such that for all sufficiently large n and every graph G on n
vertices with max-out-degree at most nε, there exists a shift i such that the minimum length of an
index coding scheme for Gi (over F2) is ω(n/ log logn).

Semilinear log-depth circuits. Let us consider a function f(x, p) whose input is partitioned
into two parts, x ∈ {0, 1}k and p ∈ {0, 1}t. We say that the function f is semilinear if for every fixed
value of p = p0, the function f(x, p0) is a linear function (over F2) of x. The class of semilinear
functions is quite rich, and includes for instance bilinear functions in x and p (such as matrix
multiplication) and permutations πp(x) of x that may depend arbitrarily on p. A circuit G is called
semilinear if for every fixed value of p = p0, one can assign linear functions to the gates of G, so
that G computes f(x, p0). So it is only the circuit’s topology that is fixed, and the linear functions
computed by the gates may depend arbitrarily on p.

It is easy to see that a semilinear function with a one-bit output can always be computed by
a linear-size log-depth semilinear circuit (namely, the full binary tree). However, if we consider
semilinear functions with O(n) output bits, then the semilinear circuit complexity of a random
function is Ω(n2/ log n) with high probability. It is an open problem to prove a superlinear lower
bound against log-depth semilinear circuits [PRS97]. This would follow from the semilinear variant
of Valiant’s shift conjecture, which is equivalent to the following slight modification of Conjec-
ture 1 [PRS97, Rii07].

Conjecture 2. There exists ε > 0 such that for all sufficiently large n and every graph G on n
vertices with max-out-degree at most nε, there exists a shift i such that the minimum length of a
linear index coding scheme for Gi (over F2) is ω(n/ log logn). Equivalently,

∀ G of out-degrees at most nε ∃ i ∈ [n] minrk2(G
i) = ω(n/ log log n) .

Theorem 1 (and the more precise concentration bound we prove in Theorem 2) asserts that with
high probability, a graph chosen from Gn,p (with p = nε−1 for the expected degree of each vertex
to be nε) has minrank Ω(n). Conjecture 2 would follow from a “derandomization” of Theorem 1
in which we replace the distribution Gn,p with a random shift of an arbitrary given graph of the
right degree. In fact, for the purpose of circuit lower bounds, one could replace cyclic shifts with
any (efficiently computable) set of at most exp(O(n)) permutations. (Since the permutation itself
is part of the input, its description size must be linear in n.)

Semilinear series-parallel circuits. Finally, we mention one last circuit class for which the
above “derandomization” approach might be easier. Here we replace the depth restriction by
another restriction on the topology of the circuit. Namely, a circuit G = (V,A) is called Valiant
series-parallel (VSP), if there is a labeling of its vertices l : V → R, such that for every arc (u, v) ∈ A,
l(u) < l(v), but there is no pair of arcs (u, v), (u′, v′) ∈ A, such that l(u) < l(u′) < l(v) < l(v′).
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Most of the known circuit constructions (i.e., circuit upper bounds) are VSP circuits. Thus, it is
also a big open question in circuit complexity to prove a superlinear lower bound on the size of
semilinear VSP circuits (of arbitrary depth).

Valiant [Val77], Calabro [Cal08], and Riis [Rii07] show that in order to prove a superlinear
lower bound for semilinear VSP circuits, it suffices to show that for a sufficiently large constant
d, for every graph G of max-out-degree at most d, the minrank of one of its shifts is at least
n/100. We note that Theorem 1 for this regime of p = d/n gives a lower bound of n/20. Thus,
derandomization of the theorem in this regime would imply a superlinear lower bound. Note that in
the case of p = O(n−1), the entropy of a random graph is only O(n log n) bits, hence, information-
theoretically it seems easier to derandomize than the case of p = nε−1.

1.2 Proof overview of Theorem 1

In [LS07], Lubetzky and Stav showed that for any field F and a directed graph G,

minrkF(G) ·minrkF(Ḡ) ≥ n .

This inequality gives a lower bound of Ω(
√
n) on the expected value of the minrank of Gn,1/2.

(Indeed, the random variables Gn,1/2 and Ḡn,1/2 have identical distributions). Since minrkF(Gn,p)
is monotonically non-increasing in p, the same bound holds for any p ≤ 1/2. Haviv and Lang-
berg [HL12] improved this result by proving a lower bound of Ω(

√
n) for all constant p (and not

just p ≤ 1/2), and also by showing that the bound holds with high probability.
We now outline the main ideas of our proof. For simplicity we assume that F = F2 and p = 1/2.

To prove that minrk2(Gn,p) ≥ k, we need to show that with high probability, Gn,p has no representing
matrix (in the sense of Definition 1) whose rank is less than k.

As a first attempt, we can show that any fixed matrix M with 1s on the diagonal of rank less
than k has very low probability of representing a random graph in Gn,p, and then apply a union
bound over all such matrices M . Notice that this probability is simply 2−s+n, where s is the
sparsity of M (i.e., the number of non-zero entries) and the n is to account for the diagonal entries.
Moreover, we observe that the sparsity s of any rank-k matrix with 1s on its main diagonal must
be2 at least ≈ n2/k. Finally, since the number of n × n matrices of rank k is ≈ 22nk (as a rank-k
matrix can be written as a product of n× k by k× n matrices, which requires 2nk bits to specify),
by a union bound, the probability that Gn,p contains a subgraph of rank < k is bounded from above

by (roughly) 22nk · (1/2)n
2/k, which is � 1 for k = O(

√
n). This recovers the previous Ω(

√
n) lower

bound of [HL12] (for all constant p, albeit with a much weaker concentration bound).
To see why this argument is “stuck” at

√
n, we observe that we are not overcounting and indeed,

there are 2n
3/2

matrices of rank k ≈ n1/2 and sparsity s ≈ n3/2. For instance, we can take the
rank n1/2 matrix that consists of n1/2 diagonal n1/2 × n1/2 blocks of 1s (a disjoint union of n1/2

equal-sized cliques), and replace the first n1/2 columns with arbitrary values. Each such matrix has

probability 2−n
3/2

of representing Gn,p (because of its sparsity) and there are 2n
3/2

of them, so the
union bound breaks for k = Ω(

√
n).

2To see why, notice that any maximal linearly independent set of columns must “cover” all coordinates, i.e., there
must not be any coordinate that is zero in all vectors, as otherwise we could take the column vector corresponding
to that coordinate and it would be linearly independent of our set (due to the nonzero diagonal) in contradiction to
maximality. Assuming all columns have roughly the same number of 1s, we obtain that each column has at least n/k
1s, leading to the claimed bound. See Lemma 3 for the full proof.
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In order to go beyond
√
n, we need two main ideas. To illustrate the first idea, notice that in the

above example, even though individually each matrix has probability 2−n
3/2

of representing Gn,p,
these “bad events” are highly correlated. In particular, each of these events implies that Gn,p must

contain n1/2 − 1 disjoint cliques, an event that happens with roughly the same probability 2−n
3/2

.
Therefore, we see that the probability that the union of these bad events happens is only 2−n

3/2
,

greatly improving on the naive union bound argument. (We remark that this idea of “bunching
together related events” is reminiscent of the chaining technique as used, e.g., in analyzing Gaussian
processes.) More generally, the first idea (and also centerpiece) of our proof is Lemma 4, which
shows that every matrix must contain a “nice” submatrix (in a sense to be defined below). The
second and final idea, described in the next paragraph, will be to bound the number of “nice”
submatrices, from which the proof would follow by a union bound over all such submatrices.

Before defining what we mean by “nice”, we mention the following elementary yet crucial fact in
our proof: Every rank k matrix is uniquely determined by specifying some k linearly independent
rows, and some k linearly independent columns (i.e., a row basis and a column basis) including the
indices of these rows and columns (see Lemma 2). This lemma implies that we can encode a matrix
using only ≈ sbasis · log n bits, where sbasis is the minimal sparsity of a pair of row and column bases
that are guaranteed to exist. This in turn implies that there are only ≈ 2sbasis logn such matrices.
Now, since the average number of 1s in a row or in a column of a matrix of sparsity s is s/n, one
might hope that such a matrix contains a pair of row and column bases of sparsity k · (s/n), and
this is precisely our definition of a “nice” matrix. (Obviously, not all matrices are nice, and as the
previous example shows, there are lots of “unbalanced” matrices where the nonzero entries are all
concentrated on a small number of columns, hence they have no sparse column basis even though
the average sparsity of a column is very low; this is exactly why we need to go to submatrices.)

To complete this overview, notice that using the bound on the number of “nice” matrices, the
union bound yields

2ks log(n)/n · (1/2)s,

so one could set the rank parameter k to be as large as Θ(n/ log n) and the above expression would
still be � 1. A similar bound holds for nice submatrices, completing the proof.

2 Preliminaries

For an integer n, we denote the set {1, . . . , n} by [n]. For an integer n and 0 ≤ p ≤ 1, we
denote by Gn,p the probability space over the directed graphs on n vertices where each arc is taken
independently with probability p.

For a directed graph G, we denote by χ(G) the chromatic number of the undirected graph that
has the same set of vertices as G, and an edge in place of every arc of G. By Ḡ we mean a directed
graph on the same set of vertices as G that contains an arc if and only if G does not contain it.3

Let F be a finite field. For a vector v ∈ Fn, we denote by vj the jth entry of v, and by v≤j ∈ Fj
the vector v truncated to its first j coordinates. For a matrix M ∈ Fn×n and indices i, j ∈ [n], let
Mi,j be the entry in the ith row and jth column of M,Coli(M) be the ith column of M , Rowi(M)
be the ith row of M , and rk(M) be the rank of M over F.

3Throughout the paper we assume that graphs under consideration do not contain self-loops. In particular, neither
G nor Ḡ has self-loops.
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By a principal submatrix we mean a submatrix whose set of row indices is the same as the set
of column indices. By the leading principal submatrix of size k we mean a principal submatrix that
contains the first k columns and rows.

For a matrix M ∈ Fn×n, the sparsity s(M) is the number of non-zero entries in M . We say that
a matrix M ∈ Fn×n of rank k contains an s-sparse column (row) basis, if M contains a column
(row) basis (i.e., a set of k linearly independent columns (rows)) with a total of at most s non-zero
entries.

Definition 1 (Minrank [BYBJK06, LS07]). 4 Let G = (V,A) be a graph on n = |V | vertices with
the set of directed arcs A. A matrix M ∈ Fn×n represents G if Mi,i 6= 0 for every i ∈ [n], and
Mi,j = 0 whenever (i, j) /∈ A and i 6= j. The minrank of G over F is

minrkF(G) = min
M represents G

rk(M) .

We say that two graphs differ at only one vertex if they differ only in arcs leaving one vertex.
Following [HHMS10, HL12], to amplify the probability in Theorem 2, we shall use the following
form of Azuma’s inequality for the vertex exposure martingale.

Lemma 1 (Corollary 7.2.2 and Theorem 7.2.3 in [AS16]). Let f(·) be a function that maps directed
graphs to R. If f satisfies the inequality |f(H)− f(H ′)| ≤ 1 whenever the graphs H and H ′ differ
at only one vertex, then

Pr[|f(Gn,p)− E[f(Gn,p)]| > λ
√
n− 1] < 2e−λ

2/2 .

3 The Minrank of a Random Graph

The following elementary linear-algebraic lemma shows that a matrix M ∈ Fn×n of rank k is fully
specified by k linearly independent rows, k linearly independent columns, and their 2k indices. In
what follows, we denote by Mn,k the set of matrices from Fn×n of rank k.

Lemma 2 (Row and column bases encode the entire matrix). Let M ∈ Mn,k, and let R =
(Rowi1(M), . . . ,Rowik(M)), C = (Colj1(M), . . . ,Coljk(M)) be, respectively, a row basis and a col-
umn basis of M . Then the mapping φ : Mn,k → (F1×n)k × (Fn×1)k × [n]2k defined as

φ(M) = (R,C, i1, . . . , ik, j1, . . . , jk) ,

is a one-to-one mapping.

Proof. We first claim that the intersection of R and C has full rank, i.e., that the submatrix
M ′ ∈ Fk×k obtained by taking rows i1, . . . , ik and columns j1, . . . , jk has rank k. This is a
standard fact, see, e.g., [HJ13, p20, Section 0.7.6]. We include a proof for completeness. As-
sume for convenience that (i1, . . . , ik) = (1, . . . , k) and (j1, . . . , jk) = (1, . . . , k). Next, assume
towards contradiction that rk(M ′) = rk({Col1(M ′), . . . ,Colk(M

′)}) = k′ < k. Since C is a
column basis of M , every column Coli(M) is a linear combination of vectors from C, and in

4In this paper we consider the directed version of minrank. Since the minrank of a directed graph does not exceed
the minrank of its undirected counterpart, a lower bound for a directed random graph implies the same lower bound
for an undirected random graph. The bound is tight for both directed and undirected random graphs (see Theorem 3).
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particular, every Coli(M
′) is a linear combination of {Col1(M ′), . . . ,Colk(M

′)}. Therefore, the
k × n submatrix M ′′ := (Col≤k1 (M), . . . ,Col≤kn (M)) has rank k′. On the other hand, the k rows
of M ′′ : Row1(M), . . . ,Rowk(M) were chosen to be linearly independent by construction. Thus,
rk(M ′′) = k > k′, which leads to a contradiction.

In order to show that φ is one-to-one, we show that R and C (together with their indices)
uniquely determine the remaining entries of M . We again assume for convenience that (i1, . . . , ik) =
(1, . . . , k) and (j1, . . . , jk) = (1, . . . , k). Consider any column vector Coli(M), i ∈ [n] \ [k]. By
definition, Coli(M) =

∑k
t=1 αi,t · Colt(M) for some coefficient vector αi := (αi,1, . . . , αi,k) ∈ Fk×1.

Thus, in order to completely specify all the entries of Coli(M), it suffices to determine the coefficient
vector αi. But M ′ has full rank, hence the equation

M ′αTi = Col≤ki (M)

has a unique solution. Therefore, the coefficient vector αi is fully determined by M ′ and Col≤ki (M).
Thus, the matrix M can be uniquely recovered from R,C and the indices {i1, . . . , ik}, {j1, . . . , jk}.

The following corollary gives us an upper bound on the number of low-rank matrices that
contain sparse column and row bases. In what follows, we denote by Mn,k,s the set of matrices
over Fn×n of rank k that contain an s-sparse row basis and an s-sparse column basis.

Corollary 1 (Efficient encoding of sparse-base matrices).

|Mn,k,s| ≤ (n · |F|)6s .

Proof. Throughout the proof, we assume without loss of generality that s ≥ k, as otherwise
|Mn,k,s| = 0 hence the inequality trivially holds. The function φ from Lemma 2 maps matri-
ces from Mn,k,s to (R,C, i1, . . . , ik, j1, . . . , jk), where R and C are s-sparse bases. Therefore, the
total number of matrices in Mn,k,s is bounded from above by((

kn

s

)
· |F|s

)2

· n2k ≤
(
(n2)s · |F|s

)2 · n2k ≤ (n · |F|)6s ,

where the last inequality follows from k ≤ s.

Now we show that a matrix of low rank with nonzero entries on the main diagonal must contain
many nonzero entries. To get some intuition on this, notice that a rank 1 matrix with nonzero
entries on the diagonal must be nonzero everywhere. Also notice that the assumption on the
diagonal is crucial – low rank matrices in general can be very sparse.

Lemma 3 (Sparsity vs. Rank for matrices with non-zero diagonal). For any matrix M ∈ Fn×n
with non-zero entries on the main diagonal (i.e., Mi,i 6= 0 for all i ∈ [n]), it holds that

s(M) ≥ n2

4rk(M)
.

Proof. Let s denote s(M). The average number of nonzero entries in a column of M is s/n.
Therefore, Markov’s inequality implies that there are at least n/2 columns in M each of which has
sparsity at most 2s/n. Assume without loss of generality that these are the first n/2 columns of
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M . Now pick a maximal set of linearly independent columns among these columns. We claim that
the cardinality of this set is at least n2/(4s). Indeed, in any set of less than n2/(4s) columns, the
number of coordinates that are nonzero in any of the columns is less than

n2

4s
· 2s

n
=
n

2

and therefore there exists a coordinate i ∈ {1, . . . , n/2} that is zero in all those columns. As a result,
the ith column, which by assumption has a nonzero ith coordinate, must be linearly independent
of all those columns, in contradiction to the maximality of the set. We therefore get that

rk(M) ≥ n2/(4s) ,

as desired.

The last lemma we need is also the least trivial. In order to use Corollary 1, we would like
to show that any n × n matrix of rank k has sparse row and column bases, where by sparse we
mean that their sparsity is roughly k/n times that of the entire matrix. If the number of nonzero
entries in each row and column was roughly the same, then this would be trivial, as we can take
any maximal set of linearly independent columns or rows. However, in general, this might be
impossible to achieve. E.g., consider the n× n matrix whose first k columns are chosen uniformly
and the remaining n − k columns are all zero. Then any column basis would have to contain all
first k columns (since they are linearly independent with high probability) and hence its sparsity
is equal to that of the entire matrix. Instead, what the lemma shows is that one can always choose
a principal submatrix with the desired property, i.e., that it contains sparse row and column bases,
while at the same time having relative rank that is at most that of the original matrix.

Lemma 4 (Every matrix contains a principal submatrix of low relative-rank and sparse bases).
Let M ∈ Mn,k be a matrix. There exists a principal submatrix M ′ ∈ Mn′,k′ of M , such that
k′/n′ ≤ k/n, and M ′ contains a column basis and a row basis of sparsity at most

s(M ′) · 2k′

n′
.

Note that if M contains a zero entry on the main diagonal, the lemma becomes trivial. Indeed,
we can take M ′ to be a 1 × 1 principal submatrix formed by this zero entry. Thus, the lemma
is only interesting for matrices M without zero elements on the main diagonal (i.e., when every
principal submatrix has rank greater than 0).

Proof. We prove the statement of the lemma by induction on n. The base case n = 1 holds trivially.
Now let n > 1, and assume that the statement of the lemma is proven for every m×m matrix

for 1 ≤ m < n. Let s(i) be the number of nonzero entries in the ith column plus the number of
non-zero entries in the ith row (note that a nonzero entry on the diagonal is counted twice). Let
also smax = maxi s(i). By applying the same permutation to the columns and rows of M we can
assume that s(1) ≤ s(2) ≤ · · · ≤ s(n) holds.

If for some 1 ≤ n′ < n, the leading principal submatrix M ′ of dimensions n′ × n′ has rank at
most k′ ≤ n′k/n, then we use the induction hypothesis for M ′. This gives us a principal submatrix
M ′′ of dimensions n′′ × n′′ and rank k′′, such that M ′′ contains a column basis and a row basis of

8



sparsity at most s(M ′′) · 2k′′

n′′ . Also, by induction hypothesis k′′/n′′ ≤ k′/n′ ≤ k/n, which proves the
lemma statement in this case.

Now we assume that for all n′ < n, the rank of the leading principal submatrix of dimension
n′ × n′ is greater than n′k/n. We prove that the lemma statement holds for M ′ = M for a column
basis, and an analogous proof gives the same result for a row basis.

For every 0 ≤ i ≤ smax, let ai = |{j : s(j) = i}|. Note that

smax∑
i=0

ai = n . (1)

Let us select a column basis of cardinality k by greedily adding linearly independent vectors to the
basis in non-decreasing order of s(i). Let ki be the number of selected vectors j with s(j) = i.
Then

smax∑
i=0

ki = k. (2)

Next, for any 0 ≤ t < smax, consider the leading principal submatrix given by indices i with
s(i) ≤ t. The rank of this matrix is at most k′ =

∑t
i=0 ki, and its dimensions are n′ × n′, where

n′ =
∑t

i=0 ai < n. Thus by our assumption k′/n′ ≥ k/n, or equivalently,

t∑
i=0

ki ≥
k

n
·

t∑
i=0

ai . (3)

From (1) and (2),
smax∑
i=0

ki =
k

n
·
smax∑
i=0

ai . (4)

Now, (3) and (4) imply that for all 0 ≤ t ≤ smax:

smax∑
i=t

ki ≤
k

n
·
smax∑
i=t

ai . (5)

To finish the proof, notice that the sparsity of the constructed basis of M is at most

smax∑
i=1

i · ki =

smax∑
t=1

smax∑
i=t

ki
(5)

≤ k

n
·
smax∑
t=1

smax∑
i=t

ai =
k

n
·
smax∑
i=1

i · ai = s(M) · 2k

n
.

Now we are ready to prove our main result – a lower bound on the minrank of a random graph.

Theorem 2.

Pr

[
minrkF(Gn,p) ≥ Ω

(
n log(1/p)

log (n|F|/p)

)]
≥ 1− e

−Ω

(
n log2 (1/p)

log2 (n|F|/p)

)
.

9



Proof. Let us bound from above probability that a random graph Gn,p has minrank at most

k :=
n log(1/p)

C log (n|F|/p)
,

for some constant C to be chosen below.
Recall that by Lemma 4, every matrix of rank at most k contains a principal submatrix M ′ ∈

Mn′,k′ of sparsity s′ = s(M ′) with column and row bases of sparsity at most

s′ · 2k

n
,

where k′/n′ ≤ k/n. By Corollary 1, there are at most (n′ · |F|)6(2s′k/n) such matrices M ′, and (for
any s′) there are

(
n
n′

)
ways to choose a principal submatrix of size n′ in a matrix of size n × n.

Furthermore, recall that Lemma 3 asserts that for every n′, k′,

s′ ≥ n′2

4k′
. (6)

Finally, since M ′ contains at least s′ − n′ off-diagonal non-zero entries, Gn,p contains it with prob-
ability at most ps

′−n′ . We therefore have

Pr [minrkF(Gn,p) ≤ k]

≤
∑
k′,n′,s′

Pr

[
Gn,p contains M ′ ∈Mn′,k′ , s(M

′) = s′, s(bases of M ′) ≤ s′ · 2k

n

]

≤
∑
k′,n′,s′

(
n

n′

)
· ps′−n′ ·

(
n′ · |F|

)12s′k/n

≤
∑
k′,n′,s′

2n
′ logn−s′ log(1/p)+n′ log(1/p)+(12s′k/n) log (n′|F|) , (7)

where all the summations are taken over n′, k′, s.t. k′/n′ ≤ k/n and s′ ≥ n′2

4k′ , and the first inequality
is again by Lemma 4. We now argue that for sufficiently large constant C, all positive terms in the
exponent of (7) are dominated by the magnitude of the negative term (s′ log(1/p)). Indeed:

n′ log n+ n′ log(1/p) + (12s′k/n) log (n′|F|) = n′ log (n/p) + (12s′k/n) log (n′|F|)
≤ (4s′k′/n′) log (n/p) + (12s′k/n) log (n|F|) ≤ (16s′k/n) log (n|F|/p) = (16s′/C) log (1/p) ,

where the first inequality follows from (6), and the second one follows from k′/n′ ≤ k/n.
Thus, for C > 16,

Pr

[
minrkF(Gn,p) ≤

n log(1/p)

C log (n|F|/p)

]
≤ n4 · 2−Ω(s′ log(1/p)) ≤ 2−Ω(log(n)).

In particular, E [minrkF(Gn,p)] ≥ n log(1/p)
2C log (n|F|/p) . Furthermore, note that changing a single row (or

column) of a matrix can change its minrank by at most 1, hence the minrank of two graphs that
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differ in one vertex differs by at most 1. We may thus apply Lemma 1 with λ = Θ
(√

n log(1/p)
log (n|F|/p)

)
to

obtain

Pr

[
minrkF(Gn,p) ≥ Ω

(
n log(1/p)

log (n|F|/p)

)]
≥ 1− e

−Ω

(
n log2 (1/p)

log2 (n|F|/p)

)
.

as desired.

Corollary 2. For a constant 0 < p < 1 and a field F of size |F| < nO(1),

Pr [minrkF(Gn,p) ≥ Ω(n/ log n) ] ≥ 1− e−Ω(n/ log2 n) .

3.1 Tightness of Theorem 2

In this section, we show that Theorem 2 provides a tight bound for all values of p bounded away
from 1 (i.e., p ≤ 1− Ω(1)). (See also the end of the section for the regime of p close to 1.)

Theorem 3. For any p bounded away from 1,

Pr

[
minrkF(Gn,p) = O

(
n log(1/p)

log n+ log(1/p)

)]
≥ 1− e−Ω(n) .

Proof. We can assume that p > n−1/8 as otherwise the statement is trivial.
As we saw in the introduction, in the case of a clique (a graph with an arc between every

pair of distinct vertices) it is enough to broadcast only one bit. This simple observation leads
to the “clique-covering” upper bound: If a directed graph G can be covered by m cliques, then
minrkF(G) ≤ m [Hae78, BYBJK06, HL12]. Note that the minimal number of cliques needed to
cover G is exactly χ(Ḡ). Thus, we have the following upper bound: For any field F and any directed
graph G,

minrkF(G) ≤ χ(Ḡ) . (8)

Since the complement of Gn,p is Gn,1−p, it follows from (8) that an upper bound on χ(Gn,1−p) implies
an upper bound on minrkF(Gn,p).

Let G−n,p denote a random Erdős-Rényi undirected graph on n vertices, where each edge is drawn
independently with probability p. For constant p, the classical result of Bollobás [Bol88] asserts
that the chromatic number of an undirected random graph satisfies

Pr

[
χ(G−n,1−p) ≤

n log (1/p)

2 log n
(1 + o(1))

]
> 1− e−Ω(n) . (9)

In fact, Pudlák, Rödl, and Sgall [PRS97] showed that (9) holds for any p > n−1/4.
Since we define the chromatic number of a directed graph to be the chromatic number of its

undirected counterpart, χ(Gn,1−p) = χ(G−
n,1−p2). The bound (9) depends on p only logarithmically

(log (1/p)), thus, asymptotically the same bounds hold for the chromatic number of a random
directed graph.

The lower bound of Theorem 2 is also almost tight for the other extreme regime of p = 1 − ε,
where ε = o(1).  Luczak [ Luc91] proved that for p = 1− Ω(1/n),

Pr

[
χ(G−n,1−p) ≤

n(1− p)
2 log n(1− p)

(1 + o(1))

]
> 1− (n(1− p))−Ω(1) . (10)

11



When p = 1 − ε, the upper bound (10) matches the lower bound of Theorem 2 for ε ≥ n−1+Ω(1).
For ε = O(n−1), (10) gives an asymptotically tight upper bound of O(1). Thus, we only have
a gap between the lower bound of Theorem 2 and known upper bounds when p = 1 − ε and
ω(1) ≤ nε ≤ no(1).
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[PRS97] Pavel Pudlák, Vojtech Rödl, and Jiŕı Sgall. Boolean circuits, tensor ranks, and com-
munication complexity. SIAM J. Comput., 26(3):605–633, 1997.

[Rii07] Søren Riis. Information flows, graphs and their guessing numbers. Electr. J. Comb.,
14(1), 2007.

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In MFCS 1977,
pages 162–176, 1977.

[Val83] Leslie G. Valiant. Exponential lower bounds for restricted monotone circuits. In STOC
1983, pages 110–117. ACM, 1983.

[Val92] Leslie G. Valiant. Why is Boolean complexity theory difficult. Boolean Function
Complexity, 169:84–94, 1992.

[Vio09] Emanuele Viola. On the power of small-depth computation. Foundations and Trends
in Theoretical Computer Science, 5(1):1–72, 2009.

[YZ99] Raymond W. Yeung and Zhen Zhang. Distributed source coding for satellite commu-
nications. IEEE Trans. Inf. Theory, 45(4):1111–1120, 1999.

13

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


