
On the Limits of Gate Elimination

Alexander Golovnev⇤ Edward A. Hirsch†‡ Alexander Knop†

Alexander S. Kulikov†

May 20, 2018

Abstract

Although a simple counting argument shows the existence of Boolean functions of exponential circuit

complexity, proving superlinear circuit lower bounds for explicit functions seems to be out of reach of the

current techniques. There has been a (very slow) progress in proving linear lower bounds with the latest

record of 3

1
86n� o(n). All known lower bounds are based on the so-called gate elimination technique. A

typical gate elimination argument shows that it is possible to eliminate several gates from a circuit by

making one or several substitutions to the input variables and repeats this inductively. In this paper we

prove that this method cannot achieve linear bounds of cn beyond a certain constant c, where c depends

only on the number of substitutions made at a single step of the induction.
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1 Introduction

One of the most important and at the same time most di�cult questions in theoretical computer science is
proving circuit lower bounds. A binary Boolean circuit is a directed acyclic graph with nodes of in-degree
either 0 or 2. Nodes of in-degree 0 are called inputs and are labeled by variables x1, . . . , xn. Nodes of
in-degree 2 are called gates and are labeled by binary Boolean functions. Some k nodes are additionally
labeled as the outputs of the circuit. The output gate compute a Boolean function {0, 1}n ! {0, 1}k in a
natural way. The size of a circuit C is defined as the number of gates in C and is denoted by gates(C).
By inputs(C) we denote the number of inputs of C. A circuit complexity measure µ is a function assigning
each circuit a non-negative real number. In particular, gates and inputs are circuit complexity measures.

By Bn,k we denote the set of all Boolean functions f : {0, 1}n ! {0, 1}k. Bn is a shorthand for Bn,1. For
a circuit complexity measure µ and a function f 2 Bn, by µ(f) we denote the minimum value of µ(C) over
all circuits C computing f . For example, gates(f) is the miniumum size of a circuit computing f .

By comparing the number of small size circuits with the total number 22
n

of Boolean functions of n
variables, one concludes that almost all such functions have circuit size at least ⌦( 2

n

n ). This was shown by
Shannon in 1949 [Sha49]. However we still do not have an example of a function from NP that requires
circuits of superlinear size. The currently strongest known lower bound is (3 + 1

86 )n� o(n) [FGHK16].
The lack of strong lower bounds is a consequence of the lack of methods for proving lower bounds for

general circuits. Practically, the only known method for proving lower bounds is the gate elimination method.
We illustrate this method with a simple example. Consider the function MODn

3,r 2 Bn which outputs 1 if and
only if the sum of n input bits is congruent to r modulo 3. One can prove that gates(MODn

3,r) � 2n� 4 for
any r 2 {0, 1, 2} by induction on n. The base case n  2 clearly holds. Assume that n � 3 and consider an
optimal circuit C computing MODn

3,r and its topologically first (with respect to some topological ordering)
gate G. This gate is fed by two di↵erent variables xi and xj (if they were the same variable, the circuit would
not be optimal). A crucial observation is that it cannot be the case that the out-degrees of both xi and xj

are equal to 1. Indeed, in this case the whole circuit would depend on xi and xj through the gate G only.
In particular, the four ways of fixing the values of xi and xj would give at most two di↵erent subfunctions
(corresponding to G = 0 and G = 1), while MODn

3,r has three such di↵erent subfunctions: MODn�2
3,0 ,

MODn�2
3,1 , and MODn�2

3,2 . Assume, without loss of generality, that xi has out-degree at least 2. We then
substitute xi  0, eliminate the gates fed by xi from the circuit and proceed by induction. The eliminated
gates are those fed by xi. After the substitution, each such gate computes either a constant or a unary
function of the other input of the gate, so can be eliminated. The resulting function computes MODn�1

3,r .

Thus we get by induction: gates(MODn
3,r) � gates(MODn�1

3,r ) + 2 � (2(n � 1) � 4) + 2 = 2n � 4. This
proof was given by Schnorr in 1984 [Sch74]. In fact, it works for a wider class of functions Qn

2,3 containing
functions that have at least three di↵erent subfunctions with respect to any two variables.

This example reveals the main idea of the gate elimination process: a lower bound is proven inductively
by finding at each step an appropriate substitution that eliminates many gates from the given circuit. At
the same time, using just bit-fixing substitutions is not enough for proving even stronger than 2n lower
bounds: the class Qn

2,3 contains, in particular, a function THRn
2 that outputs 1 i↵

Pn
i=1 xi � 2 whose circuit

complexity is known to be at most 2n + o(n) [Dun84] (see also Theorem 2.3 in [Weg87]). For this reason,
known proofs of stronger lower bounds use various additional tricks.

• One can use amortized analysis of the number of eliminated gates. For example, one can show that at
each step one can either find a substitution that eliminates 3 gates or a pair of consecutive substitutions,
the first one eliminating 2 gates and the next one eliminating 4 gates.

• They also substitute variables not just by constants but by a�ne functions, quadratic functions, and
even arbitrary functions of other variables.

• In order to amortize for steps that eliminate too few gates, they also use more intricate complexity
measures that combine the number of gates with the number of variables or other quantities.

We give an overview of known lower bounds and used tricks in Section 2.
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One can guess that the gate elimination method changes only the top of a circuit in few places and
thus cannot eliminate many gates. In general, this intuition fails (it is easy to present examples where a
single substitution greatly simplifies a function, in particular, every substitution to a function of the highest
possible complexity 2n/n (see Theorem 2.1 and below in [Weg87]) lowers the complexity of this function
almost twice as for a function of n� 1 variables it cannot exceed 2n�1/(n� 1) + o(2n�1/(n� 1)). However,
in this paper we manage to make this intuition work: we design circuits such that no substitution (and
even a constant number of substitutions) can reduce the size of the circuit by more than a constant number
of gates. This, in turn, implies that one cannot prove a superlinear lower bound this way. For recently
popular measures that combine the number of gates with the number of inputs we prove a stronger result:
One cannot prove lower bounds beyond cn for a certain specific constant c; this constant may depend on
the number m of consecutive substitutions made in one step of the induction, but does not depend on the
substitutions themselves (in all modern proofs m = 1 or 2).

The gate elimination method has also been recently used for proving average-case circuit lower bounds
and upper bounds for Circuit #SAT [CK15, GKST16]. The limitation result of this work also applies to this
line of research, implying that gate elimination cannot lead to strong improvements on the currently known
results.

The paper is organized as follows. In Section 2 we list known proofs based on gate elimination, we discuss
their di↵erences and limits. Section 3 presents several examples that lead us to the main questions of this
work. This section contains main results of the paper: provable limits of the gate elimination method for
various complexity measures. Section 4 contains a brief overview of the known barriers for proving circuit
lower bounds. Finally, Section 5 concludes the work with open questions.

2 Known Lower Bounds Proofs

Improving Schnorr’s 2n lower bound proof mentioned above is already a non-trivial task. It can be the case
that all variables in the given circuit feed two parity gates. In this case, substituting any variable by any
constant eliminates just two gates from this circuit. In 1977, Stockmeyer [Sto77] used the following clever
trick to prove a 2.5n � ⇥(1) lower bound for many symmetric functions including all MODn

m functions for
constant m � 3. The idea is to eliminate five gates by two consecutive substitutions. This time, instead
of substituting xi  c where c 2 {0, 1} we substitute xi  f, xj  f � 1 where f is an arbitrary function
that does not depend on xi and xj . One should be careful with such substitutions as they potentially might
produce a subfunction outside of the class of functions for which we are currently proving a lower bound by
induction. At the same time, one can see that, for example, MODn

3,0 function turns into MODn�2
3,2 function

under the substitution xi  f, xj  f � 1. Indeed, this substitution just forces the sum of xi and xj to be
equal to 1 (both over integers and over the field of size two).

In 1984, Blum [Blu84], following the work by Paul [Pau77], proved a 3n � o(n) lower bound for an
artificially constructed Boolean function of n + 3 log n + 3 variables. The input of this function consists
of n variables X = {x1, . . . , xn} and 3 log n + 3 variables A. The following “universality” property of this
function is essential for Blum’s proof: for any two variables xi, xj 2 X one can assign constants to variables
from A to turn the output of the function to be equal to both xi ^ xj and xi � xj . Blum first applies the
standard gate elimination procedure to variables from X using a carefully chosen induction hypothesis that
states a circuit size lower bound in terms of the number of variables from X that are still “alive”: if there is
a substitution xi  f that eliminates at least three gates, perform this substitution and proceed inductively.
Note that the used function allows to substitute variables from X by arbitrary functions, but at the same
time one is allowed to substitute variables from X, but not from A. In the remaining case, Blum counts the
number of gates of out-degree at least 2: he shows that due to the special properties of the function, any
circuit computing it must contain many such gates. This gives a lower bound on the size of a circuit.

In 2011, Demenkov and Kulikov [DK11] presented a di↵erent proof of essentially the same 3n�o(n) lower
bound for a di↵erent function. The function they use is an a�ne disperser for dimension d = o(n), which is
by definition non-constant on any a�ne subspace of dimension at least d. This property allows to make at
least n�o(n) a�ne substitutions (that is, substitutions of the form xi  

L
j2J xj�c where i 62 J ✓ [n] and
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c 2 {0, 1}) before the function trivializes. The proof also uses a non-standard circuit complexity measure:
for a circuit C, µ(C) = gates(C)+ inputs(C). This trick is used to amortize the case when by substituting
one variable one also removes the dependence on another variable. One shows that for any circuit there is a
substitution that reduces µ by at least 4 (or makes the whole circuit a constant). This implies, by induction,
that for any circuit C computing an a�ne disperser for dimension o(n),

gates(C) + inputs(C) � 4(n� o(n)), (1)

which in turn implies that gates(C) � 3n� o(n). To find an appropriate a�ne substitution, one considers
the topologically first gate A that computes a non-linear binary operation. If A is fed by two variables xi

and xj of out-degree 1, we substitute xi  c to make A constant. This eliminates A and its successor from
the circuit as well as the dependence on both xi and xj . Hence both gates and inputs are reduced by at
least 2, and µ is reduced by at least 4. If, say, xi has out-degree at least 2, we just substitute xi by the
constant that makes A constant: this eliminates the gates fed by xi and all successors of A (at least three
gates in total) and the dependence on xi, hence µ is reduced by 4 again. In the remaining case, one of
the inputs to A is a gate computing an a�ne function

L
j2J xj � c. We make it constant by substituting

xi  
L

j2J\{i} xj � c0. This eliminates this gate, the gate A, and the successors of A. Thus, µ is reduced
by at least 4 again.

Find et al. [FGHK16] pushed the lower bound 3n�o(n) for a�ne dispersers further to (3+ 1
86 )n�o(n) by

using several new tricks. They generalize the computational model to allow cycles in circuits, use quadratic
substitutions (that are turned into a�ne substitutions in the end of the gate elimination process), and use a
carefully chosen circuit complexity measure which besides the number of gates and inputs also depends on
the number of certain local bottleneck configurations and the number of quadratic substitutions.

The first explicit construction of an a�ne disperser for sublinear dimension (d = o(n)) was presented
relatively recently by Ben-Sasson and Kopparty [BK12]. While such constructions of higher degree dispersers
for sublinear dimension are not yet known, these dispersers do exist, and a lower bound of 3.1n has been
shown for them in [GK16] using the circuit complexity measure µ↵(C) = gates(C) + ↵ · inputs(C) (↵ � 0
is a constant) and quadratic substitutions.

We summarize the discussed lower bounds proofs in the table below.

Bound Class Measure Substitutions

2n [Sch74] Q

n
2,3 gates xi  c

2.5n [Sto77] symmetric gates xi  c, {xi  f, xj  f � 1}
3n [Blu84] artificial gates arbitrary: xi  f

3n [DK11] a�ne disp. gates+ inputs linear: xi  
L

j2J xj � c

3.01n [FGHK16] a�ne disp. gates+ ↵inputs+ · · · linear: xi  
L

j2J xj � c

3.1n [GK16] quadratic disp. gates+ ↵inputs quadratic: xi  f , deg(f)  2

It should be noted that most of the known gate elimination proofs can be restated in the following terms.
One fixes a circuit complexity measure µ. One then shows that for any function f (of su�ciently large
complexity) there exists a substitution xi  ⇢ (or a few consecutive such substitutions) that either reduces
µ(f) by a su�cient amount or trivializes f . One way to show this is to prove that even for any circuit C
(again, possibly except for circuits of very low complexity) there exists such a substitution. (This is slightly
more general because it su�ces to prove it for optimal circuits only, but most proofs do it for all circuits.)
This implies a lower bound on µ(f) for a function f that is resistant to su�ciently many substitutions of
the form xi  ⇢. We provide examples below.

1. Schnorr [Sch74] shows that if a circuit contains a variable xi of out-degree at least 2, then at least two
gates are eliminated by a substitution xi  c. He then argues that if a circuit contains variables of out-
degree 1 only, then it cannot compute a function under consideration as in this case for two variables
feeding a top-gate the whole circuit depends on these two variables only through this gate. Another
way of using this argument is the following. If there is a top gate that depends on two out-degree 1
variables, then by an appropriate substitution of the form xi  c or xi  xj � c, one kills this gate as

3



well as removes dependence on two variables (both xi and xj), rather than just one. Hence these two
cases can be combined into one as follows: for any circuit C, there exists a substitution of the form
xi  c or xi  xj � c that reduces gates(C)+inputs(C) by at least 3 (or trivializes C). This implies
a lower bound 2n� c for many symmetric functions.

2. Stockmeyer [Sto77] shows that for any circuit C, there exists either a substitution xi  c reducing
gates(C) + inputs(C) by at least 4 or two substitutions of the form xi  ⇢, xj  ⇢ � 1 reducing
gates(C)+inputs(C) by at least 7. This implies a lower bound 2.5n�c for many symmetric functions.

3. Demenkov and Kulikov [DK11] show that for any circuit C there exists an a�ne substitution reducing
gates(C) + inputs(C) by at least 4. This gives a lower bound 3n � o(n) for a�ne dispersers of
dimension o(n).

It is also interesting to note that there is a trivial limitation for the first three proofs in the table above:
the corresponding classes of functions contain functions of linear circuit complexity. The class Qn

2,3 contains
the function THRn

2 (that outputs 1 i↵ the sum of n input bits is at least 2) of circuit size 2n + o(n). The
class of symmetric functions used by Stockmeyer contains the function MODn

4 whose circuit size is at most
2.5n + ⇥(1). The circuit size of Blum’s function is upper bounded by 6n + o(n). At the same time it is
not known whether there are a�ne dispersers of sublinear dimension that can be computed by linear size
circuits.

3 Limits of Gate Elimination

3.1 Notation

Let X = {x1, . . . , xn} be a set of Boolean variables. A substitution ⇢ of a set of variables R ✓ X is a set of
|R| restrictions of the form

ri = fi(x1, . . . , xn),

one restriction for each variable ri 2 R, where fi depends only on variables from X \ R. The degree of a
substitution is the maximum degree of fi’s represented as Boolean polynomials. The size of a substitution
is |R|. Substitutions of size m are called m-substitutions.

Given an m-substitution ⇢ and a function f , one can naturally define a new function f |⇢ that has m
fewer arguments than f .

A function f depends on a variable x if there is a substitution ⇢ of constants to all other variables such
that f |⇢(0) 6= f |⇢(1). Additionaly, we denote by inputs(f) the number of variables such that f depends on
them.

As we saw in Section 2, gate elimination proofs sometimes track sophisticated complexity measure µ
rather than just number of gates, for example, the measure µ(f) = gates(f) + ↵ · inputs(f) for a constant
↵ � 0.

A gate elimination argument uses a certain nonnegative complexity measure µ, a family of substitutions
S, a constant gain, and includes proofs of the following statements:

1. (Measure usefulness.) If µ(f) is large, then gates(f) is large.

2. (Induction step.) For every function f with inputs(f) = n, there is a substitution ⇢ 2 S such that

• either f |⇢ becomes constant

• or µ(f |⇢)  µ(f)� gain.

To get a circuit lower bound from such a gate elimination argument, one presents a sequence F =
{fi}1i=1, fi 2 Bi, of explicit functions such that each fi is not trivialized by su�ciently many substitutions
from S (for example, by 0.999 · inputs(fi) substitutions). This roughly means that one can make at least
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f

x1 · · · xn

(a)

f

MAJ3

x11 x13

· · · MAJ3

xn1 xn3

(b)

Figure 1: (a) A circuit for f . (b) A circuit for f ⇧MAJ3.

0.999 · inputs(f) substitutions from S each time reducing the measure by gain. This, in turn, gives a lower
bound on the initial complexity of F = {fi}1i=1.

We note that for proving lower bounds, it would su�ce to satisfy the induction step only for functions
from F and functions obtained from them by substitutions, rather than for all functions. Since usually
one does not know the structure of optimal circuits for specific function classes, one proves this step for all
functions. To the best of our knowledge, the only known exception (which uses the properties of functions
under consideration in the induction step) is the work of Blum [Blu84]. See examples in the end of Section 2.

In what follows, we prove that every gate elimination argument fails to prove a strong lower bound. We
prove this by constructing functions such that no substitution (or a set of substitutions) can significantly
reduce their complexity measures.

3.2 Introductory Example

We start by providing an elementary construction of functions that are resistant with respect to any constant
number of arbitrary substitutions, i.e., such substitutions eliminate only a constant number of gates. In the
next sections, we generalize this construction to capture other complexity measures.

Consider a function f 2 Bn and let f ⇧MAJ3 2 B3n be a function resulting from f by replacing each of
its input variables xi by the majority function of three fresh variables xi1, xi2, xi3:

(f ⇧MAJ3)(x11, . . . , xn3) = f(MAJ3(x11, x12, x13), . . . ,MAJ3(xn1, xn2, xn3)),

see Fig. 1. Consider a circuit C of the smallest size computing f ⇧MAJ3. We claim that no substitution
xij  ⇢, where ⇢ is any function of all the remaining variables, can remove from C more than 5 gates:
gates(C)� gates(C|xij ⇢)  5. We are going to prove this by showing that one can attach a gadget of size
5 to the circuit C|xij ⇢ and obtain a circuit that computes f . This is explained in Fig. 2. Formally, assume,
without loss of generality, that the substituted variable is x11. We then take a circuit C 0 computing f |x11 ⇢

and use the value of a gadget computing MAJ3(x11, x12, x13) instead of x12 and x13. This way we suppress
the e↵ect of the substitution x11  ⇢, and the resulting circuit C 00 computes the initial function f ⇧MAJ3.
Since the majority of three bits can be computed in five gates, we get:

gates(C)  gates(C 00)  gates(C|x11 ⇢) + 5.

This trick can be extended from 1-substitution to m-substitutions in a natural way. For this, we use
gadgets computing the majority of 2m+1 bits instead of just three bits. We can then suppress the e↵ect of
substituting any m variables by feeding the values to m+ 1 of the remaining variables. Taking into account
the fact that the majority of 2m + 1 bits can be computed by a circuit of size 4.5(2m + 1) [DKMM12], we
get the following result.

Lemma 1. For any h 2 Bn and any m > 0, the function f = h ⇧ MAJ2m+1 2 Bn(2m+1) satisfies the
following two properties:

• Circuit complexity of f is close to that of h: gates(h)  gates(f)  gates(h) + 4.5(2m+ 1)n,

• For any m-substitution ⇢, gates(f)� gates(f |⇢)  4.5(2m+ 1)m.
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MAJ3

x1 x2 x3

(a)

MAJ3

⇢

x2 x3

(b)

MAJ3

x1 x2 x3

MAJ3

⇢

(c)

Figure 2: (a) A circuit computing the majority of three bits x1, x2, x3. (b) A circuit resulting from substi-
tution x1  ⇢. (c) By adding another gadget to a circuit with x1 substituted, we force it to compute the
majority of x1, x2, x3.

Remark 1. Note that from the Circuit Hierarchy Theorem (see, e.g., [Juk12]), one can find h of virtually
any circuit complexity from n to 2n/n.

3.3 Subadditive Measures

In this section we generalize the result of Lemma 1 to arbitrary subadditive measures. A function
µ :

S
n,m2N

Bn,m ! R is called a subadditive complexity measure, if

• for all functions s̄ and t̄, µ((s̄, t̄))  µ(s̄) + µ(t̄), where (s̄, t̄) is the “merge” of s̄ and t̄ that comprises
(independent) inputs and outputs of both functions,

• for all functions f and ḡ, µ(h)  µ(f) + µ(ḡ), where h(x̄, ȳ) = f(ḡ(x̄), ȳ).

That is, if h can be computed by application of some (multi-output) function ḡ to a part of the inputs, and
then evaluating f , then the measure of h must not exceed the sum of measures of f and ḡ. Clearly, the
measures µ(f) = gates(f) and µ↵(f) = gates(f) + ↵ · inputs(f) are subadditive, and so are many other
natural measures.

Let f 2 Bn and g 2 Bk. Then by h = f ⇧ g 2 Bnk we denote the function resulting from f by replacing
each of its input variables by g applied to k fresh variables.

Our main construction is such a composition of a function f (typically, of large circuit complexity) and
a gadget g that is chosen to satisfy certain combinatorial properties. Note that since we show a limitation
of the proof method rather than a proof of a lower bound, we do not necessarily need to present explicit
functions.

In this section we use gadgets that satisfy the following requirement: For every set of variables Y of size
m, we can force the value of the gadget to be 0 and 1 by assigning constants only to the remaining variables.

Definition 1 (weakly m-stable function). A function g(X) is weakly m-stable if, for every Y ✓ X of size
|Y |  m, there exist two assignments ⌧0, ⌧1 : X \Y ! {0, 1} to the remaining variables such that g|⌧0(Y ) ⌘ 0
and g|⌧1(Y ) ⌘ 1. That is, after the assignment ⌧0 (⌧1), the function does not depend on the remaining
variables Y .

It is easy to see that MAJ2m+1 is a weakly m-stable function. In Lemma 2 we show that almost all
Boolean functions satisfy an even stronger requirement of stability.

Theorem 1. Let µ be a subadditive measure, f 2 Bn be any function, g 2 Bk be a weakly m-stable function,
and h = f ⇧ g 2 Bnk. Then for every m-substitution ⇢, µ(h)� µ(h|⇢)  m · µ(g).

Proof. Similarly to Lemma 1, we use a circuit H for the function h|⇢ to construct a circuit C for h. Let

h(x11, x12, . . . , xnk) = f(g(x11, . . . , x1k), . . . , g(xn1, . . . , xnk)).
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Let us focus on the variables x11, . . . , x1k. Assume, without loss of generality, that the variables x11, . . . , x1r

are substituted by ⇢. Since ⇢ is an m-substitution, r  m. From the definition of weakly m-stable function,
there exist substitutions ⌧0 and ⌧1 to the variables x1r+1, . . . , x1k such that g|⇢⌧0 = 0 and g|⇢⌧1 = 1. We take
the circuit H and add a circuit computing g(x11, . . . , x1k). Now, for every variable x 2 {x1r+1, . . . , x1k} in
the circuit H, we wire g(x11, . . . , x1k)� ⌧0(x) instead of x if ⌧0(x) 6= ⌧1(x), and wire ⌧0(x) otherwise; i.e. we
set the value of x equal to ⌧0(x) if g(x11, . . . , x1k) = 0 and equal to ⌧1(x) otherwise. That is, we set x1r+1,
. . . , x1k in such a way that g|⇢(x1r+1, . . . , x1k) = g(x11, . . . , x1k). Thus, we added one instance of a circuit
computing the gadget g and “repaired” g(x11, . . . , x1k).

Now we repeat this procedure for each of the n inner functions g that have at least one variable substituted
by ⇢. Since ⇢ is an m-substitution, there are at most m gadgets we need to repair. Thus, we can compute h
using the circuit H and m instances of a circuit computing g, in particular, h is a composition of the function
h|⇢ computed by H and the multi-output function g(m) comprising m instances of g. By subadditivity of µ,
µ(h)� µ(h|⇢)  m · µ(g).

This theorem gives tight (up to a multiplicative constant) bounds for constant m. Indeed, an m-
substitution can always eliminate at least m gates, and Theorem 1 gives a constant upper bound on the
number of eliminated gates, too. For m = O(

p
nk) this theorem also yelds a nontrivial bound. For example,

if we take m = n, k = 2n+ 1 and an n-stable function g = MAJ2n+1, then we have:

Corollary 1. There is a constant c > 0 such that if f 2 Bn, and h = f ⇧ MAJ2n+1 (h 2 BN where
N = 2n2 + n). Then for every n-substitution ⇢, gates(h)� gates(h|⇢)  cN .

Using similar constructions and error correcting codes we can extend this corollary to larger substitutions
(this was suggested to us by A. Shen). A binary error-correcting code with relative distance �, codeword
length N and message length n is a linear function S : {0, 1}n ! {0, 1}N such that for any x 6= y 2 {0, 1}n,
�(S(x),S(y))

N � �.
We say that algorithm (circuit) E encodes a binary error-correcting code S : {0, 1}n ! {0, 1}N i↵

E(x) = S(x), for every x 2 {0, 1}n.
We also say that algorithm (circuit) D decodes a binary error-correcting code S : {0, 1}n ! {0, 1}N and

corrects ✏N errors i↵ for any y 2 {0, 1}N and x such that �(S(x),y)
N  ✏, D(y) = x.

Results of [GI05] and a classical transformation from Turing machines to circuits shows that the following
theorem is true.

Theorem 2 ([GI05]). For any n 2 N and ✏ > 0, there are a binary error-correcting code S with relative
distance 1� ✏, codeword length N = O(n) and message length n, and circuits D and E such that D decodes
S and corrects 1�✏

2 N errors, E encodes S, the size of D is O(n log n), and the size of E is O(n).

Theorem 3. Let S be a binary error-correcting code with relative distance 2✏, codeword length N and
message length n. Let D 2 BN,n be a Boolean circuit of size d(N) decoding S correcting ✏N errors, and
E 2 Bn,N be a Boolean circuit of size e(n) encoding S. Let f 2 Bn and h = f �D (h 2 BN ) be a composition
of f and D. Then

1. gates(h) � gates(f)� e(n),

2. for every ✏N -substitution ⇢, gates(h)� gates(h|⇢)  e(n) + d(N).

Proof. Let us prove that gates(h) � gates(f) � e(n). Let C be a circuit computing h. Let us consider
the composition of two circuits C 0(x) = C(E(x)). Note that C 0 computes f and the size of C 0 equals
gates(h) + e(n).

Now let us prove that for every ✏N -substitution ⇢, gates(h) � gates(h|⇢)  e(n) + d(N). Let C be
a circuit computing h|⇢. Let us consider the circuit C 00(x) = C(E(D(x))) (to abuse the notation, we
assume that C just ignores the substituted inputs). Note that C 00 computes h and the size of C 00 equals
gates(h|⇢) + e(n) + d(N).
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Corollary 2. For any ✏ > 0, there is a function gn 2 BN,n (where N depends on n) such that for any
Boolean function f 2 Bn and h = f � gn it holds that

1. gates(h) � gates(f)�O(n),

2. for every ( 12 � ✏) ·N -substitution ⇢, gates(h)� gates(h|⇢)  O(N log(N)).

Proof. The corollary follows from Theorem 3 and Theorem 2.

Remark 2. To complement the result from Corollary 2, we note that any function h 2 BN can be trivialized
by dN/2e substitutions.

Proof. Let n = bN/2c and m = dN/2e. Let us first show that either

• for every x 2 {0, 1}n, there exists a y = y(x) 2 {0, 1}m s.t. h(x, y) = 0, or

• for every y 2 {0, 1}m, there exists an x = x(y) 2 {0, 1}n s.t. h(x, y) = 1.

Assume for the sake of contradiction that neither of the previous statements holds. Then there exists an
x1 s.t. for all y, h(x1, y) = 1. Similarly, there exists a y1 s.t. for all x, h(x, y1) = 0. Taking y = y1 and
x = x1 we get a contradiction: 1 = h(x1, y1) = 0.

Assume that the first statement holds (the other case is analogous): for every x 2 {0, 1}n, there exists a
y = y(x) 2 {0, 1}m s.t. h(x, y) = 0. Let ⇢ be the following m-substitution: (vn+1, . . . , vN ) = y(v1, . . . , vn).
By the definition of y(x), we have h|⇢(v1, . . . , vN ) = 0.

A decision tree is a simple and natural model for computing Boolean functions. It is a full binary tree
(each node has either zero or two children). The computation starts at the root and at every internal node it
queries the value of an input variable xi. The two outgoing edges from the node are labeled by two possible
values for xi. This way the computation reaches a leaf and the label of this leaf (0 or 1) is defined to be the
value of the function computed by this decision tree. See [Juk12, Chapter 14] for an overview of decision
trees.

It is not di�cult to see that the minimum size of a decision tree computing parity of n input bits is
2⇥(n): every path from the root to a leaf has to query all input bits. At the same time, if we allow at each
internal node to query not just whether xi is equal to c 2 {0, 1}, but whether xi is equal

L
j2J xj � c, then

the parity can be computed by a decision tree with just two leaves. It is natural to ask what happens in
the most general case where at each internal node one is allowed to ask whether xi is equal to ⇢ where ⇢ is
an arbitrary function. It turns out that Corollary 2 implies that even in this case there exist functions of
exponential decision tree size.

Corollary 3. There exists a function f 2 Bn such that any decision tree of f has size at least 2⌦(n) even if
branchings x ⇢ and x ⇢� 1 (where ⇢ is an arbitrary function) are allowed.

Proof. Use any function of exponential complexity and apply Corollary 2.

3.4 Measures that count inputs

The number of gates is not the only circuit complexity measure that is used in gate elimination proofs. In
some bottleneck cases, it is not possible to find a substitution killing many gates, but it is still possible
to make a substitution that reduces some other complexity parameter of a circuit significantly. One such
parameter is the number of inputs of a circuit. In [DK11] it is used as follows. Assume that two variables x
and y feed an ^-gate. If one of them (say, x) has out-degree at least 2, one easily eliminates at least three
gates: assign x 0, this kills all successors of x (at least two gates) and also makes the ^-gate constant, so
its successors are also eliminated (at least one gate). If, on the other hand, both x and y have out-degree 1,
it is not clear how to eliminate more than two gates by assigning x or y. One notes, however, that the
substitution x  0 eliminates not only two gates, but also two inputs: x is assigned, while y is just not
needed anymore as the only gate that is fed by y turns into a constant under x  0. If one deals with
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a function that is resistant w.r.t. any n � k substitutions (and usually k = o(n)), then the situation like
the one above (when by assigning one variable one makes a circuit independent of some other variable, too)
can only appear k times. Indeed, if k such substitutions can be made, then the circuit (and hence the
function) trivializes after k + (n � 2k) = n � k substitutions (contradicting the fact that it is stable to any
n � k substitutions). Usually we have k = o(n) which implies that this situation happens only o(n) times.
A convenient way of exploiting this fact is to incorporate the number of inputs into the circuit complexity
measure. Namely, [DK11] uses the following measure: µ(C) = gates(C) + inputs(C). Then, to prove a
lower bound gates(C) � 3n� o(n) it is enough to prove that µ(C) � 4n� o(n). For this, in turn, one shows
that it is always possible to find a substitution that reduces µ by at least 4. For the two cases discussed above
it is easy: in the former case, we remove three gates and one input (hence, µ is reduced by 4), in the latter
one, we remove two gates and two inputs (µ is reduced by 4 again). In [GKST16, GK16] a more general
measure is used: µ↵(C) = gates(C) + ↵ · inputs(C), where ↵ � 0 is a constant. A typical m-substitution
reduces µ↵ by k + ↵m where k is the number of gates eliminated. If, however, a substitution removes more
than m inputs, then µ↵ is reduced by at least ↵(m+1). By choosing a large enough value for ↵, one ensures
that ↵(m+ 1) � k + ↵m.

For example, in Lemma 1 we show that there are circuits where no substitution can eliminate too many
gates. But this claim does not exclude the following possibility: Assume that for some circuits we can
eliminate log n gates, and for the remaining circuits we cannot eliminate even 2 gates, but we can eliminate
2 inputs. Then by setting ↵ ⇡ log n and considering the measure µ↵(C) = gates(C) + ↵ · inputs(C) one
would prove a superlinear lower bound.

In this section, we construct gadgets against such measures. Namely, we construct a function f such that
any m-substitution reduces the number of gates by a constant cm and reduces the number of inputs by m.
This prevents anyone from proving a better than cmn bound using these measures.

Definition 2 (m-stable function). A function g(X) is m-stable if, for every Y ✓ X of size |Y |  m+1 and
every y 2 Y , there exists an assignment ⌧ : X \ Y ! {0, 1} to the remaining variables such that g|⌧ (Y ) ⌘ y
or g|⌧ (Y ) ⌘ ¬y. That is, after the assignment ⌧ , the function depends only on the variable y.

It is now easy to see that every m-stable function is weakly m-stable.

Theorem 4. Let f be a Boolean function, g be an m-stable function, and h = f ⇧ g. Then for every ↵ � 0,
for every m-substitution ⇢, µ↵(h)� µ↵(h|⇢)  m · (gates(g) + ↵).

Proof. Since g is m-stable, Theorem 1 implies that gates(h) � gates(h|⇢)  m · gates(g). It remains to
show that inputs(h)� inputs(h|⇢) = m. Thus, it su�ces to prove that if h depends on xij and ⇢ does not
substitute xi,j , then h|⇢ depends on xi,j . Let

h(x11, x12, . . . , xnk) = f(g(x11, . . . , x1k), . . . , g(xn1, . . . , xnk)).

Without loss of generality let i = 1. Let R be the set of variables xst for s > 1 substituted by ⇢. There
exists a substitution ⌘ to the variables {x21, . . . , x2k, . . . , xn1, . . . , xnk} \ R such that h|⌘(x11, . . . , x1k) does
not depend on the variables in R and is not a constant: by the definition of m-stability we can force the
instances of the gadget g except for the first one to produce any desired assignment for the inputs of f (all
but the first one).

Let us consider the variables x11, . . . , x1k. Assume, without loss of generality, that the variables
x11, . . . , x1r are substituted by ⇢. Since ⇢ is an m-substitution, r  m. Now we want to show that for
every j > r, h|⇢ depends on x1j . From the definition of an m-stable function, there exists a substitution ⌧ to
{x1,r+1, . . . , x1k} \ {x1j} such that g|⇢⌧ (x1j) is not constant (g|⇢⌧ = x1j or g|⇢⌧ = ¬x1j ). Now, we compose
the substitutions ⌘ and ⌧ , which gives us that h|⇢⌧⌘(x1j) is not constant. This implies that the function h|⇢
depends on the variable x1j .

Now we show that for a fixed m, almost all Boolean functions are m-stable.

Lemma 2. For m � 1 and k = !(2m), a random f 2 Bk is m-stable almost surely.
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Proof. Let X denote the set of k input variables. Let us fix a set Y , |Y |  m + 1, and a variable y 2 Y .
Now let us count the number of functions that do not satisfy the definition of m-stable function for this fixed
choice of Y and y. Thus, for each assignment to the variables from X \ Y , the function must not be y nor

¬y. There are 2k�m�1 assignments to the variables X \ Y , and at most (22
m+1 � 2) functions of (m + 1)

variables that are not y nor ¬y. Thus, there are at most (22
m+1 � 2)2

k�m�1

functions that do not satisfy the
definition of m-stable function for this fixed choice of Y and y. Now, since there are

�
k

m+1

�
· (m+1) ways to

choose Y and y, the union bound implies that a random function is not m-stable with probability at most

�
k

m+1

�
(m+ 1)(22

m+1 � 2)2
k�m�1

22k
 km+2 ·

 
22

m+1 � 2

22m+1

!2k�m�1



exp
⇣
(m+ 2) ln k � 2k�m�2

m+1
⌘
= o(1)

for k = !(2m).

Lemma 2, together with Theorem 4, provides a class of functions such that any m-substitution decreases
the measure µ↵ by at most a fixed constant (which may depend on m but not on ↵).

Corollary 4. For any m > 0, there exist k > 0 and g 2 Bk such that for any f of n inputs, the function
h = f ⇧ g 2 Bnk satisfies:

• Circuit complexity of h is close to that of f : gates(f)  gates(h)  gates(f) + gates(g) · n,

• For any m-substitution ⇢ and real ↵ � 0, µ↵(h)� µ↵(h|⇢)  gates(g) ·m+ ↵m.

Thus, gate elimination with m-substitutions and µ↵ measures can prove only O(n) lower bounds.
Although Lemma 2 proves the existence of m-stable functions, their circuit complexities may be large

(though constant). To optimize these constants, one can use explicit constructions of m-stable functions.

Lemma 3. For any m, there exists an m-stable function of n = ⇥(m) inputs of circuit complexity at
most O(m2 logm).

Proof. Let n be a power of two, and let C : {1, . . . , n} ! {0, 1}n be the Walsh–Hadamard error correcting
code (a code with distance n

2 , see, e.g., [AB09, Section 19.2.2]). We define a function gC : {0, 1}n ! {0, 1}
in the following way. Given an input x, we first find the nearest codeword C(i) to x (any of them in the case
of a tie), and then output the ith bit of the input: gC(x) = xi. It is easy to see that gC can be computed in
randomized linear time O(n), thus, it can be computed by a circuit of size O(n2 log n) (see, e.g., [Adl78]).

Let us show that gC is
�
n
4 � 2

�
-stable. To this end we show that for any set Y ✓ {x1, . . . , xn}, |Y | �

n
4 � 1

�
, for any y 2 Y , there exists an assignment to the remaining variables that forces gC to compute y.

Without loss of generality, assume that Y = {x1, . . . , xn/4�1} and that y = x1. Let us fix the last 3n/4 + 1
bits to be equal to the corresponding bits of C(1). Namely, we set (xn/4, . . . , xn) = (C(1)n/4, . . . , C(1)n).
After these substitutions, any input x has distance less than n/4 to the codeword C(1), thus C(1) is the
nearest codeword. This implies that gC(x) always outputs y = x1.

Corollary 5. For any m > 0, there exists a function g of k = O(m) inputs such that for any function h of
n inputs, the function h = f ⇧ g of nk inputs satisfies:

• Circuit complexity of h is close to that of f : gates(f)  gates(h)  gates(f) +O(m2n logm),

• For any m-substitution ⇢ and real ↵ � 0, µ↵(h)� µ↵(h|⇢)  O(m3 logm) + ↵m.

A computer-assisted search gives a 1-stable function of 5 inputs that can be computed with 11 gates.

Lemma 4. There exists a 1-stable function gst1 : {0, 1}5 ! {0, 1} of circuit complexity at most 11.

Proof. The truth table of the function gst1 is shown below.
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x0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
x1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

gst1 (x0, x1, x2, x3, x4) 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 1 0 0 0

It can be checked that for any i, j 2 {0, 1, 2, 3, 4}, where i 6= j, there exist c1, c2, c3 2 {0, 1} such that when
the three remaining variables are assigned the values c1, c2, c3, the function gst1 turns into xi. For example,
under the substitution {x0  0, x2  0, x4  1} the function gst1 is equal to x1. Appendix on page 13
contains two short scripts which (i) verify the required property of the function gst1 , and (ii) demonstrate
that gst1 can be computed by a circuit of size 11.

This lemma implies that the basic gate elimination argument is unable to prove a lower bound of 11n using
the measure µ↵ and 1-substitutions. (Note that almost all known proofs use either 1- or 2-substitutions.)

Corollary 6. For any function f of n inputs, assume function h = f ⇧ gst1 (it has 5n inputs). Then

1. The complexity of h is close to that of f : gates(f)  gates(h)  gates(f) + 11n;

2. For any 1-substitution ⇢ and real ↵ � 0, µ↵(h)� µ↵(h|⇢)  11 + ↵.

4 Known Limitations for Various Circuit Models

Although there is no known argument limiting the power of gate elimination, there are many known barriers
in proving circuit lower bounds. In this section we list some of them. This list does not pretend to cover
all known barriers in proving lower bounds, but we try to show both fundamental barriers in proving strong
bounds and limits of specific techniques.

Baker, Gill, and Solovay [BGS75, For94] present the relativization barrier that shows that any solution
to the P versus NP question must be non-relativizing. In particular, they show that the classical diagonal-
ization technique is not powerful enough to resolve this question. Aaronson and Wigderson [AW09] present
the algebrization barrier that generalizes relativization. For instance, they show that any proof of super-
linear circuit lower bound requires non-algebrizing techniques. The natural proofs argument by Razborov
and Rudich [RR94] shows that a “natural” proof of a circuit lower bound would contradict the conjec-
ture that strong one-way functions exist. In particular, this argument shows that the random restrictions
method [H̊as86] is unlikely to prove superpolynomial lower bounds. The natural proofs argument implies
the following limitation for the gate elimination method. If subexponentially strong one-way functions exist,
then for any large class of predicates (i.e., a class containing at least a 1

n fraction of Bn), for any e↵ective

measure (computable in time 2O(n)) and e↵ective family of substitutions S (i.e., a family of substitutions
enumerable in time 2O(n)), gate elimination using the family S of substitutions cannot prove lower bounds
better than O(n). We note that the measures considered in this work are not known to be e↵ective.

Let F be a family of Boolean functions of n variables. Let X and Y be disjoint sets of input variables, and
|X| = n. Then a Boolean function UF (X,Y ) is called universal for the family F if for every f(X) 2 F , there
exists an assignment c of constants to the variables Y , such that UF (X, c) = f(X). For example, it can be
shown that the function used by Blum [Blu84] is universal for the family F = {xi� xj , xi ^ xj |1  i, j  n}.
Nigmatullin [Nig85, Nig90] shows that many known proofs can be stated as lower bounds for universal
functions for families of low-complexity functions. At the same time, Valiant [Val76] proves a linear upper
bound on the circuit complexity of universal functions for these simple families.

Vadhan and Williams [VW13] note that the inequality (1) is tight for the inner product function. This
implies that the approach from [DK11] described in Section 2 cannot yield stronger bounds.

There are known linear upper bounds on circuit complexity of some specific functions and even classes of
functions. For example, Demenkov et al. [DKKY10] show that each symmetric function (i.e., a function that
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depends only on the sum of its inputs over the integers) can be computed by a circuit of size 4.5n + o(n).
This, in turn, implies that no gate elimination argument for a class of functions that contains a symmetric
function can lead to a superlinear lower bound.

The basis U2 is the basis of all binary Boolean functions without parity and its negation. The strongest
known lower bound for circuits over the basis U2 is 5n � o(n). This bound is proven by Iwama and
Morizumi [IM02] for (n � o(n))-mixed functions. Amano and Tarui [AT11] construct an (n � o(n))-mixed
function whose circuit complexity over U2 is 5n+ o(n).

A formula is a circuit where each gate has out-degree one. The best known lower bound of n2�o(1)

on formula size is proven by Nechiporuk [Nec66]. The proof of Nechiporuk is based on counting di↵erent
subfunctions of the given function. It is known that this argument cannot lead to a superquadratic lower
bound (see, e.g., Section 6.5 in [Juk12]).

A De Morgan formula is a formula with AND and OR gates, whose inputs are variables and their
negations. The best known lower bound for De Morgan formulas is n3�o(1) (H̊astad [H̊as98], Tal [Tal14],
Dinur and Meir [DM16]). The original proof of this lower bound by H̊astad is based on showing that the
shrinkage exponent � is at least 2. This cannot be improved since � is also at most 2 as can be shown by
analyzing the formula size of the parity function.

Paterson introduces the notion of formal complexity measures for proving De Morgan formula size lower
bounds (see, e.g., [Weg87]). A formal complexity measure is a function µ : Bn ! R that maps Boolean
functions to reals, such that

1. for every literal x, µ(x)  1;

2. for all Boolean functions f and g, µ(f ^ g)  µ(f) + µ(g) and µ(f _ g)  µ(f) + µ(g).

It is known that De Morgan formula size is the largest formal complexity measure. Thus, in order to
prove a lower bound on the size of De Morgan formula, it su�ces to define a formal complexity measure
and show that an explicit function has high value of measure. Khrapchenko [Khr71] uses this approach
to prove an ⌦(n2) lower bound on the size of De Morgan formulas for parity. Unfortunately, many natu-
ral classes of formal complexity measures cannot lead to stronger lower bounds. Hrubes et al. [HJKP10]
prove that convex measures (including the measure used by Khrapchenko) cannot lead to superquadratic
bounds. A formula complexity measure µ is called submodular, if for all functions f and g it satisfies
µ(f _ g) + µ(f ^ g)  µ(f) + µ(g). Razborov [Raz90] uses a submodular measure based on matrix pa-
rameters to prove superpolynomial lower bounds on the size of monotone formulas. In a subsequent work,
Razborov [Raz92] shows that submodular measures cannot yield superlinear lower bounds for non-monotone
formulas. The drag-along principle [RR94, Lip10] shows that no useful formal complexity measure can cap-
ture specific properties of a function. Namely, it shows that if a function has measure m, then a random
function with probability 1/4 has measure at least m/4. Measures based on graph entropy (Newman and
Wigderson [NW95]) are used to prove a lower bound of n log n on De Morgan formula size, but it is proven
that these measures cannot lead to stronger bounds.

5 Conclusion and Further Directions

In this paper we show that there are functions of virtually arbitrary complexity that even after several
substitutions their circuit complexity reduces only by a constant number of gates or a constant amount of a
subadditive complexity measure.

This puts a barrier on gate elimination proofs that do not use specific properties of the functions while
analyzing how their circuits degrade after substitutions. Most proofs indeed do not use functions properties
for the analysis (properties of the function are only used for estimating how many substitutions the function
can withstand).

However, there is one exception: in order to estimate the number of “bad” local situations on the top of
a circuit computing the function, [FGHK16] uses the fact that the function is an a�ne disperser. While we
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believe that in this particular case it can be overcome, there may be new techniques exploiting the function
properties. Thus the first open question is:
• Show that interesting classes of functions contain functions resistant to gate elimination. For example, it
would be interesting to show that the class of a�ne dispersers, or more generally every large enough class of
functions, contains a series of functions resistant to gate elimination.

Another possible direction is to extend the result to other possible complexity measures, because some
syntactic measures can lack subadditivity (for example, composition can in principle introduce more “bad”
local situations). One can imagine, for example, “local” measures that count specific small patterns in a
circuit.
• Extend the result to local complexity measures or other large classes.

While the results of this paper capture all types of substitutions, another possible direction is:
• Allow the induction to descend to arbitrary varieties instead of the varieties described by substitutions (for
example, allow restrictions of the form xy = zt).

The situation might become much easier if we switch from arbitrary Boolean functions to n-bit linear
maps {0, 1}n ! {0, 1}n. They have non-linear complexity in principle but, again, we do not have non-linear
lower bounds for explicit functions. Can gate elimination prove non-linear bounds here? What if we restrict
ourselves to linear operations in the circuit and linear substitutions? The gadgets used in this paper are
non-linear and thus cannot help.
• Extend the results to linear maps.

Corollary 2 implies that for any m = O(
p
N), there exist a hard function of N arguments whose circuit

complexity after m substitutions drops by a linear number O(N) of gates only. On the other hand, it is easy
to see that any function f can be trivialized by N/2 substitutions (And this bound is tight, since MAJN
does not become constant until N/2 variables are substituted.) These two observations leave a gap between
O(
p
N) and N/2, which leads us to the following open question:

• Does there exist a nonlinear complexity function f of N arguments such that after any m = !(
p
N)

substitutions its circuit complexity drops by O(N) gates only?
To construct such a function, it su�ces to construct error correcting codes with linear size en-

coders/decoders.
Finally, there is an informal connection between lower bounds for algorithms (such as splitting (DPLL)

algorithms) and functions resistant to gate elimination (cf, e.g., Corollary 3), and algorithms for CircuitSAT
and #CircuitSAT are of this type. It would be interesting to formalize this connection.
• Use functions resistant to gate elimination as candidates for lower bounds on the running time. Convert
them into formulas that can be used as candidates for lower bounds for proof systems.

Acknowledgements

We are grateful to Navid Talebanfard for fruitful discussions, to Fedor Petrov for pointing out the existence of
a trivializingN/2-substitution for every function, and to Alexander Shen for suggesting to use error-correcting
codes in Theorem 3. We are very thankful to the anonymous reviewers for their valuable comments.

The research leading to these results was conducted in the laboratory of algorithmic methods founded
under the grant 14.Z50.31.0030 of the Government of the Russian Federation.

A Scripts for the proof of Lemma 4

First, we show that for any i, j 2 {0, 1, 2, 3, 4}, where i 6= j, there exist c1, c2, c3 2 {0, 1} such that when
the three remaining variables are assigned the values c1, c2, c3, the function gst1 computes xi. The following
Python script specifies the values of c1, c2, c3 for all (ordered) pairs (i, j) and ensures that the function gst1
satisfies the required property.
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import itertools

tt=[0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,1,1,1,0,1,1,0,0,1,1,0,1,0,0,0]

M = {(0,1): (0,1,0), (0,2): (0,0,1), (0,3): (0,0,1), (0,4): (0,0,1),

(1,0): (1,0,0), (1,2): (0,0,1), (1,3): (0,0,1), (1,4): (0,1,0),

(2,0): (1,0,0), (2,1): (0,1,0), (2,3): (0,1,0), (2,4): (0,0,1),

(3,0): (0,1,0), (3,1): (1,0,0), (3,2): (1,0,0), (3,4): (0,0,1),

(4,0): (1,0,0), (4,1): (1,0,0), (4,2): (1,0,0), (4,3): (0,1,0)}

for (i,j) in itertools.permutations(range(5), 2):

c1=M[(i,j)][0]

c2=M[(i,j)][1]

c3=M[(i,j)][2]

(v1,v2,v3)=[v for v in range(5) if (v!=i and v!=j)]

for a in range(1 << 5):

assert((a>>v1)&1!=c1 or

(a>>v2)&1!=c2 or

(a>>v3)&1!=c3 or

tt[a]==(a>>i)&1

)

The fact that this function can be computed by a circuit of size 11 is justified by the following script.

import itertools

tt=[0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,1,1,1,0,1,1,0,0,1,1,0,1,0,0,0]

for (x0,x1,x2,x3,x4) in itertools.product(range(2), repeat=5):

g1=(x1+x2)%2 # x1 xor x2

g2=(x2+x3)%2 # x2 xor x3

g3=(x0+x2)%2 # x0 xor x2

g4=(x1+x4)%2 # x1 xor x4

g5=1-(1-g2)*(1-g4) # g2 or g4

g6=1-(1-x3)*(1-x4) # x3 or x4

g7=x3*g4 # x3 and g4

g8=g1*(1-g7) # g1 and (not g7)

g9=(1-g3)*g6 # (not g3) and g6

g10=g5*(1-g9) # g5 and (not g9)

g11=(g8+g10)%2 # g8 xor g10

assert(g11==tt[x0+2*x1+4*x2+8*x3+16*x4])
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