
Approximate Degree and the Complexity of Depth Three Circuits∗

Mark Bun† Justin Thaler‡

Abstract

Threshold weight, margin complexity, and Majority-of-Threshold circuit size are basic complex-
ity measures of Boolean functions that arise in learning theory, communication complexity, and cir-
cuit complexity. Each of these measures might exhibit a chasm at depth three: namely, all polynomial
size Boolean circuits of depth two have polynomial complexity under the measure, but there may exist
Boolean circuits of depth three that have essentially maximal complexity exp(Θ(n)). However, existing
techniques are far from showing this: for all three measures, the best lower bound for depth three cir-
cuits is exp(Ω̃(n2/5)). Moreover, current methods exclusively study block-composed functions. Such
methods appear intrinsically unable to prove lower bounds better than exp(Ω(

√
n)) even for depth four

circuits, and have yet to prove lower bounds better than exp(Ω̃(
√
n)) for circuits of any constant depth.

We take a step toward showing that all of these complexity measures indeed exhibit a chasm at depth
three. Specifically, for any arbitrarily small constant δ > 0, we exhibit a depth three circuit of polynomial
size (in fact, an O(log n)-decision list) of complexity exp(Ω(n1/2−δ)) under each of these measures.

Our methods go beyond the block-composed functions studied in prior work, and hence may not
be subject to the same barriers. In particular, we suggest natural candidate functions that may exhibit
stronger bounds, of the form exp(Ω̃(n)), where the Ω̃ notation hides factors polylogarithmic in n.
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1 Introduction

Let f : {−1, 1}n → {−1, 1} be a Boolean function, and let C : 2{−1,1}n → N denote a measure of the
complexity of f . We say that C exhibits a chasm at depth three if all Boolean circuits1 of depth two have
polynomial complexity under the measure, but there exist circuits of depth three that have essentially maxi-
mal complexity exp(Θ(n)). Examples of measures that may satisfy a chasm at depth three include:

• Threshold Weight. A polynomial p : {−1, 1}n → R with integer coefficients is said to sign-represent
f if p(x) · f(x) > 0 for all x ∈ {−1, 1}n. The weight of p, denoted W (p), is the sum of the
absolute value of its coefficients. The threshold weight of f is the least weight of a sign-representing
polynomial for f .

It is easy to see that all DNF and CNF formulae of size s have threshold weight O(s). The best
known upper bound on the threshold weight of depth three circuits is the trivial 2O(n) bound. Hence,
threshold weight may exhibit a chasm at depth three.

• Discrepancy and Margin Complexity. Discrepancy, defined formally in Section 5.2, is a central
quantity in communication complexity and circuit complexity.2 For example, discrepancy is known
to characterize the communication complexity class PP, and small discrepancy implies large commu-
nication complexity in nearly every communication model. The multiplicative inverse of discrepancy
is also known to be equivalent to margin complexity, a central quantity in learning theory [22].

All DNF and CNF formulae have at least inverse-polynomial discrepancy. However, the best known
lower bound on the discrepancy of depth three circuits is the trivial 2−O(n) bound. Hence, margin
complexity and (the inverse of) discrepancy may exhibit a chasm at depth three.

• Majority-of-Threshold Circuit Size. Since OR and AND can each be computed by a single Ma-
jority gate, all DNF and CNF formulae are computed by Majority-of-Threshold (in fact, Majority-
of-Majority) circuits of polynomial size. Meanwhile, the best known upper bound on the size of
Majority-of-Threshold circuits computing depth three Boolean circuits is the trivial 2O(n) bound.
Hence, Majority-of-Threshold circuit size may exhibit a chasm at depth three.

We discuss each of these measures, together with applications, in more detail in Section 5.
Unfortunately, we are currently quite far from proving that any of the above complexity measures ac-

tually exhibit such a chasm. For each measure, the best known lower bound for depth three circuits is
exp(Ω̃(n2/5)) [10]. Moreover, as we explain in Section 1.2.4, existing techniques appear intrinsically un-
able to prove a lower bound better than exp(Ω(n1/2)) even for circuits of depth four. This barrier stems from
the fact that previous work has focused exclusively on analyzing block-composed functions. Here, a function
f : {−1, 1}N ·M → {−1, 1} is said to be block-composed if there are two functions h : {−1, 1}N → {−1, 1}
and g : {−1, 1}M → {−1, 1} such that f = h ◦ g := h(g, . . . , g). That is, a function is block-composed
if it interprets its input as a sequence of N blocks x1, . . . , xN ∈ {−1, 1}M , applies a Boolean function g
independently to each block xi, and then feeds the N outputs into a different function h.

In this paper, we take a step toward showing that all three of these complexity measures indeed exhibit
a chasm at depth three. Specifically, for any constant δ > 0, we exhibit a depth three circuit of polynomial

1Throughout this paper, unless otherwise noted, all circuits under consideration are assumed to have polynomial size, and to be
over the basis AND, OR and NOT.

2Discrepancy is often thought of as a matrix-analytic quantity, rather than as a Boolean function complexity measure. For a
function f : {−1, 1}n × {−1, 1}n → {−1, 1}, when we refer to the discrepancy of f , we mean the discrepancy of the matrix
[f(x, y)]x,y∈{−1,1}n .
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size (in fact, an O(log n)-decision list) of complexity exp(Ω(n1/2−δ)) under each of these measures. Our
improvement over prior work stems from the fact that we move beyond block-composed functions, and
hence our methods may not be subject to the same barriers. In particular, we suggest natural candidate
functions that may exhibit stronger bounds, of the form exp(Ω̃(n)), where the Ω̃ notation hides factors
polylogarithmic in n (cf. Section 3.3).

The functions that underly our analysis are rather complicated to define (see Section 4.2 for details), but
here we briefly highlight their novel features. Inspired by prior work of Podolskii [26] (see Section 1.2.2 for
further discussion), we define our functions to be “almost” block-composed, but to have mild dependencies
between blocks. Just like a block-composed function, each of our functions interprets its input as a sequence
of N blocks x1, . . . , xN ∈ {−1, 1}M , and applies a Boolean function g to each block, before feeding the
N outputs into a different function h. However, for i ≥ 2, before applying g to xi we first pass xi through
a “pre-processing function” that depends on the preceding blocks x1, x2, . . . , xi−1. We ensure that this
dependency is simple enough that the final function is computed by a circuit of depth three, but complicated
enough that the final function has much higher complexity than the block-composed functions considered
in prior work.

1.1 Our Contributions: Details

The three complexity measures C described above are intimately related to uniform approximability by
low-degree polynomials, as we now explain. Roughly speaking, for each of the three measures, in order
to construct a function of complexity at least 2d under C, it suffices to identify a function f : {−1, 1}n →
{−1, 1} such that f cannot be uniformly approximated to error 1− 2−d by polynomials of degree at most d.
One can then apply known transformations [18,19,32] to transform f into a related function F : {−1, 1}n →
{−1, 1} such that C(F ) ≥ 2Ω(d). Moreover, these transformations are simple in the following sense: if f is
computed by a (polynomial size) depth d circuit with logarithmic bottom fan-in, then so is F .

Accordingly, the main technical contribution of this paper is to prove a new lower bound on the approx-
imability of suitable constant-depth circuits by low-degree polynomials.

Theorem 1. For any arbitrarily small constant δ > 0 and any arbitrarily large constant Γ > 1, there is an
(explicitly given) function f : {−1, 1}n → {−1, 1} that is computed by Boolean circuit of depth three, with
logarithmic bottom fan-in, that satisfies the following property. For any polynomial p : {−1, 1}n → R of
total degree at most n1/2−δ, there exists some x ∈ {−1, 1}n such that |p(x)− f(x)| > 1− 2−n

Γ
.

In fact, the function f in Theorem 1 is much simpler than an arbitrary depth three circuit with logarithmic
bottom fan-in; it is an O(log n)-decision list of polynomial length. An O(log n)-decision list is a function
whose output is determined by a very simple sequential decision process (essentially, a chain of “if-then-
else” statements, where each “if” statement is a conjunction on O(log n) variables – we give a precise
definition in Section 2). Decision lists have been studied intensely in learning theory and complexity theory
(see, e.g., [6, 8, 14, 17, 18, 28, 29, 39]).

By combining Theorem 1 with known transformations [19, 32], we obtain a depth three circuit F with very
large complexity under the three measures described above. In fact, F itself is computed by an O(log n)-
decision list.

Corollary 2. For any constant δ > 0, there is an (explicitly given) function F : {−1, 1}n → {−1, 1} that is
computed by a Boolean circuit of depth three and logarithmic bottom fan-in such that:

• The threshold weight of F is exp(Ω(n1/2−δ)).
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• The discrepancy of F is exp(−Ω(n1/2−δ)).
• Any Majority-of-Threshold circuit computing F has size exp(Ω(n1/2−δ)).

Table 1 succinctly compares our results to prior work.

Reference Threshold Weight Discrepancy Majority-of-Threshold Circuit
Bound Bound Circuit Size Bound Depth

[19] exp(Ω(n1/3)) N/A N/A 3
[31] N/A exp(−Ω(n1/5)) exp(Ω(n1/5)) 3

[8, 32] N/A exp(−Ω(n1/3)) exp(Ω(n1/3)) 3
[10] exp

(
Ω(n2/5)

)
exp

(
−Ω(n2/5)

)
exp

(
Ω(n2/5)

)
3

[36] exp
(

Ω(n
k−1
2k−1 )

)
exp

(
−Ω(n

k−1
2k−1 )

)
exp

(
Ω(n

k−1
2k−1 )

)
k + 1 (for k ≥ 2)

[30] exp
(
Ω(n1/2)

)
exp

(
−Ω(n1/2)

)
exp

(
Ω(n1/2)

)
4

This work exp
(
Ω(n1/2−δ)

)
exp

(
−Ω(n1/2−δ)

)
exp

(
Ω(n1/2−δ)

)
3

Table 1: Comparison of our new bounds for AC0 to prior work. The circuit depth column lists the depth of the
Boolean circuit used to exhibit the bound, and δ denotes an arbitrarily small positive constant. All Boolean circuits
are polynomial size.

1.2 Prior Work

In order to discuss prior work, it is helpful to introduce the notions of approximate degree and threshold
degree, which both capture the difficulty of pointwise approximation by low-degree polynomials. The ε-
approximate degree of a function f , denoted d̃egε(f), is the least degree of a real polynomial that pointwise
approximates f to error ε. By convention, d̃eg1/3(f) is denoted simply as d̃eg(f) and referred to without
qualification as the approximate degree of f (the constant 1/3 is chosen for aesthetic reasons, and could be
replaced with any other constant in (0, 1) without affecting the theory in any way). The threshold degree
of f , denoted deg±(f), is the least degree of a real polynomial that sign-represents f at all points. When
appropriate, we also use subscripts after function symbols to indicate the number of variables over which
the function is defined. For example, ORM denotes the OR function on M inputs.

1.2.1 Early Work on Approximating AC0 Functions by Low-Degree Polynomials

Minsky and Papert [24] famously proved an Ω(n1/3) lower bound on the threshold degree of the DNF
formula ORn1/3 ◦ANDn2/3 , now known as the Minsky-Papert DNF. Klivans and Servedio [16] proved an
essentially matching upper bound of Õ(n1/3) on the threshold degree of any polynomial size DNF.

Beigel identified a DNF (in fact, a 1-decision list) known as OMB (short for ODD-MAX-BIT) that has
threshold degree 1, but requires large degree to approximate to error bounded away from 1 [6]. OMB will
play a central role in this paper, and we define it formally in Section 2. Quantitatively, Beigel showed3 that
for any d > 0, there is an ε ∈ 1 − 2−Ω(n/d2) such that d̃egε(OMBn) ≥ d. For any ε > 0, Klivans and
Servedio [17] gave an optimal ε-approximating polynomial for any 1-decision list, showing that Beigel’s
lower bound is asymptotically tight for all d > 0.4

3Beigel describes his result as a lower bound on the degree-d threshold weight of OMBn, which refers to the least weight
of a sign-representing polynomial p for f satisfying deg(p) ≤ d. However, his argument is easily seen to establish the claimed
approximate degree lower bound.

4Like Beigel, Klivans and Servedio state their results in terms of degree-d threshold weight. However, their construction is
easily seen to imply the claimed upper bound on the approximate degree of OMBn.
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1.2.2 Prior Work of Podolskii

Podolskii pioneered a line of work devoted to proving approximate degree lower bounds that hold even when
the error parameter ε is allowed to be super-exponentially close to 1 [26, 27].5 In [27], he showed that for
any constant d ≥ 2, there exists a function of threshold degree d that cannot be uniformly approximated to
error ε by polynomials of degree at most d, unless ε = 1− n−Ω(nd). This result is tight, matching an upper
bound proved by Burhman et al. [8].

Our construction and analysis are inspired by another related result of Podolskii [26]. For any constant
d > 0, Podolskii identified a function f of threshold degree d such that, even forD � d, the following holds:
f cannot be uniformly approximated by degree D polynomials to error ε, unless ε is superexponentially
close to 1. Quantitatively, he showed that for any constant d > 0, there exists a DNF (in fact, a d-decision
list) f with threshold degree d, yet for any D < O(n1/5/ log n), there exists an ε ∈ 1− exp

(
Ω((n/D4)d)

)
for which d̃egε(f) ≥ D. Unfortunately, Podolskii’s construction itself does not yield any new bounds on the
complexity measures we are interested in. By introducing new ideas, we are able to prove such improved
bounds for depth three circuits.

1.2.3 Translating Approximate Degree Lower Bounds to Complexity Bounds

Several works have focused on transforming approximate degree and threshold degree lower bounds into
bounds on the complexity measures that we focus on in this paper (threshold weight, discrepancy/margin
complexity, and Majority-of-Threshold circuit size). Krause and Pudlák [19] showed how to take a function
f of threshold degree at least d, and turn f into a related function F of threshold weight6 at least 2d. By
applying this transformation to the Minsky-Papert DNF, Krause and Pudlák obtained a depth three circuit
(with constant bottom fan-in) with threshold weight exp(Ω(n1/3)).

Subsequent work by Krause [18] showed that for F to have threshold weight 2Ω(d), it is enough for f to
satisfy d̃eg1−2−d(f) ≥ d.7 Krause applied his result to the function f = OMB, to obtain an exp(Ω(n1/3))
lower bound on the threshold weight of a specific 2-decision list.

Sherstov’s pattern-matrix method [32] showed how to take a function f satisfying the same condition
required by Krause (i.e., d̃eg1−2−d(f) ≥ d), and turn it into a function F with discrepancy 2−Ω(d). By
applying this transformation to the Minsky-Papert DNF or to OMB, Sherstov obtained a depth three circuit
with discrepancy exp(−Ω(n1/3)). Buhrman, Vereschagin, and de Wolf independently proved an identical
discrepancy bound via very different techniques [8]. These discrepancy bounds also implied corresponding
lower bounds on Majority-of-Threshold Circuit Size, through standard transformations [25].

1.2.4 Recent Work on Approximating AC0 Functions by Low-Degree Polynomials

A handful of recent works have established various forms of “hardness amplification” for approximate
degree [9, 10, 21, 30, 30, 33, 35, 36]. Roughly speaking, these results show how to take a function g which is
hard to approximate by degree d polynomials to error 1/3, and turn g into a related function f that is hard
to approximate by degree d polynomials to error exponentially close to 1. Specifically, in these works, f is
obtained from g by block-composing g with another function h.

5Again, Podolskii describes his work in terms of degree-d threshold weight, but his results hold for approximate degree as well.
6In fact, Krause and Pudlák showed that F has threshold length 2d, where threshold length is the least number of non-zero

Fourier coefficients of any sign-representation for f . The threshold weight of f is always at least as large as its threshold length.
7Again, Krause phrased his lower bound in terms of the degree-d threshold weight of OMB, but his result is easily seen to

imply the statement here.
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Let EDM denote the well-known Element Distinctness function and EDM its negation. EDM has
played a central role in recent works on hardness amplification for approximate degree [10,30,36] because it
currently exhibits the largest known approximate degree lower bound for any function in AC0: d̃eg(EDM ) =
Ω̃(M2/3) [1].

Our prior work [10] showed that the function f = ORN ◦EDM satisfies d̃egε(f) ≥ Ω̃(M2/3) for
ε = 1 − 2−N , and used this result to obtain a depth three circuit such that C(F ) = exp(Ω̃(n2/5)) for
the three complexity measures C that we focus on in this work. Thaler [38] then showed that the function
f = OMBN ◦EDM satisfies an identical lower bound, yielding another depth three circuit F (in fact, an
O(log n)-decision list) with C(F ) = exp(Ω̃(n2/5)).

Sherstov [36] significantly strengthened the approach of [10] to obtain new threshold degree lower
bounds for functions in AC0. Specifically, in [36], for any k ≥ 2, Sherstov exhibited a read-once formula of
depth k (with polynomial bottom fan-in) that has threshold degree Ω(n

k−1
2k−1 ). Applying the transformations

of [18, 19, 32] to these circuits increases their depth by 1. In [30], Sherstov exhibited a depth four circuit of
logarithmic bottom fan-in and threshold degree Ω(n1/2) – applying the transformation of [18,19,32] to this
circuit does not increase its depth, yielding a depth four circuit F satisfying C(F ) = exp(Ω(n1/2)).

The exp(Θ(
√
n)) Barrier For Circuits of Depth Four. Recall that for each of the three complexity mea-

sures C in which we are interested, in order to construct a function of complexity at least 2d under C, it
suffices to identify a function f : {−1, 1}n → {−1, 1} such that

f cannot be uniformly approximated to error 1− 2−d by polynomials of degree at most d. (1)

We now argue that for circuits of depth 4, prior techniques cannot accomplish this for d�
√
n, even if they

assume the existence of a DNF g : {−1, 1}M → {−1, 1} with (one-sided) approximate degree Ω(M).8

The methods of [10, 38] start with a function g : {−1, 1}M → {−1, 1}, and assume nothing about g
other than that g has (one-sided) approximate degree at least d. They show how to turn g into a “harder”
function f = h ◦ g by block-composing g with another function h ∈ {ORN ,OMBN}. Quantitatively, the
resulting bound is of the form d̃eg1−2−N (f) ≥ d. Clearly, one must setN ≥ d to obtain a bound of the form
Eq. (1). Hence, even if g has the largest possible (one-sided) approximate degree, d = M , the best bound
that can be obtained from the methods of [10, 38] is of the form d̃eg1−2−N (f) ≥ N , obtained by setting
M = N . In this case, f is a function over n = N2 variables, so these methods can only yield complexity
bounds of the form exp(Ω(N)) = exp(Ω(

√
n)).

Both [10, 38] showed that their respective analyses are tight for many functions g. Hence, the exp(
√
n)

barrier is not merely an artifact of the analysis in these works.
Indeed, at least in the case of h = ORN , the barrier is inherent to any method that attempts to construct

an f satisfying Eq. (1) by assuming nothing about a function g : {−1, 1}M → {−1, 1} other than that g has
(one-sided) approximate degree at least d, and then block-composing g with h. To see this, first observe that
ifM ≤ N , then for any function g : {−1, 1}M → {−1, 1}, (1/N)

∑N
i=1 g(xi)+(N−1)/N is a polynomial

of degree at most M ≤ n1/2 that approximates f = ORN ◦g to error 1− 1/N .
Even if M ≥ N , it is often the case that ORN ◦g can be approximated to error 1 − 2−Õ(n1/2) by a

polynomial of degree O(n1/2). Indeed, many functions g with large approximate degree (such as EDM for
example) can be approximated to error 1/3N2 by a ratio q1(x)/q2(x) of two polynomials of logarithmic

8One-sided approximate degree is a measure that is intermediate between approximate degree and threshold degree. One-
sided approximate degree lower bounds is crucial to the analyses in [10, 30, 36]. However, we will not explicitly utilize one-sided
approximate degree in our own results, so we do not formally define it here. The best known one-sided approximate degree lower
bound for an AC0 function is the same as the best known approximate degree lower bound: Ω̃(M2/3), exhibited by EDM [10].
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degree and weight quasi-polynomial in M and N . One can use q1, q2 to obtain a polynomial approximator
p for f = h ◦ g such that deg(p) = O(N log(M · N)), and p uniformly approximates f to error 1 −
2−O(N ·polylog(M)). We omit the details for brevity, but the construction can be found in [7] (see also [30,
Theorem 6.10]).

Sherstov [30,36] introduced sophisticated and demanding methods that can prove stronger lower bounds
for constant-depth circuits than [10,38]. However, his methods apply block-composition multiple times, and
crucially exploit alternation in the circuits computing the functions being composed; hence, in the context of
Eq. (1), his analysis improves over [10,38] only for circuits of greater depth or bottom fan-in than considered
in those works. Furthermore, in [30, Section 9.4] Sherstov provides a detailed discussion on barriers facing
his methods. In particular, he shows that the exp(Ω(n1/2)) barrier is inherent to the class of functions he
considers in [30], and is not an artifact of the analysis. He does indicate that his methods might be extendable
to break the exp(Ω(n1/2)) barrier by using circuits of depth 5 or greater.

1.3 An Application in Communication Complexity

We briefly describe an additional application of our results. By combining Theorem 1 with standard ma-
chinery, we obtain an improved separation between the analogues of the complexity classes PP and PNP in
communication and query complexity. Specifically, for a function F : {−1, 1}n × {−1, 1}n → {−1, 1}, let
PP(F ) and PNP(F ) respectively denote the least cost of a PP and PNP communication protocol for F . In
both the communication and query complexity settings, for any constant δ > 0, we exhibit an F satisfying
PP(F ) = Ω(n1/2−δ) and PNP(F ) = O(log2 n). This improves over prior work that gave an F satisfying
PP(F ) = Ω̃(n2/5) and PNP(F ) = O(log n) [38] and earlier work of Buhrman et al. that gave an F sat-
isfying PP(F ) = Ω(n1/3) and PNP(F ) = O(log n) [8]. We direct the interested reader to [38] for further
details on this application.

2 Preliminaries

Notation. We work with Boolean functions f : {−1, 1}n → {−1, 1}, where −1 corresponds to logical
TRUE and +1 corresponds to logical FALSE. For a given Boolean function f , the function f̄ := −f
denotes its negation. The notation [n] refers to the set {0, 1, . . . , n}. For any n ∈ N, fix a canonical
injection [n] → {−1, 1}dlog(n+1)e; we refer to the image of any i ∈ [n] under this injection as the binary
representation of i. All logarithms in this work are assumed to be taken in base 2.

Decision Lists and OMB. A k-decision list D of length L over the Boolean variables x1, . . . , xn is repre-
sented by a list of L pairs (C0, b0), (C1, b1), . . . , (CL−1, bL−1) and a bit bL where each Ci is a conjunction
of width at most k, and each bi is either −1 or 1. Given any x ∈ {−1, 1}n, the value of D(x) is bi if i is the
smallest index such that Ci is made true by x; if no Ci is is true then D(x) = bL.

Any k-decision list of length L is computed by a depth three circuit of size O(L) and bottom fan-in
O(k). Indeed, letting S = {i ≤ L : bi = −1}, the circuit is

bL ∨
∨
i∈S

(
Ci(x) ∧ C̄1(x) ∧ · · · ∧ C̄i−1(x)

)
.

To see that this is indeed a circuit of depth three with bottom fan-in O(k), observe that for any conjunction
Ci of width k, C̄i is computed by a disjunction of width k.

Let OMB : {−1, 1}N → {−1, 1} denote a specific 1-decision list known as ODD-MAX-BIT, defined
as follows. For i = 1, 2, . . . , N , the conjunction Ci(x) = xN−i and bi = (−1)N−i. Finally, define bN = 1.
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OMB can be equivalently defined in the following manner. On input x = (x1, . . . , xN ), let β(x) denote the
largest index i such that xi = −1, and let β(x) = 0 if no such index exists. Then

OMB(x1, . . . , xN ) =

{
−1 if β(x) is odd
1 otherwise.

Beigel [6] showed that OMB has high approximate degree, even when the error parameter is exponen-
tially close to 1. Specifically:

Theorem 3 (Beigel [6]). There exists a constant c > 0 for which the following holds. Let p(x) be a
polynomial of degree at most d such that p(x) · OMBN (x) > 0 for all x ∈ {−1, 1}N . Then there exists
an x ∈ {−1, 1}N such that |p(x)| ≥ 2cN/d

2 · |p(1N )|. In particular, d̃egε(OMBN ) ≥ d for some ε =
1− 2Ω(N/d2).

To prove Theorem 3, Beigel iteratively constructs a sequence of inputs x0, x1, . . . , xcN/d
2

for which |p(xt+1)| ≥
2 · |p(xt)|. He obtains these inputs by repeatedly applying the following lemma, which we will also make
use of directly.

Lemma 4 (Beigel [6]). Let d,N ∈ N and let ` ≥ 10d2 such that N/` is an integer. Consider the increasing
family of sets S1 ⊂ S2 ⊂ · · · ⊂ SN/` ⊆ {−1, 1}n defined by

S0 = {1N}, S1 = {x : xi = 1 ∀i > `}, . . . , St = {x : xi = 1 ∀i > t`}, . . . , SN/` = {−1, 1}N .

Let p(x) be a polynomial of degree at most d such that p(x) · OMBN (x) > 0 for all x ∈ St+1 \ St. Let
z ∈ St. Then there exists a z′ ∈ St+1 \ St such that |p(z′)| ≥ 2 · |p(z)|.

3 Intuition and Discussion of Theorem 1

3.1 Overview of Our Function

As mentioned in Section 1, the function f that we exhibit in Theorem 1 is complicated to define. Hence,
before formally defining f , we provide here some motivation for our definition. While the function we
describe in this section differs from the f exhibited in Theorem 1, our description here highlights the main
ideas underlying the construction of f itself.

Specifically, the function that we describe in this informal overview is a modification of the block-
composed function OMBN ◦ORM . This is easily seen to be a sub-function of OMB2NM , and in the
formal statement and proof of Theorem 1, our construction relies on the function OMB2NM directly. This
is only for the sake of simplicity, and we remark that the proof of Theorem 1 carries over when one uses the
function OMBN ◦ORM instead. We choose to present this overview using the function OMBN ◦ORM for
two reasons. First, reasoning about this function gives the right intuition for both our lower bound and for
the approximating polynomial which it matches. Second, as discussed in Section 3.3, replacing the inner
function ORM with other functions (such as EDM ) yields natural candidates for further improved lower
bounds.

Recall that [38] showed that d̃egε(OMBN ◦EDM ) = Ω̃(M2/3) for ε = 1 − 2−N . Moreover, this
lower bound is essentially tight for OMBN ◦EDM : there is in fact a polynomial p of degree O(logM)
that approximates OMBN ◦EDM to error ε = 1 − 2−O(N logM). The methods of [38] also show that
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d̃egε(OMBN ◦ORM ) = Ω(M1/2) for ε = 1− 2−N , and there is a polynomial of degree O(1) that approx-
imates OMBN ◦ORM to error ε = 1− 2−O(N logM).

Our goal is to modify OMBN ◦ORM to obtain an f : {−1, 1}n → {−1, 1} that is much harder to
approximate by low-degree polynomials, while still ensuring that f is computed by anO(log n) decision list.
Specifically, we will require, for some large constant k and small constant δ > 0, d̃egε(f) = Ω(M1/2−δ)

for ε = 1− 2−N
k
.

A natural first attempt to construct such an f is to block-compose OMBN ◦ORM with the parity func-
tion on k variables. Specifically, let k be some constant, and consider the following function on k · N ·M
variables: ⊕k ◦ OMBN ◦ORM , where ⊕ denotes the parity function. However, this function is still too
easy to approximate: there is a polynomial of degree O(k logM) that approximates ⊕k ◦ OMBN ◦ORM

to error 1− 2−O(kN logM). Indeed, letting p be the polynomial approximation to OMBN ◦ORM described
above, the polynomial q(x1, . . . xk) := 2−k

∏k
i=1 p(xi) does the trick.

We instead define f to be “just different enough” from ⊕k ◦ OMBN ◦ORM to foil this construction
of an approximating polynomial. Specifically, our f will first “pre-process” its input (x1, . . . , xk), before
feeding it into ⊕k ◦OMBN ◦ORM . The pre-processing step will introduce dependencies between blocks,
so that an approximating polynomial for f will be unable to treat them independently in the manner of q.

In more detail, f will interpret its input x as k blocks, x1, . . . , xk (we will refer to x1, . . . , xk as “super-
blocks”, since each xi will itself be interpreted as consisting of N blocks, which will themselves each be
interpreted as consisting of M “sub-blocks”). For expository purposes, we focus in the remainder of this
section on the case k = 2, so that there are only two super-blocks x1, x2 (The full construction is defined
inductively, and described in Section 4.2). Assume for simplicity that N + 1 is a power of 2. The two
super-blocks will not contain the same number of bits: x1 will contain N ·M bits, while x2 will contain
N ·M · log(N + 1) bits. We will ultimately treat x1 as an input to OMBN ◦ORM ; accordingly, let us
interpret x1 as consisting ofN blocks, each containingM bits, so that we can write x1 = (x1,1, . . . , x1,N ) ∈(
{−1, 1}M

)N . Let γ(x1) ∈ {−1, 1}logN be the binary representation of the largest integer j satisfying
OMB(x1,j) = −1, and let γ(x1) = 0 if no such j exists. That is, γ(x1) is the index of the “leading TRUE
bit” that gets fed into OMBN when evaluating (OMBN ◦ORM )(x1).

Similarly, we interpret x2 as consisting of N blocks. However, each block now contains M log(N + 1)
bits, and is comprised ofM sub-blocks, each consisting of log(N+1) bits. Let EQγ(x1) : {−1, 1}log(N+1) →
{−1, 1} denote the function that outputs−1 if and only if its input equals γ(x1). Finally, let u = (u1, . . . uN ) ∈
({−1, 1}M )N denote the vector obtained by applying EQγ(x1) to each sub-block of x2. That is, u is the
vector obtained by first “pre-processing” each sub-block of x2 with an “equality test” EQγ(x1) that is deter-
mined by x1. Finally, we define

f = ((OMBN ◦ORM )(x1))⊕ ((OMBN ◦ORM )(u)) . (2)

Notice that the dependence of this pre-processing function on x1 is actually quite mild: u only depends
on the “leading TRUE bit” that gets fed into OMBN when evaluating OMBN ◦ORM (x1). This mild
dependence is what allows f to be computed by an O(log n) decision list.

It is not hard to see that an equivalent way to write f (that moreover helps reveal its structure as an
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O(log n)-decision list) is:

f(x1, x2)=OMBN2+2N (OR(u1),OR(u2), . . . ,OR(uN ),

OR(x1,1),OR(x1,1) ∧OR(u1),OR(x1,1) ∧OR(u2), . . . ,OR(x1,1) ∧OR(uN ),

...

OR(x1,N ),OR(x1,N ) ∧OR(u1), . . . ,OR(x1,N ) ∧OR(uN )), (3)

where u is defined as above. It turns out that Representation (2) of f is useful for establishing lower bounds
on the approximate degree of f , while Representation (3) is more useful for constructing approximating
polynomials for f , and gaining intuition about f . In particular, Representation (3) suggests a natural method
for approximating f : treat it as a 1-decision list over N2 + 2N “derived” variables (and then use an opti-
mal method of approximating 1-decision lists, which are well-understood). The proof of our lower bound
(Theorem 1) implicitly shows that this simple approach is essentially optimal. The next subsection briefly
explains the details of this approximation method.

3.2 A Nearly Matching Upper Bound

We begin by giving the well-known sign-representing polynomial for OMBN itself. Define p : {−1, 1}N →
R via

p(x1, . . . , xN ) := 1 +
N∑
i=1

(−2)i · (1− xi)/2.

It is easy to see that OMBN (x) · p(x) > 0 for all x ∈ {−1, 1}N , and in fact 2−N−1 · p(x) approximates
OMBN to error ε = 1− 2−N−1.

We now turn to constructing an approximant for the function OMBN ◦ORM . Our starting point is a
polynomial q of degree O(M1/2) satisfying the following two properties (cf. [38]).

q(x) = 0 for all x ∈ OR−1
M (+1). (4)

1 ≤ q(x) ≤ 2 for all x ∈ OR−1
M (−1). (5)

Denoting an (N ·M)-bit input as (x1, . . . , xN ) ∈
(
{−1, 1}M

)N , it is easy to check that

OMBN ◦ORM (x1, . . . , xN ) = sgn(g(x1, . . . , xN )), where g(x1, . . . , xN ) = 1 +
N∑
i=1

(−3)i · q(xi).

In fact, 3−N−1 · g(x) approximates OMBN ◦ORM to error 1− 3−N−1, and has degree equal to that of q.
Recall (cf. Eq. (3)) that in the case k = 2, our function can be written as

OMBN2+2N (OR(u1),OR(u2), . . . ,OR(x1,N ) ∧OR(uN )).

Using techniques similar to the above, one can obtain a degree Õ(M1/2 logN) polynomial p that approx-
imates this function to error 1 − 2−O(N2). Our lower bound will show this approximation is essentially
optimal.
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3.3 Prospects for Further Improved Lower Bounds

Fix a small constant δ > 0 and large constant Γ > 0. A remarkable feature of the function f exhibited in
Theorem 1 is that it simultaneously satisfies the following three properties:

• It has threshold degree O(log n).

• It has approximate degree Θ̃(n1/2).

• It has ε-approximate degree Ω(n1/2−δ) for ε = 1− 2n
Γ

.

Hence, while f has very low threshold degree, it is essentially as hard to approximate f to error super-
exponentially close to 1 (i.e., error as large as 1 − 2−n

Γ
for any constant Γ > 0), as it is to approximate to

error 1/3. To the best of our knowledge, ours is the first known function to exhibit these properties.
Clearly, improving the degree bound in Theorem 1 to be polynomially larger than Ω(n1/2) will require

considering functions of approximate degree larger than Ω(n1/2). A natural approach is to exhibiting such
functions is to simply replace the function ORM appearing in the construction of Section 3.1 with a function
of approximate degree polynomially larger than Ω(M1/2). A prime candidate is the function EDM , which
has approximate degree Ω̃(M2/3) (recall that this is currently the best approximate degree lower bound
known for any function in AC0).

Indeed, in a prior version of this paper, we claimed to use precisely this approach to exhibit a polynomial
size depth four circuit (and quasipolynomial size depth three circuit) of complexity exp(Ω(n2/3−δ)) under
each of the measures we consider. Unfortunately, we have retracted this claim because of an error in the
proof. Nonetheless, we believe that this is a viable approach to breaking the exp(Θ(n1/2)) barrier to which
methods based on block-composed functions are subject.

It is further natural to conjecture that if ORM is replaced in the construction with a function of even
larger approximate degree then EDM , then the resulting function has yet larger complexity. For example, the
SURJECTIVITY function on M bits is computed by a polynomial size Boolean circuit of depth three (see [5]
for the definition of this function), and it is reasonable to conjecture that this function has approximate
degree Ω̃(M) [5,10]. We further conjecture that replacing ORM with SURJECTIVITY in the construction of
Section 3.1 yields a function of complexity exp(Ω(n1−δ)) for any δ > 0. Tweaking the parameters in the
construction and sharpening the analysis may even yield a lower bound of exp(Ω̃(n)).

4 Proof of Theorem 1

Before stating and proving Theorem 1, we consider an easier statement, the proof of which is much cleaner,
while still capturing the main ideas of the general case.

4.1 Simplified Statement and its Proof

The function f that we exhibit in Theorem 1 is defined over k “superblocks”, where k is an arbitrarily large
constant (see Section 3.1 for motivation for the superblock terminology). Here, we consider the simpler case
of exactly k = 2 superblocks.

Notation. Recall (cf. Section 2) that for x = (x1, . . . , xN ) ∈ {−1, 1}N , β(x) denotes the largest index
i = 1, . . . , N such that xi = −1 (or β(x) = 0 if none exists). Assume for simplicity that N + 1 is a
power of two. Given an input (x, y) ∈ {−1, 1}N × ({−1, 1}log(N+1))N , we interpret y as consisting of N
blocks y1, . . . , yN , each consisting of log(N + 1) bits. Let EQβ(x) : {−1, 1}log(N+1) → {−1, 1} denote
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the function that outputs −1 if and only if its input equals the binary representation of β(x). Finally, let
u = (u1, . . . uN ) ∈ {−1, 1}N denote the vector obtained by applying EQβ(x) to each block of y. That
is, u is the vector obtained by first “pre-processing” each block of y with an “equality test” EQβ(x) that is
determined by x.

Function Definition. Define F via:

F (x, y) = OMBN (x1, . . . , xN )⊕OMBN (u1(x, y1), . . . , uN (x, yN )) (6)

= OMBN (x1, . . . , xN )⊕OMBN (EQβ(x)(y1), . . . ,EQβ(x)(yN )). (7)

Proposition 5. There exists a constant c for which the following holds. Let d, n ∈ N where n = N +
N log(N + 1). Let p be a polynomial of degree at most d such that |p(x, y)| ≥ 1 and p(x, y) · F (x, y) > 0
for all (x, y) ∈ {−1, 1}n. Then there exists an (x, y) ∈ {−1, 1}n such that |p(x, y)| ≥ 2(cN/d2)2

.

To ease notation below, we will identify each block yi ∈ {−1, 1}log(N+1) with the number in [N ] for
which yi is the binary representation. That is, while we will write each yi as though it were a number
0, 1, . . . , N , it should always be thought of as the binary string representing that number.

Proof Idea. Let p(x, y) be a polynomial of degree at most d that agrees with F in sign. Building on Beigel’s
proof of Theorem 3, we iteratively apply Lemma 4 to construct a sequence of inputs to the polynomial
p, such that evaluating p on each point yields a value of (at least) twice the magnitude of the previous
evaluation. By choosing these inputs carefully (and crucially exploiting the “pre-processing” step in the
definition of F2 that transforms y into the vector u(x, y), before feeding it into OMBN ), we can apply
Lemma 4 a total of (cN/d2)2 times. This is a quadratic improvement over the number of times Beigel is
able to apply Lemma 4 to OMBN itself. Podolskii [26] used related ideas to obtain a lower bound for a
different function, but we are able to avoid the significant quantitative losses that are inherent to his approach.

In more detail, recall that Beigel’s lower bound argument (cf. Theorem 3) for OMBN started with
the input x0 = 1N , and iteratively applied Lemma 4 to obtain inputs x1, . . . , xcN/d

2
such that |p(xt)| ≥

2|p(xt−1)| for all t ≥ 1. Roughly speaking, the first input to F that we construct is a point (x1, y0) such
that u(x1, y0) = 1N and the last N − 10d2 bits of x1 are all set to 1. Since u(x1, y0) is fed into OMBN

in the definition of F , we are able to apply Beigel’s argument (Theorem 3) to obtain an input (x1, y1) such
that |p(x1, y1)| ≥ 2cn/d

2 · |p(x1, y0)|. We then “use” the second block of 10d2 bits of the first superblock
to “clean up” u, in the following sense: we find an x2 whose last N − 20d2 bits are all equal to 1, such that
u(x2, y1) = 1N and |p(x2, y1)| ≥ |p(x1, y1)|. This enables us to apply Beigel’s argument (Theorem 3) a
second time, finding an input (x2, y2) such that |p(x2, y2)| ≥ 2cn/d

2 · |p(x1, y1)|. We then use the third 10d2

bits of the first superblock to “clean up” u yet again, and repeat. We can continue the argument until we
have “used up” all the bits of the first superblock, at which point we have obtained the desired lower bound.

Proof of Proposition 5. Let ` = 10d2 and consider the increasing family of sets S0 ⊂ S1 ⊂ · · · ⊂ SN/` ⊆
{−1, 1}N defined as in Lemma 4. Let p be a polynomial of degree at most d such that p(x, y) ·F (x, y) > 0
for all (x, y) ∈ {−1, 1}n. We iteratively construct a sequence of inputs (x0, y0), (x1, y1), . . . , (xN/`, yN/`)
to p such that:

• Each xt ∈ St and each yt ∈ [t`]N ,
• |p(x0, y0)| ≥ 1, and
• |p(xt+1, yt+1)| ≥ 2cN/d

2 · |p(xt, yt)| for each t = 0, . . . , N/`− 1.

11



At the conclusion of this process, we obtain an input (xN/`, yN/`) such that |p(xN/`, yN/`)| ≥ 2(cN/d2)2
.

We may take as the first input (x0, y0) the point (1N , 0N ). We construct the remaining inputs (xt, yt)
iteratively. The following claim formalizes this iterative process.

Claim 6. Let p be a polynomial of degree at most d and suppose p(x, y) · F (x, y) > 0 for all (x, y) ∈
{−1, 1}n. Let (xt, yt) be an input with xt ∈ St and yt ∈ [t`]N . Then there exists an input (xt+1, yt+1) such
that |p(xt+1, yt+1)| ≥ 2cN/d

2 · |p(xt, yt)|, where xt+1 ∈ St+1 and yt+1 ∈ [(t+ 1)`]N .

Proof. We prove the claim in two steps. First, we show that there exists an xt+1 ∈ St+1 for which
|p(xt+1, yt)| ≥ |p(xt, yt)|. Second, we show that there exists a yt+1 ∈ [(t+1)`]N such that |p(xt+1, yt+1)| ≥
2cN/d

2 · |p(xt+1, yt)|. Putting these steps together yields |p(xt+1, yt+1)| ≥ 2cN/d
2 · |p(xt, yt)|.

Step 1. We examine the function F (x, yt) (viewed as a function only of x). By construction, each block
yti ≤ t`. Thus, EQβ(x)(y

t
i) = 1 for all x ∈ St+1 \ St, and hence

OMBN (EQβ(x)(y
t
1), . . . ,EQβ(x)(y

t
N )) = OMBN (1N ) = 1

for all such inputs. As a result, F (x, yt) = OMBN (x) whenever x ∈ St+1 \ St.
Now consider the polynomial q : {−1, 1}N → R defined by q(x) = p(x, yt). Then q(x) ·OMBN (x) >

0 for all x ∈ St+1 \ St. By assumption, xt ∈ St. Thus, by Lemma 4, there exists an xt+1 ∈ St+1 such that
|q(xt+1)| ≥ 2 · |q(xt)|. Unpacking the definition of q, we see that in particular, |p(xt+1, yt)| ≥ |p(xt, yt)|.

Step 2. We now show that there exists a yt+1 ∈ [(t+1)`]N , such that |p(xt+1, yt+1)| ≥ 2cN/d
2 ·|p(xt+1, yt)|.

For w ∈ {−1, 1}N , define the string yw by (yw)i = β(xt+1) if wi = −1 and (yw)i = yti if wi = 1. Note
that since β(xt+1) ≤ (t + 1)` and each yti ∈ [t`], we have that yw ∈ [(t + 1)`]N for every w ∈ {−1, 1}N .
Consider the function E : {−1, 1}N → {−1, 1} defined by E(w) := F (xt+1, yw), and observe that

E(w) = OMBN (xt+1)⊕OMBN (w).

Now consider the polynomial r(w) := p(xt+1, yw). Observe that yw is an affine function of w, i.e., we can
write

r(w) = p

(
xt+1,

(
1− w1

2

)
· β(xt+1) +

(
1 + w1

2

)
· yt1, . . . ,

(
1− wN

2

)
· β(xt+1) +

(
1 + wN

2

)
· ytN

)
.

Thus r is a polynomial with deg r ≤ deg p ≤ d. Moreover, r(w) · E(w) > 0 for all w ∈ {−1, 1}N . Since
E is either the function OMBN or its negation, we conclude by Theorem 3 that there exists a w∗ such that
|r(w∗)| ≥ 2cN/d

2 · |r(1N )|. Setting yt+1 := yw∗ thus yields

|p(xt+1, yt+1)| = |r(w∗)| ≥ 2cN/d
2 · |r(1N )| = 2cN/d

2 · |p(xt+1, yt)|,

as we wanted to show.

With Claim 6 established. we conclude the proof of Proposition 5.

4.2 Full Proof of Theorem 1

The proof begins by extending the “two-superblock” function F constructed in Section 4.1 (cf. Eq. (6)), to
construct a k-superblock function Fk for any constant number of superblocks k ≥ 2.
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4.2.1 Construction of the Function Fk

First, fix a parameter N ∈ N and assume for simplicity that N + 1 is a power of 2. The construction of our
function Fk is inductive, and begins with the following sequence of auxiliary functions u1, u2, . . . , uk. For
each i = 1, . . . , k, each function

ui : {−1, 1}N×({−1, 1}N×({−1, 1}log(N+1))N )×· · ·×({−1, 1}N×({−1, 1}(i−1)·log(N+1))N )→ {−1, 1}N .

For i = 1, . . . , k, let si = (si,1, . . . , si,N ) denote an arbitrary input in {−1, 1}N , and zi denote an arbitrary
input in ({−1, 1}(i−1)·log(N+1))N .

The auxiliary functions ui are defined recursively as follows.

u1(s1) = s1 = (s1,1, . . . , s1,N )

u2(s1, (s2, z2)) = (s2,1 ∧ EQβ(u1)(z2,1), . . . , s2,N ∧ EQβ(u1)(z2,N ))

= (s2,1 ∧ EQβ(s1)(z2,1), . . . , s2,N ∧ EQβ(s1)(z2,N ))

...

uk(s1, (s2, z2), . . . , (sk, zk)) = (sk,1∧EQβ(u1)◦···◦β(uk−1)(zk,1), . . . , sk,N ∧EQβ(u1)◦···◦β(uk−1)(zk,N ))

Here, the notation ◦ denotes string concatenation. The function uk should be interpreted as the bitwise
AND of (sk,1, . . . , sk,N ) with a vector of equality tests between (zk,1, . . . , zk,N ) and the complete list of
the indices of the “leading TRUE bits” feeding into OMBN from each of the previous super-blocks i =
1, . . . , (k − 1).

We are now ready to define Fk. In what follows, F1, F2, . . . Fk will denote functions such that

Fi : {−1, 1}N×({−1, 1}N×({−1, 1}log(N+1))N )×· · ·×({−1, 1}N×({−1, 1}(i−1)·log(N+1))N )→ {−1, 1}.

The construction is recursive. Define:

F1(s1) = OMBN (u1)

= OMBN (s1,1, . . . , s1,N ),

F2(s1, (s2, z2)) = F1(s1)⊕OMBN (u2)

= OMBN (s1,1, . . . , s1,N )⊕OMBN (s2,1 ∧ EQβ(s1)(z2,1), . . . , s2,N ∧ EQβ(s1)(z2,N )),

...

Fk(s1, (s2, z2), . . . , (sk, zk)) = Fk−1(s1, (s2, z2), . . . , (sk−1, zk−1))⊕OMBN (uk)

= Fk−1(s1, (s2, z2), . . . , (sk−1, zk−1))⊕OMBN (. . . , sk,i ∧ EQβ(u1)◦···◦β(uk−1)(zk,i), . . . )

Remark 7. We clarify that the function F2 defined in this section differs very slightly from the definition of
F given in Section 4.1 (cf. Eq. (6)) in that Eq. (6) did not involve the variables s2 ∈ {−1, 1}N . We omitted
the variables s2 in Eq. (6) for simplicity and clarity, since they are not needed to prove a lower bound on
the approximate degree of F2 itself (cf. Proposition 5). We do, however, need the variables sk to prove our
lower bound for Fk for k ≥ 3.
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4.2.2 Representing Fk as a Decision List

The function Fk is represented by a O(k2 logN)-decision list

(C0, b0), (C1, b1), . . . , (C(N+1)k−2, b(N+1)k−2), b(N+1)k−1,

where (Ci, bi) are as follows:

C0(s; z) = s1,N ∧ (s2,N ∧ EQN (z2,N )) ∧ · · · ∧ (sk,N ∧ EQN◦···◦N︸ ︷︷ ︸
k−1 times

(zk,N )); b0 = (−1)k·N

C1(s; z) = s1,N ∧ (s2,N ∧ EQN (z2,N )) ∧ · · · ∧ (sk,N−1 ∧ EQN◦···◦N︸ ︷︷ ︸
k−1 times

(zk,N−1)); b1 = (−1)k·N−1

...

CN−1(s; z) = s1,N ∧ (s2,N ∧ EQN (z2,N )) ∧ · · · ∧ (sk,1 ∧ EQN◦···◦N︸ ︷︷ ︸
k−1 times

(zk,1)); bN−1 = (−1)(k−1)·N+1

CN (s; z) = s1,N ∧ (s2,N ∧ EQN (z2,N )) ∧ · · · ∧ (sk−1,N ∧ EQN◦···◦N︸ ︷︷ ︸
k−2 times

(zk−1,N )); bN = (−1)(k−1)·N

CN+1(s; z) = s1,N ∧ (s2,N ∧ EQN (z2,N ))∧
· · · ∧ (sk−1,N−1 ∧ EQN◦···◦N︸ ︷︷ ︸

k−2 times

(zk−1,N−1)) ∧ (sk,N ∧ EQN◦···◦N︸ ︷︷ ︸
k−2 times

◦(N−1)(zk,N )); bN+1 = (−1)k·N−1

...

C(N+1)k−2(s; z) = (sk,1 ∧ EQ 0◦···◦0︸ ︷︷ ︸
k−1 times

(zk,1)); b(N+1)k−2 = −1

b(N+1)k−1 = 1.

Observe that each C` in the above is indeed a conjunction over O(k2 logN) variables (here, we are using
the fact that, for any integer i > 0 and any fixed string τ ∈ [N ]m, the function EQτ : {−1, 1}i log(N+1) →
{−1, 1} is a conjunction of width i log(N + 1).)

In general, suppose ` = ak−1(N + 1)k−1 + ak−2(N + 1)k−2 + · · ·+ a0 where each 0 ≤ ai ≤ N . Let
ãi = N − ãi for each i = 0, 1, . . . , k − 1. then C` is given by C1

` ∧ C2
` ∧ · · · ∧ Ck` where Ci` is an empty

clause if ãi = 0 and otherwise

Ci`(s; z) = (si,ãk−i ∧ EQãk−1◦ãk−2◦···◦ãk−i+1
(zi,ãk−i)).

The bit b` = (−1)ãk−1+ãk−2+···+ã0 .
Since, for any constant k > 0, Fk is an O(log n) decision list of polynomial length, it can be computed

by a polynomial size circuit of depth three and logarithmic bottom fan-in.

4.2.3 The Main Proposition

The goal of this section is to prove the following generalization of Proposition 5.
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Proposition 8. There exists a universal constant c > 0 such that for each k ∈ N, there exists a ck ≥ c · 4−k
2

for which the following holds. Let d, n ∈ N where

n = N ·
k∑
i=1

(1 + (i− 1) · log(N + 1)) = O(k2 ·N · logN).

Let p be a polynomial of degree at most d such that p(x) ·Fk(x) > 0 for all x ∈ {−1, 1}n. Then there exists
an x ∈ {−1, 1}n such that |p(x)| ≥ 2ck(N/d2)k · |p(1n)|.

Theorem 1 follows easily from Proposition 8.

Proof of Theorem 1, assuming Proposition 8. Let k = dΓ/δe. Observe that Fk is defined on {−1, 1}n
where n = O(k2N logN). Fix a polynomial p of degree d = n1/2−δ, and suppose that p(x) · Fk(x) > 0
for all x ∈ {−1, 1}n. By Proposition 8, there exists an x ∈ {−1, 1}n such that

|p(x)| ≥ 2ck(N/d2)k · |p(1n)| > 2Ωk(1)·N2·k·δ/ log2k N · |p(1n)| > 2n
Γ+1 · |p(1n)| > 2 · 2nΓ · |p(1n)|,

where the third inequality holds for sufficiently large n. Hence, if |p(1n)| > 2−n
Γ

, then |p(x)| > 2. It
follows that p cannot approximate Fk uniformly to within error less than 1− 2−n

Γ
.

Proof of Proposition 8. The proof is by induction on k. Beginning with k = 1, note that the function F1 is
just the OMBN function. Hence, if p is a polynomial of degree at most d for which p(x) · F1(x) > 0 for all
x ∈ {−1, 1}N , then by Theorem 3 there exists a universal constant c > 0 such that there is an x ∈ {−1, 1}N
for which |p(x)| ≥ 2cN/d

2 · |p(1N )|.
Now assume by way of induction that Proposition 8 holds for Fk, and consider the function Fk+1.

Additional Notation. To enable the induction, we need to introduce more detailed notation to represent the
inputs to Fk+1. Recall that Fk+1 is defined over a variable set (s1, (s2, z2), . . . , (sk+1, zk+1)) where each
si ∈ {−1, 1}N and each zi ∈ ({−1, 1}(i−1)·log(N+1))N . For notational convenience, we make the following
relabelings:

s1 7→ x

zi,j 7→ yi,j ◦ wi,j where yi,j ∈ {−1, 1}log(N+1) and wi,j ∈ {−1, 1}(i−2)·log(N+1)

Thus, we can think ofFk+1 as being defined over variables (x, (s2, y2), (s3, (y3, w3)) . . . , (sk+1, (yk+1, wk+1))).
With this notation in mind, we write Fk+1(x; s; y;w) as shorthand for

Fk+1(x, (s2, y2), (s3, (y3, w3)), . . . , (sk+1, (yk+1, wk+1))).

Similarly, for a polynomial p, we write p(x; s; y;w) for

p(x, (s2, y2), (s3, (y3, w3)), . . . , (sk+1, (yk+1, wk+1))).

Here, x ∈ {−1, 1}N , while s is shorthand for s = (s2, s3, . . . , sk+1) ∈
(
{−1, 1}N

)k, y is shorthand for

(y2, . . . , yk+1) ∈
((
{−1, 1}log(N+1)

)N)k
, and w is shorthand for (w3, . . . , wk+1).

As in the proof of Proposition 5, to ease notation, we will also identify any binary string in {−1, 1}log(N+1)

with the number in [N ] for which the string is the binary representation. That is, while we will write any
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such binary string as though it were a number 0, 1, . . . , N , it should always be thought of as the binary string
representing that number.

A Different Expression for Fi. The following claim follows straightforwardly from the definition of Fk
(cf. Section 4.2.1).

Claim 9. The function Fk+1 may be written as

Fk+1(x, (s2, y2),(s3, (y3, w3)), . . . , (sk+1, (yk+1, wk+1))) =

OMBN (. . . , xj , . . . )⊕ Fk(v2(x, s2, y2), v3(x, s3, y3, w3), . . . , vk+1(x, sk+1, yk+1, wk+1)),

where the functions vi are defined by:

v2(x, s2, y2) = (s2,1 ∧ EQβ(x)(y2,1), . . . , s2,N ∧ EQβ(x)(y2,N )),

vi(x, si, yi, wi) = ((. . . , si,j ∧ EQβ(x)(yi,j), . . . ), wi) for i = 3, . . . , k + 1.

The Main Argument. Just as in Lemma 4 and Proposition 5, we let ` = 10d2 and consider the increasing
family of sets S0 ⊂ S1 ⊂ · · · ⊂ SN/` ⊆ {−1, 1}N defined by

S0 = {1N}, S1 = {x : xi = 1 ∀i > `}, . . . , St = {x : xi = 1 ∀i > t`}, . . . , SN/` = {−1, 1}N .

Let p be a polynomial of degree at most d such that p(x; s; y;w) · Fk+1(x; s; y;w) > 0 for all (x; s; y;w) ∈
{−1, 1}n. We iteratively construct a sequence of inputs

(x0; s0; y0;w0), (x1; s1; y1;w1), . . . , (xN/`; sN/`; yN/`;wN/`)

to p such that:

• Each xt ∈ St and each yt ∈ ([t`]N )k,

• (x0; s0; y0;w0) = (1N ; (1N )k; (0N )k; (0N , (0 ◦ 0)N , . . . , (0 ◦ · · · ◦ 0︸ ︷︷ ︸
k−1 times

)N )), and

• |p(xt+1; st+1; yt+1;wt+1)| ≥ 2ck(N/4d2)k · |p(xt; st; yt;wt)| for each i = 0, . . . , N/`− 1.

At the end of this process, we have obtained an input (xN/`; sN/`; yN/`;wN/`) such that

|p(xN/`; sN/`; yN/`;wN/`)| ≥ 2ck·(N/4d
2)k·(N/`) ≥ 2ck·(N/4d

2)k+1
,

where the last inequality holds for any k ≥ 2. Letting ck+1 = 4−(k+1)·ck ≥ 4−(k+1)·(4−k2 ·c) ≥ 4−(k+1)2 ·c,
at the conclusion of this process, we obtain an input (xN/`; sN/`; yN/`;wN/`) such that

|p(xN/`; sN/`; yN/`;wN/`)| ≥ 2ck+1·(N/d2)k+1 · |p(x0; s0; y0;w0)|

as desired, completing the induction.
For t = 1, . . . , N/`, we construct the inputs (xt; st; yt;wt) iteratively. The next claim formalizes this

iterative process.

Claim 10. Let p be a polynomial of degree at most d and suppose p(x; s; y;w) ·Fk+1(x; s; y;w) > 0 for all
(x; s; y;w) ∈ {−1, 1}n. Let (xt; st; yt;wt) be an input with xt ∈ St and yt ∈ ([t`]N )k. Then there exists an
input (xt+1; st+1; yt+1;wt+1) such that |p(xt+1; st+1; yt+1;wt+1)| ≥ 2ck(N/4d2)k · |p(xt; st; yt;wt)|, where
xt+1 ∈ St+1 and yt+1 ∈ ([(t+ 1)`]N )k.
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Proof. As with Claim 6, we prove this claim in two steps. First, we show that there exists an xt+1 ∈
{−1, 1}N supported on St+1 for which |p(xt+1; st; yt;wt)| ≥ |p(xt; st; yt;wt)|. Second, we show that there
exists an st+1 ∈ ({−1, 1}N )k, a yt+1 ∈ ([(t+1)`]N )k, and a stringwt+1 such that |p(xt+1; st+1; yt+1;wt+1)| ≥
2ck(N/d2)k ·|p(xt+1; st; yt;wt)|. Putting these steps together yields |p(xt+1; st+1; yt+1;wt+1)| ≥ 2ck(N/d2)k ·
|p(xt; st; yt;wt)|.

Step 1. We examine the function Fk+1(x; st; yt;wt), viewed as a function in x. By construction, each block
yti,j ≤ t`. Thus, for all x ∈ St+1 \ St, we have EQβ(x)(y

t
i,j) = 1, and hence v2(x, st2, y

t
2) = 1N and

vi(x, s
t
i, y

t
i , w

t
i) = (1N , wti) for all i ≥ 3. As a result, whenever x ∈ St+1 \ St, we have

Fk+1(x; st; yt;wt) = OMBN (x)⊕ Fk(1N , (1N , wt3), . . . , (1N , wtk+1)),

which is either the function OMBN (x) or its negation. Without loss of generality, assumeFk+1(x; st; yt;wt) =
OMBN (x) below.

Now consider the polynomial q : {−1, 1}N → R defined by q(x) = p(x; st; yt;wt). Then q(x) ·
OMBN (x) > 0 for all x ∈ St+1 \ St. By assumption, xt ∈ St. Thus, by Lemma 4, there exists an xt+1 ∈
St+1 such that |q(xt+1)| ≥ 2 · |q(xt)|. In particular, this means |p(xt+1; st; yt;wt)| ≥ |p(xt; st; yt;wt)|.

Step 2. We now show that there exists an st+1 ∈ ({−1, 1}N )k, a yt+1 ∈ ([(t + 1)`]N )k, and a string wt+1

such that |p(xt+1; st+1; yt+1;wt+1)| ≥ 2ck(N/d2)k · |p(xt+1; st; yt;wt)|. This is the most complex part of the
proof, and is where we invoke the inductive hypothesis (the statement of Proposition 8) using the function
Fk. To do so, we introduce a new set of variables σ ∈ ({−1, 1}N )k and

ζ ∈ ({−1, 1}log(N+1))N × · · · × ({−1, 1}(k−1)·log(N+1))N

which should be interpreted as inputs to the function Fk (taking the place of s and z, respectively). We
then define a mapping (σ, ζ) 7→ (sσ, yσ, wσ,ζ) taking these inputs to Fk to inputs to Fk+1 that satisfies the
following (informally stated) properties:

• Property 1. The mapping is computed by a low-degree polynomial in σ and ζ (in fact, a polynomial
of degree 2).

• Property 2. The function Fk+1(xt+1; sσ; yσ;wσ,ζ) simply computes either Fk(σ; ζ) or its negation.

• Property 3. When the pair (σ; ζ) is the “starting input” (x0; s0; y0;w0) to Fk, then the resulting
image (sσ, yσ, wσ,ζ) = (st, yt, wt).

Properties 1 and 2 taken together show that the projected polynomial r(σ; ζ) := p(xt+1; sσ; yσ;wσ,ζ)
satisfies the hypotheses of Proposition 8 with respect to the function Fk(σ; ζ), and moreover deg(r) ≤
2 · deg(p) ≤ 2d. Thus, by the inductive hypothesis, there is some pair (σ∗; ζ∗) such that |r(σ∗; ζ∗)| ≥
2ck(N/(2d)2)k · |r(1nk)|, where the latter quantity is 2ck(N/(2d)2)k · |p(xt+1; st; yt;wt)| by Property 3 above.

Now we carry out the full details of Step 2. Define the mapping (σ, ζ) 7→ (sσ, yσ, wσ,ζ) as follows. For
strings

σ = (σ2, σ3, . . . , σk+1) ∈ ({−1, 1}N )k, and

ζ = (ζ3, ζ4, . . . , ζk+1) ∈
(
{−1, 1}log(N+1)

)N
×
(
{−1, 1}2·log(N+1)

)N
× · · · ×

(
{−1, 1}(k−1)·log(N+1)

)N
define the strings sσ, yσ and wσ,ζ by
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• For each i = 2, . . . , k + 1,

(sσ)i,j =

{
−1 if σi,j = −1,

sti,j if σi,j = 1,

• For each i = 2, . . . , k + 1,

(yσ)i,j =

{
β(xt+1) if σi,j = −1,

yti,j if σi,j = 1,

• For each i = 3, . . . , k + 1,

(wσ,ζ)i,j =

{
ζi,j if σi,j = −1,

wti,j if σi,j = 1.

Observe that this parametrization has the property that if σ = (1N )k, then

(xt+1; sσ; yσ;wσ,ζ) = (xt+1; st; yt;wt).

That is, Property 3 above holds under this definition of sσ, yσ and wσ,ζ .
We now need to show that Fk+1(xt+1; sσ; yσ;wσ,ζ) indeed collapses to Fk(σ; ζ) (i.e., that Property 2

above holds). We will do this by applying the decomposition of Claim 9. Note that since β(xt+1) ≤ (t+1)`
and each yti,j ∈ [t`], we have that yσ ∈ ([(t+ 1)`]N )k for every σ ∈ ({−1, 1}N )k. We can thus calculate

v2(xt+1, (sσ)2, (yσ)2) = (. . . , (sσ)2,j ∧ EQβ(xt+1)((yσ)2,j), . . . ) = (. . . , σ2,j , . . . ),

where the final equality exploits the fact that yti,j ≤ t` for all i, j, and β(xt+1) > t`. Moreover, for
i = 3, . . . , k + 1,

vi(x
t+1, (sσ)i, (yσ)i, (wσ,ζ)i) = ((. . . , (sσ)i,j ∧ EQβ(xt+1)((yσ)i,j), . . . ), (. . . , (wσ,ζ)i,j , . . . ))

= ((. . . , σi,j , . . . ), (. . . , (wσ,ζ)i,j , . . . )).

Consider the function E(σ; ζ) := Fk+1(xt+1; sσ; yσ;wσ,ζ). By the calculations above,

E(σ; ζ) = OMBN (xt+1)⊕ Fk(v2(xt+1, (sσ)2, (yσ)2), . . . , vk+1(xt+1, (sσ)k+1, (yσ)k+1, (wσ,ζ)k+1))

= OMBN (xt+1)⊕ Fk(σ2, (σ3, (wσ,ζ)3), . . . , (σk+1, (wσ,ζ)k+1))

= OMBN (xt+1)⊕ Fk(σ2, (σ3, ζ3), . . . , (σk+1, ζk+1)),

where the last equality follows because, for any string τ , we have

σi,j ∧ EQτ ((wσ,ζ)i,j) ⇐⇒ σi,j ∧ EQτ ((wσ,ζ)i,j) ∧ ((wσ,ζ)i,j = ζi,j)

⇐⇒ σi,j ∧ EQτ (ζi,j).

Now consider the polynomial r(σ; ζ) := p(xt+1; sσ; yσ;wσ,ζ). Since the variables sσ, yσ, and wσ,ζ can
be written as linear or quadratic functions of σ and ζ, the polynomial r satisfies deg r ≤ 2 deg p ≤ 2d.

18



Moreover, r(σ; ζ) ·E(σ; ζ) > 0 for all (σ; ζ). Since E is either the function Fk or its negation, the inductive
hypothesis (the statement of Proposition 8) allows us to conclude that there exists a (σ∗; ζ∗) such that
|r(σ∗; ζ∗)| ≥ 2ck(N/4d2)k · |r(1nk)|, where nk is the number of Boolean variables on which Fk is defined.
Setting st+1 := sσ∗, yt+1 := yσ∗, and wt+1 := wσ∗,ζ∗ thus yields

|p(xt+1; st+1; yt+1;wt+1)| = |r(σ∗; ζ∗)| ≥ 2ck(N/4d2)k · |r(1nk)| = 2ck(N/4d2)k · |p(xt+1; st; yt;wt)|,

as we wanted to show. This completes the proof of Claim 10.

With Claim 10 completed, we conclude the proof of Proposition 8.

5 Applications

5.1 Threshold Weight of Depth Three Circuits

A polynomial threshold function (PTF) for a Boolean function f : {−1, 1}n → {−1, 1} is a polynomial
p : {−1, 1}n → R with integer coefficients that agrees in sign with f on all Boolean inputs. The weight of an
n-variate polynomial p is the sum of the absolute values of its coefficients. The degree-d threshold weight of
a Boolean function f : {−1, 1}n → {−1, 1}, denoted W (f, d), is defined to be the least weight of a degree-
d PTF for f . We let W (f) denote the quantity W (f, n), i.e., the least weight of any threshold function for
f regardless of its degree. Threshold weight upper bounds underly some of the most powerful techniques
in computational learning theory based on the classic Perceptron [24] and Winnow [23] algorithms (see
[10, Section 8.3] for a discussion). Thus, our threshold weight lower bounds impose limitations on how
efficiently such algorithms can learn depth three circuits.

Degree-d threshold weight is closely related to ε-approximate degree when ε is very close to 1:

Lemma 11. Let f : {−1, 1}n → {−1, 1} be a Boolean function, and let w > 0. If d̃eg1− 1
w

(f) > d, then
W (f, d) > w.

Proof. We prove the contrapositive, i.e., that any PTF p for f having weight w and degree d can be trans-
formed into a uniform approximation to f with error 1 − 1

w . Let p be such a PTF. Since p has integer
coefficients and is nonzero on Boolean inputs, |p(x)| ≥ 1 on {−1, 1}n. Moreover, |p(x)| ≤ w by the weight
bound, so the polynomial 1

w · p(x) satisfies | 1w · p(x)− f(x)| ≤ 1− 1
w for every x ∈ {−1, 1}n.

Thus, our main results yield new lower bounds on the degree-d threshold weight of circuits of depth
three.

Corollary 12. For any arbitrarily small constant δ > 0 and any arbitrarily large constant Γ > 1, there
exists a depth three Boolean circuit f : {−1, 1}n → {−1, 1} (with logarithmic bottom fan-in) such that
W (f1, n

1/2−δ) > 2n
Γ

.

Moreover, a result of Krause [18] allows us to translate each of these lower bounds into a degree inde-
pendent threshold weight lower bound for a related function.

Lemma 13 ( [18], Lemma 3.4). Let f : {−1, 1}n → {−1, 1} be a Boolean function, and define F :
{−1, 1}3n → {−1, 1} by

F (x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) := f(. . . , (z̄i ∧ xi) ∨ (zi ∧ yi), . . . ).

Then W (F ) ≥W (f, d) for all d for which 2d ≥W (f, d).
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When this transformation is applied to a function f computed by a Boolean circuit of depth d with
logarithmic bottom fan-in, the resulting function F is also computed by a depth d circuit with logarith-
mic bottom fan-in. To see this, note that if g is any function that depends on O(log n) variables, then
G(x, y, z) := g((z̄ ∧ x) ∨ (z ∧ y)) also depends on O(log n) variables. Hence, G is computed by either a
DNF or CNF of size poly(n) and bottom fan-in O(log n). So while F is naturally computed by a circuit of
depth d+ 2, the bottom three levels of gates can be replaced by such DNF or CNF formulae so as to merge
a layer of gates and obtain a depth d circuit with logarithmic bottom fan-in.

Corollary 14. For any arbitrarily small constant δ > 0, there exists a depth three Boolean circuitF : {−1, 1}n →
{−1, 1} (with logarithmic bottom fan-in) such that W (F ) > exp(Ω(n1/2−δ)).

While the weight bounds of Corollaries 12 and 14 are stated for polynomial threshold functions over
{−1, 1}n (i.e., for polynomials that are integer linear combinations of parities), a now standard transforma-
tion [20] shows that the same threshold weight lower bound also holds for polynomials over {0, 1}n (i.e.,
for integer linear combinations of conjunctions) up to polynomial factors.

5.2 Discrepancy of Depth Three Circuits

Discrepancy is a central quantity in communication complexity and circuit complexity. For instance, an
upper bound on the discrepancy of a Boolean function f : X × Y → {−1, 1} yields lower bounds for
computing f in essentially every model of communication complexity. In particular, the discrepancy of
f essentially characterizes it’s small-bias communication complexity in the PP model of Babai et al. [4].
Theorem 1 yields a new exponentially small upper bound on the discrepancy of a depth three circuit.

For a Boolean function f : X × Y → {−1, 1}, let M (f) be its communication matrix M (f) =
[f(x, y)]x∈X,y∈Y . A combinatorial rectangle of X × Y is a set of the form A × B with A ⊆ X and
B ⊆ Y . For a distribution µ over X × Y , the discrepancy of f with respect to µ is defined to be the
maximum over all rectangles R of the bias of f on R. That is:

discµ(f) = max
R

∣∣∣∣∣∣
∑

(x,y)∈R

µ(x, y)f(x, y)

∣∣∣∣∣∣ .
The discrepancy of f , denoted disc(f), is defined to be minµ discµ(f).

Sherstov’s pattern matrix method [32] shows how to generically transform an AC0 function with high
threshold degree or high threshold weight into another AC0 function with low discrepancy.

Theorem 15 (cf. [32], adapted from Corollary 1.2 and Theorem 7.3). Let f : {−1, 1}n → {−1, 1} be
given, and define the communication problem F : {−1, 1}4n × {−1, 1}4n → {−1, 1} by

F (x, y) = f(. . . ,∨4
j=1(xi,j ∧ yi,j), . . . ).

Then for every integer d ≥ 0, we have

disc(F )2 ≤ max

{
2n

W (f, d− 1)
, 2−d

}
.

Recall that W (f, d − 1) is the least weight of any degree d − 1 PTF for f . We apply the pattern
matrix method to the functions f, f ′ of Corollary 12. By the same argument as in Section 5.1, the pattern
matrix method does not increase the depth of the circuits computing these functions. We thus obtain a new
discrepancy upper bound for circuits of depth three:
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Corollary 16. For any arbitrarily small constant δ > 0, there exists a depth three Boolean circuitF : {−1, 1}n →
{−1, 1} (with logarithmic bottom fan-in) such that disc(F ) < exp(−Ω(n1/2−δ)).

Application to Circuit Complexity. It is well-known that a discrepancy upper bound for a function F
yields a lower bound on the size of Majority-of-Threshold circuits computing F [13, 15, 25, 31]. Indeed,
the exponential Majority-of-Threshold circuit size lower bounds of [8,10,30–32,36] for AC0 are all proved
using discrepancy. Our discrepancy upper bound of Corollary 16 sharpens these previous lower bounds by
yielding a depth three Boolean circuit F of polynomial size such that any Majority-of-Threshold circuit
computing F requires size exp

(
Ω(n1/2−δ)

)
.

Corollary 17. For any arbitrarily small constant δ > 0, there exists a depth three Boolean circuitF : {−1, 1}n →
{−1, 1} (with logarithmic bottom fan-in) such that any Majority-of-Threshold circuit computing F has size
at least exp(Ω(n1/2−δ)).

Combining Corollaries 14, 16, and 17 yields Corollary 2 from the introduction.

Acknowledgements. We are indebted to the anonymous reviewer from STOC 2017 who identified an error
in an earlier version of this manuscript.

References

[1] Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the element distinctness
problems. J. ACM, 51(4):595–605, 2004.

[2] Andris Ambainis. Polynomial degree and lower bounds in quantum complexity: Collision and element
distinctness with small range. Theory of Computing, 1(1):37–46, 2005.

[3] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM J. Comput., 37(1):210–239,
2007.
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