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Abstract

We show that the basic semidefinite programming relaxation value of any constraint satisfac-
tion problem can be computed in NC; that is, in parallel polylogarithmic time and polynomial
work. As a complexity-theoretic consequence we get that MIP1[k, c, s] ⊆ PSPACE provided
s/c ≤ (.62− o(1))k/2k, resolving a question of Austrin, H̊astad, and Pass. Here MIP1[k, c, s] is
the class of languages decidable with completeness c and soundness s by an interactive proof
system with k provers, each constrained to communicate just 1 bit.

1 Introduction

The famous IP = PSPACE and MIP = NEXP theorems [LFKN92, Sha92, BFL91] are concerned with
the computational power of randomized interactive proof systems. In the multiprover interactive
proof (MIP) setup, a randomized (private-coin) polynomial-time verifier is allowed to communicate
with k all-powerful, separated provers in an attempt to decide if a given n-bit string x is in a
language L. The complexity class MIP[k, c, s] is the set of languages decidable by such a proof
system with completeness c and soundness s; this means that for all x ∈ L, the verifier accepts
with probability at least c and for all x 6∈ L, the verifier accepts with probability at most s. It is
known that in this definition the precise values of the constants k, c, and s do not really matter: for
all k ≥ 2 and all 0 < s < c ≤ 1 it holds that MIP[k, c, s] = NEXP (and also MIP[1, c, s] = PSPACE).

A significant amount of the original research on interactive proof systems was concerned with
the effect of bounding the number of rounds of communication. Goldreich and H̊astad [GH98] intro-
duced a refined version of this question in which the number of bits communicated by the provers is
bounded. Such provers are called laconic. This line of research is motivated in part by the fact that
several interesting proof systems indeed use laconic provers; for example, in the well-known 1-prover
proof systems for Quadratic-Nonresiduosity [GMR89] and Graph-Nonisomorphism [GMW91], the
prover communicates just a single bit to the verifier (achieving c = 1, s = 1/2). An example result
in this area, due to Goldreich, Vadhan, and Wigderson [GVW02], is that if 1 > c2 > s > c/2 > 0,
then the class of languages decided by an interactive proof system with 1 prover communicating 1
bit is precisely SZK.

A recent work of Austrin, H̊astad, and Pass [AHP13] focused on the class MIP1[k, c, s], the
restriction of MIP[k, c, s] in which the provers are restricted to sending just 1 bit. (More precisely,
given x, the verifier prepares k questions and an acceptance predicate φ : {0, 1}k → {0, 1}. The
questions are sent to the provers simultaneously, and the verifier accepts/rejects according to φ’s
value on the provers’ 1-bit responses.) They showed that for any k ≥ 2 and c = 1 − ε (say),
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one obtains an intriguing fine-grained hierarchy of complexity classed by varying s. For example,
suppose we fix the number of provers to k = 3. Austrin et al. show that for any ε > 0:

if 0 < s < 1/8− ε, MIP1[3, 1− ε, s] = BPP;

if 1/8 + ε < s < 1/4− ε, MIP1[3, 1− ε, s] = SZK;

if 1/4 + ε < s < 1/2− ε, AM ⊆ MIP1[3, 1− ε, s] ⊆ EXP;

if 1/2 + ε < s < 1 − ε, MIP1[3, 1− ε, s] = NEXP.

Narrowing the gap between AM and EXP for 1/4 < s < 1/2 is quite an interesting open problem.
Austrin et al. asked whether, in this range, the upper bound of EXP can be reduced to PSPACE. In
this paper we answer the question in the affirmative. More generally, we reduce the upper bound
to PSPACE for all parameter ranges k, c, s for which Austrin et al. had an upper bound of EXP:

Theorem 1.1. Provided s/c ≤ (.62 − o(1))k/2k we have MIP1[k, c, s] ⊆ PSPACE. Also, for all
ε > 0 we have MIP1[3, 1− ε, 1/2− ε] ⊆ PSPACE.

Remark 1.2. As discussed in Section 2, we can show similar results for MIP systems in which the
provers may communicate any fixed number of bits c > 1.

We achieve these new complexity-theoretic upper bounds by showing that the basic semidefinite
programming (SDP) value of any constraint satisfaction problem (CSP) can be computed by an
efficient deterministic parallel algorithm — polylogarithmic time and polynomial work.

2 Efficient parallel approximation algorithms for CSP SDPs

Here we review the connection between MIP systems and exponential-size CSPs; this connection is
standard and appears in Austrin et al.’s work [AHP13, Theorem 5.1]. Suppose L ∈ MIP1[k, c, s] and
that the associated polynomial-time verifier uses exactly t(n) = poly(n) random coins on inputs x ∈
{0, 1}n. Consider enumerating the actions of the verifier over all its random strings r ∈ {0, 1}t(n).
For each r, the verifier produces k “questions”, along with an acceptance predicate φ : {0, 1}k →
{0, 1} to be applied to the provers’ answers. Thinking of the questions as “CSP variables” to be
assigned bits by the provers, we see that on each input x ∈ {0, 1}n, the verifier implicitly produces
an exponential-size (k-partite) Boolean k-CSP, with a multiset of exactly 2t(n) constraints (using
various predicates). The optimal value (fraction of constraints satisfied) of this CSP instance is
precisely the highest probability with which the provers can cause the verifier to accept. Write m =
2t(n) for the number of constraints in the CSP instance. Now to show that L ∈ EXP (say), it suffices
to show that for such “implicitly-given” CSPs we can in poly(m) time distinguish whether the
optimal value is at least c or at most s. This is an approximation algorithms problem. In general,
the best known polynomial-time approximation algorithms for Boolean k-CSP use semidefinite
programming and achieve the approximation ratio (.62 − o(1))k/2k; they are due to Makarychev
and Makarychev [MM14]. This is precisely how Austrin et al. achieve Theorem 1.1 with EXP in
place of PSPACE. (The factor-1/2 approximation when k = 3 is due to Zwick [Zwi98].) Regarding
Remark 1.2, it is clear that to handle provers communicating c bits, we just need to investigate the
best known [MM14] approximation algorithms for k-CSPs over a larger alphabet Σ of cardinality 2c.

As noted by Austrin et al., to achieve the PSPACE upper bound in Theorem 1.1, what we need
to do is show that the Makarychev–Makarychev (and Zwick) SDP-based approximation algorithms
for m-constraint CSPs can be implemented in polylog(m) space. Let us make this a little more
precise. For any arity-k CSP instance I with arbitrary predicates φ : Σk → {0, 1} over a constant-
size alphabet Σ, there is a certain “basic SDP” relaxation introduced by Raghavendra [Rag09]. It
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is known [RS09] to be at least as strong as the ones used by Makarychev–Makarychev and Zwick;
i.e., its value, SDP(I) is known to be as close or closer to Opt(I). Thus to prove Theorem 1.1, it
suffices to prove the following:

Theorem 2.1. For any constants1 k, q, and ε > 0, there is a polylog(m)-space Turing Machine
that, given as input an m-constraint k-ary CSP instance I over alphabet Σ of size q, computes the
basic SDP value SDP(I) to within ±ε

In fact, we prove the following stronger statement:

Theorem 2.2. The algorithm in Theorem 2.1 can be carried out in (log-space uniform) NC; equiv-
alently [SV84], by a (log-space uniform) parallel algorithm using poly(m) deterministic processors
and polylog(m) parallel time.

This is stronger than Theorem 2.1 because (log-space uniform) NC ⊆ polyL.
Our proof of Theorem 2.2 is similar to prior works (e.g., [JW09, JUW09, JJUW10, Tan11])

that show how to (approximately) solve certain SDPs in NC using the matrix multiplicative weights
(MMW) technique of Kale and coauthors [AHK05, AK07, Kal07]. Unfortunately, each specific SDP
seems to require its own analysis. Here we use the work of Steurer [Ste10] that shows how the basic
SDP(I) for CSPs can be approximately solved in serial quasilinear time, Õ(m). We show how to
parallelize the algorithm so as to use polylog parallel time, as claimed in Theorem 2.2.

We mention here one important subtlety that arises in translating Steurer’s algorithm. Although
our complexity-theoretic application Theorem 1.1 is only concerned with space, not time, one
may anyway ask whether Steurer’s algorithm can be implemented in quasilinear time and polylog
space. The subtlety entering into this question has to do with the crucial use of randomness in
the algorithm; particularly, the use of the Johnson–Lindenstrauss Lemma while solving the SDP. It
seems that it may be possible to perform Steurer’s algorithm with Õ(m) work and polylog(m) depth
in a standard model of randomized parallel computation (for example, this was shown in the special
case of approximating Max-Cut by Tangwongsan [Tan11, Chapter 4]). However, in such models,
each processor is allowed to store and access any random bits that it uses. When moving to a Turing
Machine model, this would seem to necessitate two-way access to a random tape (the “wrong” model
of randomized space-bounded computation [Nis90]), as opposed to just a Turing Machine with
read-once coin flips. Thus it wouldn’t be clear how to get the needed deterministic polylog space
algorithm using, say, Nisan’s space-derandomization results. Alternatively, one might attempt to
directly derandomize the use of the Johnson–Lindenstrauss Lemma using ideas from [EIO02], but
it did not seem easy to us to do that in polylog space. See also [Pap13].

Thus in the end, we will only show how to implement Steurer’s algorithm in deterministic
polylog(m) parallel time and poly(m) work, as this is sufficient for Theorem 1.1. (Even 2polylog(m)

work would have been sufficient.) By allowing ourselves more than quasilinear work and not
insisting on the use of the Johnson–Lindenstrauss Lemma, certain aspects of Steurer’s algorithm
are simplified. However some effort is still required to prove Theorem 2.1 as parts of Steurer’s proof
are only sketched, especially the parts concerning arithmetic precision.

3 Outline of Steurer’s algorithm

Herein we recall Steurer’s algorithm from [Ste10] for approximately solving the basic SDP relaxation
for CSPs. As is standard, the algorithm actually solves a decision version of the problem: given I

1We could allow k, q, and 1/ε to be slightly superconstant; e.g., ε = 1
polylog(m)

would be okay. However for
simplicity we’ll insist they’re constant.
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and α, the algorithm outputs YES if SDP(I) ≥ α and outputs NO if SDP(I) ≤ α− ε. Combining
this with a binary search allows the algorithm to approximate SDP(I) to within ±ε with only a
constant multiplicative overhead in parallel time and work.

The statement “SDP(I) ≥ α” corresponds to the statement that there exists a PSD matrix X
that satisfies certain inequalities. Steurer’s algorithm performs MMW iterations in an attempt to
find a PSD matrix that is “δ-close” to satisfying all the inequalities. Steurer’s analysis shows two
things: that if indeed SDP(I) ≥ α then a δ-close X will be found after some T := poly(k, q, 1/δ) ·
logm iterations; and, the existence of a δ-close X implies that SDP(I) ≥ α−poly(k, q) · δ1/4. Thus
the ε-approximate decision problem can be solved with O(logm) MMW iterations by taking δ to
be a constant of the form ε4/poly(k, q).

More details. Steurer’s algorithm works in a slightly more general setting of CSPs than we need,
with a weighted list of m payoffs, rather than an unweighted list of m predicates. Since we are
only concerned approximating SDP(I) up to a constant ±ε, it is easy to see that we may assume
the payoffs and weights are rationals expressible with logm + O(1) bits. The inputs to Steurer’s
algorithm are then as follows:

• V , the set of CSP variables, and Σ, the alphabet of cardinality q. We will write n = |V ×Σ|.

• m, the number of payoffs; their positive weights w1, . . . , wm, summing to 1; the scopes
S1, . . . , Sm ⊂ V of the payoffs; k, the cardinality of each Sj ; and, the payoffs themselves
φ1, . . . , φm : ΣSj → [−1, 1]. We may assume m and n are polynomially related.

• α, the target SDP value, and δ > 0, a “closeness” parameter. Both are rational constants.

We also need the following notation:

• d ∈ RV has di equal to the normalized degree of variable i ∈ V , i.e., 1
k

∑
{wj : Sj 3 i}.

• d ∈ Rn is the vector whose (i, a)-entry is di for all a ∈ Σ.

• D = diag(d). We may assume D’s entries are rational with common denominator M = O(m).

• 4D denotes the set of n× n PSD matrices X satisfying D •X = 1.

• ρ is a certain “width” parameter, of the form poly(k, q, 1/δ).

We now give the high-level outline of the MMW method as employed by Steurer (with slightly ad-
justed notation). It constructs certain n× n matrices Yt, Xt, and uses the notation Y<t =

∑
i<t Yi:

Main Algorithm:

1. for t = 1 . . . T (where, recall, T = poly(k, q, 1/δ) · logm)

2. Compute Xt = D−1/2E
(

δ
4ρ2
D−1/2Y<tD

−1/2
)
D−1/2 where E(Z) := exp(Z)

tr(exp(Z)) .

3. Call Oracle(Xt). If this returns “Xt is δ-close” then halt and output YES.

4. Otherwise it returns matrix At and scalar bt with At •Xt ≤ bt − δ.

5. Set Yt = At − btD.

6. Halt and output NO.
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Here the subroutine Oracle(X) will be described later; we mention that it expects X ∈ 4D.

We remark that Steurer’s algorithm is actually more complicated than the above because (in
an effort to keep the total serial time Õ(m)) it does not compute Xt explicitly; rather, it uses the
(randomized) Johnson–Lindenstrauss Lemma to compute an approximate, low-dimensional Gram
representation of Xt. As mentioned earlier, we will omit this step and instead keep the matrices Xt

and Y<t explicitly.
Relying on some theorems concerning the “width” and “separation” of the subroutine Ora-

cle(X), Steurer proves the above Main Algorithm correct. However there is a complication; the
algorithm is idealized and cannot be carried out exactly, due to precision issues involved with ap-
proximating D−1/2 and the matrix exponential. Steurer sketches some details of how to handles
this. Because we need to be very careful about our computational model, we provide full details in
the next section.

The oracle. We now recall Steurer’s Oracle subroutine, which takes as input a matrix X ∈ 4D.
At the heart of this subroutine is a certain family of small linear programs, one for each payoff
j ∈ [m]. Given such a j, let Xj denote the kq × kq PSD submatrix of X formed by the rows and
columns associated to Sj × Σ. Steurer considers the following dual linear programs:

αj = max
µ a distribution

on ΣSj

{
E

x∼µ
[φj(x)]− C · ‖Xj −M(µ)‖∞

}
(primal)

= min
Υ:‖Υ‖1≤C

{Xj •Υ + P (Υ)} (dual).

Here C = 3/δ, ‖A‖∞ (respectively ‖A‖1) denotes the maximum (respectively, sum) of the absolute
values of A’s entries, M(µ) is the matrix whose ((i, a), (i′, a′))-entry is

∑
{µ(x) : xi = a, xi′ = a′},

and
P (Υ) = max

x∈ΣSj

{
φj(x)−

∑
i,i′∈Sj

Υ(i,xi),(i′,xi′ )

}
.

We may now give the Oracle algorithm. (The reader may check that the below is equivalent
to [Ste10, Figure 2].)

Oracle(X):

1. Solve the dual LP above for αj and the optimizing Υj , for each j ∈ [m],

2. If
∑

j wjαj ≤ α− δ, return A :=
∑

j wjΥj , b := α−
∑

j wtP (Υj).

3. Let s0 = d d
> •X − 1. If |s0| ≥ δ, return A := −sgn(s0) d d

>
, b := −sgn(s0).

4. Define s ∈ Rn by si,a =
∑

(i′,a′) di′X(i,a),(i′,a′) −X(i,a),(i,a).

5. If
∑

(i,a) |di,asi,a| ≥ δ, return A := −(d d
> ◦ S)−D · diag(sgn(s)), b := 0, where S ∈ Rn×n is

defined by S(i,a),(i′,a′) = 1
2(sgn(si,a) + sgn(si′,a′)).

6. Otherwise, return “X is δ-close”.
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4 An efficient parallel implementation

In this section we establish Theorem 2.2 by showing that Steurer’s algorithm — as described in the
previous section — can effectively be carried out by a parallel algorithm using poly(m) processors
and polylog(m) parallel time.

Some precision issues. As mentioned, we do not carry out the Main Algorithm literally as
written, due to the precision issues arising in Line 2. Instead, in each step of the main loop, our
parallel algorithm computes a very good rational approximation X̂t to Xt. We will ensure this
X̂t is always in 4D (precisely); thus it always serves as an acceptable argument for Oracle. If
Oracle(X̂t) returns “X̂t is δ-close” then it is correct to output YES (as Steurer’s analysis shows).
Otherwise, it returns some At and bt with At • X̂t ≤ bt − δ. We will show that this implies
At •Xt ≤ bt− (2/3)δ. It is easy to check that this is sufficient (after slightly adjusting the constant
in the definition of T ) for the algorithm to still find a δ-close X presuming that SDP(I) ≥ α.

By inspection, we see that the Oracle subroutine always returns a matrix A satisfying ‖A‖1 ≤
poly(q, 1/δ). (This uses ‖Υj‖1 ≤ C = O(1/δ),

∑
j wj = 1, and

∑
(i,a) di,a = q.) Therefore

|At •Xt −At • X̂t| ≤ poly(q, 1/δ)·‖Xt−X̂t‖∞, which in turn is at most δ/3 provided ‖Xt−X̂t‖∞ ≤
1/p(q, 1/δ), where p denotes some sufficiently large polynomial function. It follows that we can
retain correctness by replacing Line 2 of the Main Algorithm by

2′. Compute a matrix X̂t ∈ 4D satisfying ‖Xt − X̂t‖∞ ≤ 1/p(q, 1/δ).

In fact, we need to address another precision issue here concerning the rational matrix Y<t.
In order to keep the denominator sizes from increasingly too rapidly, it will be convenient to
approximate the At and bt returned by the oracle. We claim that if Ât and b̂t agree with At
and bt to within ±1/poly(m), entrywise, then the resulting Ât • Xt − b̂t will still be accurate to
within δ/3. As before, this is sufficient for the overall correctness of the algorithm (after slightly
adjusting T ). Since δ is a constant, it’s clear that rounding bt to within ±1/poly(m) is harmless.
Regarding |Ât •Xt −At •Xt|, to see that ±1/poly(m) accuracy for At is sufficient we use the fact
that Xt is PSD with D • Xt = 1. Since D’s (diagonal) entries are at least 1/O(m), we conclude
that tr(X) ≤ O(m) and hence ‖Xt‖1 ≤ poly(m) (using the fact that Xt is PSD). Thus indeed it
suffices to have ‖Ât −At‖∞ ≤ 1/poly(m). As a consequence, for some fixed M ′ = poly(m) we can
replace Line 5 of the Main Algorithm by

5′. Set Yt = Ât − b̂tD, where Ât, b̂t are rational approximations of At, bt with denominator M ′.

In particular, this means that the rational entries of Yt and Y<t will always have common denomi-
nator MM ′, which has bit-length O(logm).

4.1 Parallel implementation with poly(m) processors and polylog(m) parallel time.

Preliminaries. We describe the algorithm in nonuniform fashion; we trust the reader to verify
that it can be constructed by an O(logm)-space machine. (This only requires various very simple
things; e.g., memory management, simple calculations involving O(logm)-bit integers, etc.) We
will also frequently rely on the fact that NC is closed under composition. We remind the reader
that the processors are treated as simple RAMs. Since integer multiplication is in NC, we may
allow the RAMs to do basic arithmetic on registers containing rational numbers expressible with
polylog(m) bits [SV84].

6



For storing the matrices Yt, Y<t, and D we will have a processor for each entry, as is standard.
As discussed earlier, all of these will have a common denominator of O(logm) bits. The entries
of D need to be computed at the outset of the algorithm; this is easily done with m processors in
polylog(m) time using the parallel iterated-addition algorithm.

The Main Algorithm. The loop in Line 1 of the Main Algorithm only gives a multiplicative
running time overhead of O(logm).

We now analyze Line 2′. Recall we have Y<t and D stored with a processor for each entry. We

need to compute a ±1/p(q, 1/δ) approximation X̂t to Xt = D−1/2E
(

δ
4ρ2
D−1/2Y<tD

−1/2
)
D−1/2,

and it should also satisfy X̂t ∈ 4D. The techniques for this are standard and straightforward.
The trace needed for E can be computed efficiently in parallel by iterated-addition. As noted
in, e.g., [JJUW10], rational approximations square-roots and matrix exponentials (for matrices of
polylogarithmic norm) can be computed even to poly(m) bits in NC, much more than we need. We
need to check that the matrix exponential is “sufficiently continuous” that a good approximation
in the input leads to a good approximation in the output. This follows from the method used
to approximately compute the matrix exponential; namely, truncating the expansion exp(Z) =
I + Z + Z2/2 + Z3/6 + · · · to polylog(m) terms.

There is one more detail to take care of. We can get an initial approximation X̂t to Xt that is
highly accurate; say, having ‖Xt − X̂t‖∞ ≤ 1/mc for any large constant c of our choice. This is
much more accurate than the constant accuracy for X̂t we need. However, whereas Xt ∈ 4D by
construction, we also wish to have X̂t ∈ 4D precisely. This issue is straightforward to fix. We can
first replace X̂t by 1

2(X̂t + X̂>t ) to make it symmetric; this doesn’t change its entrywise error. The

matrix X̂t may still fail to be positive semidefinite; however since ‖X̂t −Xt‖∞ ≤ 1/mc, we can fix
this by adding some 1/poly(m) multiple of the identity matrix to X̂t. This 1/poly(m) can be as
small as we like, by taking c large. Thus again we only lose ±1/poly(m) in entrywise accuracy.
Finally, we can ensure D • X̂t = 1 exactly by dividing X̂t by D • X̂t; again, since D’s entries are in
[1/O(m), 1], this will again only cost us ±1/poly(m) in accuracy, taking the initial c large enough.

Line 3–4 of the Main Algorithm, the call to subroutine Oracle, will be analyzed below. As
we will see, the At and bt it returns will involves rationals with m · polylog(m) bits; this is okay,
however, by closure of FNC under composition.

Finally, the rounding in Line 5′ can certainly be done in NC, as can the updating of Y<t.

The Oracle. We now show that Oracle is in NC. The input is a matrix X̂, stored by n2

processors, each entry being a rational number expressible with O(logm) bits. Thus each linear
program that the oracle needs to solve has bit-complexity O(logm). Therefore we can devote m
processors to these LPs, one for each constraint, and each processor can use a standard serial
algorithm to solve its LP in polylog(m) time. Actually, we need to allow each processor polylog(m)
registers for this, but that is not a problem. The resulting solutions αj ,Υj , P (Υj) will be rationals
with polylog(m) bit-complexity.

In Line 2 of Oracle(X̂) we first need to compute
∑

j wjαj . This can be done in NC using
iterated-addition and integer multiplication algorithms. Due to a potential lack of common denom-
inators for the αj ’s, the resulting quantity may require as many as m·polylog(m) bits; as mentioned
before, however, this is not a problem. If we need to return A, b at this stage, note that again they
can be computed via iterated-addition in polylog(m) time. Finally, lines 3, 4, 5 are similar; it’s

easy to see that d d
>

, s0, s, and S can be computed in NC.
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