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Abstract

We present two results in structural complexity theory concerned with the following inter-
related topics: computation with postselection/restarting, closed timelike curves (CTCs), and
approximate counting. The first result is a new characterization of the lesser known complexity
class BPPpath in terms of more familiar concepts. Precisely, BPPpath is the class of problems that
can be efficiently solved with a nonadaptive oracle for the Approximate Counting problem. Our
second result is concerned with the computational power conferred by CTCs; or equivalently,
the computational complexity of finding stationary distributions for quantum channels. We
show that any poly(n)-time quantum computation using a CTC of O(log n) qubits may as well
just use a CTC of 1 classical bit. This result essentially amounts to showing that one can find
a stationary distribution for a poly(n)-dimensional quantum channel in PP.

∗Department of Computer Science, Carnegie Mellon University. Work performed while the author was at the
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1 Introduction

It is well known that studying “non-realistic” augmentations of computational models can shed a
great deal of light on the power of more standard models. The study of nondeterminism and the
study of relativization (i.e., oracle computation) are famous examples of this phenomenon. Let us
describe two more recently introduced such examples.

Postselection. The first involves the operation of postselection, which can be applied to any prob-
abilistic computation class C to produce a new class PostC. In PostC, we assume a C-computation
ends with two computed bits, and the final output is the value of the second bit conditioned on
the first bit being 1. This model was apparently first considered by Aspnes et al. [AFF+01], under
the name of conditional probabilistic computation, in the context of stock market prediction. They
studied the most basic postselected class PostBPP (which they called BCPP), and also observed
that PostPP = PP. Later, Böhler et al. [BGM03] recognized that PostBPP is the same as the
class BPPpath defined earlier by Han et al. [HHT93, HHT97]; indeed, postselection is essentially
equivalent to the “path” operator from [HHT93] (and PostPP = PPpath = PP was already proved
by Simon [Sim75], in one of the first ever works on randomized complexity). Postselection was
independently introduced (and named) by Aaronson [Aar04a, Aar05b] in the context of quantum
computation. Aaronson showed that the class PostBQP coincides with the classical class PP; given
this, the notable theorem of [BRS95] that PP is closed under intersection is an essentially trivial
consequence [Aar04b]. Aaronson [Aar04b] also independently observed that PostBPP = BPPpath.
Whereas adding postselection to ZPP, RP, and BQP yields well-known classes (NP ∩ coNP [SY12],
NP [HHT97], and PP [Aar04b]), the most basic postselected class PostBPP = BPPpath is, intrigu-
ingly, not widely understood. Perhaps the most notable feature of BPPpath is the important role it
plays in proofs of “quantum supremacy” for sampling problems [BJS10, AA11].

CTC computation. Another example of a non-realistic model of computation leading to inter-
esting questions and answers about standard models is that of computation in the presence of closed
timelike curves (CTCs) — informally, computation with time-traveling bits.1 Deutsch [Deu91] in-
troduced this model, and it was formally codified in [Bac04]. Aaronson and Watrous [AW09]
showed that the ability to compute with polynomially many time-traveling bits “collapses every-
thing to PSPACE”. In particular, P (or even AC0) augmented with polynomially many classical CTC
bits can compute everything in PSPACE; conversely, giving BQP (or even PSPACE) polynomially
many CTC qubits does not afford any computational power beyond PSPACE. Since polynomially
many CTC bits wipes out all computational distinctions between P and PSPACE, it’s natural to
look at the more refined (and theoretically “more realistic”) question of the power of a small num-
ber of time-traveling bits. To this end, Say and Yakaryılmaz [SY12] showed that a single classical
CTC bit exactly confers the power of postselection, boosting BQP to PP and BPP to BPPpath. The
present authors [OS14] recently extended this statement to allow for up to logarithmically many
classical CTC bits.

In the above examples we have seen applications of non-realistic computational models to the
study of more standard complexity classes. On one hand, these classes — PP, BPPpath, PostRP =
NP, and so forth — are themselves typically defined in terms of non-realistic computational models.
While we don’t feel obligated to further justify the study of basic classes like PP and NP, we do take

1While time travel may seem like the height of non-realism, we mention that the existence of CTCs is apparently
consistent with Einstein’s theory of general relativity, as was first pointed out by Kurt Gödel [Göd49].
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this opportunity to recall that a complexity class is generally worthy of study if it’s the smallest class
known to contain some interesting/natural computational task. For example, counting the number
of satisfying assignments to a formula or a circuit is a fundamental computation task, and this is a
main motivation for studying PP. Similarly, we view the study of time-traveling qubits (respectively,
bits) as worthwhile because it’s precisely equivalent to a natural computational question: What
is the complexity of determining a stationary distribution for a quantum channel (respectively,
Markov chain) specified by a polynomial-size circuit? Tying together much of the above discussion,
the authors’ recent result [OS14] may be viewed as using reasoning about postselection to show
that the complexity of finding stationary distributions of Markov chains is precisely BPPpath.

1.1 Our results

This paper has two main contributions.

1. Characterizing BPPpath. Our first contribution is concerned with the class BPPpath. We
show that instead of a definition in terms of path operators, or postselection, or narrow CTCs
carrying classical bits, the class BPPpath can be precisely characterized in terms of very familiar
concepts from complexity theory. Specifically:

BPPpath is equivalent to efficient computation augmented with the ability to solve
the Approximate Counting problem, nonadaptively.

Recall that the well known Approximate Counting problem — introduced by Sipser [Sip83] and
Stockmeyer [Sto83, Sto85] — is the task of 2-approximating the number of satisfying assignments
to a given circuit or formula. Indeed, we show that in this characterization, any polynomial number
of nonadaptive calls to an Approximate Counting oracle can efficiently be reduced to just 2 calls
(and indeed, just 1 call to a related problem called ApproxCountRatio). Thus our first main
theorem may be stated as follows:

Theorem 1.1. BPPpath = PApproxCount
‖ = P

ApproxCount[2]
‖ .

Given the understanding of BPPpath as of 2012, the proof of Theorem 1.1 is not too challenging.
Still, we find it to be a memorable and novel characterization of the class BPPpath.

Before moving on to discuss our second contribution, we remark that the nonadaptive use of
the ApproxCount oracle in Theorem 1.1 is important. Indeed, it’s unlikely that BPPpath =
PApproxCount; the reason is that under a derandomization assumption (see, e.g., [SU06]) we have
BPPpath = PNP

‖ = PNP[log], and it is widely believed that PNP[log] ( PNP ⊆ PApproxCount. A
similar distinction can be made in the context of PP, using two famous theorems in complexity
theory: On one hand, PPP

‖ = PP (due to Fortnow and Reingold [FR96], building on the Beigel–

Reingold–Spielman theorem [BRS95]); on the other hand, PPP contains the (presumably) much
larger class PH (Toda’s theorem [Tod91]).

2. The complexity of quantum channel fixed points. The second contribution of this paper
is concerned with the computational advantage conferred by a small number of “time-traveling
qubits”. We recall formal definitions in Section 4; for now, let’s briefly say that CQCTC[w] denotes
the complexity class C augmented with a CTC supporting w = w(n) qubits. Roughly speaking,
this is equivalent to adding the ability to write down a quantum circuit defining a 2w-dimensional
quantum channel and then freely get one sample from a stationary density matrix for the channel.
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Similarly, we use notation CTC[w] for the case of a CTC carrying w classical bits; in this case, the
channel simply becomes a 2w-state Markov chain.

As mentioned earlier, Aaronson and Watrous [AW09] showed that CTCs supporting w =
poly(n) (qu)bits give rather extravagant computational power, collapsing everything to PSPACE;
i.e.,

PCTC[poly] = BQPQCTC[poly] = PSPACE.

The main technical result in that paper is the inclusion BQPQCTC[poly] ⊆ PSPACE, which in
turn essentially boils down to showing that given a poly(n)-qubit quantum channel defined by
a poly(n)-size quantum circuit, one can compute a stationary density matrix for the channel within
PSPACE. The main concrete question left open by [AW09] was to determine the computational
power conferred by “narrow (bounded-width) CTCs”; for example, they pointed out that already
NP ⊆ BPPCTC[1], improving on a similar earlier result of Bacon [Bac04] involving 1 CTC qubit.
This question was essentially resolved in the case of CTCs carrying classical bits; as mentioned
earlier, Say and Yakaryılmaz [SY12] showed

BQPCTC[1] = PP, BPPCTC[1] = BPPpath,

and the present authors [OS14] extended the above to allow even for O(log n) classical CTC bits.
Interestingly, to this point we do not know any setting in which a CTC supporting qubits is more

powerful than one supporting the same number of classical bits. Indeed, the second contribution
of this paper is to show that time-traveling qubits are not more powerful than classical ones in the
case of narrow CTCs. In fact, something much stronger is true:

If a problem can be solved by a quantum computer with the ability to send a
O(log n)-qubit message back in time, then the computer can do the same task while
compressing the message to a single classical bit.

More precisely:

Theorem 1.2. BQPQCTC[log] = BQPCTC[1] = PP.

We remark that prior to this result, even the power of 1 CTC qubit was not understood; we
only knew the bounds PP ⊆ BQPQCTC[1] ⊆ PSPACE. The main task in proving Theorem 1.2
is showing that given an O(log n)-qubit channel specified by a poly(n)-size quantum circuit, one
can approximately compute a stationary density matrix for the channel within PP. Our proof of
this follows the work of Aaronson and Watrous somewhat closely, but uses “counting complexity
technology” in place of “parallel linear algebra technology”. In particular, we require the PP-
analogue of our first result, Theorem 1.1.

1.2 Some philosophical remarks with which the reader may disagree

Let us make some brief, argumentative, remarks suggesting that a complexity class like BPPpath =

PApproxCount
‖ may not be so “unrealistic” after all. Of course, a single oracle call to ApproxCount

can decide SAT, which already may seem unrealistic. On the other hand, some researchers in the
SAT-solving community will claim that solving SAT efficiently is no big deal (!). Indeed it is true
that very powerful SAT-solvers now exist [SE14], with the empirical ability to efficiently decide
SAT on many “naturally occurring” instances (whatever exactly that means).

On the other hand we know that if NP actually equals P then so does PH; yet, despite some
practical efforts towards QBF-solving [PPT+10], it seems much rarer to hear claims from the
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SAT-solving community that PH is easy. Perhaps the reason is related to the following classic
complexity-theory puzzle: if Alice invents an efficient computer program solving SAT then we
know she can put PH in P; but, if she merely gives Bob the ability to use her program, he can only
compute PNP (or BPPNP). The resolution of this puzzle is of course that Alice applies her SAT-
solving algorithm to its own code. Arguably, this produces rather “unnatural” SAT instances, and
explains why SAT-solving practitioners do not seem to try the same trick.

On the other hand, SAT-solving practitioners do try to use their “heuristic SAT oracles” in a
more modest way to try to solve problems beyond NP. For example, in a prizewinning paper from
2006, Gomes, Sabharwal, and Selman [GSS06] showed some success in boosting practical SAT-
solvers to practical ApproxCount-solvers using the Valiant–Vazirani-based BPPNP algorithm. It
is this sort of result which leads us to suggest that the study of algorithms within “unrealistically
large” classes like BPPNP may in fact have practical consequences. Indeed, we feel that our char-
acterization BPPpath = PApproxCount

‖ shows that BPPpath is even more “practical”, as restriction

to a nonadaptive oracle precludes some of the more tricky/unnatural queries that might arise from

adaptive oracle use. In fact, as we showed, BPPpath = P
ApproxCount[2]
‖ ; hence BPPpath algorithms

only require two queries to a “heuristic ApproxCount oracle”, possibly further increasing their
applicability in practice.

2 Preliminaries

In this section we introduce some terminology and definitions used in the remainder of the paper.
We assume knowledge of standard complexity classes such as P, BPP, NP, PP, GapP, and also

BQP (discussed further below). We recall that for k ∈ Z+, the notation CL‖,k refers to languages
decided by a C-machine with k “rounds” of nonadaptive queries to a computational problem L.
Most frequently k = 1, in which case the notation is simply CL‖ . We also use the standard notation

C
L[k]
‖ to denote that at most k (nonadaptive) queries may be made to L. Here if k = 1 then there

is no distinction between nonadaptive and adaptive oracle access.
Regarding quantum computation, we will write ı =

√
−1 and δ(ρ, σ) for the trace distance

between density matrices ρ and σ. Recall that the trace distance is also equal to the maximum
probability with which any measurement can distinguish ρ and σ.

2.1 Definitions for approximate counting

If C is a one-output Boolean circuit we write #C to denote the number of inputs that it accepts.
For α ∈ R we write sgn(α) ∈ {−1, 0,+1} for the sign of α.

Definition 2.1. Given α, β ∈ R and r ≥ 1, we say that β is an r-approximation of α, denoted

α
×r
≈ β or β

×r
≈ α, if and only if both sgn(α) = sgn(β) and

1

r
· |β| ≤ |α| ≤ r · |β|.

In the special case of r = 2 we will write simply α≈β. Note that regardless of r, if one of α or β
is 0, the other must be too.

Definition 2.2. ApproxCountRatio is the following following computational task: Given as
input the description of two Boolean circuits C, D, report (the standard encoding of) a rational
number α ≥ 0 such that

α ≈ #C

#D
,
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or report “#D = 0”. ApproxCountDifference is the same computational task except the re-
quirement is to report α ∈ Q such that

α ≈ #C −#D.

Finally, a slightly more standard version of ApproxCountRatio is what is typically called the
“approximate counting problem”, ApproxCount: given C output α such that α≈#C.

Remark 2.3. ApproxCount and ApproxCountRatio are easily interreducible. One one hand,
ApproxCount ≤m ApproxCountRatio, simply by setting D to be a trivial circuit with #D = 1.
In the other direction we need two nonadaptive queries:

ApproxCountRatio ∈ P
ApproxCount[2]
‖

because we can simply approximate #C and #D separately and then report the ratio (or that #D =
0). Actually, for this to work we need to be able to do ApproxCount with

√
2-approximation,

rather than 2-approximation; but this is easy by Stockmeyer’s trick, explained below.
Finally, it’s clear that ApproxCountDifference is at least as hard these problems: specifi-

cally, ApproxCount ≤m ApproxCountDifference, simply by setting D to a trivial circuit with
#D = 0.

Remark 2.4. (Stockmeyer’s trick [Sto85, Theorem 3.1].) We will also require certain general-
izations of these problems. In StrongApproxCount, there is an additional input “precision
parameter” p ∈ Z+, written in unary; the requirement then is that

α
×(1+1/p)
≈ #C.

Conversely, for each fixed constant r ≥ 2 we define WeakApproxCount(r) with the requirement

α
×r
≈ #C.

However, it is well known that these problems are equivalent in the sense that

StrongApproxCount ≤m WeakApproxCount(r)

for any r. Stockmeyer’s trick for this is the following: Given an input (C, p) for StrongApproxCount,
suppose we construct circuit Ck defined by Ck(x(1), . . . , x(k)) = C(x(1)) ∧ · · · ∧ C(x(k)). Then

#Ck = (#C)k, and if α
×r
≈(#C)k then α1/k ×r

1/k

≈ #C. In this way the approximation factor can
efficiently be reduced to 1 + 1/p by making k = O(p) appropriately large.

Stockmeyer’s trick applies equally well for ApproxCountRatio; i.e.,

StrongApproxCountRatio ≤m WeakApproxCountRatio(r).

On the other hand, it’s not obvious how to apply it for the ApproxCountDifference problem.

3 The power of approximate counting

The main goal of this section is to prove our first main result, Theorem 1.1, characterizing BPPpath

as the class of problems efficiently solvable with nonadaptive access to an ApproxCount oracle.
We begin in Subsection 3.1 by recalling the definition of BPPpath and the essentially equivalent
notions of postselection, restarting, and the “path operator”. Then in Subsection 3.2 we prove
Theorem 1.1. Finally, in Subsection 3.3 we prove the analogue of Theorem 1.1 when BPP replaced
by PP. This will be useful for our second main result, on the weakness of CTC qubits.
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3.1 Prior definitions of BPPpath, postselection and restarting

Let M be a randomized (coin-flipping) Turing machine, which we take to equivalently mean a
nondeterministic machine with branching factor 2 at each time step. For a given input x, let’s write
#accM(x) for the number of accepting computation paths, #rejM(x) for the number of rejecting
paths, and #pathM(x) for the total number of computation paths. Since we do not assume that
each computation path has the length, it is not necessarily the case that Pr[M(x) accepts] =
(#accM(x))/(#pathM(x)). The “path” version [HHT97] of a standard randomized complexity
class is the (larger) class you get if you nevertheless use (#accM(x))/(#pathM(x)) in place of
Pr[M(x) accepts] in the class’s definition. I.e.:

Definition 3.1. BPPpath is the class of languages L for which there is a randomized polynomial-
time Turing machine M such that

x ∈ L ⇒ #accM(x)

#pathM(x)
≥ 2

3
,

x 6∈ L ⇒ #accM(x)

#pathM(x)
≤ 1

3
.

PPpath is the class obtained if we replace the above bounds by ≥ 1
2 and < 1

2 . RPpath is the class
obtained if we replace the above bounds by ≥ 1

2 and = 0.

Essentially contemporaneous to Gill’s definition [Gil74] of PP, Simon [Sim75] defined PPpath

and gave the (very easy) proof that PPpath = PP. Han, Hemaspaandra, and Thierauf [HHT97]
defined these classes more generally, and gave the (not hard) proof that NP = RPpath. (The
containment RPpath ⊆ NP is clear; we will explain the reverse containment shortly.) However,
BPPpath proved to be a “new” class, not interpretable in terms of other known classes. Han et al.
showed MA,PNP

‖ ⊆ BPPpath ⊆ BPPNP, and it’s clear from their proof of the last of these that in

fact BPPpath ⊆ BPPNP
‖ .

There is an alternative interpretation of these classes using Aaronson’s notion of postselection.
We recall the definition of PostBPP (with the definitions of PostBQP, PostPP, etc. being analogous).
A PostBPP machine M is a BPP machine with an additional ending state called “fail”, in addition
to the usual “accept” and “reject” states. The computation of M(x) is then always conditioned on
M(x) not ending in a “fail” state. (Note: We say the computation M(x) is “invalid” if it always
ends in a “fail” state. An additional requirement on M is that M(x) is never invalid.) It is not
hard to show (see [Aar04b]) that PostBPP = BPPpath, and similarly for PP and RP.

In this work we in fact prefer an equivalent perspective on postselection, called restarting,
studied in [YS13]. The restarting model is the same as the postselection model, except that we
think of the machine M as “restarting” its entire computation whenever it ends with a “fail” state.
(The running time of M is treated as the maximum running time of a single start-to-(end/restart)
pass, and not as the overall cumulative runtime.) It’s not hard to see that this model is equivalent
to postselection; nevertheless, we will henceforth write RestartingBPP in place of PostBPP (though
both are equal to BPPpath). We prefer the restarting interpretation, as algorithm design seems to be
a bit clearer in this model. For example, it is fairly clear that the following is a correct RestartingRP
algorithm for SAT (thus establishing RestartingRP = NP): “Given formula φ on n variables, guess
an assignment x; if x satisfies φ then accept; otherwise, restart with probability 1−2−n

2
and reject

with probability 2−n
2
.”

Finally, in Appendix A we describe Proposition A.1, a simple trick (appearing in [SY12]) which
essentially lets one assume that RestartingBPP machines are never invalid.
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3.2 Proof of our characterization of BPPpath

In this subsection we prove Theorem 1.1. In light of Remark 2.3, it is equivalent to prove the
following:

Theorem 3.2. BPPpath = PApproxCountRatio[1] = PApproxCount
‖ .

Remark 3.3. By Remark 2.4, the theorem also holds with either “strong” or “weak” versions of
approximate counting.

Proof. Indeed, we will observe that

RestartingBPP = BPPpath ⊆ PApproxCountRatio[1] ⊆ PApproxCount
‖ ⊆ PApproxProbDecision

‖ ⊆ RestartingBPP,

where ApproxProbDecision is a certain computational task defined below. Thus all the above
classes are equal.

The first inclusion, BPPpath ⊆ PApproxCountRatio[1], is straightforward from the original defini-
tion of BPPpath (cf. [HHT97]’s proof that BPPpath ⊆ BPPNP); it’s also essentially proven in [SU06].
To be precise, suppose L is decided by a BPPpath machine M ; then by the parsimonious Cook–
Levin Theorem, given x we can in polynomial time construct circuits C,D such that that #C
equals the number of accepting paths of M(x) and #D equals the total number of computa-
tions paths of M(x). Then one call to ApproxCountRatio oracle (more precisely, one call to a
StrongApproxCountRatio with precision parameter p = 10) lets us 1.1-approximate #C/#D,
which is sufficient to decide whether it is at least 2

3 or at most 1
3 .

The second inclusion is immediate from Remark 2.3, and in fact only two calls to the ApproxCount
oracle are needed.

Next we come to the third inclusion, with ApproxProbDecision referring to the following
computational task: Given circuits C, D, output “yes” if Pr[C] < 1

2 · Pr[D], output “no” if
Pr[C] > 2 · Pr[D], and output either answer if Pr[C]≈Pr[D]. Here Pr[C] denotes the fraction
of input strings that C accepts, and similarly for Pr[D]. To prove the third inclusion it’s clearly

sufficient to show that ApproxCount ∈ PApproxProbDecision
‖ ; by Stockmeyer’s trick (Remark 2.4)

it’s enough to show that given C, we can 4-approximate #C in PApproxProbDecision
‖ . Of course, it

suffices to 4-approximate Pr[C]. This can be done with an essentially straightforward “nonadaptive
approximate binary search”. Letting n denote the number of input bits to C (which is at most its
encoding length), we nonadaptively query the ApproxProbDecision oracle on (C,D0), (C,D1),
. . . , (C,Dn+2), where Dj denotes some simple circuit with

Pr[Dj ] =
2j

2n+2
.

Note that if Pr[C] 6= 0 then Pr[C] ≥ 2−n, in which case the ApproxProbDecision oracle must
answer “no” on query (C,D0). On the other hand, if Pr[C] = 0 then the oracle must answer “yes”
to all queries. Thus if all oracle answers are “yes”, we may correctly output Pr[C] = 0. Otherwise,
we output 2j

∗
/2n+2 as our approximation for Pr[C], where j∗ is the least index for which the oracle

responded “yes”. (If the oracle never responds with “yes”, we output 1.) It is easy to see that this
output is necessarily a 4-approximation to Pr[C], as desired.

We now come to the last inclusion, PApproxProbDecision
‖ ⊆ RestartingBPP. The main observation

here will be that

ApproxProbDecision can be solved in RestartingBPP with success probability at least 0.6.
(1)

7



Once we show this, the conclusion that PApproxProbDecision
‖ ⊆ RestartingBPP follows essentially

from the fact [HHT97, Theorem 3.2] that P
BPPpath

‖ = BPPpath (similarly, the fact [Aar05b, Propo-

sition 3] that PPostBQP
‖ = PostBQP). To give the details, suppose L ∈ PApproxProbDecision

‖ , with

M? being a nonadaptive oracle machine that decides L when given access to any correct oracle-
implementation of ApproxProbDecision. On input x of length n, M?(x) computes for poly(n)
time and deterministically generates some instances (C1, D1), . . . , (Cp, Dp) for ApproxProbDecision.
Assuming it gets back p correct answers from the oracle, it computes deterministically for some
more poly(n) time and then correctly either accepts or rejects x. Now assuming (1), and recall-
ing that RestartingBPP has efficient success-probability amplification (just like BPP; see [HHT97,
Theorem 3.1]), there is some RestartingBPP machine R that, when given any (Cj , Dj), eventually
gives a correct answer except with probability at most 1

3p . We now claim that the the follow-

ing RestartingBPP machine S correctly decides L with probability at least 2
3 (and hence that

L ∈ RestartingBPP as needed): On input x, machine S simulates M?(x), then runs R sequentially
on each of the instances (C1, D1), . . . , (Cp, Dp), obtains answers z1, . . . , zp, and then continues to
simulate M?(x) with these answers. It suffices to show that all answers zj are simultaneously cor-
rect except with probability at most 1/3. This follows because the p runs of R are independent;
hence when we condition on all p runs not restarting, this is equivalent to separately conditioning
each run R(Cj , Dj) to not restart. Thus each run R(Cj , Dj) returns a correct answer zj except with
probability at most 1

3p , so indeed all answers are simultaneously correct except with probability at
most 1/3, by the union bound.

(At this point we would like to make the subtle point that this argument crucially uses the
fact that M? is a deterministic machine. If M? were randomized, it would produce probability
distributions on oracle query-sequences, and the probability that S restarts is likely to be different
for different query-sequences. Hence when S finally halts, the conditional probability with which is
processed each query-sequence is likely to be different from the probability with which M? generates
it, likely causing the simulation to fail. This subtlety affects [Aar05b], as noted in [Aar14].)

Finally, it remains to show (1). Given an ApproxProbDecision instance, the following
RestartingBPP algorithm “essentially” works (modulo a bug that will be fixed using Proposi-
tion A.1): Simulate C(x) and D(y), where x and y are randomly chosen inputs. If C(x) rejects
and D(y) accepts, output “yes”; if C(x) accepts and D(y) rejects, output “no”; otherwise, if they
give the same answer, restart. This algorithm ultimately outputs “yes” with probability

(1−Pr[C]) Pr[D]

(1−Pr[C]) Pr[D] + Pr[C](1−Pr[D])
(2)

— except in the “edge cases” that Pr[C] = Pr[D] ∈ {0, 1}, in which it invalidly always restarts.
Notice that in these edge cases Pr[C]≈Pr[D], so that it doesn’t matter for ApproxProbDecision
what answer the RestartingBPP algorithm returns. Thus we can safely apply Proposition A.1 to our
RestartingBPP algorithm, which has a negligible effect on (2) in the “non-edge cases”. To analyze
these cases, suppose first that Pr[C] < 1

2 ·Pr[D]. Then since (2) is a decreasing function of Pr[C],
we would have

(2) >
(1− 1

2 Pr[D]) Pr[D]

(1− 1
2 Pr[D]) Pr[D] + 1

2 Pr[D](1−Pr[D])
=

2−Pr[D]

3− 2 Pr[D]
≥ 2

3
.

Accounting for the use of Proposition A.1, we have correctness probability at least 0.6 in the case
that Pr[C] < 1

2 ·Pr[D]. The case of Pr[C] > 1
2 ·Pr[D] is entirely symmetrical. This completes the

proof.
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3.3 The analogous theorem for PP

We will also state and prove the PP-analogue of Theorem 3.2. This result should not really be
considered novel; there is an enormous literature on counting complexity and PP, and the proof
of the result is more or less straightforward given this literature. We remark that we’re not just
recording this result for completeness; we’ll actually need it for our proof Theorem 1.2 in Section 4,
concerning the weakness of CTC qubits.

Theorem 3.4. PP = PApproxCountDifference[1] = PApproxCountDifference
‖,k for any constant k.

Proof. Similar to the previous proof, we’ll observe that

PPP
‖,k ⊆ PP ⊆ PApproxCountDifference[1] ⊆ PApproxCountDifference

‖,k ⊆ PPP
‖,k.

The first inclusion is the closure of PP under constant-round polynomial-time truth-table reductions,
due to Fortnow and Reingold [FR96] (building on Beigel, Reingold, and Spielman [BRS95]). For
the second inclusion, suppose L ∈ PP is decided with by randomized machine M (with probability
exceeding 1/2 on each input); we may assume M(x) always makes some fixed polynomial q(|x|)
number of coin flips. By parsimonious Cook–Levin, given x we can efficiently build a circuit C
such that #C is the number of accepting coin-flip sequences for M(x). Now it only remains
to determine sgn(#C − #D), where D is some easily constructed circuit with exactly 2q(|x|)+1

accepting inputs; this can be done with a single call to ApproxCountDifference. The third
inclusion is trivial. It remains to show the fourth inclusion; for this, it suffices to show that
ApproxCountDifference ∈ PPP

‖ . Again, this can be done by a “nonadaptive approximate binary

search”. Given as input (C,D) (with total encoding length n), it suffices to correctly, nonadaptively
determine the answers to the following 2n+ 4 questions:

#C −#D
?
≥ 0, #C −#D

?
≤ 0, #C −#D

?
≥ 2j , #C −#D

?
≥−2j , ∀ 0 ≤ j ≤ n.

But these all reduce to questions of the form #C ′
?
≥#D′ for easily-constructed circuits C ′, D′, and

this is a PP-complete problem.

Remark 3.5. Although it is not obvious how to apply Stockmeyer’s trick to the ApproxCountDifference
problem, nevertheless it’s not hard to see that Theorem 3.4 continues to hold either with a
WeakApproxCountDiff(r) oracle (for any r) or a StrongApproxCountDiff oracle. On one
hand, our argument for PP ⊆ PApproxCountDifference[1] only needed to determine sgn(#C −#D),
which can be done with a single call to WeakApproxCountDiff(r) for any r. On the other
hand, to put StrongApproxCountDiff in PPP

‖ we just need to do a more refined nonadaptive

approximation. Specifically, suppose input (C,D, p) has encoding length n, so C and D have at
most n inputs, and p ≤ n. Since #C −#D ∈ Z∩ [−2n, 2n], to (1 + 1/p)-approximate #C −#D it
suffices to correctly, nonadaptively determine answers to

#C −#D R ±kj

for all integers kj in some nondecreasing sequence satisfying

kj = j for all 0 ≤ j ≤ p, kj+1 ≤ (1 + 1/p)kj for all j ≥ p, kN = 2n.

It is straightforward to construct an entire such sequence (along with circuits C ′j , D
′
j having #C ′j =

#C + kj and #D′j = #D + kj) in deterministic poly(n) time.
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4 The weakness of CTC qubits

We begin this section by recalling the (Deutschian) model of computation in the presence of closed
timelike curves (CTCs). For more information, see e.g. [Deu91, Bac04, Aar05a, AW09, SY12, OS14].
Briefly and informally, BQPQCTC[w] is the class of languages decided with high probability by a
quantum algorithm that can set up a w-qubit quantum channel and then freely get one sample
from (one of) its stationary mixed state(s).

Definition 4.1. We describe here the BQPQCTC[w] model of computation, where w = w(n) is
the “width” parameter. (If any w = poly(n) is allowed we write simply BQPQCTC[poly]; if any
w = O(log n) is allowed we write simply BQPQCTC[log].) Let S be a polynomial-time deterministic
Turing machine that on input x ∈ Σn outputs the description of a quantum circuit C composed of
Hadamard, Toffoli, and phase-shift gates.2 The circuit C should have a w(n)-qubit “CTC register”,
and some additional qubits designated the “CR (causality-respecting) register”. The CR-qubits
begin with ancillary gates initialized to |0〉 and end with measurement gates. In this way, C defines
some w-qubit quantum channel C. The CTC qubits are assumed to be initialized to an arbitrary
stationary mixed state ρ for C. (Every quantum channel has at least one stationary mixed state,
by Brouwer’s fixed point theorem; see, e.g., [Deu91, AW09, Wol12].) We designate the last qubit
of the CR register to be the “output” bit. Finally, we say that a language L ∈ Σ∗ is in the class
BQPQCTC[w] if there is an S as described above such that for all inputs x ∈ Σ∗, the output of the
resulting C agrees with 1[x ∈ L] with probability at least 2/3 (regardless of what stationary ρ is
chosen for the CTC register).

Definition 4.2. The above definition can be naturally restricted in several ways. If the CTC
register is restricted to carry bits rather than qubits — thereby making C into simply a 2w-state
Markov chain — then we call the resulting class BQPCTC[w]. If we further restrict the circuit C to

be simply a randomized circuit (with AND, OR, NOT, and probability-1
2 coin flip gates), then the

resulting class is called BPPCTC[w]. Finally, if even the coin-flip gates are disallowed (making the
Markov chain C deterministic) and the computation’s decision must be correct with probability 1,
the resulting class is called PCTC[w].

Recall from the second part of Section 1.1 that prior to our work, the following results were
known:

BQPQCTC[poly] = PCTC[poly] = PSPACE, BQPCTC[log] = BQPCTC[1] = PP.

In Subsection 4.2 below we will prove the paper’s second main result, Theorem 1.2, that in fact even
BQPQCTC[log] is equal to BQPCTC[1] = PP. Before that, we’ll need to establish a couple of technical
results. One such result, concerning converting an approximate density matrix into a proper one,
is rather mundane; it’s completely deferred to Appendix B. The other result, concerning closure
properties within counting classes, is somewhat more important and nontrivial. We discuss it next,
but also defer its proof to an appendix.

4.1 Closure properties within counting classes

Our proof of BQPQCTC[log] = PP significantly relies on a certain counting-complexity result, which
we state here informally:

2This is a standard universal gate set for traditional quantum computation, and is akin to assuming that ran-
domized circuits have access just to probability- 1

2
coin flips. See the last paragraph of [AW09, Section 6] for related

discussion.
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If the entries of a matrix are #P-definable univariate polynomials over the complex
integers (with the fraction 1

2 adjoined) then so too is the determinant of this matrix.

On one hand, several similar statements are known in the literature: e.g. [AAM03] that the charac-
teristic polynomial of GapL-definable matrices is GapL-definable; or, that the product of polynomi-
ally many GapP-definable matrices with entries from Z or Z+ ıZ is GapP-definable [FR99, Wat08].
Indeed, the last of these is the essence of the standard proof that BQP ⊆ PP. In some sense, our
desired statement is somewhat “routine” for those well-versed in counting complexity. Nevertheless,
the exact statement we want is a bit complex, and we were unable to find in the literature even the
statement that the determinant of a GapP-definable matrix of integers is GapP-definable. Hence we
will give a careful formal statement, as well as a somewhat thorough proof sketch, in Appendix C.

4.2 Proof of Theorem 1.2

We are now able to give the proof that O(log n) time-traveling qubits can be compressed to a single
time-traveling bit.

Proof of Theorem 1.2. We need to show that BQPQCTC[w] ⊆ PP, where w = w(n) = O(log n).
There is no harm in assuming that in fact w = Θ(log n); we will do so to simplify the exposition.
Now suppose Lang ⊆ Σ∗ is in BQPQCTC[log], with associated Turing machine S; by Theorem 3.4

and Remark 3.5, it will suffice to describe a PStrongApproxCountDiff
‖,2 algorithm deciding Lang.

Our proof will follow the Aaronson–Watrous proof [AW09] of BQPQCTC[poly] ⊆ PSPACE some-
what closely. On input x of length n, suppose we simulate S(x), producing circuit Cx. On one
hand, we may view Cx as a unitary quantum circuit with w CTC qubits and poly(n) CR qubits,
with the property that when the CR qubits are fixed to |0〉 at the input and are measured at the
output, the result is a w-qubit quantum channel (or (super)operator) Cx. On the other hand, we
may view Cx as a general quantum circuit (see [Wat08]) having only the w-qubit CTC register,
with ancillary gates at the CR inputs and erasure gates at the CR outputs. (We remark that in this
view, the size of the circuit Cx is actually exponential in its number of inputs w, but is nevertheless
poly(n).)

Let Mx ∈ C22w×22w be the natural matrix representation for Cx (in the general quantum circuit
viewpoint). Thus for all 2w × 2w density matrices ρ we have vec(Cx(ρ)) = Mxvec(ρ), where as
usual vec is the linear operator stacking matrices into vectors (i.e., vec(|y〉 〈z|) = |y〉 |z〉). As
shown in [Wat08, Section IV.5] (essentially following the BQP ⊆ PP proof from [FR99]), the
24w = poly(n) many entries of Mx — each of which is a number in (Z+ ıZ)[1

2 ] — are “polynomial-
time countable” (PC) functions of x (see Appendix C for our definition of “PC”). In the notation
of Appendix C, the function f : Σ∗ → (Z + ıZ)[1

2 ]W×W defined by

f(x) = [Mx]<22w,22w

is PC. As a minor technical note, in [Wat08] the entries of Mx are taken to be complex integers,
with the powers of 1

2 arising from Hadamard gates “implicitly remembered”. We will instead handle
the powers of 1

2 explicitly, letting B = b(n) = poly(n) be a bound on the maximum such power of 1
2

(say, b(n) is the running time of S, which bounds the number of Hadamard gates in all circuits Cx).
Let Λx denote the “fixed point projection” operator associated to Cx as described in [AW09]

(equivalently, the “Cesaro means” operator, denoted (Cx)∞, described in [Wol12, Chapter 6]).
Specifically,

Λx = lim
z↘0+

Λx(z), where Λx(z) := z

∞∑
t=0

(1− z)tCtx,

11



and Λx is an onto map from the set of all 2w×2w density matrices to the set of all density matrices
that are fixed points for Cx. As shown in [AW09], the natural matrix representation of Λx is

Rx = lim
z↘0+

Rx(z), where Rx(z)[j, k] =
(−1)j+kz · det((I − (1− z)Mx)\k,j)

det(I − (1− z)Mx)
, (3)

and each entry of Rx has absolute value at most 1. (In the above, the notation N\k,j indicates that
the kth row and jth column are deleted from matrix N .) We now treat z as an indeterminate,
rather than a real in [0, 1). The matrix I − (1− z)Mx is easily seen to be a PC function of x, since
Mx is. Hence Theorem C.8 (with L = D = 22w = poly(n)) tells us that the denominator of (3)
is a PC function of x (in the sense described in that theorem). Similarly, the numerator of (3) is
easily seen to be a PC function of x, j, and k, in the sense of Theorem C.8.

(As additional technical notes, although the numerator of (3) involves an (L−1)×(L−1) matrix,
we define its z-degree bound to be L in light of the extra factor of z in the numerator. Also, we
may arrange for the resulting denominator in Theorem C.8 to be 2LB rather than 2(L−1)B, as it
is when we compute. Then, since we only care about the ratio of the numerator and denominator
in (3), we can actually completely ignore these canceling powers of 1

2 .)
Thus if we write

Rx(z) =
(
Rx[j, k]

)
1≤j,k≤L

, where Rx[j, k] =

∑L
`=0(aj,k` + ıbj,k` )z`∑L
`=0(cj,k` + ıdj,k` )z`

, (4)

we know that the 4L2(L + 1) integers (aj,k` ), (bj,k` ), (cj,k` ), (dj,k` ) are GapP functions of x (more
precisely, there is a GapP function taking as input x and a unary index from from [4L2(L+ 1)], and
outputting the associated a`, b`, c`, or d`).

We now finally return to the PStrongApproxCountDiff
‖,2 for deciding Lang. Using the above

deductions and the parsimonious Cook–Levin theorem, on input x ∈ Σn we can construct in

deterministic polynomial time pairs of circuits A
j,k
` , Aj,k` for 1 ≤ j, k ≤ L = 22w(n) and 0 ≤ ` ≤ L

with the property that #A
j,k
` −#Aj,k` = aj,k` for a` as in (4); and, similarly circuits for bj,k` , cj,k` , dj,k` .

We now use the first round of our queries to the StrongApproxCountDiff oracle on all these
pairs of circuits, with precision parameter p = poly(n) to be specified later. With the resulting

information we are able to determine, for each fixed j, k, the least `∗ such that cj,k`∗ + ıdj,k`∗ 6= 0; it
then follows that

Rx[j, k] = lim
z↘0+

Rx(z)[j, k] =
aj,k`∗ + ıbj,k`∗

cj,k`∗ + ıdj,k`∗
,

and we furthermore have (1 + 1/p)-approximations each of the quadruples of integers appearing
on the right-hand side. Recall that Rx is the natural matrix representation of Λx, and that Λx(σ)
is a fixed point for Cx for any density matrix σ. Selecting, say, σ = |0w〉 〈0w|, we have vec(ρ) =
(1, 0, 0, . . . , 0) and hence that the first column of Rx is vec(ρ) for some ρ a fixed point of Cx. Thus
our algorithm can obtain an approximation ρ′ ∈ C2w×2w of a fixed point ρ of Cx with the following
guarantee: for each 1 ≤ j, k ≤ 2w there are integers a, b, c, d and (1 + 1/p)-approximations of them
a′, b′, c′, d′ such that ρ[j, k] = a+bı

c+dı and ρ′[j, k] = a′+b′ı
c′+d′ı . Applying Lemma B.1 from Appendix B

(with p = poly(n) chosen retrospectively to to be a sufficiently large compared to 2w), our algorithm
further obtains a complex rational density matrix ρ̃ ∈ C2w×2w with δ(ρ, ρ̃) ≤ .01.

By definition of Lang ∈ BQPQCTC[w], if the CTC bits of Cx were set according to ρ, the circuit
would correctly decide whether x ∈ Lang with probability at least 2/3. By the properties of
trace distance, if we use ρ̃ instead, each x will still be decided correctly with probability at least

12



2/3− .01 ≥ 5/8. Therefore, to complete the proof of Lang ∈ PStrongApproxCountDiff
‖,2 it suffices to

show that we can, say, 5/4-approximate the the acceptance probability of Cx(ρ̃) with a single call
to the StrongApproxCountDiff oracle. That this is possible essentially follows from the proof of
BQP ⊆ PP. More precisely, from [Wat08, Section IV.5] (and parsimonious Cook–Levin) we could
produce in poly(n) time produce circuits G and H such that

Pr[Cx(|0w〉 〈0w|) accepts] =
#G−#H

2q
,

where q = poly(n) is a size bound for Cx. This is not quite what we need; we want to input ρ̃ to Cx,
not |0w〉 〈0w|. But it’s straightforward (cf. [FGHP99]) to augment [Wat08, Section IV.5] to allow
for this, since our algorithm maintains the poly(n)-size matrix ρ̃ of complex rationals explicitly.
Thus we can can construct the appropriate circuits G, H for Cx(ρ̃), and complete the decision for
x ∈ Lang with one more call to the StrongApproxCountDiff oracle on G and H with precision
parameter 1/4.
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Proof. Let t be a polynomial time-bound forM (i.e., M(x) always accepts, rejects, or restarts within
t(|x|) steps). Now on input x with |x| = n the machine M ′ acts as follows: First, it immediately
rejects with probability ε := 2−t(n)−n−1; otherwise it simulates M(x). M ′(x) is clearly always valid,
and further if M(x) is invalid (i.e., always restarts) then M ′(x) will always reject. Finally, suppose
M(x) is valid and it accepts with probability p, rejects with probability q, where p+ q > 0. Then

Pr[M(x) accepts] =
p

p+ q
,

and

Pr[M ′(x) accepts] =
(1− ε)p

(1− ε)p+ ((1− ε)q + ε)
=

p

p+ q + ε/(1− ε)
=

p

p+ q
· 1

1 + ε/(1−ε)
p+q

.

But p+q > 0 implies p+q ≥ 2−t(n), and hence ε/(1−ε)
p+q ≤ 2−n, as desired. The calculation regarding

rejection probability is similar.

B A technical lemma on approximate density matrices

Lemma B.1. There is a deterministic poly(m)-time algorithm with the following guarantee. Sup-
pose the algorithm is given as input a matrix ρ′ ∈ Cm×m (with m a power of 2), where en-
try ρ′[j, k] is expressed as (a′jk + ıb′jk)/(c

′
jk + ıd′jk), and where a′jk, b

′
jk, c

′
jk, d

′
jk are integers of

encoding-length poly(m). Further assume that these integers (1 + ε)-approximate some integers
ajk, bjk, cjk, djk (respectively) with the property that ρ ∈ Cm×m defined by ρ[j, k] = (ajk+ıbjk)/(cjk+
ıdjk) is a density matrix. Then the algorithm outputs a density matrix ρ̃ ∈ (Q+ ıQ)m×m satisfying
δ(ρ, ρ̃) ≤ poly(m) · ε.

Proof. We begin by showing that ρ′ is in fact entrywise close to ρ. Fix any entry coordinates 1 ≤
j, k ≤ m (which we will drop from the subsequent notation for clarity). We have |a+ ıb|2 = a2 + b2

and |a′ + ıb′|2 = (a′)2 + (b′)2. Since a′, b′ are (1 + ε)-approximations of a, b, it follows that

|a′ + ıb′|
×(1+O(ε))
≈ |a+ ıb|.

A similar statement holds for |c+ ıd|, and hence∣∣∣∣a′ + ıb′

c′ + ıd′

∣∣∣∣ ×(1+O(ε))
≈

∣∣∣∣a+ ıb

c+ ıd

∣∣∣∣.
Next, since a′/b′ is a (1 + 2ε)-approximation of a/b, it is not hard to show (using elementary
properties of arctan) that |Arg(a′+ıb′)−Arg(a+ıb)| ≤ O(ε) (or if a+ıb = 0 then so too is a′+ıb′).
The same holds true for c′ + ıd′, and hence∣∣∣∣Arg

(
a′ + ıb′

c′ + ıd′

)
−Arg

(
a+ ıb

c+ ıd

)∣∣∣∣ ≤ O(ε).

From the last two deductions — together with the fact that |(a+ıb)/(c+ıd)| ≤ 1 since (a+ıb)/(c+ıd)
is an entry in a density matrix — it is not hard to obtain the entrywise error bound∣∣∣∣a′ + ıb′

c′ + ıd′
− a+ ıb

c+ ıd

∣∣∣∣ ≤ O(ε). (5)

16



The same would be true if we replaced ρ′ with 1
2(ρ′ + (ρ′)†), since ρ = ρ†; we will assume the

algorithm in fact makes this replacement, thereby ensuring that ρ′ is Hermitian. From the above
entrywise estimate, we deduce the Hilbert–Schmidt norm bound

‖ρ− ρ′‖HS ≤ O(mε).

This also bounds the spectral norm ‖ρ− ρ′‖. Since all of the eigenvalues of ρ are nonnegative, we
conclude that all the eigenvalues of ρ′ are at least −O(mε). If we now replace ρ′ with ρ′ +O(mε)I
we get that ρ′ is positive semidefinite. This also only changes the entrywise bound (5) by O(mε).
Since tr(ρ) = 1, it follows that tr(ρ′) ≤ 1 + O(m2ε). If finally we normalize ρ′ by its trace, it
becomes a valid density matrix, with

|ρ[j, k]− ρ′[j, k]| ≤ O(m2ε)

for all 1 ≤ j, k ≤ m. And from this we can deduce the trace distance bound δ(ρ, ρ′) ≤ O(m3.5ε).

C Closure properties within counting classes

In this section only, we write [n] = {0, 1, 2, . . . , n−1} rather than {1, 2, . . . , n}, and we index strings,
vectors, matrices, etc. starting from 0 rather than from 1.

Let Σ = {a, b} and let Σ = Σ ∪ {,,+,−,<,=, |}. We write Inputs for the set of inputs
to a computational problem, and identify it with binary strings from Σ∗. We typically call a
function Inputs → T a sequence of T ’s. We identify the integers Z with the set of functions
{+,−} → N in the natural way; i.e., z : {+,−} → N stands for the integer z(+) − z(−). (Note
that a function corresponds to a unique integer, but an integer has infinitely many representations
as functions.) Similarly, complex integers Z + ıZ are identified with functions {<,=} → Z; i.e.,
functions {<,=} → ({+,−} → N). As is customary, we also write this as {<,=} → {+,−} → N
and further identify it with ({<,=} × {+,−})→ N.

As an example, let’s consider a “sequence of complex integers f : Inputs→ (Z + ıZ)”. This is
identified with a function f : Σ∗ × {<,=} × {+,−} → N. The ω’th element in the sequence is(

f(ω,<,+)− f(ω,<,−)
)

+ ı
(
f(ω,=,+)− f(ω,=,−)

)
.

The input to such an f is naturally represented by a string in (Σ \ {|})∗.
Even though we already have the notation N, for clarity we will also write W = {0, 1, 2, 3, . . . }

(“whole numbers”) for indexing purposes. We identify this set with the unary strings from {|}∗,
thinking of | as a “tally” symbol. We identify an infinite-length vector of natural numbers v ∈ NW

with a function W → N, and use the notation [v]<m to denote its truncation to length m. We
would similarly identify a vector of, say, integers with a function W → Z = (W × {+,−}) → N.
We think of (infinite) matrices A as vectors of vectors, and also use the notation [A]<m,m′ for their
m×m′ truncation. We use similar notation for higher-order tensors (i.e., “k-dimensional arrays”,
k > 2).

Finally, we will identify a univariate polynomial Q ∈ N[x] having natural-number coefficients
with the vector of its coefficients. More generally, we make such an identification for any univariate
power series Q over a semiring; [Q]<m will denote its truncation to degree m − 1. Even more
generally, we identify a bivariate power series over a semiring with its matrix of coefficients, and
similarly for power series over more than two variables.
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Let us give one more example of all of these definitions. A sequence of matrices with entries
from Z[x] would be identified with a function f : Inputs×W×W×W×{+,−} → N, where, e.g.,

f(ω, |, ||, |||,+)− f(ω, |, ||, |||,−)

would be the (integer) coefficient on x3 in the (1, 2)-entry of the ω’th matrix. Finally, for any
such function f whose range is N, we say it is polynomial-time countable, denoted PC, if there is a
polynomial-time nondeterministic Turing machine F with f(X) equal to the number of accepting
computation paths of F (X) for all well-formed input strings X ∈ Σ

∗
. For example, f : Inputs→ N

is PC if and only if f ∈ #P, and f : Inputs→ Z is PC if and only if f ∈ GapP.
We now turn to closure properties. As warmups, let us first review some well-known basic

closure properties of #P and GapP:

Proposition C.1. #P is closed under summation-marginalization over sequences (“exponential
summation”), and product-marginalization over vectors (“polynomial product”). That is:

• If f : Inputs × Σ∗ → N is PC, and p is a (length-bounding) polynomial, then the following
g : Inputs→ N is PC:

g(ω) =
∑

α∈Σp(|ω|)

f(ω, α).

• If f : Inputs ×W → N is PC, and p is a polynomial, then the following g : Inputs → N
is PC:

g(ω) =
∏

j<p(|ω|)

f(ω, j).

Proof. For summation-marginalization over sequences, let F be the TM for f . Then the TM G for
g acts as follows: on input ω, it computes p(|ω|), nondeterministically branches over all α ∈ Σp(|ω|),
and then simulates F (ω, α).

For product-marginalization over vectors, let F be the TM for f . Then the TM G for g acts
as follows: For j = 0, 1, 2, . . . , p(|ω|) − 1, it simulates F (ω, |j), rejecting whenever F does. If all
simulations accept, so does G.

(In both cases, we trust the reader to make the easy verification that the defined G gives the
correct answer and is polynomial-time.)

Proposition C.2. (Product-marginalization for GapP.) If f : Inputs×W→ Z is PC, and p is a
polynomial, then the following g : Inputs→ Z is PC:

g(ω) =
∏

j<p(|ω|)

f(ω, j).

Proof. We identify f with a function Inputs×W× {+,−} → N. Then

g(ω) =
∏
j<P

(f(ω, j,+)− f(ω, j,−)) =
∑

α∈{+,−}P
(−1)‖α‖ ·

∏
j<P

f(ω, j, αj),

where we have abbreviated P = p(|ω|) and ‖α‖ for the number of −’s in α. Thus, now identifying g
with a function Inputs× {+,−} → N, we have

g(ω, σ) =
∑

α∈{+,−}P
1
[
(−1)‖α‖ = σ

]
·
∏
j<P

f(ω, j, αj)
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where 1[·] denotes a 0-1 indicator function.
The function

g1(ω, α, j) := f(ω, j, αj)

is easily seen to be PC, since f is. Thus so is

g2(ω, α) :=
∏
j<P

g1(ω, α, j),

by product-marginalization as in Proposition C.1. From this, it’s easy to see that

g3(ω, σ, α) := 1
[
(−1)‖α‖ = σ

]
· g2(ω, α)

is PC. (We simply compute whether ‖α‖ has the same parity as σ; if not reject; otherwise, simulate
the TM for g2.) Finally, we have that

g(ω, σ) =
∑

α∈{+,−}P
g3(ω, σ, α)

is PC, by summation-marginalization over α.
(As a small comment on this kind of proof, consider our first claim, that g1 is PC. Really, here

we are assuming g1’s input is “well-formed” in the sense that we have some string ω ∈ Σ∗, then
a comma, then α ∈ {+,−}p(|ω|), then a comma, then |j for some 1 ≤ j ≤ p(|ω|). Further, when
saying g1 is “polynomial-time countable”, we refer to polynomial-time just in the length of ω, not
all input parameters. However, the reader is expected to verify that in the “final construction” of
a counting TM for g in terms of the one for f , the TM for g1 is only ever invoked with well-formed
inputs.)

It is somewhat tedious to prove all the necessary closure results on the way to our final desti-
nation (concerning closure under determinants over polynomial rings). We sketch the proof via a
sequence of illustrative examples, leaving complete verification to the reader.

Proposition C.3. (Product-marginalization for univariate polynomials over N.) If f : Inputs ×
W→ N[x] is PC, and ` and d are polynomials (length-bounding and degree-bounding, respectively),
then the following g : Inputs→ N[x] is PC:

g(ω) =
∏

j<`(|ω|)

[f(ω, j)]<d(|ω|).

Proof. We identify f with a function Inputs ×W ×W → N and write L = `(|ω|), D = d(|ω|).
Then

g(ω) =
∏
j<L

∑
k<D

f(ω, j, k)xk =
∑

k0,...,kL−1<D

∏
j<L

f(ω, j, kj)

xk0+···+kL−1 .

Thus, now identifying g with a function Inputs×W→ N, we have

g(ω, k) =
∑

K=(K0,...,KL−1)
K0,...,KL−1<D

1[K0 + · · ·+KL−1 = k] ·
∏
j<L

f(ω, j,Kj).
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(Actually, this is only true provided k < LD. On one hand, we will never actually “use” g(ω, k)
for k ≥ LD; on the other hand, for safety we can easily ensure that the TM for g has 0 accepting
branches on input (ω, k) with k ≥ LD.)

We will take care of the summation above via marginalization over sequences, but this requires
being slightly careful about how to encode tuples with strings. Given ω ∈ Σ∗, we will identify a
tuple K with a string in {|,+}LD by padding out the encoding of each Kj ∈ {|}∗ with +’s to get a
length-D string, then concatenating the L encodings. Given ω ∈ Σ∗ and K ∈ {|,+}LD, let us say
“K is well-formed (given ω)” if K indeed properly encodes a tuple from [D]L in this way. (Note
that we need ω in these definitions so that L = `(|ω|) and D = d(|ω|) are defined.) We may now
write the above as

g(ω, k) =
∑

K∈{|,+}LD

1[K is well-formed (given ω)] · 1[K0 + · · ·+KL−1 = k] ·
∏
j<L

f(ω, j,Kj).

Note that if K is not well-formed then expressions like “Kj” in the latter factors may not actually
make sense. Since it doesn’t matter though, we fix a simple convention; say, if the string K is not
well-formed then each Kj is defined to be 0.

We are now in a position to finish the proof. The function (ω,K, j) 7→ f(ω, j,Kj) is PC since f
is; hence so too is

g1(ω,K) :=
∏
j<L

f(ω, j,Kj)

by product-marginalization. A simple consequence is that

g2(ω, k,K) := 1[K is well-formed (given ω)] · 1[K0 + · · ·+KL−1 = k] ·
∏
j<L

f(ω, j,Kj)

is PC, since it is easy to compute whether K is well-formed and whether K0 + · · · + KL−1 = k.
Thus

g(ω, k) =
∑

K∈{|,+}LD

g2(ω, k,K)

is PC by summation-marginalization over K (using the length-bounding polynomial ` · d).

We remark that above we used closure under product-marginalization for N-valued functions
when multiplying together the coefficients. Since we have the same closure for Z-valued functions,
we could have similarly proved Proposition C.5 for polynomials in Z[x]. We will use a similar
observation in the following proposition:

Proposition C.4. (Closure under determinants over Z.) If f : Inputs→ ZW×W is PC, and m is
a polynomial, then the following g : Inputs→ Z is PC:

g(ω) = det([f(ω)]<M,M ),

where M = m(|ω|).

Proof. Thinking of f as a function Inputs×W×W→ Z, we have

g(ω) =
∑
π∈SM

sgn(π)
∏
j<M

f(ω, j, πj).
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Similar to the previous proof, given ω we will encode permutations π ∈ SM as strings in {|,+}M2
.

Again we will use the terminology “π is well-formed”, and we will make an arbitrary convention
about ill-formed strings; say, that they are taken to represent the identity permutation in SM . Thus

g(ω) =
∑

π∈{|,+}M2

1[π is well-formed] · sgn(π)
∏
j<M

f(ω, j, πj).

Since f is a PC (as a function with range Z), so too is

g1(ω, π) :=
∏
j<M

f(ω, j, πj),

by product-marginalization for Z-valued functions (i.e., for GapP). As sgn and well-formedness of
π are computable in poly(|ω|) time, it’s easy to conclude that

g2(ω, π) = 1[π is well-formed] · sgn(π) · g1(ω, π)

is a PC function with range Z. Thus g : Inputs→ Z is indeed PC, by summation-marginalization
over π.

Proposition C.5. (Product-marginalization for N[ı].) If f : Inputs×W→ N[ı] is PC, and ` is a
polynomial, then the following g : Inputs→ Z[ı] is PC:

g(ω) =
∏

j<`(|ω|)

f(ω, j).

Proof. We can prove this by first thinking of elements of N[ı] as degree-1 polynomials over an
“indeterminate ı” with natural coefficients. I.e., define f ′ : Inputs×W→ N[x] by

f ′(ω, j) = (<f(ω, j)) + (=f(ω, j))x.

It’s easy to see that f ′ is PC: the TM F ′ for f ′ will, on input (ω, j, k), simulate F (ω, j,<) if
k =|0 and simulate F (ω, j,=) if k =|1, where F is the TM for f . By product-marginalization for
N[x]-valued functions,

g′(ω) =
∏
j<L

f ′(ω, j)

is PC, where L = `(|ω|). That is,

g′(ω, j) = [xj ]

∏
j<L

f ′(ω, j)


is an N-valued PC function. Now note that

g(ω) =
∑
j<L

j mod 4=0

g′(ω, j)−
∑
j<L

j mod 4=2

g′(ω, j) + ı
∑
j<L

j mod 4=1

g′(ω, j)− ı
∑
j<L

j mod 4=3

g′(ω, j).

Now to show that g is PC, given the TM G′ for g′ the TM G for g will act as follows: On input, say,
(ω,=,+), nondeterministically branch over all j < `(|ω|) with j mod 4 = 1 and simulate G′(ω, j).
Similarly for (ω,=,−) and (ω,<,±).
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It’s not hard to extend the above to product-marginalization for Z[i], too. We now consider
adjoining the fraction 1

2 ; we take it to denote an indeterminate for polynomials, but introduce a
natural associated closure rule:

Proposition C.6. (Taking a polynomial over 1
2 to a common denominator.) If f : Inputs→ N[1

2 ]
is PC, and d is a polynomial, then the following g : Inputs→ N[1

2 ] is PC:

g(ω) = C ·
(

1
2

)D−1
,

where D = d(|ω|) and C ∈ N is the unique natural number such that [f(ω)]<D = g(ω) when both
are viewed in the natural way as nonnegative rational numbers.

Proof. Think of f : Inputs ×W → N and let F be the associated TM. We now define the TM
G for g as follows: On input (ω, k), theG first computes D. If k 6= D − 1 then G simply rejects
(“outputs the coefficient 0”). Otherwise, G will want to halt with

C = 2D−1f(ω, 0) + 2D−2f(ω, 1) + · · ·+ 20f(ω,D − 1)

accepting computation paths. This is straightforward: G first nondeterministically branches over
all 0 ≤ k < D, then it nondeterministically branches over all strings α ∈ ΣD−1−k, then it simulates
f(ω, k).

We remark that the above result also holds analogously for Z[1
2 ] because “taking the posi-

tive/negative part” commutes with “putting to a common denominator”; e.g.,

(a+ − a−) +
1

2
(b+ − b−) =

1

2
(2a+ + b+)− 1

2
(2a− + b−).

Similarly for (Z + ıZ)[1
2 ] and (Z + ıZ)[1

2 , x].

Proposition C.7. (Product-marginalization for polynomials over N[1
2 ][x].) If f : Inputs×W→

N[1
2 ][x] is PC, and `, d, and b are polynomials, then the following g : Inputs→ N[1

2 ][x] is PC:

g(ω) =
∏
j<L

[f(ω, j)]<D,B.

Here L = `(|ω|) and similarly for D, B. Further, [f(ω, j)]<D,B refers to the element of Z[i, 1
2 ][x]

given by truncating the polynomial f(ω, j) to degree less than D (in x) and its coefficients to degree
less than B (in 1

2).

Proof. We follow the proof of Proposition C.5 regarding product-marginalization for N[x], but now
the coefficient ring is N[1

2 ]. Identifying f with a function Inputs ×W ×W → N[1
2 ] and g with a

function Inputs×W→ N[x], we have

g(ω, k) =
∑

K∈{|,+}LD

1[K is well-formed (given ω)] · 1[K0 + · · ·+KL−1 = k] ·
∏
j<L

[f(ω, j,Kj)]<B (6)

(provided k < LD; 0 otherwise). Certainly h : Inputs× {|,+}LD ×W→ N[1
2 ] defined by

h(ω,K, j) = f(ω, j,Kj)
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is PC since f is. Thus by appeal to Proposition C.5 (with 1
2 as the indeterminate), we know that

h1 : Inputs× {|,+}LD → N[1
2 ] defined by

h1(ω,K) =
∏
j<L

[h(ω,K, j)]<B

is PC as well. In more detail, h1 is PC when viewed as the following function Inputs× {|,+}LD ×
W→ N:

h1(ω,K, c) = [(1
2)c]

∏
j<L

[f(ω, j,Kj)]<B

(technically, with the further constraint that h1(ω,K, c) = 0 if c ≥ LB). It’s now straightforward
to deduce from (6) using summation-marginalization that g is PC.

By combining the ideas in all previous positions, we may straightforwardly (albeit tediously)
deduce the following:

Theorem C.8. Suppose f is a polynomial-time countable sequence of matrices whose entries are
univariate polynomials in indeterminate z with coefficients from (Z + ıZ)[1

2 ]; i.e., f : Inputs ×
(W → W) → (Z + ıZ)[1

2 ][z] is PC. Then (informally speaking) the sequence formed by taking the
determinant of these matrices and clearing denominators is also polynomial-time countable. More
precisely, let `, d, and b be polynomials and suppose we consider each f(ω) to be truncated to an
L×L matrix of polynomials of degree less than D in z, with coefficients in (Z+ıZ)[1

2 ] having powers
of 1

2 up to but not including B. (Here L = `(|ω|) and similarly for D, B.) Then the two functions
<g,=g : Inputs×W→ Z defined by

[zk] det(f(ω)) =
<g(ω, k) + ı · =g(ω, k)

2LB

are in GapP.
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