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Abstract

We study the following basic problem called Bi-Covering. Given a graph G(V,E), find two
(not necessarily disjoint) sets A ⊆ V and B ⊆ V such that A ∪ B = V and that every edge e
belongs to either the graph induced by A or to the graph induced by B. The goal is to minimize
max{|A|, |B|}. This is the most simple case of the Channel Allocation problem [13]. A solution
that outputs V, ∅ gives ratio at most 2. We show that under the similar Strong Unique Game
Conjecture by Bansal and Khot [6] there is no 2 − ε ratio algorithm for the problem, for any
constant ε > 0.

Given a bipartite graph, Max-Bi-Clique is a problem of finding largest k × k complete
bipartite sub graph. For Max-Bi-Clique problem, a constant factor hardness was known
under random 3-SAT hypothesis of Feige [10] and also under the assumption that NP *
∩ε>0 BPTIME(2n

ε

) [17]. It was an open problem in [3] to prove inapproximability of Max-
Bi-Clique assuming weaker conjecture. Our result implies similar hardness result assuming
the Strong Unique Games Conjecture.

On the algorithmic side, we also give better than 2 approximation for Bi-Covering on
numerous special graph classes. In particular, we get 1.876 approximation for Chordal graphs,
exact algorithm for Interval Graphs, 1 + o(1) for Minor Free Graph, 2 − 4δ/3 for graphs with
minimum degree δn, 2/(1 + δ2/8) for δ-vertex expander, 8/5 for Split Graphs, 2 − (6/5) · 1/d
for graphs with minimum constant degree d etc. Our algorithmic results are quite non-trivial.
In achieving these results, we use various known structural results about the graphs, combined
with the techniques that we develop tailored to getting better than 2 approximation.
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1 Introduction

We study the Bi-Covering problem - Given a graph G(V,E), find two (not necessarily disjoint)
sets A,B ⊆ V such that A∪B = V and that every edge e ∈ E belongs to either the graph induced
by A or to the graph induced by B. The goal is to minimize max{|A|, |B|}.

The problem we study is closely related to the problem of Channel Allocation which was studied
in [13]. The Channel Allocation Problem can be described as follows: there is a universe of topics,
a fixed number of channels and a set of requests where each request is a subset of topics. The task
is to send a subset of topics through each channel such that each request is satisfied by set of topics
from one of the channel i.e. for every request there must exists at least one channel such that the
set of topics present in that channel is a superset of the set of topics from the request. Of course,
one can achieve this task trivially by sending all topics through one channel. But, the optimization
version of Channel Allocation Problem asks for a way to satisfy all the request by minimizing the
maximum number of topics sent through a channel.

Any connected undirected graph G(V,E) on n vertices and m edges along with an integer k can
be viewed as a special case of channel allocation problem - The set of topics is a set of n vertices,
each edge represents a request, where the requested set of topics corresponding to an edge is a
pair of its endpoints and the number of channels is k. If we fix the number of channels to k = 2
then the optimization problem exactly corresponds to the Bi-Covering problem. Specifically,
the optimization problem asks for two subsets A and B of V minimizing max{|A|, |B|} such that
A ∪B = V and every edge is totally contained in a graph induced by either A or B.

2 Our Results

Getting 2 approximation for Bi-Covering problem is trivial (by setting A = B = V). We show
that Bi-Covering problem is hard to approximate within any factor strictly less than 2 assuming
a strong Unique Games Conjecture (UGC) similar to the one in [6] (see Conjecture 2).

Theorem 1. Let ε > 0 be any small constant. Assuming a strong Unique Games Conjecture
(Conjecture 2), given a graph G(V,E), it is NP-hard to distinguish between following two cases:

1. G has Bi-Covering of size at most (1/2 + ε)|V |.

2. Any Bi-Covering of G has size at least (1− ε)|V |.

In particular, it is NP-hard (assuming strong UGC) to approximate Bi-Covering within a factor
2− ε for every ε > 0.

Given this structural hardness result, we get a 3
2 − ε hardness of Bi-Covering restricted to

bipartite graphs by transforming a hard instance from Theorem 1 into a bipartite graph in a natural
way (getting a 3

2 -approximation is easy - given a bipartite graph on X and Y with |X| ≥ |Y |, one
can take arbitrary partition X into two equal sized parts X1 and X2 and set the Bi-Covering to
be X1 ∪ Y and X2 ∪ Y ).

Theorem 2. Assuming the strong Unique Games Conjecture, for every ε > 0,
Bi-Covering is NP-hard to approximate within a factor 3

2 − ε for bi-partite graphs.
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Our Theorem 1 implies hardness result for the following well known problem:

Max-Bi-Clique problem is as follows:
Input: A bipartite graph G(X,Y,E) with |X| = |Y | = n.
Output: Find largest k such that there exists two subsets A ⊆ X,B ⊆ Y of size k and the

graph induced on (A,B) is a complete bipartite graph.
Inapproximability of Max-Bi-Clique problem has been studied extensively [2,7,10,17]. Feige

[10] showed that using an assumption of average case hardness of 3SAT instance, Max-Bi-Clique
cannot be approximated within any constant factor in polynomial time (and hence within nδ

for some δ > 0 using known amplification technique [2, 7]). Feige-Kogan [12] showed that as-

suming SAT /∈ DTIME(2n
3/4+ε

) there is no 2(logn)
δ

approximation for Max-Bi-Clique. They
also showed that it is NP-hard to approximate Max-Bi-Clique within any constant factor as-
suming Max−Clique (finding a maximum sized clique in a graph) does not have a n/2c

√
logn-

approximation. Khot [17] later proved a similar inapproximability result but assuming NP *
∩ε>0 BPTIME(2n

ε
) using a quasi-random PCP. It is an important open problem to extend similar

hardness results based on weaker complexity assumptions [3]. In particular, it is still not known
if UGC implies a constant factor hardness for Max-Bi-Clique. A straightforward corollary from
Theorem 1 (see 4.2.2) implies that we get similar hardness results for Max-Bi-Clique based on
Conjecture 2.

Corollary 1. Assuming strong Unique Games Conjecture, it is NP-hard to approximate Max-Bi-
Clique within any constant factor.

As mentioned above, the hardness factor can be boosted to nδ for some δ > 0 using known
techniques. (such as described in [2, 7])

UGC and strong UGC: Unique games conjecture so far helped in understanding the tight
inapproximability factors of many problems including, but not limited to, Vertex Cover [18], opti-
mal algorithm for every Max-CSP [20], Ordering CSPs [15], characterizing strong approximation
resistance of CSPs [19] etc. The inherent difficulty in showing hardness results assuming Unique
Games Conjecture for the problems that we study is that we need some kind of expansion prop-
erty on the unique games instance which it lacks. It is shown that Unique Games are easy when
the constraint graph is an expander [5]. In general, in [4] it is shown that Unique Games are easy
when a normalized adjacency matrix of a constraint graph has very few eigenvalues close to 1. So
the natural direction is to modify the unique games instance to get some expansion property but
weak enough so that it is not tractable by the techniques of [5], [4]. A similar Strong Unique
Games Conjecture, which has a weak expansion property, has been used earlier in [6] and [21]
to show inapproximability results for minimizing weighted completion time on a single machine
with precedence constraints and minimizing makespan in precedence constrained scheduling on
identical machines respectively. Our result adds another interesting implication of Unique Games
Conjecture with weak expansion property, namely inapproximability of Max-Bi-Clique and
Bi-Covering. We hope that our results will help motivate study of Strong Unique Games
Conjecture and ultimately answering the question about its equivalence to the Unique Games
Conjecture.

Algorithmic Results: We give better than 2 approximation for Bi-Covering on numerous
special graph classes.
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Graph types: A δ-vertex expander is a graph so that for every S of size |S| ≤ n/2, N1(S) ≥
δn, where N1(S) is the set of neighbors of S not in S. A chordal graph is a graph that does not
contain a cycle of size at least 4 as an induced subgraph. A split graph is a graph whose vertex
set is a union of a Clique and and independent set, with arbitrarily connections between the clique
and the independent set.

A minor of a graph is any subgraph G′ that can be derived from G by contracting and removing
edges. A minor free graph is a graph that does not contain some constant size graph H as a minor.

An interval graph is the intersection graph of a family of intervals on the real line. It has one
vertex for each interval in the family, and an edge between every pair of vertices corresponding to
intervals that intersect.

The algorithmic results can be summarized in the following theorem.

Theorem 3. The Bi-Covering problem admits polynomial time algorithms that attain the fol-
lowing ratios (Graph type: approximation ratio):

1. Chordal graphs : 1.876.

2. Interval Graphs: exact O(n5) time algorithm.

3. Minor Free Graph: 1 + o(1).

4. Graph with minimum degree δn: 2− 4δ/3 .

5. δ-vertex expander Graph: 2/(1 + δ2/8).

6. Split Graphs : 8/5.

7. Graphs with minimum degree d: 2− (6/5) · 1/d.

Our algorithms are quite non-trivial. Most of our algorithmic results relies on the fact that
if we can find two disjoint sets each of size at least εn with no edges in between, then this itself
gives 2− ε approximation. To get better bound on ε in some special cases we use known theorems
related to the structural results of graphs, size of separator, lower bound on independent set size
etc. In some of the cases, we create a bipartite graph from a given graph instance and show that
the vertex cover in the bipartite graph is small. We then use the bound on the size of vertex cover
to find a better bi-covering of the edges in a graph.

3 Organization

In Section 4, we prove the main inapproximability of Bi-Covering and related problems. We refer
to the full version of the paper for algorithmic results.

4 Inapproximability of Bi-Covering

The Bi-Covering problem is:
Input: A graph G(V,E)
Output: Two subsets A,B ⊆ V such that A ∪ B = V and every edge (u, v) ∈ E either

{u, v} ⊆ A or {u, v} ⊆ B. Minimize max{|A|, |B|}.
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The optimal value of a Bi-Covering on instance G(V,E) is always at least |V |/2 and hence
getting a 2-approximation for this problem is trivial by setting A = V and B = ∅. In order to beat
2-approximation, one should be able to solve the following weaker problem.

Problem For small enough ε > 0, given an undirected graph G(V,E), distinguish between the
following two cases:

1. There exists two disjoint sets A,B ⊆ V , |A|, |B| ≥ (1/2− ε)|V | such that there are no edges
between A and B.

2. There exists no two disjoint sets A,B ⊆ V |A|, |B| ≥ ε|V | such that there are no edges
between A and B.

In this section, we show that it is UG-Hard to distinguish between (1) and (2) for any constant
ε > 0 proving Theorem 1.

4.1 Preliminaries

Let q be any prime for convenience. We are interested in space of functions from Fnq to R. Define

inner product on this space as 〈f, g〉 = 1
qn
∑

x∈Fnq f(x)g(x). Let ωq be the qth root of unity. For a

vector α ∈ Fnq , we will denote αi the ith coordinate of vector α. The Fourier decomposition of a
function f : Fnq → R is given as

f(x) =
∑
α∈Fnq

f̂(α)χα(x)

where χα(x) := ω
〈α,x〉
q and a Fourier coefficient f̂(α) := 〈f, χα〉.

Definition 1 (Symmetric Markov Operator). Symmetric Markov operator on Fq can be thought of
as a random walk on an undirected graph with the vertex set Fq. It can be represented as a q × q
matrix T where (i, j) th entry is the probability of moving to vertex j from i.

Definition 2. For a symmetric Markov operator T , let 1 = λ0 ≥ λ1 ≥ λ2 . . . ≥ λq−1 be the
eigenvalues of T in a non-increasing order. The spectral radius of T , denoted by r(T ), is defined
as:

r(T ) = max{|λ1|, |λq−1|}

For a Markov operator T the condition r(T ) < 1 is equivalent to saying that the induced regular
graph (self-loop allowed) on Fq is non-bipartite and connected.

For T as above, we also define a Markov operator T⊗n on [q]n in a natural way i.e apply-
ing a Markov operator T⊗n to x ∈ [q]n is same as applying the Markov operator T on each xi
independently. Note that if T is symmetric then T⊗n is also symmetric and r(T⊗n) = r(T ).

Definition 3 (Influence). Let f : Fnq → R be a function. the influence of the i′th variable on f ,
denoted by Inf i(f) is defines as:

Inf i(f) = E[Varxi [f(x)|x1, x2, . . . , xi−1, xi+1, . . . , xn]]
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where x1, . . . , xn are uniformly distributed. In terms of Fourier coefficients, it has the following
formula:

Inf i(f) =
∑
αi 6=0

f̂(α)2.

The low-level (level k) influence of i′th variable is defined as:

Inf≤ki (f) =
∑

αi 6=0,|α|≤k

f̂(α)2.

where |α| is the number of non-zero co-ordinates in α.

We will need the following Gaussian stability measure in our analysis:

Definition 4. Let φ : R → [0, 1] be the cumulative distribution function of the standard Gaussian
random variable. For a parameter ρ, µ, ν ∈ [0, 1], we define the following two quantities:

Γρ(µ, ν) = Pr[X ≤ φ−1(µ), Y ≥ φ−1(1− ν)]

Γρ(µ, ν) = Pr[X ≤ φ−1(µ), Y ≤ φ−1(ν)]

where X and Y are two standard Gaussian variables with covariance ρ.

We are now ready to state the invariance principle from [9] that we need for our reduction.

Theorem 4 ( [9]). Let T be a symmetric Markov operator on Fq such that ρ = r(T ) < 1. Then for
any τ > 0 there exists δ > 0 and k ∈ N such that if f, g : Fnq → [0, 1] are two functions satisfying

min(Inf≤ki (f), Inf≤ki (g)) ≤ δ

for all i ∈ [n], then it holds that

〈f, T⊗ng〉 ≥ Γρ(µ, ν)− τ

where µ = E[f ], ν = E[g].

Our hardness result is based on a variant of Unique Games conjecture. First, we define what
the Unique game is:

Definition 5 (Unique Game). An instance G = (U, V,E, [L], {πe}e∈E) of the Unique Game
constraint satisfaction problem consists of a bi-regular bipartite graph (U, V,E), a set of alphabets
[L] and a permutation map πe : [L]→ [L] for every edge e ∈ E. Given a labeling ` : U ∪ V → [L], ,
an edge e = (u, v) is said to be satisfied by ` if πe(`(v)) = `(u).

G is said to be at most δ-satisfiable if every labeling satisfies at most a δ fraction of the edges.

The following is a conjecture by Khot [16] which has been used to prove many tight inapprox-
imability results.
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Conjecture 1 (Unique Games Conjecture [16]). For every sufficiently small δ > 0 there exists
L ∈ N such that the following holds. Given a an instance G = (U, V,E, [L], {πe}e∈E) of Unique
Game it is NP-hard to distinguish between the following two cases:

• YES case: There exist an assignment that satisfies at least (1− δ) fraction of the edges.

• NO case: Every assignment satisfies at most δ fraction of the edge constraints.

Our hardness results are based on the following stronger conjecture which is similar to the one
in Bansal-Khot [6]. We refer readers to [6] for more discussion on comparison between these two
conjectures.

Conjecture 2 (Strong Unique Games Conjecture). For every sufficiently small δ, γ, η > 0
there exists L ∈ N such that the following holds: Given an instance G = (U, V,E, [L], {πe}e∈E) of
Unique Game which is bi-regular, it is NP-hard to distinguish between the following two cases:

• YES case: There exist sets V ′ ⊆ V such that |V ′| ≥ (1−η)|V | and an assignment that satisfies
all edges connected to V ′.

• NO case: Every assignment satisfies at most γ fraction of the edge constraints. Moreover,
the instance satisfies the following expansion property. For every set S ⊆ V , |S| = δ|V |, we
have |Γ(S)| ≥ (1− δ)|U |, where Γ(S) := {u ∈ U | ∃v ∈ Ss.t.(u, v) ∈ E}.

Remark 1. We would like to point out that the above conjecture differs from the one in [6] in the
completeness case. In [6], the Yes instance has a guarantee that there exists sets V ′ ⊆ V,U ′ ⊆ U
with |V ′| ≥ (1− η)|V |, |U ′| ≥ (1− η)|U | such that all edges between V ′ and U ′ are satisfied.

4.2 (2− ε)- inapproximability

In order to prove the (2 − ε) hardness, we first start with a dictatorship test that we will use as a
gadget in the actual reduction.

4.2.1 Dictatorship Test.

We design a dictatorship test for the problem Bi-Covering. We are interested in functions f :
Fnq → R. f is called a dictator if it is of the form f(x1, x2, . . . , xn) = xi for some i ∈ [n].

Dictatorship gadget: For convenience, we will let q > 2 be any prime number for the description
of the dictatorship gadget. Let G(Fq, E) be a 3-regular graph on Fq (where we identify the elements
of Fq by {0, 1, . . . . , q − 1}) with self loops as shown in figure 1:

It is constructed as follows : Take a cycle on 0, 1, 2, . . . , q − 1, 0, then add a self loop to every
vertex except to the vertex 0. Remove the edge (bq/2c, bq/2c+ 1), add an edge (0, bq/2c). Finally,
to make it 3-regular, add a self loop to the vertex bq/2c + 1. This completes the description of
graph G. Since the graph G is connected and non-bipartite, the symmetric Markov operator T
defined by the random walk in G has r(T ) < 1. One crucial thing about G is that it has two large
disjoint subsets of vertices, namely {1, 2, . . . , bq/2c} and {bq/2c+ 1.bq/2c+ 2, . . . , q − 1}, with no
edges in between.
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Figure 1: Gadget

Consider the vertex set V = FRq for some constant R. We will construct a graph H on V as

follows : (x, y) ∈ (FRq )2 forms an edge in H iff they satisfy the following condition:

∀i ∈ [R], (xi, yi) ∈ E ,

x is adjacent to y iff T⊗R(x↔ y) 6= 0.

Completeness: Let f : FRq → R be any dictator, say ith dictator i.e. f(x) = xi. By letting set
A to be f−1(0)∪ f−1(1)∪ . . .∪ f−1(bq/2c) and set B to be f−1(0)∪ f−1(bq/2c+ 1)∪ f−1(bq/2c+
2)∪ . . .∪ f−1(q− 1), it can be seen easily that there is no edge between sets A \B and B \A. More
precisely,

A \B = {x ∈ FRq | xi ∈ {1, 2, . . . , bq/2c}
B \A = {y ∈ FRq | yi ∈ {bq/2c+ 1, bq/2c+ 2, . . . , q − 1}}

By the property of Markov operator T⊗R, (x, y) are not adjacent if (xi, yi) /∈ E for some i ∈ [R].
Hence, there are no edges between A \B and B \A. Thus, the optimal value is at most

1

|V |
·max{|A|, |B|} =

1

2
+

1

2q
.

Soundness: Let A,B ⊆ V such that A∪B = V and f, g : FRq → {0, 1} be the indicator functions
of sets A \B and B \A respectively. Suppose |A \B| = ε|V | and |B \A| = ε|V | for some ε > 0 and
that there are no edges in between A \B and B \A. We will show that in this case, f and g must
have a common influential co-ordinate. Since, there are no edges between these sets, we have
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E
x∼FRq ,

y∼T⊗R(x)

[f(x)g(y)] = 〈f, T⊗Rg〉 = 0

For the application of Invariance principle, Theorem 4, in our case we have E[f ] = E[g] = ε > 0
and ρ = r(T ) < 1. Thus, for small enough τ := τ(ρ, ε) > 0,

Γρ(ε, ε)− τ > 0.

We can now apply Theorem 4 to conclude that there exists i ∈ [R] and k ∈ N independent of R
such that

min(Inf≤ki (f), Inf≤ki (g)) ≥ δ,

for some δ(τ) > 0. Hence, unless f and g have a common influential co-ordinate, 1
|V | ·max{|A|, |B|} ≥

1− ε. Thus, the optimum value is at least 1− ε

4.2.2 Actual Reduction :

The above dictatorship test for large enough q can be composed with the Unique Games instance
having some stronger guarantee (Conjecture 2) in a straightforward way that gives (2− ε) hardness
for every constant ε > 0 assuming UGC. Details as follows:

Let G = (U, V,E, [L], {πe}e∈E) be the given instance of Unique Game with parameters δ <
ε
4 , γ, η > 0 from Conjecture 2 . We replace each vertex v ∈ V by a block of qL vertices, namely
by a hypercube [q]L. We will denote this block by [v]. As defined in the dictatorship test, let G
be the graph on Fq and T be the induced symmetric Markov operator. For every pair of edges
e1(u, v1) and e2(u, v2) in G, we will add the following edges between [v1] and [v2] : Let π1 and π2
be the permutation constraint associated with e1 and e2 respectively. x ∈ [v1] and y ∈ [v2] are
connected by an edge iff T⊗L((x ◦ π−11 )↔ (y ◦ π−12 )) 6= 0 (where (x ◦ π−1)i = xπ−1(i) for all i ∈ [L])
i.e. for every i ∈ [L], xπ−1

1 (i) and yπ−1
2 (i) are connected by an edge in graph G. This completes the

description of a graph. Let’s denote this graph by H.

Lemma 1 (Completeness). If there exists an assignment to vertices in G that satisfies all edges
connected to (1 − η) fraction of vertices in V then H has a Bi-Covering of size at most (1 −
η)(1/2 + 1/2q) + η.

Proof. Fix a labeling ` such that for at least (1−η) fraction of vertices in V in G, all edges attached
to them are satisfied. Suppose X be the set of remaining η fraction of vertices of V in G. For every
vertex v ∈ V , consider the following two partitions of [v]:

Av = {x ∈ [q]L : x`(v) ∈ {1, . . . , bq/2c}}
Bv = {x ∈ [q]L : x`(v) ∈ {bq/2c}+ 1, bq/2c}+ 2, . . . , q}}
Cv = {x ∈ [q]L : x`(v) = 0}

Let A = ∪v∈V (Av ∪Cv)∪z∈X [z] and B = ∪v∈V (Bv ∪Cv)∪z∈X [z]. The claim is that this is the
required edge separating sets. To see this, consider any vertex pair (a, b) such that a ∈ A \ B and
b ∈ B\A. We need to show that (a, b) must not be adjacent in H. Suppose a ∈ [v1] and b ∈ [v2]. If v1
and v2 don’t have a common neighbor then clearly, there is no edge between a and b. Suppose they
have a common neighbor u and let e1 = (u, v1) and e2 = (u, v2) be the edges and π1 and π2 be the
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associated permutation constraints. Since X ⊆ A ∩B, v1, v2 /∈ X. Hence ` satisfies all constraints
associated with v1 and v2. In particular, π1(`(v1)) = π2(`(v2)) =: j for some j ∈ [L]. Since a ∈ Av1 ,
we have aπ−1

1 (j) = a`(v1) ∈ {1, . . . , bq/2c}}. Similarly, bπ−1
2 (j) ∈ {bq/2c}+ 1, bq/2c}+ 2, . . . , q}. By

the construction of edges in H, a and b are not adjacent.
For any v, |Av ∪ Cv| = |Bv ∪ Cv| = (12 + 1

2q )qL. Thus,

|A| = |B| ≤
(
η + (1− η)

(
1

2
+

1

2q

))
|V |qL

Lemma 2 (Soundness). For every constant ε > 0, there exists a constant γ such that, if G is at
most γ-satisfiable then H has Bi-Covering of size at least 1− ε.

Proof. Suppose for contradiction, there exists an Bi-Covering of size at most (1− ε). This means
there exists two disjoint sets X,Y of size at least ε fraction of vertices in H such that there are
no edges in between X and Y . Let X∗ be the set of vertices in v ∈ V such that [v] ∩X ≥ ε

2 |[v]|.
Similarly, Y ∗ be the set of vertices in v ∈ V such that [v] ∩ Y ≥ ε

2 |[v]|. By simple averaging
argument, |X∗| ≥ ε

2 |V | and |Y ∗| ≥ ε
2 |V |.

Lemma 3. The total fraction of edges connected to X∗ whose other end point is in Γ(X∗)∩Γ(Y ∗)
is at least 1

2 .

Proof. Let G has left-degree d1 and right-degree d2. We have d1 = d2|V |
|U | . Suppose the claim is not

true, then at least 1
2 fraction of edges have there endpoint in U \ Γ(Y ∗). As, |U \ Γ(Y ∗)| ≤ δ|U |,

the average degree of a vertex in U \ Γ(Y ∗) is at least (1/2)d2|X∗|
δ|U | ≥ (d2/2)·(ε/2)|V |

δ|U | which is greater
than d1 as ε > 4δ.

For v ∈ X∗ ∪ Y ∗, let fv : [q]L → {0, 1} be the indicator function of a set [v] ∩ (X ∪ Y ). Define
the following label set for v ∈ X∗ ∪ Y ∗ for some τ ′ > 0 and k ∈ N:

F(v) := {i ∈ [L] | Inf≤ki (fv) ≥ τ ′}

We have |F(v)| ≤ τ ′

k as
∑

i Inf≤ki (fv) ≤ k.

Lemma 4. There exists a constant τ ′ := τ ′(q, ε) and k := k(q, ε) such that for every u ∈ U and
edges e1(u, v), e2(u,w) such that v ∈ X∗ and w ∈ Y ∗, we have

πe1(F(v)) ∩ πe2(F(w)) 6= ∅

Proof. As there are no edges between X and Y , we have

E
(x◦π−1

e1
)∼FLq ,

(y◦π−1
e2

)∼T⊗L(x◦π−1
e1

)

[fv(x ◦ π−1e1 )fw(y ◦ π−1e2 )] = 0

By the soundness analysis of the dictatorship test, it follows that there exists i ∈ [L] such that

min(Inf≤k
π−1
e1

(i)
(fv), Inf≤k

π−1
e2

(i)
(fw)) ≥ τ ′,

for some τ ′, k as a function of q and ε. Thus, i ∈ πe1(F(v)) and i ∈ πe2(F(w)).
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Labeling: Fix τ ′ and k from Lemma 4. We now define a labeling ` to vertices in X∗ ⊆ V and
in Γ(X∗) ∩ Γ(Y ∗) ⊆ U as follows: For a vertex v ∈ X∗ set `(v) to be an uniformly random label
from F(v). For u ∈ Γ(X∗)∩Γ(Y ∗), select an arbitrary neighbor w of u in Y ∗ and set `(u) to be an
uniformly random label from the set π(u,w)(F(w)) of size at most k

τ ′ . Fix an edge (u, v) such that
u ∈ Γ(X∗)∩Γ(Y ∗) and v ∈ X∗. By Lemma 4, for any w ∈ Y ∗ since π(u,w)(F(w))∩π(u,v)(F(v)) 6= ∅,

The probability that the edge is satisfied by the randomized labeling is at least
(
τ ′

k

)2
. Thus in

expectation, at least
(
τ ′

k

)2
fraction of edges between X∗ and Γ(X∗) ∩ Γ(Y ∗) are satisfied. By

Lemma 3, at least 1
2 fraction of edges connected to X∗ are in between X∗ and Γ(X∗) ∩ Γ(Y ∗).

Finally using bi-regularity, this labeling satisfies at least 1
2
ε
2

(
τ ′

k

)2
fraction of edges in G. Setting

γ < 1
2
ε
2

(
τ ′

k

)2
completes the proof.

Proof of Theorem 1: The proof follows from Lemma 1, Lemma 2 and Conjecture 2.

Proof of Theorem 2: Given an input as a bipartite graph, there is a trivial 3/2 approximation
for Bi-Covering - Take set A to be the union of a smaller part and half of the larger bi partition
and B to be union of smaller part and remaining half of the larger part. It is easy to see these two
sets A and B satisfy the property of being a Bi-Covering. As max{|A|, |B|} ≤ 3

4 |V |, this is a 3
2

approximation as OPT is at least |V |2 .
The 3

2 + ε inapproximability follows easily from the above (2 − ε) inapproximability for the
general case. The reduction is as follows: Let G(V,E) be the given instance of a Bi-Covering.
Construct a natural bipartite graph G′ between V × V where (i, j) forms an edge if (i, j) ∈ E (or
(j, i) ∈ E). Fix a small enough constant ε > 0. It is easy to see that if G has a solution of fractional
size 1/2+ε then so does G′. Next, if there are sets A′ and B′ where 1

2|V | max{|A′|, |B′|} ≤ 3
4−ε which

satisfy the Bi-Covering property, we have 1
2|V | |A

′ \B′| = 1
2|V |(2|V | − |B

′|) ≥ 1− (34 − ε) = 1
4 + ε

and similarly 1
2|V | |B

′ \A′| ≥ 1
4 + ε. Note that A′ \B′ and B′ \A′ are two disjoint sets whose size of

union is at least (1 + 2ε)|V |. Thus, we can find two sets, say X ′ and Y ′ ( namely X ′ is intersection
of A′ \B′ with left part of the bipartite graph and Y ′ is the intersection of B′ \A′ with right part) of
size at least ε|V | each, where X ′ is from left side and Y ′ is from right side with no edges in between.
We now think of X ′ and Y ′ as a subset of V . Let Z = X ′ ∩ Y ′. Partition Z into Z1 and Z2 of
equal sizes. Take X = Z1 ∪ (X ′ \ Y ′) and Y = Z2 ∪ (Y ′ \X ′). It is now easy to verify that there
are no edges in between X and Y in G and 1

|V | min{|X|, |Y |} ≥ ε
2 . Hence, if we can find a solution

of fractional cost 3
4 − ε in G′ in polynomial time then we can also find a solution of fractional cost

1− ε
2 in G in polynomial time and this gives a polynomial time algorithm with approximation factor

2− ε
2 for small enough constant ε > 0. As Bi-Covering is UG hard to approximate within (2− ε)

for all ε > 0 for general graph, this gives a 3
2 + ε hardness for Bi-Covering in bipartite graph.

Proof of Corollary 1: We prove it by giving reduction from Bi-Covering. Let G(V,E) be the
given instance of Bi-Covering. Construct a bipartite graph H between V × V where (i, j) forms
an edge if (i, j) /∈ E. Fix a small enough constant ε > 0. In one direction, if G has a Bi-Covering
of fractional size at most (1/2 + ε) then H ′ contains a (1/2− ε)|V | × (1/2− ε)|V | bipartite clique.
In other direction, if H ′ has a bipartite clique of size 2ε|V |×2ε|V | then let X ′ and Y ′ be the subset
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of vertices from left and right side of bipartite clique. As before, let Z = X ′ ∩ Y ′ and Z1 and Z2

be the partition of Z of equal size. Let X = (X ′ \ Y ′)∪Z1 and Y = (Y ′ \X ′)∪Z2. It follows that
|X|, |Y | is at least ε|V | and are disjoint viewed as a subset of V . Also, there are no edges between
X and Y . Therefore, V \ X and V \ Y each of size at most (1 − ε)|V | gives a Bi-Covering of
G. Thus, Theorem 1 implies that it is hard to distinguish between Bi−Clique of size (1/2− ε)|V |
and ε|V | which completes the proof of corollary.
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A.1 Preliminaries

Recall, the Bi-Covering problem is:
Input: A graph G(V,E)
Output: Two subsets A,B ⊆ V so that every edge (u, v) either {u, v} ⊆ A or {u, v} ⊆ B.

Minimize max{|A|, |B|}.
For a given graph G, let N(v) denote the vertices joined to v (its neighbors). The number of

neighbors of v is denoted by deg(v).

Definition 6. For a set S let N(S) be S union all vertices that are joined to at least one vertex in
S. Let N1(S) be the set of vertices not in S that have at least one neighbor in S.

For a collection of numbers X, let s(X) be the sum of the numbers in X.

Definition 7. Given a set S = {Si}, define un(S) :=
⋃
S∈S S.

Definition 8. The optimum covering for the Bi-Covering instance at hand is denoted by A∗, B∗

and we denote S∗ = A∗ ∩B∗

Lemma 5. If |A∗| ≤ n/2− ε · n or |B∗| ≤ n/2− ε · n then returning V, ∅ gives a 2/(1 + 2ε) ratio.

Proof. Say that |B∗| ≤ n/2−ε ·n. Then as |A∗|+ |B∗| ≥ n we get that |A∗| ≥ n/2+ε ·n. Returning
V, ∅ gives ratio 2/(1 + 2ε).

A.2 Basic definitions and tools

Definition 9. Say that we remove a set C and get connected components H1, H2, . . . ,Hp. A 2-
Covering of the components H1, . . . ,Hp are two collections of components X and Y (namely, X
either contains a whole component or none of the vertices of the component and the same holds for
Y ) so that in addition X ∩ Y = ∅ and X ∪ Y = {H1, . . . ,Hp}. A minimum covering by two sets
minimizes max{|un(X)|, |un(Y )|}

Lemma 6. An optimal solution for the 2-Cover problem, can be found in polynomial time.

Proof. The Subset Sum problem is, given a set of n input numbers T = {x1, x2, . . . , xp} and a
number Q, decide if there is a subset T ′ ⊆ T that sums to Q. In our case the xi = |Hi|. Thus
maxi xi ≤ n and there exists an exact polynomial time solution for subset sum. For every number Q
between 1 and |

⋃
Hi|, check if there is a collection of connected components X so that |un(X)| = Q.

For any feasible X check the value of the solution un(X), V \un(X). Output the best solution over
all Q. Clearly this is the optimum solution.

Definition 10. The above algorithm is called the 2-Cover algorithm.

Let A,B be a feasible solution for the Bi-Covering problem and let S = A ∩B

Lemma 7. If A,B ⊆ V is a feasible solution to Bi-Covering and S = A ∩ B then there are no
edges from A \ S to B \ S.

Proof. As A \ S and B \ S are disjoint, an edge (u, v) between a vertex v in A \ S and a vertex
u ∈ B \ S can satisfy u, v ∈ A or u, v ∈ B contradicting the feasibility of the solution.
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Our problem is related to the Vertex Separator problem.

Definition 11. A Vertex Separator in a graph G is a set S so that after S is removed no connected
component has more than 2n/3 vertices

The next lemma is used several times in the rest of the paper.

Lemma 8. Say that we can find in polynomial time two disjoint sets A′, B′ with at least ε·n vertices
each, so that A′, B′ share no edges. Then Bi-Covering admits a 2− 2ε ratio algorithms.

Proof. Set S ← V \ (A′ ∪B′), A = S ∪A′ and B = S ∪B′ getting a feasible solution. Indeed, edges
inside A′, B′, S are clearly covered. Since A = A′ ∪ S, B = B′ ∪ S edges between A′ and S are
covered by A and edges between B′ ∪ S are covered by B. Finally, we are given the property that
there are no edges between A′ and B′.

Note that A′, B′ are disjoint and so A′ ∩ S = B′ ∩ S = ∅. Thus A′ ∩ B = ∅ and B′ ∩ A = ∅.
Given the size of A′, B′, we get that |A|, |B| ≤ (1−ε) ·n. Thus the value of ours solution is (1−ε) ·n
versus n/2 for the optimum. The ratio is 2− 2ε.

The following Procedure is the one which attains the promised ratio:

Procedure Big (A’,B’):

1. Let S ← V \A′ ∪B′

2. Return A = A′ ∪ S,B = B′ ∪D

Lemma 9. If |S∗| ≥ 2ε · n returning V, ∅ gives an approximation ratio of 2/(1 + 2ε)

Proof. Note that |A∗|+ |B∗| = |(V \ S∗)|+ 2|S∗| ≥ (1 + 2ε)n. Thus either |A∗| ≥ n/2 + ε · n/2, or
|B∗| ≥ 1/2 + ε · n/2. We return the trivial solution V, ∅. Those the solution V, ∅ the ratio derived
is at most

1

1/2 + ε
=

2

1 + 2ε
.

The next lemma is also used several times.

Lemma 10. Let C be a Clique. Then either C ⊆ A∗ or C ⊆ B∗.

Proof. Note that V \ A∗ = B∗ \ S∗. If C 6⊆ A∗ it means that there is a vertex u ∈ C ∩ (B∗ \ S∗).
If C 6⊆ B∗ it means that there is a vertex v ∈ C ∩ (A∗ \ S∗). However, as u, v belong to the clique
u and v are neighbors. This gives an edge between A∗ \ S∗ and B∗ \ S∗ contradicts Lemma 7.

A.3 A central algorithmic tool

Definition 12. Given two disjoint sets C,C1, the bipartite graph B(C,C1, E
′) that corresponds to

C,C1 is defined as follows. Make C one side of the bipartite graph and remove all edges internal
to C. Make C1 the other side of the bipartite graph and remove all edges internal to C1. The edges
E′ are all edges with one endpoint in C and the other in C1.

We present a simple procedure that takes two disjoint sets X,Y and return a solution based on
their bipartite graph and on removing a vertex cover of the bipartite graph.
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Procedure Vertex-Cover(X,Y):

1. Compute B(X,Y,E′)

2. Compute the minimum size vertex cover D of B.
/* As the graph is bipartite the minimum vertex cover can be found in polynomial time */

3. Return A = X ∪D, B = Y ∪D.

Lemma 11. If |X \D| ≥ ε ·n and |Y \D| ≥ εn, Algorithm Vertex-Cover returns a solution of ratio
2− 2ε

Proof. Note that there are no edges between X \D and Y \D because a vertex cover was removed.
Thus by Lemma 8 the ratio of the returned solution is 2− 2ε.

A.4 Graph types

A δ-vertex expander is a graph so that for every S of size |S| ≤ n/2, N1(S) ≥ δn. A chordal graph
is a graph that does not contain a cycle of size at least 4 as an induced subgraph. A split graph is a
graph whose vertex set is a union of a Clique and and independent set, with arbitrarily connections
between the clique and the independent set.

A minor of a graph is any subgraph G′ that can be derived from G by contracting and removing
edges. A minor free graph is a graph that does not contain some constant size graph H as a minor.

An interval graph is the intersection graph of a family of intervals on the real line. It has one
vertex for each interval in the family, and an edge between every pair of vertices corresponding to
intervals that intersect.

B Algorithmic results

We restate Theorem 3 for convenience here.

Theorem 5. The Bi-Covering problem admits polynomial time algorithms that attain the fol-
lowing ratios (Graph type: approximation ratio):

1. Chordal graphs : 1.876.

2. Interval Graphs: exact O(n5) time algorithm.

3. Minor Free Graph: 1 + o(1).

4. Graph with minimum degree δn: 2− 4δ/3 .

5. δ-vertex expander Graph: 2/(1 + δ2/8).

6. Split Graphs : 8/5.

7. Graphs with minimum degree d: 2− (6/5) · 1/d.

The following theorems are derived directly from the techniques we develop.

Theorem 6. 1. The Bi-Covering problem admits a 2 − 1/c ratio for any perfect graph that
whose chromatic number is some constant c.
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2. The Bi-Covering problem admits a 2− 1/(d̄+ 1) ratio for a graph G with O(n) edges with
d̄ the (constant) average degree of G.

3. The Bi-Covering problem admits a 4/3 + o(1) ratio for any graph that has a separators of
size o(n/

√
log n).

We prove these theorems in the following sections.

B.1 Chordal graphs

In this section we provide a polynomial time algorithm with approximation ratio at most 1.876 for
the Bi−Covering problem on Chordal graph. Set ε = 1/16.

We use the following theorem is due to [14].

Theorem 7. Every n-vertex chordal graph G(V,E) contains a polynomially computable maximal
clique C, so that if the vertices of C are removed, any connected components in the graph induced
by the non deleted vertices has at most n/2 vertices.

Definition 13. The clique separator of G is denoted by C. Denote H = V \ C. Note that V \ C
decomposes to a collection of connected component H1, . . . ,Hq so that H =

⋃q
i=1Hi. Without loss

of generality, let H1 be largest connected component.

Algorithm Chordal:

1. If |H1| ≤ εn, apply Algorithm 2-Cover (from Definition 10) on H1, H2, . . . ,Hq. Let A,B be
the partition. Return A ∪ C,B ∪ C.

2. If |
⋃n
i=2Hi| ≥ ε · n Apply algorithm Big(H1,

⋃q
i=2Hi)

/* Note that H1 and
⋃q
i=2Hi share no edges */

3. Else, Apply Algorithm Vertex-Cover on H and C and return the solution.

Analysis: Let the optimum partition be A∗, B∗ with S∗ = A∗ ∩B∗. Set ε = 1/16.

Lemma 12. If |C| ≥ n/2+ε ·n returning V, ∅ derives a 2/(1+2ε) ratio. For the choice of ε = 1/16,
this ratio is strictly smaller than 1.876.

Proof. As C ⊆ A∗, this means that |A∗| ≥ n/2 + ε · n and thus the ratio is less than 1.876.

From previous lemma, we may assume that unless there is a constant ratio smaller than 1.876
the following holds:

(a) W.l.o.g. C ⊆ A∗.

(b) |A∗| ≥ n/2− ε · n and |B∗| ≥ n/2− εn, and

(c) |S∗| ≤ 2ε · n.

(d) |H| ≥ n/2− εn.
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Note what the resulting ratios are if one of the above statements does not hold. If |A∗| ≤ n/2− εn
or B∗ ≤ n/2− ε · n by Lemma 5 returning V, ∅ gives a ratio of 2/(1 + 2ε) < 1.876 for ε = 1/16. If
|S| ≥ 2 · εn the a ratio is the same 2/(1 + 2ε) < 1.876. (d) follows as H = V \C and by Lemma 12
as H ∪ C = V .

Lemma 13. If |H1| ≤ ε · n, Algorithm 2-Cover (that is applied in this case by Algorithm Chordal)
returns a solution of ratio at most at most 2− 2ε < 1.876 for ε = 1/16.

Proof. We define a possibly sub-optimal solution for the 2-cover problem. The 2-Cover solution is
an optimum one and may be only better. Initiate A← ∅. As longs as |A| ≤ ε · n add an arbitrary
Hi to A. Note that for every i, |Hi| ≤ ε · n because H1 is the largest connected component.
This implies that when we stop, |A| ≤ 2εn. By Assumption (d), H ≥ n/2 − ε · n. Therefore
H−|A| ≥ n/2−ε ·n−2εn = n/2−3ε ·n > εn for ε = 1/16. As A and H \A share no edges, because
they are a collection of connected components, and both are of size at least ε · n, by Lemma 8, a
ratio of 2− 2εn applies. For ε = 1/16 this ratio is less than 1.876.

Lemma 14. If |
⋃q
i=2Hi| > ε · n Bi−Covering admits a 2− 2ε < 1.876 ratio.

Proof. In this case Algorithm Chordal applies Algorithm Big. By Lemma 13, we may assume that
|H1| ≥ εn. Therefore we have two sets H1 and |

⋃q
i=2Hi|, both of size at lest ε · n and share no

edges, (because they are connected component) a ratio of 2− 2ε < 1.876 follows for Lemma 8.

Lemma 15. |C| ≥ n/2− ε · n and |H| ≤ n/2 + εn.

Proof. Note that |H1| ≤ n/2 by Theorem 7 as H1 is a connected component resulting after C is
removed. Note that |V \ C| = H = H1 ∪

⋃q
i=2Hi ≤ n/2 + εn. The last inequality follows because

|H1| ≤ n/2 and by Lemma 14. This gives ratio less than 1.876. Thus |C| ≥ n− |H| ≥ n/2− ε · n.
And |H| = V − |C| ≤ n/2 + ε · n

Lemma 16. We now have following conditions:

1. C ∩B∗ ⊆ S∗.

2. B∗ ⊆ S∗ ∪ (H ∩B∗).

3. |(H ∩B∗| ≥ n/2− 3εn.

4. |H \B∗|+ |S∗| ≤ 6ε · n.

5. The sets (H ∩B∗) \ S∗ and C \ S∗ share no edges.

Proof. 1. As C ⊆ A∗, C ∩B∗ ⊆ A∗ ∩B∗ = S∗.

2. As V = C ∪H, B∗ = B∗ ∩ V = (B∗ ∩ C) ∪ (B∗ ∩H) ⊆ S∗ ∪ (H ∩ B∗). The last inequality
follows since C ⊆ A∗ and so (B∗ ∩ C) ⊆ S∗.

3. By 2 above, B∗ ⊆ S∗ ∪ (H ∩ B∗). Thus |B∗| ≤ |S∗| + |H ∩ B∗|. By Assumption (b),
|B∗| ≥ n/2− εn. and therefore |H ∩B∗| ≥ |B∗| − |S∗| ≥ n/2− 3εn.

4. By Lemma 15, |H| ≤ n/2+εn. By 3., |H∩B∗| ≥ n/2−3ε·n. Thus |H\B∗| = |H|−|H∩B∗| ≤
n/2 + ε · n− n/2 + 3ε · n = 4ε. Therefore, |H \B∗|+ |S∗| ≤ 6ε · n.
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5. We know that C ⊆ A∗ and thus C \ S∗ ⊆ A∗ \ S∗. Also (H1 ∩B∗) \ S∗ ⊆ B∗ \ S∗. The claim
follows from Lemma 7.

Define B(H,C) as the bipartite graph corresponding to H and C.

Lemma 17. The graph B(C,H) has a vertex cover of size at most 6 · ε · n

Proof. By Lemma 16 (5), (H \ B∗) ∪ S∗ is a Vertex Cover of B. The claim follows by Lemma 16
(4). The optimal vertex cover may be even smaller.

Lemma 18. Algorithm Chordal returns a solution of ratio less than 1.876.

Proof. Algorithm Chordal applies procedure V ertexCover on B(C,H). Let D be the vertex cover.
By Lemma 15, |C| ≥ n/2 − εn. By Assumption (d), |H| ≥ n/2 − εn. Therefore by Lemma 17
|H \D|, |C \D| ≥ n/2− 7ε = εṅ. The last inequality follows by the setting of ε = 1/16. By Lemma
11, the ratio of 2− 2ε < 1.876 follows.

B.2 Exact solution for interval graphs

In this section, we give an exact solution for interval graph using dynamic programming. For the
dynamic programming we have the following definition of a state. For every time t we maintain
two sets At, Bt that are a partial solution, namely sharing no edges.

Definition 14. A state for an ending time t contains the following information. We have a partial
solution A,B. We need to carry:

1. The size of A

2. The size of B

3. For a time t, we remember the interval in A \B whose ending time is maximal in B among
intervals that end at time t or earlier.

4. The interval that belongs to B \A that is the last to end before or at time t.

5. The size of A ∩B

We maintain an example of a solution for each one of the states.
Say that A1, B1 and A2, B2 have the same state with respect to a time t. Let Vt be all the

intervals that end at or before time t. Let P1 = Vt − (A1 ∪B1). Let P2 = Vt − (A2 ∪B2).

Lemma 19. |P1| = |P2|.

Proof. We start by showings that |A1∪B1| = |A2∪B2|. Note that |A1∪B1| = |A1|+|B1|−|A1∩B1|.
Since the two solutions have the same state: |A1| = |B1|, |A2| = |B2| and |A1 ∩ B1| = |A2 ∩ B1|,
which implies that |A1 ∪ B1| = |A2 ∪ B2|. |P1| = |Vt| − |A1 ∪ B1| = |Vt| − |A2 ∪ B2| = |P2|. The
claim follows.

We assume the solution is maximal for inclusion. In such case
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Lemma 20. For every solutions of a certain state and time t, there is a unique way to extend the
solution to legal solutions for time t. Moreover, if A and B have the same state, the value of the
two extensions is equal.

Proof. Let P1, P2 be defined as above. Note that there is a vertex in P1 that has a neighbor in
A, and there is a vertex in P1 that is a neighbor of a vertex in B. Otherwise we can extend one
of A,B to larger sets contradicting the maximality assumption. For example if I is an interval in
P1 with no neighbors in A, we may add I to A and the solution is still feasible. The same goes
for P2, A2, B2. Thus, the vertices of P1 must be in the intersection of A1, B1. Otherwise we get a
contradiction to Lemma 7. Thus the only legal way to extend A1, B1 to a legal solution is by setting,
A1 ∪ P1, B1 ∪ P1. The same applies for A2, B2, P2. The unique extension is A2 ∪ P2, B1 = B2 ∪ P2.

We now show that the extended solution A1, B1 has the same size as the extended solution of
A2, B2. As P1 ∩ A1 = ∅ and P1 ∪ B1 = ∅, and the same claim holds for A2, B2, P2, by Lemma
19 |P1| = |P2|. Thus |A1 ∪ P1| = |A1 + |P1| = |A2| + |P2| = |A2 ∪ P2|. Namely, the two (unique)
extensions have equal value.

We deal with intervals by increasing finishing times.

Definition 15. A state A,B is extendable if it can be extended to an optimum solution by adding
intervals

Clearly we may assume that the finishing time are pairwise distinct.

Lemma 21. Say that we have an extendable state with time t′. Assume that t is the next lowest
finishing time and let I be the unique interval to end at time t. Then we can find a collection of
states so that at least one of them is extendable and contains I.

Proof. We prove this by induction, with the base case being time 0. In time 0 the solution is the
empty set and can be extended to any optimal solution. Say that we computed an extendable
solution for time t′. Consider the next to end interval I, and let t be its ending time. Thus no
interval ends strictly between t′ and t. Let I1, be the interval in B, for time t′ with maximum
finishing time (note that this information is part of a state). By the induction hypothesis the
choice until time t′ is extendable to an optimum solution. We now produce states with I. If I
starts at time strictly before time t′, then I intersects I1 ∈ B, and it cant be that I ∈ A \ B.
Otherwise we can add I to A only. In the same way we can check if I can be added to B only.
Thus we get 4 cases.

1. If I can not be added to A\B nor to B \A, add I to A∩B and set size |A∩B| ← |A∩B|+1.
Also increase |A| and B by 1 The interval I becomes the last to end in A and B with respect
to time t.

2. If I can be added to A but not to B then we are forced to add I too A only. In this case |A|
grows up by 1, but |B| and |A∩B| stay the same. Also the last to end interval in B for time
t is the same one that is last to end for time t′. However, update I to be the last interval of
A to end at time t

3. The case that I can be added to B only is treated in a symmetric way.
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4. If I can be added both to A and to B there are 3 new states. One in which we add I to A
only. One in which we add I to B only and one for which we add I to A ∩B. Updating the
states is done as above.

Lemma 22. There exists an O(n5) exact algorithm for the Bi-Covering problem on interval
graphs

Proof. Consider all states for the highest finishing time t. By the definition of a state, there are at
most n5 states. By lemma 21, one of the states A,B, V \(A∪B) is extendable. However since there
are no more intervals, by Lemma 20 the only way to extend A,B to a solution is to add V \ (A∪B)
to both A and B. By Lemma 20 our solution will be optimal.

To achieve the above time we assign a unique integral keys to every state. We build a perfect
Hash function so that the time for insert and search is O(1) in the worst case (see [8]). When we
check if we should extend a leaf, we first check in worst case time O(1) if the ”new” states do not
already appear in the tree. The number of inserts into the tree is O(n5) therefore the running time
for inserting states is O(n5).

B.3 Minor free graphs

In this section, we give the 1 + o(1) ratio approximation algorithm for Minor free graphs. We need
the following theorem from [1].

Theorem 8. Every subgraph G′(V ′, E′) with n′ vertices of a minor free graph G has a separator
of size O(

√
n′). Furthermore, this separator can be found in polynomial time in n′.

In this section, we set ε to be any function of n so that O(1/ε2) = o(
√
n). For example 1/ε can

be log∗ n/n1/4.

Definition 16. The set S and L. In the algorithm we maintain a collection S of components
that belongs to one of two types. First, S contains some separators of some larger components.
The second type are connected components with at least ε · n vertices. The set L does not contain
separators, and contains all connected components of size less than ε · n.

Definition 17. A basic step is as follows:

1. Find a connected components S ∈ S that has at least ε · n vertices (if any).

2. Identify the separator SC of S

3. Let H1, H2, . . . be the connected components of S \ SC .

4. Each connected component Hi with less than ε ·n vertices is added into L. Other components
are added to S. The separator SC is added to S and the component S is deleted from S.

Definition 18. The separators tree: The above process creates in a natural way a tree of separators.

1. Initial step The set V is the root. Replace V by its separator VC . Compute the connected
component V \ SC
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2. Every connected component in V \ VC becomes a child of VC .

3. General step: The following is done as long as there is a connected components S ∈ S with
at least ε · n vertices.

(a) Replace S by its separator SC .

(b) All connected components of S \ SC are designated to be children of SC .

4. Return S,L.

The following lemma follows by definition.

Lemma 23. At the end S contains only the separators used. The set L contains all the tree leaves,
of the separation tree, each containing less than ε · n vertices. Thus, un(S) ∪ un(L) = V .

Algorithm Minor-Free:

1. S ← V . L ← ∅.

2. While S contains a connected component with more that ε · n vertices do:

(a) Let S be a connected components in S such that |S| > εn.

(b) Let SC be the separator of G(S)

(c) Remove S from S and add SC to S.

(d) Add every connected component in G(S) \ SC with at most ε · n vertices to L and the
rest of the components to S.

3. Set A′ ← ∅

4. While |A′| < n/2 pick a connected component in L and add it to A′

5. Set A = A′ ∪ un(S)

6. Set B = (V \A) ∪ un(S)

7. Return A,B

Analysis:

Lemma 24. The separators of level i ≥ 0 have size bounded by
√
n · (2/3)i.

Proof. The proof follows by induction from the definition.

We now bound the possible number of non-leaf components at level i.

Lemma 25. The number of non leaf connected components in level i is at most 1/ε.
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Proof. To bound the number of separators in level i, we consider level i + 1. Since we are talking
on non-leaves in level i, each such S in level i has a child in level i + 1. By definition the parent
p(S) of S has at least ε · n vertices, for otherwise the parent would have been a leaf.

Consider a maximal set Q of separators level i + 1 so that the parents of the separators are
pairwise distinct. If S, S′ have two different parents p(S), p(S′), clearly p(S) ∩ p(S′) = ∅. Thus,
the collection of leaves of a vertex at level level i, contributes ε · n new vertices to level i. By
disjointness, the number of non leaf components at level i is at most 1/ε.

We now bound the height of the separators tree.

Lemma 26. The height of the separators tree is at most O(1/ε).

Proof. Since the size of the separators in level i ≥ 0 is
√
n ·(2/3)i, clearly there exists a large enough

constant c so that the height of the separators tree is bounded by

c · ln
( n

ε · n

)
= c · ln(1/ε),

Using the inequality ln(1/ε) ≤ 1/ε− 1, the claim follows.

To count the number of vertices in S we bound it by the number of non leaf separators at level
i, times O(

√
n) times the number of levels. This applies as every separator has size O(

√
n).

Lemma 27. un(S) = o(n)

Proof. Each level contains at most 1/ε separators each of size O(
√
n) and the height is bounded

by O(1/ε) thus: un(S) = O(1/ε) · 1/ε ·
√
n). By the definition of ε, the number of separators in the

tree is O(1/ε2 ·
√
n) = o(

√
n) ·
√
n) = o(n). Thus un(S) = o(n).

Lemma 28. The algorithm runs in time polynomial in n.

Proof. The running time is dominated by the computation of separators and computes at most n
separators. Since computing a separator requires time polynomial in n, the claim follows.

Lemma 29. The approximation ratio is 1 + o(1).

Proof. By Lemma construction, at the end of the algorithm, un(S) ∪ un(L) = V . By Lemma 27
|un(L)| = n−o(n). Furthermore, by definition L has pairwise disjoint connected components, each
of size at most εn. The sets is L share no edges because these sets are leaves in the separator tree
and thus were separated by their least common ancestor in the tree. We start adding to A′ ← ∅
and then iteratively adding to A′ connected components of L as long as |A′| ≤ n/2. Consider the
moment a leaf L ∈ L is added and the number of vertices in A′ goes becomes at least n/2. As the
last component added is of size |S| ≤ εn (because all components in L have size less than ε · n)
and by definition |A′| ≤ n/2. Therefore, |A′| ≤ n/2 + εn. Note that A = A′ ∪ S. By Claim 27
|A| ≤ n/2 + εn+ o(n) By the algorithm, |A| ≥ n/2 and so, |B| ≤ n/2. Thus the maximum size set
between |A| and |B| is |A|. The approximation ratio is bounded by

n/2 + εn+ o(n)

n/2
= 1 + 2 · ε+ o(1) = 1 + o(n)

for a chosen ε as claimed.

The approximation applies as special cases to planar, and bounded genus graphs, since these
graphs are minor free.
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B.4 High degree vertices

This section deals with graphs G(V,E) which has minimum degree δ · n for some constant δ > 0.

Algorithm Dense:

1. For every pairs of vertices a and b so that (a, b) 6∈ E do:

(a) Let S = N(a) ∩N(b).

(b) Create a bipartite graph B(N(a)\S,N(b)\S,E′) by removing edges inside N(a)\S and
N(b) \ S and joining a ∈ N(a) \ S to b ∈ N(b) \ S if (a, b) ∈ E.

(c) Compute in polynomial time (using flow) the minimum Vertex Cover D of the graph of
B.

(d) Set A← N(a) ∪D and B = N(b) ∪D.

2. Output the best A.B over all pairs a, b

Analysis: Let the optimum solution be A∗, B∗ and let S∗ = A∗ ∩B∗. Assume that

|S∗| ≤ ε · n (1)

for some ε as a function of δ which we will fix later.

Definition 19. A pair a, b is good pair if a ∈ A∗ \ S∗, and b ∈ B∗ \ S∗

Note that a good pair exists unless A∗ ⊆ S∗ or B∗ ⊆ S∗. If one of these two cases holds, opt = n
and (V, ∅) is an optimal solution Also recall by Claim 7, that (a, b) 6∈ E.

Lemma 30. Let a, b be a good pair. Then N(a) ⊆ A∗ and N(b) ⊆ B∗

Proof. We show the first containment. The proof of the second containment is identical. The
complement set of A∗ is the set V \ A∗ = B∗ \ S∗. If the sets N(a) and B∗ \ S∗ intersect, as
a ∈ A∗ \ S∗ there is an edge between of internal vertex of A∗ \ S∗ and a vertex of B∗ \ S∗ which
contradicts Lemma 7.

From now on we assume that a and b are the good pair and hence

N(a) ⊆ A∗, N(b) ⊆ B∗ (2)

Let S = N(a) ∩N(b).

Lemma 31. S ⊆ S∗ and |S| ≤ ε · n.

Proof. As N(a) ⊆ A∗ and N(b) ⊆ B∗ as shown in (2), S = (N(a)∩N(b)) ⊆ (A∗ ∩B∗) = S∗. Thus
|S| ≤ εn with the latter inequality following from (1).

Lemma 32. There is a set S′ of size at most ε ·n whose removal creates two sets A\S′ and B \S′,
that share no edges.
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Proof. The removal of S∗ leaves no edges between A∗ \ S∗ and B∗ \ S∗. As N(a) ⊆ A∗ and
N(b) ⊆ B∗, the removals of S∗ leaves no edges between N(a) \ S∗ and N(b) \ S∗. The lemma
follows from the bound on the size of S∗.

Lemma 33. The Vertex Cover D found has size at most ε · n

Proof. One possible vertex cover is S∗. The claim follows.

Lemma 34. The approximation ratio is 2− 4δ/3.

Proof. The approximation ratio is max{1/(1 + 2ε), 2 − δ − ε}, because the case that |S∗| > ε · n,
gives 1/(1 + 2ε) ratio otherwise if |S∗| ≤ ε ·n then as |N(a)| = |N(b)| ≥ δ ·n, the number of vertices
in N(a) \ S∗ and N(b) \ S∗ is at least (δ − ε) · n. The above term is minimized for ε = δ/3. Thus
the approximation ratio is 2− 4δ/3.

B.5 Expander graphs

Say that G is a vertex expander with parameter δ for some constant δ. Let A∗, B∗ be the optimum
solution. By Lemma 5 we may assume that |A∗| ≥ n/2− δ · n/8.

Lemma 35. |N1(A
∗)| ≥ δn/4

Proof. The worst case its may be that |A∗| = n/2 − δ · n/8. See Lemma 5. As the graph is
an expander, |N1(A

∗)| ≥ δn/2 − δ2n/8. By definition of an expander δ ≤ 2. Thus |N1(A
∗)| ≥

δn/2 − δ · n/4 = δ · n/4. The above follows by replacing one of the δ in the expression δ2n/8 by
2.

Lemma 36. Returning V, ∅ gives ratio at most 2/(1 + δ2/8) for Bi-Covering on expanders.

Proof. By definition N1(A
∗) ∩ A∗ = ∅. Thus N1(A) ⊂ S∗ ∪ (B∗ \ S). If half of N1(A

∗) belongs to
S then S ≥ δ · n/8. By Claim 9 the resulting ratio is 2/(1 + δ/8) = 16/(8 + δ) which is a constant
less than 2. Else we may assume that |(B∗ ∩N1(A

∗)) \ S∗| ≥ δ · n/8. Let D = (B∗ ∩N1(A
∗)) \ S∗.

Note that all the neighbors of of D belong to S∗. Otherwise there is an edge between a vertex in
D ⊆ B∗ \ S∗ and A∗ \ S∗ which gives a contradiction. Recall that |D| ≥ δ · n/8. Since the graph
is an expander, in the worse case N1(D) ≥ δ2n/8. Since N1(D) ⊆ S∗, |S∗| ≥ δ2 · n/8. Thus a ratio
of 2/(1 + δ2/8) follows from Lemma 1.

B.6 Bounded degree graphs

Let the maximum degree in G is d for some constant d. We assume that d ≥ 3. Indeed, if d = 2 the
graph is a collection of paths and cycles and the problem can be solve optimally on such graphs.

Algorithm Bounded-Degree:

1. Choose a set A′ of 3n/5d vertices.

2. Add N1(A
′) to S

3. Let V ′ ← V \ (S ∪A′)

4. Select a set B′ ⊆ V ′ of size 3 · n/(5 · d).
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5. Put N1(B
′) in S

6. Set A← A′ ∪ S, B ← B′ ∪ S

7. Output (A,B)

Lemma 37. The ratio is at most 2− 6 · /(5d)

Proof. Note that N1(A
′) ≤ 3n/5 because |A′| ≤ 3n/(5d) and the maximum degree is d. The size of

V ′ is at least n−3n/(5d)−3n/5 = 2n/5−3n/(5d) ≥ 3n/(5d). The last inequality follows as d ≥ 3.
This means that we can select a set B′ of size at least 3n/5 that has no edges to A′ of the same
size as A′. By Lemma 8, the ratio is 2− 6/(5 · d). Note that this ratio is better than 1− 1/d.

B.7 Sparse graphs

The case of sparse graphs is the case |E| = O(n). Thus the average degree d̄ is constant. This is a
weaker condition than maximum degree d hence we get a worse ratio.

Lemma 38. The Bi-Covering problem admits a polynomial time 1−1/(d̄+1) ratio approximation
on graphs with O(n) edges with average degree d̄.

Proof. Applying the Turán’s theorem [22], there exists an independent set I ′ of size n/(d̄+ 1) that
can be found in polynomial time. We partition the independent set to two independent sets I1 and
I2 of size n/2(d̄+ 1). and I2 of size n/2(d̄+ 1). Put I1 in A and I2 in B. We now apply Lemma 8
with ε = 1/(2(d̄+ 1)). The ratio resulting is 2− 1/(d̄+ 1) which is a constant less than 2 as d̄ is a
constant by itself.

B.8 Split graphs

A split graph is composed of a clique C and an independent set I with arbitrary edges among the
two. The algorithm is at follows:

1. If the size of the independent set is I at least 2ε · n let A′, B′ be disjoint halves of I. Set
A← A′ ∪ C and B ← B′ ∪ C (with C the clique)

2. Else return V, ∅

Lemma 39. The approximation ratio of the above algorithm is at most 8/5 for split graphs.

Proof. The case that |I| ≥ 2 · ε · n, by Lemma 8, the ratio is 2 − 2ε. If |I| ≤ 2εn and |S∗| ≥ εn,
by Lemma 9 the ratio is 2/(1 + 2ε). Thus the remaining case is that I ≤ 2ε · n and |S∗| ≤ εn. By
Lemma 10, we may assume without loss of generality that that C ⊆ A∗. Thus, C ∩ (B∗ \ S) = ∅.
Thus |B∗| ≤ |S∗| + |I| ≤ 3εn. This implies that |A∗| ≥ n − 3εn. In this case returning V, ∅ gives
ratio 1/(1− 3ε). Consider max{1/(1− 3ε), 2/(1 + 2ε), 2− 2ε} Choosing ε = 1/8 gives ratio at most
8/5.
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B.9 Graph that contain a separator of size o(n/
√
log n)

Lemma 40. If G has a separator S and |S| = o(n/
√

log n) then the Bi-Covering problem admits
a 4/3 + o(1) < 2 ratio.

Proof. In [11] an O(
√

log n) approximation algorithm is given for the Min Size Vertex Separator
problem. As S is a vertex separator, clearly the approximation algorithm returns a solution of size
at most O(

√
log n) · |S| = o(n), and maximum connected component of size 2n/3. Thus, adding S

to the connected component, gives 2n/3(1 + o(1)) maximum size of every set. Dividing by the best
possible optimum of value opt = n/2, the claim follows.
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