
Logical Induction

Scott Garrabrant, Tsvi Benson-Tilsen, Andrew Critch, Nate Soares, and Jessica Taylor
{scott,tsvi,critch,nate,jessica}@intelligence.org

Machine Intelligence Research Institute

Abstract

We present a computable algorithm that assigns probabilities to every logical
statement in a given formal language, and refines those probabilities over time.
For instance, if the language is Peano arithmetic, it assigns probabilities to
all arithmetical statements, including claims about the twin prime conjecture,
the outputs of long-running computations, and its own probabilities. We show
that our algorithm, an instance of what we call a logical inductor, satisfies
a number of intuitive desiderata, including: (1) it learns to predict patterns
of truth and falsehood in logical statements, often long before having the
resources to evaluate the statements, so long as the patterns can be written
down in polynomial time; (2) it learns to use appropriate statistical summaries
to predict sequences of statements whose truth values appear pseudorandom;
and (3) it learns to have accurate beliefs about its own current beliefs, in a
manner that avoids the standard paradoxes of self-reference. For example, if
a given computer program only ever produces outputs in a certain range, a
logical inductor learns this fact in a timely manner; and if late digits in the
decimal expansion of π are difficult to predict, then a logical inductor learns
to assign ≈ 10% probability to “the nth digit of π is a 7” for large n. Logical
inductors also learn to trust their future beliefs more than their current beliefs,
and their beliefs are coherent in the limit (whenever φ→ ψ, P∞(φ) ≤ P∞(ψ),
and so on); and logical inductors strictly dominate the universal semimeasure
in the limit.
These properties and many others all follow from a single logical induction
criterion, which is motivated by a series of stock trading analogies. Roughly
speaking, each logical sentence φ is associated with a stock that is worth $1
per share if φ is true and nothing otherwise, and we interpret the belief-state
of a logically uncertain reasoner as a set of market prices, where Pn(φ) = 50%
means that on day n, shares of φ may be bought or sold from the reasoner for
50¢. The logical induction criterion says (very roughly) that there should not
be any polynomial-time computable trading strategy with finite risk tolerance
that earns unbounded profits in that market over time. This criterion bears
strong resemblance to the “no Dutch book” criteria that support both expected
utility theory (von Neumann and Morgenstern 1944) and Bayesian probability
theory (Ramsey 1931; de Finetti 1937).

Contents

1 Introduction 4
1.1 Desiderata for Reasoning under Logical Uncertainty 5
1.2 Related Work . 9
1.3 Overview . 11

See https://intelligence.org/files/LogicalInductionAbridged.pdf for an abridged version of
this paper.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 154 (2016)

https://intelligence.org/files/LogicalInductionAbridged.pdf

2 Notation 12

3 The Logical Induction Criterion 14
3.1 Markets . 14
3.2 Deductive Processes . 15
3.3 Efficient Computability . 16
3.4 Traders . 17
3.5 Exploitation . 20
3.6 Main Result . 20

4 Properties of Logical Inductors 21
4.1 Convergence and Coherence . 22
4.2 Timely Learning . 24
4.3 Calibration and Unbiasedness . 27
4.4 Learning Statistical Patterns . 30
4.5 Learning Logical Relationships . 31
4.6 Non-Dogmatism . 35
4.7 Conditionals . 38
4.8 Expectations . 38
4.9 Trust in Consistency . 42
4.10 Reasoning about Halting . 44
4.11 Introspection . 45
4.12 Self-Trust . 47

5 Construction 49
5.1 Constructing MarketMaker . 49
5.2 Constructing Budgeter . 52
5.3 Constructing TradingFirm . 54
5.4 Constructing LIA . 57
5.5 Questions of Runtime and Convergence Rates 57

6 Selected Proofs 58
6.1 Convergence . 58
6.2 Limit Coherence . 60
6.3 Non-dogmatism . 62
6.4 Provability Induction . 64
6.5 Learning Pseudorandom Frequencies 64
6.6 Provability Induction . 67

7 Discussion 67
7.1 Applications . 68
7.2 Analysis . 68
7.3 Variations . 70
7.4 Open Questions . 71
7.5 Acknowledgements . 73

References 73

A Preliminaries 79
A.1 Organization of the Appendix . 79
A.2 Expressible Features . 79
A.3 Definitions . 81

B Convergence Proofs 82
B.1 Return on Investment . 82
B.2 Affine Preemptive Learning . 88
B.3 Preemptive Learning . 91
B.4 Convergence . 92
B.5 Persistence of Affine Knowledge . 92

2

B.6 Persistence of Knowledge . 95

C Coherence Proofs 95
C.1 Affine Coherence . 95
C.2 Affine Provability Induction . 97
C.3 Provability Induction . 97
C.4 Belief in Finitistic Consistency . 97
C.5 Belief in the Consistency of a Stronger Theory 98
C.6 Disbelief in Inconsistent Theories . 98
C.7 Learning of Halting Patterns . 98
C.8 Learning of Provable Non-Halting Patterns 98
C.9 Learning not to Anticipate Halting 98
C.10 Limit Coherence . 99
C.11 Learning Exclusive-Exhaustive Relationships 99

D Statistical Proofs 99
D.1 Affine Recurring Unbiasedness . 99
D.2 Recurring Unbiasedness . 102
D.3 Simple Calibration . 102
D.4 Affine Unbiasedness From Feedback 103
D.5 Unbiasedness From Feedback . 104
D.6 Learning Pseudorandom Affine Sequences 105
D.7 Learning Varied Pseudorandom Frequencies 106
D.8 Learning Pseudorandom Frequencies 107

E Expectations Proofs 107
E.1 Consistent World LUV Approximation Lemma 107
E.2 Mesh Independence Lemma . 108
E.3 Expectation Preemptive Learning . 109
E.4 Expectations Converge . 110
E.5 Limiting Expectation Approximation Lemma 110
E.6 Persistence of Expectation Knowledge 110
E.7 Expectation Coherence . 111
E.8 Expectation Provability Induction 111
E.9 Linearity of Expectation . 111
E.10 Expectations of Indicators . 112
E.11 Expectation Recurring Unbiasedness 112
E.12 Expectation Unbiasedness From Feedback 112
E.13 Learning Pseudorandom LUV Sequences 113

F Introspection and Self-Trust Proofs 113
F.1 Introspection . 113
F.2 Paradox Resistance . 114
F.3 Expectations of Probabilities . 115
F.4 Iterated Expectations . 115
F.5 Expected Future Expectations . 115
F.6 No Expected Net Update . 116
F.7 No Expected Net Update under Conditionals 116
F.8 Self-Trust . 117

G Non-Dogmatism and Closure Proofs 118
G.1 Parametric Traders . 118
G.2 Uniform Non-Dogmatism . 119
G.3 Occam Bounds . 122
G.4 Non-Dogmatism . 123
G.5 Domination of the Universal Semimeasure 123
G.6 Strict Domination of the Universal Semimeasure 125
G.7 Closure under Finite Perturbations 126
G.8 Conditionals on Theories . 127

3

1 Introduction

Every student of mathematics has experienced uncertainty about conjectures for
which there is “quite a bit of evidence”, such as the Riemann hypothesis or the twin
prime conjecture. Indeed, when Zhang (2014) proved a bound on the gap between
primes, we were tempted to increase our credence in the twin prime conjecture. But
how much evidence does this bound provide for the twin prime conjecture? Can we
quantify the degree to which it should increase our confidence?

The natural impulse is to appeal to probability theory in general and Bayes’
theorem in particular. Bayes’ theorem gives rules for how to use observations to
update empirical uncertainty about unknown events in the physical world. However,
probability theory lacks the tools to manage uncertainty about logical facts.

Consider encountering a computer connected to an input wire and an output
wire. If we know what algorithm the computer implements, then there are two
distinct ways to be uncertain about the output. We could be uncertain about the
input—maybe it’s determined by a coin toss we didn’t see. Alternatively, we could
be uncertain because we haven’t had the time to reason out what the program
does—perhaps it computes the parity of the 87,653rd digit in the decimal expansion
of π, and we don’t personally know whether it’s even or odd.

The first type of uncertainty is about empirical facts. No amount of thinking in
isolation will tell us whether the coin came up heads. To resolve empirical uncertainty
we must observe the coin, and then Bayes’ theorem gives a principled account of
how to update our beliefs.

The second type of uncertainty is about a logical fact, about what a known
computation will output when evaluated. In this case, reasoning in isolation can and
should change our beliefs: we can reduce our uncertainty by thinking more about π,
without making any new observations of the external world.

In any given practical scenario, reasoners usually experience a mix of both
empirical uncertainty (about how the world is) and logical uncertainty (about what
that implies). In this paper, we focus entirely on the problem of managing logical
uncertainty. Probability theory does not address this problem, because probability-
theoretic reasoners cannot possess uncertainty about logical facts. For example,
let φ stand for the claim that the 87,653rd digit of π is a 7. If this claim is true,
then (1 + 1 = 2)⇒ φ. But the laws of probability theory say that if A⇒ B then
Pr(A) ≤ Pr(B). Thus, a perfect Bayesian must be at least as sure of φ as they are
that 1 + 1 = 2! Recognition of this problem dates at least back to Good (1950).

Many have proposed methods for relaxing the criterion Pr(A) ≤ Pr(B) until such
a time as the implication has been proven (see, e.g, the work of Hacking [1967] and
Christiano [2014]). But this leaves open the question of how probabilities should be
assigned before the implication is proven, and this brings us back to the search for a
principled method for managing uncertainty about logical facts when relationships
between them are suspected but unproven.

We propose a partial solution, which we call logical induction. Very roughly,
our setup works as follows. We consider reasoners that assign probabilities to
sentences written in some formal language and refine those probabilities over time.
Assuming the language is sufficiently expressive, these sentences can say things
like “Goldbach’s conjecture is true” or “the computation prg on input i produces
the output prg(i)=0”. The reasoner is given access to a slow deductive process
that emits theorems over time, and tasked with assigning probabilities in a manner
that outpaces deduction, e.g., by assigning high probabilities to sentences that are
eventually proven, and low probabilities to sentences that are eventually refuted,
well before they can be verified deductively. Logical inductors carry out this task in
a way that satisfies many desirable properties, including:

1. Their beliefs are logically consistent in the limit as time approaches infinity.
2. They learn to make their probabilities respect many different patterns in logic,

at a rate that outpaces deduction.
3. They learn to know what they know, and trust their future beliefs, while

avoiding paradoxes of self-reference.

4

These claims (and many others) will be made precise in Section 4.
A logical inductor is any sequence of probabilities that satisfies our logical

induction criterion, which works roughly as follows. We interpret a reasoner’s
probabilities as prices in a stock market, where the probability of φ is interpreted
as the price of a share that is worth $1 if φ is true, and $0 otherwise (similar to
Beygelzimer, Langford, and Pennock [2012]). We consider a collection of stock
traders who buy and sell shares at the market prices, and define a sense in which
traders can exploit markets that have irrational beliefs. The logical induction
criterion then says that it should not be possible to exploit the market prices using
any trading strategy that can be generated in polynomial-time.

Our main finding is a computable algorithm which satisfies the logical induction
criterion, plus proofs that a variety of different desiderata follow from this criterion.

The logical induction criterion can be seen as a weakening of the “no Dutch
book” criterion that Ramsey (1931) and de Finetti (1937) used to support standard
probability theory, which is analogous to the “no Dutch book” criterion that von
Neumann and Morgenstern (1944) used to support expected utility theory. Under
this interpretation, our criterion says (roughly) that a rational deductively limited
reasoner should have beliefs that can’t be exploited by any Dutch book strategy
constructed by an efficient (polynomial-time) algorithm. Because of the analogy, and
the variety of desirable properties that follow immediately from this one criterion,
we believe that the logical induction criterion captures a portion of what it means to
do good reasoning about logical facts in the face of deductive limitations. That said,
there are clear drawbacks to our algorithm: it does not use its resources efficiently;
it is not a decision-making algorithm (i.e., it does not “think about what to think
about”); and the properties above hold either asymptotically (with poor convergence
bounds) or in the limit. In other words, our algorithm gives a theoretically interesting
but ultimately impractical account of how to manage logical uncertainty.

1.1 Desiderata for Reasoning under Logical Uncertainty
For historical context, we now review a number of desiderata that have been
proposed in the literature as desirable features of “good reasoning” in the face of
logical uncertainty. A major obstacle in the study of logical uncertainty is that
it’s not clear what would count as a satisfactory solution. In lieu of a solution, a
common tactic is to list desiderata that intuition says a good reasoner should meet.
One can then examine them for patterns, relationships, and incompatibilities. A
multitude of desiderata have been proposed throughout the years; below, we have
collected a variety of them. Each is stated in its colloquial form; many will be stated
formally and studied thoroughly later in this paper.

Desideratum 1 (Computable Approximability). The method for assigning proba-
bilities to logical claims (and refining them over time) should be computable.

(See Section 5 for our algorithm.)

A good method for refining beliefs about logic can never be entirely finished, because a
reasoner can always learn additional logical facts by thinking for longer. Nevertheless,
if the algorithm refining beliefs is going to have any hope of practicality, it should at
least be computable. This idea dates at least back at least to Good (1950), and has
been discussed in depth by Hacking (1967) and Eells (1990), among others.

Desideratum 1 may seem obvious, but it is not without its teeth. It rules out
certain proposals, such as that of Hutter et al. (2013), which has no computable
approximation (Sawin and Demski 2013).

Desideratum 2 (Coherence in the Limit). The belief state that the reasoner is
approximating better and better over time should be logically consistent.

(Discussed in Section 4.1.)

First formalized by Gaifman (1964), the idea of Desideratum 2 is that the belief
state that the reasoner is approximating—the beliefs they would have if they had
infinite time to think—should be internally consistent. This means that, in the limit

5

of reasoning, a reasoner should assign Pr(φ) ≤ Pr(ψ) whenever φ ⇒ ψ, and they
should assign probability 1 to all theorems and 0 to all contradictions, and so on.

Desideratum 3 (Approximate Coherence). The belief state of the reasoner should
be approximately coherent. For example, if the reasoner knows that two statements
are mutually exclusive, then it should assign probabilities to those sentences that sum
to no more than 1, even if it cannot yet prove either sentence.

(Discussed in sections 4.2 and 4.5.)

Being coherent in the limit is desirable, but good deductively limited reasoning
requires approximate coherence at finite times. Consider two claims about a par-
ticular computation prg, which takes a number n as input and produces a number
prg(n) as output. Assume the first claim says prg(7)=0, and the second says
prg(7)=1. Clearly, these claims are mutually exclusive, and once a reasoner realizes
this fact, they should assign probabilities to the two claims that sum to at most 1,
even before they can evaluate prg(7). Limit coherence does not guarantee this: a
reasoner could assign bad probabilities (say, 100% to both claims) right up until they
can evaluate prg(7), at which point they start assigning the correct probabilities.
Intuitively, a good reasoner should be able to recognize the mutual exclusivity before
they’ve proven either claim. In other words, a good reasoner’s beliefs should be
approximately coherent.

Desideratum 3 dates back to at least Good (1950), who proposes a weakening of
the condition of coherence that could apply to the belief states of limited reasoners.
Hacking (1967) proposes an alternative weakening, as do Garrabrant, Fallenstein,
et al. (2016).

Desideratum 4 (Learning of Statistical Patterns). In lieu of knowledge that bears
on a logical fact, a good reasoner should assign probabilities to that fact in accordance
with the rate at which similar claims are true. (Discussed in Section 4.4.)

For example, a good reasoner should assign probability ≈ 10% to the claim “the
nth digit of π is a 7” for large n (assuming there is no efficient way for a reasoner to
guess the digits of π for large n). This desideratum dates at least back to Savage
(1967), and seems clearly desirable. If a reasoner thought the 10100th digit of π was
almost surely a 9, but had no reason for believing this this, we would be suspicious
of their reasoning methods. Desideratum 4 is difficult to state formally; for two
attempts, refer to Garrabrant, Benson-Tilsen, et al. (2016) and Garrabrant, Soares,
and Taylor (2016).

Desideratum 5 (Calibration). Good reasoners should be well-calibrated. That is,
among events that a reasoner says should occur with probability p, they should in
fact occur about p proportion of the time. (Discussed in Section 4.3.)

Calibration as a desirable property dates back to Pascal, and perhaps farther.
If things that a reasoner says should happen 30% of the time actually wind up
happening 80% of the time, then they aren’t particularly reliable.

Desideratum 6 (Non-Dogmatism). A good reasoner should not have extreme beliefs
about mathematical facts, unless those beliefs have a basis in proof.

(Discussed in Section 4.6.)

It would be worrying to see a mathematical reasoner place extreme confidence in
a mathematical proposition, without any proof to back up their belief. The virtue
of skepticism is particularly apparent in probability theory, where Bayes’ theorem
says that a probabilistic reasoner can never update away from “extreme” (0 or 1)
probabilities. Accordingly, Cromwell’s law (so named by the statistician Lindley
[1991]) says that a reasonable person should avoid extreme probabilities except
when applied to statements that are logically true or false. We are dealing with
logical uncertainty, so it is natural to extend Cromwell’s law to say that extreme
probabilities should also be avoided on logical statements, except in cases where
the statements have been proven true or false. In settings where reasoners are able

6

to update away from 0 or 1 probabilities, this means that a good reasoner’s beliefs
shouldn’t be “stuck” at probability 1 or 0 on statements that lack proofs or disproofs.

In the domain of logical uncertainty, Desideratum 6 can be traced back to Carnap
(1962, Sec. 53), and has been demanded by many, including Gaifman and Snir (1982)
and Hutter et al. (2013).

Desideratum 7 (Uniform Non-Dogmatism). A good reasoner should assign a non-
zero probability to any computably enumerable consistent theory (viewed as a limit
of finite conjunctions). (Discussed in Section 4.6.)

For example the axioms of Peano arithmetic are computably enumerable, and if we
construct an ever-growing conjunction of these axioms, we can ask that the limit
of a reasoner’s credence in these conjunctions converge to a value bounded above
0, even though there are infinitely many conjuncts. The first formal statement of
Desideratum 7 that we know of is given by Demski (2012), though it is implicitly
assumed whenever asking for a set of beliefs that can reason accurately about
arbitrary arithmetical claims (as is done by, e.g., Savage [1967] and Hacking [1967]).

Desideratum 8 (Universal Inductivity). Given enough time to think, the beliefs of
a good reasoner should dominate the universal semimeasure.

(Discussed in Section 4.6.)

Good reasoning in general has been studied for quite some time, and reveals some
lessons that are useful for the study of good reasoning under deductive limitation.
Solomonoff (1964a, 1964b), Zvonkin and Levin (1970), and Li and Vitányi (1993) have
given a compelling formal treatment of good reasoning assuming logical omniscience
in the domain of sequence prediction, by describing an inductive process (known as
a universal semimeasure) with a number of nice properties, including (1) it assigns
non-zero prior probability to every computable sequence of observations; (2) it
assigns higher prior probability to simpler hypotheses; and (3) it predicts as well or
better than any computable predictor, modulo a constant amount of error. Alas,
universal semimeasures are uncomputable; nevertheless, they provide a formal model
of what it means to predict sequences well, and we can ask logically uncertain
reasoners to copy those successes. For example, we can ask that they would perform
as well as a universal semimeasure if given enough time to think.

Desideratum 9 (Approximate Bayesianism). The reasoner’s beliefs should admit
of some notion of conditional probabilities, which approximately satisfy both Bayes’
theorem and the other desiderata listed here. (Discussed in Section 4.7.)

Bayes’ rule gives a fairly satisfying account of how to manage empirical uncertainty
in principle (as argued extensively by Jaynes [2003]), where beliefs are updated by
conditioning a probability distribution. As discussed by Good (1950) and Glymour
(1980), creating a distribution that satisfies both coherence and Bayes’ theorem
requires logical omniscience. Still, we can ask that the approximation schemes
used by a limited agent be approximately Bayesian in some fashion, while retaining
whatever good properties the unconditional probabilities have.

Desideratum 10 (Introspection). If a good reasoner knows something, she should
also know that she knows it. (Discussed in Section 4.11.)

Proposed by Hintikka (1962), this desideratum is popular among epistemic logicians.
It is not completely clear that this is a desirable property. For instance, reasoners
should perhaps be allowed to have “implicit knowledge” (which they know without
knowing that they know it), and it’s not clear where the recursion should stop
(do you know that you know that you know that you know that 1 = 1?). This
desideratum has been formalized in many different ways; see Christiano et al. (2013)
and Campbell-Moore (2015) for a sample.

Desideratum 11 (Self-Trust). A good reasoner thinking about a hard problem
should expect that, in the future, her beliefs about the problem will be more accurate
than her current beliefs. (Discussed in Section 4.12.)

7

Stronger than self-knowledge is self-trust—a desideratum that dates at least back to
Hilbert (1902), when mathematicians searched for logics that placed confidence in
their own machinery. While Gödel, Kleene, and Rosser (1934) showed that strong
forms of self-trust are impossible in a formal proof setting, experience demonstrates
that human mathematicians are capable of trusting their future reasoning, relatively
well, most of the time. A method for managing logical uncertainty that achieves
this type of self-trust would be highly desirable.
Desideratum 12 (Approximate Inexploitability). It should not be possible to run
a Dutch book against a good reasoner in practice. (See Section 3 for our proposal.)

Expected utility theory and probability theory are both supported in part by “Dutch
book” arguments which say that an agent is rational if (and only if) there is no way
for a clever bookie to design a “Dutch book” which extracts arbitrary amounts of
money from the reasoner (von Neumann and Morgenstern 1944; de Finetti 1937).
As noted by Eells (1990), these constraints are implausibly strong: all it takes to
run a Dutch book according to de Finetti’s formulation is for the bookie to know a
logical fact that the reasoner does not know. Thus, to avoid being Dutch booked by
de Finetti’s formulation, a reasoner must be logically omniscient.

Hacking (1967) and Eells (1990) call for weakenings of the Dutch book constraints,
in the hopes that reasoners that are approximately inexploitable would do good
approximate reasoning. This idea is the cornerstone of our framework—in particular,
we consider reasoners that cannot be exploited in polynomial time, using a formalism
defined below. See Definition 3.0.1 for details.
Desideratum 13 (Gaifman Inductivity). Given a Π1 statement φ (i.e., a universal
generalization of the form “for every x, ψ”), as the set of examples the reasoner has
seen goes to “all examples”, the reasoner’s belief in φ should approach to certainty.

(Discussed below.)

Proposed by Gaifman (1964), Desideratum 13 states that a reasoner should “gener-
alize well”, in the sense that as they see more instances of a universal claim (such
as “for every x, ψ(x) is true”) they should eventually believe the universal with
probability 1. Desideratum 13 has been advocated by Hutter et al. (2013).
Desideratum 14 (Efficiency). The algorithm for assigning probabilities to logical
claims should run efficiently, and be usable in practice. (Discussed in Section 7.1.)

One goal of understanding “good reasoning” in the face of logical uncertainty is
to design algorithms for reasoning using limited computational resources. For
that, the algorithm for assigning probabilities to logical claims needs to be not
only computable, but efficient. Aaronson (2013) gives a compelling argument that
solutions to logical uncertainty require understanding complexity theory, and this
idea is closely related to the study of bounded rationality (Simon 1982) and efficient
meta-reasoning (Russell and Wefald 1991b).
Desideratum 15 (Decision Rationality). The algorithm for assigning probabilities
to logical claims should be able to target specific, decision-relevant claims, and
it should reason about those claims as efficiently as possible given the computing
resources available. (Discussed in Section 7.4.)

This desideratum dates at least back to Savage (1967), who asks for an extension to
probability theory that takes into account the costs of thinking. For a method of
reasoning under logical uncertainty to aid in the understanding of good bounded
reasoning, it must be possible for an agent to use the reasoning system to reason
efficiently about specific decision-relevant logical claims, using only enough resources
to refine the probabilities well enough for the right decision to become clear. This
desideratum blurs the line between decision-making and logical reasoning; see Russell
and Wefald (1991a) and Hay et al. (2012) for a discussion.
Desideratum 16 (Answers Counterpossible Questions). When asked questions
about contradictory states of affairs, a good reasoner should give reasonable answers.

(Discussed in Section 7.4.)

8

In logic, the principle of explosion say that from a contradiction, anything follows.
By contrast, when human mathematicians are asked counterpossible questions,
such as “what would follow from Fermat’s last theorem being false?”, they often
give reasonable answers, such as “then there would exist non-modular elliptic
curves”, rather than just saying “anything follows from a contradiction”. Soares and
Fallenstein (2015) point out that some deterministic decision-making algorithms
reason about counterpossible questions (“what would happen if my deterministic
algorithm had the output a vs b vs c?”). The topic of counterpossibilities has been
studied by philosophers including Cohen (1990), Vander Laan (2004), Brogaard
and Salerno (2007), Krakauer (2012), and Bjerring (2014), and it is reasonable to
hope that a good logically uncertain reasoner would give reasonable answers to
counterpossible questions.

Desideratum 17 (Use of Old Evidence). When a bounded reasoner comes up with
a new theory that neatly describes anomalies in the old theory, that old evidence
should count as evidence in favor of the new theory. (Discussed in Section 7.4.)

The problem of old evidence is a longstanding problem in probability theory (Glymour
1980). Roughly, the problem is that a perfect Bayesian reasoner always uses all
available evidence, and keeps score for all possible hypotheses at all times, so no
hypothesis ever gets a “boost” from old evidence. Human reasoners, by contrast,
have trouble thinking up good hypotheses, and when they do, those new hypotheses
often get a large boost by retrodicting old evidence. For example, the precession of
the perihelion of Mercury was known for quite some time before the development of
the theory of General Relativity, and could not be explained by Newtonian mechanics,
so it was counted as strong evidence in favor of Einstein’s theory. Garber (1983) and
Jeffrey (1983) have speculated that a solution to the problem of logical omniscience
would shed light on solutions to the problem of old evidence.

Our solution does not achieve all these desiderata. Doing so would be impossible;
Desiderata 1, 2, and 13 cannot be satisfied simultaneously. Further, Sawin and
Demski (2013) have shown that Desiderata 1, 6, 13, and a very weak form of 2 are
incompatible; an ideal belief state that is non-dogmatic, Gaifman inductive, and
approximately coherent in a weak sense has no computable approximation. Our
algorithm is computably approximable, approximately coherent, and non-dogmatic,
so it cannot satisfy 13. Our algorithm also fails to meet 14 and 15, because while
our algorithm is computable, it is purely inductive, and so it does not touch upon
the decision problem of thinking about what to think about and how to think about
it with minimal resource usage. As for 16 and 17, the case is interesting but unclear;
we give these topics some treatment in Section 7.

Our algorithm does satisfy desiderata 1 through 12. In fact, our algorithm is
designed to meet only 1 and 12, from which 2-11 will all be shown to follow. This is
evidence that our logical induction criterion captures a portion of what it means
to manage uncertainty about logical claims, analogous to how Bayesian probability
theory is supported in part by the fact that a host of good properties follow from a
single criterion (“don’t be exploitable by a Dutch book”). That said, there is ample
room to disagree about how well our algorithm achieves certain desiderata, e.g. when
the desiderata is met only in the asymptote, or with error terms that vanish only
slowly.

1.2 Related Work
The study of logical uncertainty is an old topic. It can be traced all the way back
to Bernoulli, who laid the foundations of statistics, and later Boole (1854), who
was interested in the unification of logic with probability from the start. Refer
to Hailperin (1996) for a historical account. Our algorithm assigns probabilities
to sentences of logic directly; this thread can be traced back through Łoś (1955)
and later Gaifman (1964), who developed the notion of coherence that we use in
this paper. More recently, that thread has been followed by Demski (2012), whose
framework we use, and Hutter et al. (2013), who define a probability distribution

9

on logical sentences that is quite desirable, but which admits of no computable
approximation (Sawin and Demski 2013).

The objective of our algorithm is to manage uncertainty about logical facts (such
as facts about mathematical conjectures or long-running computer programs). When
it comes to the problem of developing formal tools for manipulating uncertainty,
our methods are heavily inspired by Bayesian probability theory, and so can be
traced back to Pascal, who was followed by Bayes, Laplace, Kolmogorov (1950),
Savage (1954), Carnap (1962), and Jaynes (2003), and many others. Polya (1990)
was among the first in the literature to explicitly study the way that mathematicians
engage in plausible reasoning, which is tightly related to the object of our study.

We are interested in the subject of what it means to do “good reasoning” under
logical uncertainty. In this, our approach is quite similar to the approach of Ramsey
(1931), de Finetti (1937), von Neumann and Morgenstern (1944), Teller (1973),
Lewis (1999), and Joyce (1999), who each developed axiomatizations of rational
behavior and produced arguments supporting those axioms. In particular, they
each supported their proposals with Dutch book arguments, and those Dutch book
arguments were a key inspiration for our logical induction criterion.

The fact that using a coherent probability distribution requires logical omniscience
(and is therefore unsatisfactory when it comes to managing logical uncertainty) dates
at least back to Good (1950). Savage (1967) also recognized the problem, and stated a
number of formal desiderata that our solution in fact meets. Hacking (1967) addressed
the problem by discussing notions of approximate coherence and weakenings of the
Dutch book criteria. While his methods are ultimately unsatisfactory, our approach
is quite similar to his in spirit.

The flaw in Bayesian probability theory was also highlighted by Glymour (1980),
and dubbed the “problem of old evidence” by Garber (1983) in response to Glymor’s
criticism. Eells (1990) gave a lucid discussion of the problem, revealed flaws in
Garber’s arguments and in Hacking’s solution, and named a number of other
desiderata which our algorithm manages to satisfy. Refer to Zynda (1995) and
Sprenger (2015) for relevant philosophical discussion in the wake of Eells. Of note
is the treatment of Adams (1996), who uses logical deduction to reason about an
unknown probability distribution that satisfies certain logical axioms. Our approach
works in precisely the opposite direction: we use probabilistic methods to create an
approximate distribution where logical facts are the subject.

Straddling the boundary between philosophy and computer science, Aaronson
(2013) has made a compelling case that computational complexity must play a role
in answering questions about logical uncertainty. These arguments also provided
some inspiration for our approach, and roughly speaking, we weaken the Dutch book
criterion of standard probability theory by considering only exploitation strategies
that can be constructed by a polynomial-time machine. The study of logical
uncertainty is also tightly related to the study of bounded rationality (Simon 1982;
Russell and Wefald 1991a; Rubinstein 1998; Russell 2016).

Fagin and Halpern (1987) also straddled the boundary between philosophy and
computer science with early discussions of algorithms that manage uncertainty in the
face of resource limitations. (See also their discussions of uncertainty and knowledge
[Fagin et al. 1995; Halpern 2003].) This is a central topic in the field of artificial
intelligence (AI), where scientists and engineers have pursued many different paths
of research. The related work in this field is extensive, including (but not limited to)
work on probabilistic programming (Vajda 1972; McCallum, Schultz, and Singh 2009;
Wood, Meent, and Mansinghka 2014; De Raedt and Kimmig 2015); probabilistic
inductive logic programming (Muggleton and Watanabe 2014; De Raedt and Kersting
2008; De Raedt 2008; Kersting and De Raedt 2007); and meta-reasoning (Russell and
Wefald 1991b; Zilberstein 2008; Hay et al. 2012). The work most closely related to our
own is perhaps the work of Thimm (2013a) and others on reasoning using inconsistent
knowledge bases, a task which is analogous to constructing an approximately coherent
probability distribution. (See also Muiño [2011], Thimm [2013b], Potyka and Thimm
[2015], and Potyka [2015].) Our framework also bears some resemblance to the
Markov logic network framework of Richardson and Domingos (2006), in that both
algorithms are coherent in the limit. Where Markov logic networks are specialized

10

to individual restricted domains of discourse, our algorithm reasons about all logical
sentences. (See also Kok and Domingos [2005], Singla and Domingos [2005], Tran
and Davis [2008], Lowd and Domingos [2007], Mihalkova, Huynh, and Mooney [2007],
Wang and Domingos [2008], and Khot et al. [2015].)

In that regard, our algorithm draws significant inspiration from Solomonoff’s
theory of inductive inference (Solomonoff 1964a, 1964b) and the developments on
that theory made by Zvonkin and Levin (1970) and Li and Vitányi (1993). Indeed,
we view our algorithm as a Solomonoff-style approach to the problem of reasoning
under logical uncertainty, and as a result, our algorithm bears a strong resemblance
to many algorithms that are popular methods for practical statistics and machine
learning; refer to Opitz and Maclin (1999) and Dietterich (2000) for reviews of
popular and successful ensemble methods. Our approach is also similar in spirit
to the probabilistic numerics approach of Briol, Oates, Girolami, Osborne, and
Sejdinovic (2015), but where probabilistic numerics is concerned with algorithms
that give probabilistic answers to individual particular numerical questions, we are
concerned with algorithms that assign probabilities to all queries in a given formal
language. (See also [Briol, Oates, Girolami, and Osborne 2015; Hennig, Osborne,
and Girolami 2015].)

Finally, our method of interpreting beliefs as prices and using prediction markets
to generate reasonable beliefs bears heavy resemblance to the work of Beygelzimer,
Langford, and Pennock (2012) who use similar mechanisms to design a learning
algorithm that bets on events. Our results can be seen as an extension of that idea
to the case where the events are every sentence written in some formal language, in
a way that learns inductively to predict logical facts while avoiding the standard
paradoxes of self-reference.

The work sampled here is only a small sample of the related work, and it neglects
contributions from many other fields, including but not limited to epistemic logic
(Gärdenfors 1988; Meyer and Van Der Hoek 1995; Schlesinger 1985; Sowa 1999;
Guarino 1998), game theory (Rantala 1979; Hintikka 1979; Bacharach 1994; Lipman
1991; Battigalli and Bonanno 1999; Binmore 1992), paraconsistent logic (Blair and
Subrahmanian 1989; Priest 2002; Mortensen 2013; Fuhrmann 2013; Akama and
Costa 2016) and fuzzy logic (Klir and Yuan 1995; Yen and Langari 1999; Gerla
2013). The full history is too long and rich for us to do it justice here.

1.3 Overview
Our main result is a formalization of Desideratum 12 above, which we call the logical
induction criterion, along with a computable algorithm that meets the criterion,
plus proofs that formal versions of Desiderata 2-11 all follow from the criterion.

In Section 2 we define some notation. In Section 3 we state the logical induction
criterion and our main theorem, which says that there exists a computable logical
inductor. The logical induction criterion is motivated by a series of stock trading
analogies, which are also introduced in Section 3.

In Section 4 we discuss a number of properties that follow from this criterion, in-
cluding properties that hold in the limit, properties that relate to pattern-recognition,
calibration properties, and properties that relate to self-knowledge and self-trust.

A computable logical inductor is described in Section 5. Very roughly, the idea
is that given any trader, it’s possible to construct market prices at which they make
no trades (because they think the prices are right); and given an enumeration of
traders, it’s possible to aggregate their trades into one “supertrader” (which takes
more and more traders into account each day); and thus it is possible to construct a
series of prices which is not exploitable by any trader in the enumeration.

In Section 6 we give a few selected proofs. In Section 7 we conclude with a
discussion of applications of logical inductiors, variations on the logical induction
framework, speculation about what makes logical inductors tick, and directions for
future research. The remaining proofs can be found in the appendix.

11

2 Notation

This section defines notation used throughout the paper. The reader is invited to
skim it, or perhaps skip it entirely and use it only as a reference when needed.
Common sets and functions. The set of positive natural numbers is denoted by
N+, where the superscript makes it clear that 0 is not included. We work with N+

instead of N≥0 because we regularly consider initial segments of infinite sequences up
to and including the element at index n, and it will be convenient for those lists to
have length n. Sums written

∑
i≤n(−) are understood to start at i = 1. We use R to

denote the set of real numbers, and Q to denote the set of rational numbers. When
considering continuous functions with range in Q, we use the subspace topology
on Q inherited from R. We use B to denote the set {0, 1} interpreted as Boolean
values. In particular, Boolean operations like ∧, ∨, ¬, → and ↔ are defined on B,
for example, (1 ∧ 1) = 1, ¬1 = 0, and so on.

We write Fin(X) for the set of all finite subsets of X, and XN+ for all infinite
sequences with elements in X. In general, we use BA to denote the set of functions
with domain A and codomain B. We treat the expression f : A→ B as equivalent
to f ∈ BA, i.e., both state that f is a function that takes inputs from the set A
and produces an output in the set B. We write f : A 7→ B to indicate that f is a
partial function from A to B. We denote equivalence of expressions that represent
functions by ≡, e.g., (x− 1)2 ≡ x2− 2x+ 1. We write ‖− ‖1 for the `1 norm. When
A is an affine combination, ‖A‖1 includes the trailing coefficient.
Logical sentences. We generally use the symbols φ, ψ, χ to denote well-formed
formulas in some language of propositional logic L (such as a theory of first order
logic; see below), which includes the basic logical connectives ¬, ∧, ∨, →, ↔, and
uses modus ponens as its rule of inference. We assume that L has been chosen so
that its sentences can be interpreted as claims about some class of mathematical
objects, such as natural numbers or computer programs. We commonly write S for
the set of all sentences in L, and Γ for a set of axioms from which to write proofs in
the language. We write Γ ` φ when φ can be proven from Γ via modus ponens.

We will write logical formulas inside quotes “−”, such as φ := “x = 3”. The
exception is after `, where we do not write quotes, in keeping with standard
conventions. We sometimes define sentences such as φ := “Goldbach’s conjecture”,
in which case it is understood that the English text could be expanded into a precise
arithmetical claim.

We use underlines to indicate when a symbol in a formula should be replaced
by the expression it stands for. For example, if n := 3, then φ := “x > n” means
φ = “x > 3”, and ψ := “φ→ (x = n+ 1)” means ψ = “x > 3→ (x = 3 + 1)”. If φ
and ψ denote formulas, then ¬φ denotes “¬(φ)” and φ ∧ ψ denotes “(φ) ∧ (ψ)” and
so on. For instance, if φ := “x > 3” then ¬φ denotes “¬(x > 3)”.
First order theories and prime sentences. We consider any theory in first
order logic (such as Peano Arithmetic, PA) as a set of axioms that includes the
axioms of first order logic, so that modus ponens is the only rule of inference needed
for proofs. As such, we view any first order theory as specified in a propositional
calculus (following Enderton [2001]) whose atoms are the so-called “prime” sentences
of first order logic, i.e., quantified sentences like “∃x : · · · ”, and atomic sentences like
“t1 = t2” and “R(t1, . . . , tn)” where the ti are closed terms. Thus, every first-order
sentence can be viewed as a Boolean combination of prime sentences with logical
connectives (viewing “∀x : · · · ” as shorthand for “¬∃x : ¬ · · · ”). For example, the
sentence

φ := “((1 + 1 = 2) ∧ (∀x : x > 0))→ (∃y : ∀z : (7 > 1 + 1)→ (y + z > 2))”

is decomposed into “1 + 1 = 2”, “∃x : ¬(x > 0)” and “∃y : ∀z : (7 > 1 + 1)→ (y+z >
2)”, where the leading “¬” in front of the second statement is factored out as a
Boolean operator. In particular, note that while (7 > 1 + 1) is a prime sentence,
it does not occur in the Boolean decomposition of φ into primes, since it occurs

12

within a quantifier. We choose this view because we will not always assume that the
theories we manipulate include the quantifier axioms of first-order logic.
Defining values by formulas. We often view a formula that is free in one variable
as a way of defining a particular number that satisfies that formula. For example,
given the formula X(ν) = “ν2 = 9 ∧ ν > 0”, we would like to think of X as
representing the unique value “3”, in such a way that that we can then have “5X+ 1”
refer to the number 16.

To formalize this, we use the following notational convention. Let X be a formula
free in one variable. We write X(x) for the formula resulting from substituting x for
the free variable of X. If

Γ ` ∃x∀y : X(y)→ y = x,

then we say that X defines a unique value (via Γ), and we refer to that value as “the
value” of X. We will be careful in distinguishing between what Γ can prove about
X(ν) on the one hand, and the values of X(ν) in different models of Γ on the other.

If X1, . . . , Xk are all formulas free in one variable that define a unique value
(via Γ), then for any k-place relationship R, we write “R(X1, X2, . . . , Xk)” as an
abbreviation for

“∀x1x2 . . . xk : X1(x1) ∧X2(x2) ∧ . . . ∧Xk(xk)→ R(x1, x2, . . . , xk)”.

For example, “Z = 2X + Y ” is shorthand for

“∀xyz : X(x) ∧ Y (y) ∧ Z(z)→ z = 2x+ y”.

This convention allows us to write concise expressions that describe relationships
between well-defined values, even when those values may be difficult or impossible
to determine via computation.
Representing computations. When we say a theory Γ in first order logic “can
represent computable functions”, we mean that its language is used to refer to
computer programs in such a way that Γ satisfies the representability theorem
for computable functions. This means that for every (total) computable function
f : N+ → N+, there exists a Γ-formula γf with two free variables such that for all
n, y ∈ N+,

y = f(n) if and only if Γ ` ∀ν : γf (n, ν)↔ ν = y,

where “γf (n, ν)” stands, in the usual way, for the formula resulting from substituting
an encoding of n and the symbol ν for its free variables. In particular, note that
this condition requires Γ to be consistent.

When Γ can represent computable functions, we use “f(n)” as shorthand for the
formula “γf (n, ν)”. In particular, since “γf (n, ν)” is free in a single variable ν and
defines a unique value, we use “f(n)” by the above convention to write, e.g.,

“f(3) < g(3)”

as shorthand for
“∀xy : γf (3, x) ∧ γg(3, y)→ x < y”.

In particular, note that writing down a sentence like “f(3) > 4” does not involve
computing the value f(3); it merely requires writing out the definition of γf . This
distinction is important when f has a very slow runtime.
Sequences. We denote infinite sequences using overlines, like x := (x1, x2, . . .),
where it is understood that xi denotes the ith element of x, for i ∈ N+. To
define sequences of sentences compactly, we use parenthetical expressions such as
φ := (“n > 7”)n∈N+ , which defines the sequence

(“1 > 7”, “2 > 7”, “3 > 7”, . . .).

13

We define x≤n := (x1, . . . , xn). Given another element y, we abuse notation in the
usual way and define (x≤n, y) = (x1, . . . , xn, y) to be the list x≤n with y appended
at the end. We write () for the empty sequence.

A sequence x is called computable if there is a computable function f such that
f(n) = xn for all n ∈ N+, in which case we say f computes x.
Asymptotics. Given any sequences x and y, we write

xn hn yn for lim
n→∞

xn − yn = 0,

xn &n yn for lim inf
n→∞

xn − yn ≥ 0, and

xn .n yn for lim sup
n→∞

xn − yn ≤ 0.

3 The Logical Induction Criterion

In this section, we will develop a framework in which we can state the logical
induction criterion and a number of properties possessed by logical inductors. The
framework will culminate in the following definition, and a theorem saying that
computable logical inductors exist for every deductive process.

Definition 3.0.1 (The Logical Induction Criterion). A market P is said to
satisfy the logical induction criterion relative to a deductive process D if
there is no efficiently computable trader T that exploits P relative to D. A
market P meeting this criterion is called a logical inductor over D.

We will now define markets, deductive processes, efficient computability, traders,
and exploitation.

3.1 Markets
We will be concerned with methods for assigning values in the interval [0, 1] to
sentences of logic. We will variously interpret those values as prices, probabilities,
and truth values, depending on the context. Let L be a language of propositional
logic, and let S be the set of all sentences written in L. We then define:

Definition 3.1.1 (Valuation). A valuation is any function V : S → [0, 1]. We
refer to V(φ) as the value of φ according to V. A valuation is called rational if its
image is in Q.

First let us treat the case where we interpret the values as prices.

Definition 3.1.2 (Pricing). A pricing P : S → Q∩ [0, 1] is any computable rational
valuation. If P(φ) = p we say that the price of a φ-share according to P is p, where
the intended interpretation is that a φ-share is worth $1 if φ is true.

Definition 3.1.3 (Market). A market P = (P1,P2, . . .) is a computable se-
quence of pricings Pi : S → Q ∩ [0, 1].

We can visualize a market as a series of pricings that may change day by day. The
properties proven in Section 4 will apply to any market that satisfies the logical
induction criterion. Theorem 4.1.2 (Limit Coherence) will show that the prices of a
logical inductor can reasonably be interpreted as probabilities, so we will often speak
as if the prices in a market represent the beliefs of a reasoner, where Pn(φ) = 0.75 is
interpreted as saying that on day n, the reasoner assigns 75% probability to φ.

In fact, the logical inductor that we construct in Section 5 has the additional
property of being finite at every timestep, which means we can visualize it as a series
of finite belief states that a reasoner of interest writes down each day.

14

Definition 3.1.4 (Belief State). A belief state P : S → Q ∩ [0, 1] is a computable
rational valuation with finite support, where P(φ) is interpreted as the probability
of φ (which is 0 for all but finitely many φ).

We can visualize a belief state as a finite list of (φ, p) pairs, where the φ are unique
sentences and the p are rational-number probabilities, and P(φ) is defined to be p if
(φ, p) occurs in the list, and 0 otherwise.

Definition 3.1.5 (Computable Belief Sequence). A computable belief sequence
P = (P1,P2, . . .) is a computable sequence of belief states, interpreted as a reasoner’s
explicit beliefs about logic as they are refined over time.

We can visualize a computable belief sequence as a large spreadsheet where each
column is a belief state, and the rows are labeled by an enumeration of all logical
sentences. We can then imagine a reasoner of interest working on this spreadsheet,
by working on one column per day.

Philosophically, the reason for this setup is as follows. Most people know that
the sentence “1 + 1 is even” is true, and that the sentence “1 + 1 + 1 + 1 is even” is
true. But consider, is the following sentence true?

“1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 is even”

To answer, we must pause and count the ones. Since we wish to separate the
question of what a reasoner already knows from what they could infer using further
computing resources, we require that the reasoner write out their beliefs about logic
explicitly, and refine them day by day.

In this framework, we can visualize a reasoner as a person who computes the
belief sequence by filling in a large spreadsheet, always working on the nth column
on the nth day, by refining and extending her previous work as she learns new
facts and takes more sentences into account, while perhaps making use of computer
assistance. For example, a reasoner who has noticed that “1 + · · · + 1 is even” is
true iff the sentence has an even number of ones, might program her computer to
write 1 into as many of the true “1 + · · ·+ 1 is even” cells per day as it can before
resources run out. As another example, a reasoner who finds a bound on the prime
gap might go back and update her probability on the twin prime conjecture. In our
algorithm, the reasoner will have more and more computing power each day, with
which to construct her next belief state.

3.2 Deductive Processes
We are interested in the question of what it means for reasoners to assign “rea-
sonable probabilities” to statements of logic. Roughly speaking, we will imagine
reasoners that have access to some formal deductive process, such as a community of
mathematicians who submit machine-checked proofs to an official curated database.
We will study reasoners that “outpace” this deductive process, e.g., by assigning
high probabilities to conjectures that will eventually be proven, and low probabilities
to conjectures that will eventually be disproven, well before the relevant proofs are
actually found.

Definition 3.2.1 (Deductive Process). A deductive process D : N+ →
Fin(S) is a computable nested sequence D1 ⊆ D2 ⊆ D3 . . . of finite sets of
sentences. We write D∞ for the union

⋃
nDn.

This is a rather barren notion of “deduction”. We will consider cases where we
fix some theory Γ, and Dn is interpreted as the theorems proven up to and including
day n. In this case, D can be visualized as a slow process that reveals the knowledge
of Γ over time. Roughly speaking, we will mainly concern ourselves with the case
where D eventually rules out all and only the worlds that are inconsistent with Γ.

15

Definition 3.2.2 (World). A world is any truth assignment W : S → B. If
W(φ) = 1 we say that φ is true in W. If W(φ) = 0 we say that φ is false in W.
We write W for the set of all worlds.

Observe that worlds are valuations, and that they are not necessarily consistent.
This terminology is nonstandard; the term “world” is usually reserved for consistent
truth assignments. Logically uncertain reasoners cannot immediately tell which
truth assignments are inconsistent, because revealing inconsistencies requires time
and effort. We use the following notion of consistency:

Definition 3.2.3 (Propositional Consistency). A world W is called proposition-
ally consistent, abbreviated p.c., if for all φ ∈ S, W(φ) is determined by Boolean
algebra from the truth values that W assigns to the prime sentences of φ. In other
words, W is p.c. if W(φ∧ψ) = W(φ)∧W(ψ), W(φ∨ψ) = W(φ)∨W(ψ), and so on.

Given a set of sentences D, we define PC(D) to be the set of all p.c. worlds where
W(φ) = 1 for all φ ∈ D. We refer to PC(D) as the set of worlds propositionally
consistent with D.

Given a set of sentences Γ interpreted as a theory, we will refer to PC(Γ) as the
set of worlds consistent with Γ, because in this case PC(Γ) is equal to the set of
all worlds W such that

Γ ∪ {φ |W(φ) = 1} ∪ {¬φ |W(φ) = 0} 0 ⊥.

Note that a limited reasoner won’t be able to tell whether a given world W is in
PC(Γ). A reasoner can computably check whether a restriction of W to a finite
domain is propositionally consistent with a finite set of sentences, but that’s about
it. Roughly speaking, the definition of exploitation (below) will say that a good
reasoner should perform well when measured on day n by worlds propositionally
consistent with Dn, and we ourselves will be interested in deductive processes that
pin down a particular theory Γ by propositional consistency:

Definition 3.2.4 (Γ-Complete). Given a theory Γ, we say that a deductive process
D is Γ-complete if

PC(D∞) = PC(Γ).

As a canonical example, let Dn be the set of all theorems of PA provable in at
most n characters.1 Then D is PA-complete, and a reasoner with access to D can
be interpreted as someone who on day n knows all PA-theorems provable in ≤ n
characters, who must manage her uncertainty about other mathematical facts.

3.3 Efficient Computability
We use the following notion of efficiency throughout the paper:

Definition 3.3.1 (Efficiently Computable). An infinite sequence x is called
efficiently computable, abbreviated e.c., if there is a computable function f
that outputs xn on input n, with runtime polynomial in n (i.e. in the length of
n written in unary).

Our framework is not wedded to this definition; stricter notions of efficiency (e.g.,
sequences that can be computed in O(n2) time) would yield “dumber” inductors
with better runtimes, and vice versa. We use the set of polynomial-time computable
functions because it has some closure properties that are convenient for our purposes.

1. Because PA is a first-order theory, and the only assumption we made about L is that
it is a propositional logic, note that the axioms of first-order logic—namely, specialization
and distribution—must be included as theorems in D.

16

3.4 Traders
Roughly speaking, traders are functions that see the day n and the history of market
prices up to and including day n, and then produce a series of buy and sell orders,
by executing a strategy that is continuous as a function of the market history.

A linear combination of sentences can be interpreted as a “market order”, where
3φ− 2ψ says to buy 3 shares of φ and sell 2 shares of ψ. Very roughly, a trading
strategy for day n will be a method for producing market orders where the coefficients
are not numbers but functions which depend (continuously) on the market prices
up to and including day n.

Definition 3.4.1 (Valuation Feature). A valuation feature α : [0, 1]S×N+ → R
is a continuous function from valuation sequences to real numbers such that α(V)
depends only on the initial sequence V≤n for some n ∈ N+ called the rank of the
feature, rank(α). For any m ≥ n, we define α(V≤m) in the natural way. We will
often deal with features that have range in [0, 1]; we call these [0, 1]-features.

We write F for the set of all features, Fn for the set of valuation features of
rank ≤ n, and define an F-progression α to be a sequence of features such that
αn ∈ Fn.

The following valuation features find the price of a sentence on a particular day:

Definition 3.4.2 (Price Feature). For each φ ∈ S and n ∈ N+, we define a price
feature φ∗n ∈ Fn by the formula

φ∗n(V) := Vn(φ).

We call these “price features” because they will almost always be applied to a market
P, in which case φ∗n gives the price Pn(φ) of φ on day n as a function of P.

Very roughly, trading strategies will be linear combinations of sentences where the
coefficients are valuation features. The set of all valuation features is not computably
enumerable, so we define an expressible subset:

Definition 3.4.3 (Expressible Feature). An expressible feature ξ ∈ F is a
valuation feature expressible by an algebraic expression built from price features φ∗n
for each n ∈ N+ and φ ∈ S, rational numbers, addition, multiplication, max(−,−),
and a “safe reciprocation” function max(1,−)−1. See Appendix A.2 for more details
and examples. 2

We write EF for the set of all expressible features, EFn for the set of expressible
features of rank ≤ n, and define an EF-progression to be a sequence ξ such that
ξn ∈ EFn.

For those familiar with abstract algebra, note that for each n, EFn is a commu-
tative ring. We will write 2− φ∗6 for the function V 7→ 2− φ∗6(V) and so on, in the
usual way. For example, the feature

ξ := max(0, φ∗6 − ψ∗7)

checks whether the value of φ on day 6 is higher than the value of ψ on day 7. If so,
it returns the difference; otherwise, it returns 0. If ξ is applied to a market P, and
P6(φ) = 0.5 and P7(ψ) = 0.2, then ξ(P) = 0.3. Observe that rank(ξ) = 7, and that
ξ is continuous.

The reason for the continuity constraint on valuation features is as follows.
Traders will be allowed to use valuation features (which depend on the price history)
to decide how many shares of different sentences to buy and sell. This creates a
delicate situation, because we’ll be constructing a market that has prices which

2. In particular, expressible features are a generalization of arithmetic circuits. The
specific definition is somewhat arbitrary; what matters is that expressible features be (1)
continuous; (2) compactly specifiable in polynomial time; and (3) expressive enough to
identify a variety of inefficiencies in a market.

17

depend on the behavior of certain traders, creating a circular dependency where the
prices depend on trades that depend on the prices.

This circularity is related to classic paradoxes of self-trust. What should be the
price on a paradoxical sentence χ that says “I am true iff my price is less than 50
cents in this market”? If the price is less than 50¢, then χ pays out $1, and traders
can make a fortune buying χ. If the price is 50¢ or higher, then χ pays out $0, and
traders can make a fortune selling χ. If traders are allowed to have a discontinuous
trading strategy—buy χ if P(χ) < 0.5, sell χ otherwise—then there is no way to
find prices that clear the market.

Continuity breaks the circularity, by ensuring that if there’s a price where a
trader buys χ and a price where they sell χ then there’s a price in between where
they neither buy nor sell. In Section 5 we will see that this is sufficient to allow
stable prices to be found, and in Section 4.11 we will see that it is sufficient to
subvert the standard paradoxes of self-reference. The continuity constraint can be
interpreted as saying that the trader has only finite-precision access to the market
prices—they can see the prices, but there is some ε > 0 such that their behavior is
insensitive to an ε shift in prices.

We are almost ready to define trading strategies as a linear combination of
sentences with expressible features as coefficients. However, there is one more
complication. It will be convenient to record not only the amount of shares bought
and sold, but also the amount of cash spent or received. For example, consider again
the market order 3φ− 2ψ. If it is executed on day 7 in a market P, and P7(φ) = 0.4
and P7(ψ) = 0.3, then the cost is 3 · 40¢− 2 · 30¢ = 60¢. We can record the whole
trade as an affine combination −0.6 + 3φ− 2ψ, which can be read as “the trader
spent 60 cents to buy 3 shares of φ and sell 2 shares of ψ”. Extending this idea to
the case where the coefficients are expressible features, we get the following notion:

Definition 3.4.4 (Trading Strategy). A trading strategy for day n, also called
an n-strategy, is an affine combination of the form

T = c+ ξ1φ1 + · · ·+ ξkφk,

where φ1, . . . , φk are sentences, ξ1, . . . , ξk are expressible features of rank ≤ n, and

c = −
∑
i

ξiφi
∗n

is a “cash term” recording the net cash flow when executing a transaction that buys
ξi shares of φi for each i at the prevailing market price. (Buying negative shares
is called “selling”.) We define T [1] to be c, and T [φ] to be the coefficient of φ in T ,
which is 0 if φ 6∈ (φ1, . . . , φk).

An n-strategy T can be encoded by the tuples (φ1, . . . φk) and (ξ1, . . . ξk) because
the c term is determined by them. Explicitly, by linearity we have

T = ξ1 · (φ1 − φ1
∗n) + · · ·+ ξk · (φk − φk∗n),

which means any n-strategy can be written as a linear combination of (φi − φi∗n)
terms, each of which means “buy one share of φi at the prevailing price”.

As an example, consider the following trading strategy for day 5:[
(¬¬φ)∗5 − φ∗5

]
·
(
φ− φ∗5

)
+
[
φ∗5 − (¬¬φ)∗5

]
·
(
¬¬φ− (¬¬φ)∗5

)
.

This strategy compares the price of φ on day 5 to the price of ¬¬φ on day 5. If
the former is less expensive by δ, it purchase δ shares of φ at the prevailing prices,
and sells δ shares of ¬φ at the prevailing prices. Otherwise, it does the opposite. In
short, this strategy arbitrages φ against ¬¬φ, by buying the cheaper one and selling
the more expensive one.

We can now state the key definition of this section:

18

Definition 3.4.5 (Trader). A trader T is a sequence (T1, T2, . . .) where each
Tn is a trading strategy for day n.

We can visualize a trader as a person who gets to see the day n, think for a while,
and then produce a trading strategy for day n, which will observe the history of
market prices up to and including day n and execute a market order to buy and sell
different sentences at the prevailing market prices.

We will often consider the set of efficiently computable traders, which have to
produce their trading strategy in a time polynomial in n. We can visualize e.c.
traders as traders who are computationally limited: each day they get to think for
longer and longer—we can imagine them writing computer programs each morning
that assist them in their analysis of the market prices—but their total runtime may
only grow polynomially in n.

If s := Tn[φ] > 0, we say that T buys s shares of φ on day n, and if s < 0, we
say that T sells |s| shares of φ on day n. Similarly, if d := Tn[1] > 0, we say that T
receives d dollars on day n, and if d < 0, we say that T pays out |d| dollars on day n.

Each trade Tn has value zero according to Pn, regardless of what market P it is
executed in. Clever traders are the ones who make trades that are later revealed by
a deductive process D to have a high worth (e.g., by purchasing shares of provable
sentences when the price is low). As an example, a trader T with a basic grasp of
arithmetic and skepticism about some of the market P’s confident conjectures might
execute the following trade orders on day n:

Table 1: Visualizing markets and trades

Sentence Market prices Trade
φ :↔ 1 + 1 = 2 Pn(φ) = 90¢ Tn[φ] = 4 shares
ψ :↔ 1 + 1 6= 2 Pn(ψ) = 5¢ Tn[ψ] = −3 shares
χ :↔ “Goldbach’s conjecture” Pn(χ) = 98¢ Tn[χ] = −1 share

The net value of the shares bought and sold at these prices would be

4 · 90¢− 3 · 5¢− 1 · 98¢ = $2.47,

so if those three sentences were the only sentences bought and sold by Tn, Tn[1]
would be −2.47.

Trade strategies are a special case of affine combinations of sentences:
Definition 3.4.6 (Affine Combination). An F-combination A : S ∪ {1} → Fn is
an affine expression of the form

A := c+ α1φ1 + · · ·+ αkφk,

where (φ1, . . . , φk) are sentences and (c, α1, . . . , αk) are in F . We define R-
combinations, Q-combinations, and EF-combinations analogously.

We write A[1] for the trailing coefficient c, and A[φ] for the coefficient of φ,
which is 0 if φ 6∈ (φ1, . . . , φk). The rank of A is defined to be the maximum rank
among all its coefficients. Given any valuation V, we abuse notation in the usual
way and define the value of A (according to V) linearly by:

V(A) := c+ α1V(φ1) + · · ·+ αkV(φk).

An F-combination progression is a sequence A of affine combinations where An
has rank ≤ n. An EF-combination progression is defined similarly.
Note that a trade T is an F-combination, and the holdings T (P) from T against
P is a Q-combination. We will use affine combinations to encode the net holdings∑
i≤n Ti(P) of a trader after interacting with a market P, and later to encode linear

inequalities that hold between the truth values of different sentences.

19

3.5 Exploitation
We will now define exploitation, beginning with an example. Let L be the language
of PA, and D be a PA-complete deductive process. Consider a market P that assigns
Pn(“1 + 1 = 2”) = 0.5 for all n, and a trader who buys one share of “1 + 1 = 2” each
day. Imagine a reasoner behind the market obligated to buy and sell shares at the
listed prices, who is also obligated to pay out $1 to holders of φ-shares if and when
D says φ. Let t be the first day when “1 + 1 = 2” ∈ Dt. On each day, the reasoner
receives 50¢ from T , but after day t, the reasoner must pay $1 every day thereafter.
They lose 50¢ each day, and T gains 50¢ each day, despite the fact that T never
risked more than $t/2. In cases like these, we say that T exploits P.

With this example in mind, we define exploitation as follows:

Definition 3.5.1 (Exploitation). A trader T is said to exploit a valuation
sequence V relative to a deductive process D if the set of values{

W
(∑

i≤n Ti
(
V
)) ∣∣∣n ∈ N+,W ∈ PC(Dn)

}
is bounded below, but not bounded above.

Given a world W, the number W(
∑
i≤n Ti(P)) is the value of the trader’s net

holdings after interacting with the market P, where a share of φ is valued at $1 if φ
is true in W and $0 otherwise. The set {W(

∑
i≤n Ti(P)) | n ∈ N+,W ∈ PC(Dn)} is

the set of all assessments of T ’s net worth, across all time, according to worlds that
were propositionally consistent with D at the time. We informally call these plausible
assessments of the trader’s net worth. Using this terminology, Definition 3.5.1 says
that a trader exploits the market if their plausible net worth is bounded below, but
not above.

Roughly speaking, we can imagine that there is a person behind the market who
acts as a market maker, obligated to buy and sell shares at the listed prices. We
can imagine that anyone who sold a φ-share is obligated to pay $1 if and when D
says φ. Then, very roughly, a trader exploits the market if they are able to make
unbounded returns off of a finite investment.

This analogy is illustrative but incomplete—traders can exploit the market even
if they never purchase a sentence that appears in D. For example, let φ and ψ be
two sentences such that (φ ∨ ψ) is provable in PA, but such that neither φ nor ψ is
provable in PA. Consider a trader that bought 10 φ-shares at a price of 20¢ each, and
10 ψ-shares at a price of 30¢ each. Once D says (φ∨ψ), all remaining p.c. worlds will
agree that the portfolio −5 + 10φ+ 10ψ has a value of at least +5, despite the fact
that neither φ nor ψ is ever proven. If the trader is allowed to keep buying φ and
ψ shares at those prices, they would exploit the market, despite the fact that they
never buy decidable sentences. In other words, our notion of exploitation rewards
traders for arbitrage, even if they arbitrage between sentences that never “pay out”.

3.6 Main Result
Recall the logical induction criterion:

Definition 3.0.1 (The Logical Induction Criterion). A market P is said to satisfy
the logical induction criterion relative to a deductive process D if there is no
efficiently computable trader T that exploits P relative to D. A market P meeting
this criterion is called a logical inductor over D.

We may now state our main result:

Theorem 3.6.1. For any deductive process D, there exists a computable belief
sequence P satisfying the logical induction criterion relative to D.

20

Proof. In Section 5, we show how to take an arbitrary deductive process D and
construct a computable belief sequence LIA. Theorem 5.4.2 shows that LIA is a
logical inductor relative to the given D.

Definition 3.6.2 (Logical Inductor over Γ). Given a theory Γ, a logical inductor
over a Γ-complete deductive process D is called a logical inductor over Γ.

Corollary 3.6.3. For any recursively axiomatizable theory Γ, there exists a com-
putable belief sequence that is a logical inductor over Γ.

4 Properties of Logical Inductors

Here is an intuitive argument that logical inductors perform good reasoning under
logical uncertainty:

Consider any polynomial-time method for efficiently identifying patterns
in logic. If the market prices don’t learn to reflect that pattern, a clever
trader can use that pattern to exploit the market. Thus, a logical inductor
must learn to identify those patterns.

In this section, we will provide evidence supporting this intuitive argument, by
demonstrating a number of desirable properties possessed by logical inductors. The
properties that we demonstrate are broken into twelve categories:

1. Convergence and Coherence: In the limit, the prices of a logical inductor
describe a belief state which is fully logically consistent, and represents a
probability distribution over all consistent worlds.

2. Timely Learning: For any efficiently computable sequence of theorems, a
logical inductor learns to assign them high probability in a timely manner,
regardless of how difficult they are to prove. (And similarly for assigning low
probabilities to refutable statements.)

3. Learning Statistical Patterns: If a sequence of sentences appears pseudo-
random to all reasoners with the same runtime as the logical inductor, it learns
the appropriate statistical summary (assigning, e.g., 10% probability to the
claim “the nth digit of π is a 7” for large n, if digits of π are actually hard to
predict).

4. Calibration and Unbiasedness: Logical inductors are well-calibrated and,
given good feedback, unbiased.

5. Learning Logical Relationships: Logical inductors inductively learn to
respect logical constraints that hold between different types of claims, such as
by ensuring that mutually exclusive sentences have probabilities summing to
at most 1.

6. Non-Dogmatism: The probability that a logical inductor assigns to an
independent sentence φ is bounded away from 0 and 1 in the limit, by an
amount dependent on the complexity of φ. In fact, logical inductors strictly
dominate the universal semimeasure in the limit. This means that we can
condition logical inductors on independent sentences, and when we do, they
perform empirical induction.

7. Conditionals: Given a logical inductor P, the market given by the conditional
probabilities P(− | ψ) is a logical inductor over D extended to include ψ. Thus,
when we condition logical inductors on new axioms, they continue to perform
logical induction.

8. Expectations: Logical inductors give rise to a well-behaved notion of the
expected value of a logically uncertain variable.

21

9. Trust in Consistency: If the theory Γ underlying a logical inductor’s deduc-
tive process is expressive enough to talk about itself, then the logical inductor
learns inductively to trust Γ.

10. Reasoning about Halting: If there’s an efficient method for generating
programs that halt, a logical inductor will learn in a timely manner that those
programs halt (often long before having the resources to evaluate them). If
there’s an efficient method for generating programs that don’t halt, a logical
inductor will at least learn not to expect them to halt for a very long time.

11. Introspection: Logical inductors “know what they know”, in that their
beliefs about their current probabilities and expectations are accurate.

12. Self-Trust: Logical inductors trust their future beliefs.

For the sake of brevity, proofs are deferred to Section 6 and the appendix. Some
example proofs are sketched in this section, by outlining discontinuous traders that
would exploit any market that lacked the desired property. The deferred proofs
define polynomial-time continuous traders that approximate those discontinuous
strategies.

In what follows, let L be a language of propositional logic; let S be the set of
sentences written in L; let Γ ⊂ S be a computably enumerable set of propositional
formulas written in L (such as PA, where the propositional variables are prime
sentences in first-order logic, as discussed in Section 2); and let P be a computable
logical inductor over Γ, i.e., a market satisfying the logical induction criterion
relative to some Γ-complete deductive process D. We assume in this section that Γ
is consistent.

Note that while the computable belief sequence LIA that we define has finite
support on each day, in this section we assume only that P is a market. We do this
because our results below hold in this more general case, and can be applied to LIA
as a special case.

In sections 4.8-4.12 we will assume that Γ can represent computable functions.
This assumption is not necessary until Section 4.8.

4.1 Convergence and Coherence
Firstly, the market prices of a logical inductor converge:

Theorem 4.1.1 (Convergence). The limit P∞ : S → [0, 1] defined by

P∞(φ) := lim
n→∞

Pn(φ)

exists for all φ.

Proof sketch. (Proof in: 6.1 or B.4.)

Roughly speaking, if P never makes up its mind about φ, then it can be
exploited by a trader arbitraging shares of φ across different days. More
precisely, suppose by way of contradiction that the limit P∞(φ) does
not exist. Then for some p ∈ [0, 1] and ε > 0, we have Pn(φ) < p − ε
infinitely often and also Pn(φ) > p+ ε infinitely often. A trader can wait
until Pn(φ) < p− ε and then buy a share in φ at the low market price of
Pn(φ). Then the trader waits until some later m such that Pm(φ) > p+ε,
and sells back the share in φ at the higher price. This trader makes a
total profit of 2ε every time Pn(φ) oscillates in this way, at no risk, and
therefore exploits P. Since P implements a logical inductor, this is not
possible; therefore the limit P∞(φ) must in fact exist.

This sketch showcases the main intuition for the convergence of P, but elides a
number of crucial details. In particular, the trader we have sketched makes use of

22

discontinuous trading functions, and so is not a well-formed trader. These details
are treated in Section 6.1.

Next, the limiting beliefs of a logical inductor represent a coherent probability
distribution:
Theorem 4.1.2 (Limit Coherence). P∞ is coherent, i.e., it gives rise to an internally
consistent probability measure Pr on the set PC(Γ) of all worlds consistent with Γ,
defined by the formula

Pr(W(φ) = 1) := P∞(φ).
In particular, if Γ contains the axioms of first-order logic, then P∞ defines a proba-
bility measure on the set of first-order completions of Γ.
Proof sketch. (Proof in: 6.2 or C.10.)

The limit P∞(φ) exists by the convergence theorem, so Pr is well-defined.
Gaifman (1964) shows that Pr defines a probability measure over PC(D∞)
so long as the following three implications hold for all sentences φ an ψ:

• If Γ ` φ, then P∞(φ) = 1,
• If Γ ` ¬φ, then P∞(φ) = 0,
• If Γ ` ¬(φ ∧ ψ), then P∞(φ ∨ ψ) = P∞(φ) + P∞(ψ).

Let us demonstrate each of these three properties.
First suppose that Γ ` φ, but P∞(φ) = 1−ε for some ε > 0. Then shares
of φ will be underpriced, as they are worth 1 in every consistent world,
but only cost 1− ε. There is a trader who waits until φ is propositionally
provable from Dn, and until Pn(φ) has approximately converged, and
then starts buying shares of φ every day at the price Pn(φ). Since φ has
appeared in D, the shares immediately have a minimum plausible value
of $1. Thus the trader makes 1− Pn(φ) ≈ ε profit every day, earning an
unbounded total value, contradicting the logical induction criterion. But
P cannot be exploited, so P∞(φ) must be 1.
Similarly, if Γ ` ¬φ but P∞(φ) = ε > 0, then a trader could exploit P by
selling off shares in φ for a profit of Pn(φ) ≈ ε each day.
Finally, suppose that Γ ` ¬(φ ∧ ψ), but for some ε > 0,

P∞(φ ∨ ψ) = P∞(φ) + P∞(ψ)± ε.

Then there is a trader that waits until Pn has approximately converged
on these sentences, and until ¬(φ ∧ ψ) is propositionally provable from
Dn. At that point it’s a good deal to sell (buy) a share in φ ∨ ψ, and
buy (sell) a share in each of φ and ψ; the stocks will have values that
cancel out in every plausible world. Thus this trader makes a profit of
≈ ε from the price differential, and can then repeat the process. Thus,
they would exploit P. But this is impossible, so P∞ must be coherent.

Theorem 4.1.2 says that if P were allowed to run forever, and we interpreted its
prices as probabilities, then we would find its beliefs to be perfectly consistent. In
the limit, P assigns probability 1 to every theorem and 0 to every contradiction. On
independent sentences, its beliefs obey the constraints of probability theory; if φ
provably implies ψ, then the probability of ψ converges to a point no lower than the
limiting probability of φ, regardless of whether they are decidable. The resulting
probabilities correspond to a probability distribution over all possible ways that Γ
could be completed.

This justifies interpreting the market prices of a logical inductor as probabilities.
Logical inductors are not the first computable procedure for assigning probabilities
to sentences in a manner that is coherent in the limit; the algorithm of Demski
(2012) also has this property. The main appeal of logical induction is that their
beliefs become reasonable in a timely manner, outpacing the underlying deductive
process.

23

4.2 Timely Learning
It is not too difficult to define a reasoner that assigns probability 1 to all (and only)
the provable sentences, in the limit: simply assign probability 0 to all sentences, and
then enumerate all logical proofs, and assign probability 1 to the proven sentences.
The real trick is to recognize patterns in a timely manner, well before the sentences
can be proven by slow deduction.

Logical inductors learn to outpace deduction on any efficiently computable
sequence of provable statements.3 To illustrate, consider our canonical example
where Dn is the set of all theorems of PA provable in at most n characters, and
suppose φ is an e.c. sequence of theorems which are easy to generate but difficult to
prove. Let f(n) be the length of the shortest proof of φn, and assume that f is some
fast-growing function. At any given time n, the statement φn is ever further out
beyond Dn—it might take 1 day to prove φ1, 10 days to prove φ2, 100 days to prove
φ3, and so on. One might therefore expect that φn will also be “out of reach” for
Pn, and that we have to wait until a much later day close to f(n) before expecting
Pf(n)(φn) to be accurate. However, this is not the case! After some finite time N ,
P will recognize the pattern and begin assigning high probability to φ in a timely
manner.

Theorem 4.2.1 (Provability Induction). Let φ be an e.c. sequence of theorems.
Then

Pn(φn) hn 1.

Furthermore, let ψ be an e.c. sequence of disprovable sentences. Then

Pn(ψn) hn 0.

Proof sketch. (Proof in: 6.4 or C.3.)

Consider a trader that acts as follows. First wait until the time a when
Pa(φa) drops below 1− ε and buy a share of φa. Then wait until φa is
worth 1 in all worlds plausible at time f(a). Then repeat this process.
If Pn(φn) drops below 1 − ε infinitely often, then this trader makes ε
profit infinitely often, off of an initial investment of $1, and therefore
exploits the market. P is inexploitable, so Pn(φn) must converge to 1.
By a similar argument, Pn(ψn) must converge to 0.4

In other words, P will learn to start believing φn by day n at the latest, despite
the fact that φn won’t be deductively confirmed until day f(n), which is potentially
much later. In colloquial terms, if φ is a sequence of facts that can be generated
efficiently, then P inductively learns the pattern, and its belief in φ becomes accurate
faster than D can computationally verify the individual sentences.

For example, imagine that prg(n) is a program with fast-growing runtime, which
always outputs either 0, 1, or 2 for all n, but such that there is no proof of this in
the general case. Then

“∀x : prg(x) = 0 ∨ prg(x) = 1 ∨ prg(x) = 2”

is not provable. Now consider the sequence of statements

prg012 :=
(
“prg(n) = 0 ∨ prg(n) = 1 ∨ prg(n) = 2”

)
n∈N+

where each prg012n states that prg outputs a 0, 1, or 2 on that n in particular.
Each individual prg012n is provable (it can be proven by running prg on input
n), and prg012 is efficiently computable (because the sentences themselves can be

3. Recall that a sequence x is efficiently computable iff there exists a computable function
n 7→ xn with runtime polynomial in n.

4. The traders sketched here are optimized for ease of proof, not for efficiency—a clever
trader trying to profit from low prices on efficiently computable theorems would be able to
exploit the market faster than this.

24

written down quickly, even if prg is very difficult to evaluate). Thus, provability
induction says that any logical inductor will “learn the pattern” and start assigning
high probabilities to each individual prg012n no later than day n.

Imagine that D won’t determine the output of prg(n) until the f(n)th day, by
evaluating prg(n) in full. Provability induction says that P will eventually recognize
the pattern prg012 and start assigning high probability to prg012n no later than
the nth day, f(n)− n days before the evaluation finishes. This is true regardless of
the size of f(n), so if f is fast-growing, P will outpace D by an ever-growing margin.

Analogy: Ramanujan and Hardy. Imagine that the statements
φ are being output by an algorithm that uses heuristics to generate
mathematical facts without proofs, playing a role similar to the famously
brilliant, often-unrigorous mathematician Srinivas Ramanujan. Then P
plays the historical role of the beliefs of the rigorous G.H. Hardy who
tries to verify those results according to a slow deductive process (D).
After Hardy (P) verifies enough of Ramanujan’s claims (φ≤n), he begins
to trust Ramanujan, even if the proofs of Ramanujan’s later conjectures
are incredibly long, putting them ever-further beyond Hardy’s current
abilities to rigorously verify them. In this story, Hardy’s inductive
reasoning (and Ramanujan’s also) outpaces his deductive reasoning.

This idiom of assigning the right probabilities to φn no later than day n will be
common throughout the paper, so we give it a name.

Definition 4.2.2 (Timely Manner). Let φ be an e.c. sequence of sentences, and p
be an e.c. sequence of rational numbers. We say that P assigns p to φ in a timely
manner if for every ε > 0, there exists a time N such that for all n > N ,

|Pn(φn)− pn| < ε.

In other words, P assigns p to φ in a timely manner if

Pn(φn) hn pn.

Note that there are no requirements on how large N gets as a function of ε. As
such, when we say that P assigns probabilities p to φ in a timely manner, it may
take a very long time for convergence to occur. (See Section 5.5 for a discussion.)

As an example, imagine the reasoner who recognizes that sentences of the form
“1 + 1 + · · ·+ 1 is even” are true iff the number of ones is even. Let φ be the sequence
where φn is the version of that sentence with 2n ones. If the reasoner starts writing
a probability near 100% in the φn cell by day n at the latest, then intuitively, she
has begun incorporating the pattern into her beliefs, and we say that she is assigning
high probabilities to φ in a timely manner.

We can visualize ourselves as taking P’s belief states, sorting them by φ on one
axis and days on another, and then looking at the main diagonal of cells, to check
the probability of each φn on day n. Checking the nth sentence on the nth day is a
rather arbitrary choice, and we might hope that a good reasoner would assign high
probabilities to e.c. sequences of theorems at a faster rate than that. It is easy to
show that this is the case, by the closure properties of efficient computability. For
example, if φ is an e.c. sequence of theorems, then so are φ2n and φ2n+1, which each
enumerate half of φ at twice the speed, so by Theorem 4.2.1 (Provability Induction),
P will eventually learn to believe φ at a rate of at least two per day. Similarly, P
will learn to believe φ3n and φn2 and φ10n3+3 in a timely manner, and so on. Thus,
up to polynomial transformations, it doesn’t really matter which diagonal we check
when checking whether a logical inductor has begun “noticing a pattern”.

Furthermore, we will show that if P assigns the correct probability on the main
diagonal, then P also learns to keep them there:

25

Theorem 4.2.3 (Persistence of Knowledge). Let φ be an e.c. sequence of sentences,
and p be an e.c. sequence of rational-number probabilities. If P∞(φn) hn pn, then

sup
m≥n
|Pm(φn)− pn| hn 0.

Furthermore, if P∞(φn) .n pn, then

sup
m≥n

Pm(φn) .n pn,

and if P∞(φn) &n pn, then
inf
m≥n

Pm(φn) &n pn.

(Proof in: B.6.)

In other words, if P assigns p to φ in the limit, then P learns to assign probability
near pn to φn at all times m ≥ n. This theorem paired with the closure properties
of the set of efficiently computable sequences means that checking the probability of
φn on the nth day is a fine way to check whether P has begun recognizing a pattern
encoded by φ. As such, we invite the reader to be on the lookout for statements
of the form Pn(φn) as signs that P is recognizing a pattern, often in a way that
outpaces the underlying deductive process.

Theorems 4.2.1 (Provability Induction) and 4.2.3 (Persistence of Knowledge)
only apply when the pattern of limiting probabilities is itself efficiently computable.
For example, consider the sequence of sentences

πAeq7 :=
(
“π[Ack(n, n)] = 7”

)
n∈N+

where π[i] is the ith digit in the decimal expansion of π and Ack is the Ackermann
function. Each individual sentence is decidable, so the limiting probabilities are 0
for some πAeq7n and 1 for others. But that pattern of 1s and 0s is not efficiently
computable (assuming there is no efficient way to predict the Ackermann digits of
π), so provability induction has nothing to say on the topic.

In cases where the pattern of limiting probabilities are not e.c., we can still show
that if P is going to make its probabilities follow a certain pattern eventually, then it
learns to make its probabilities follow that pattern in a timely manner. For instance,
assume that each individual sentence πAeq7n (for n > 4) is going to spend a long
time sitting at 10% probability before eventually being resolved to either 1 or 0.
Then P will learn to assign Pn(πAeq7n) ≈ 0.1 in a timely manner:

Theorem 4.2.4 (Preemptive Learning). Let φ be an e.c. sequence of sentences.
Then

lim inf
n→∞

Pn(φn) = lim inf
n→∞

sup
m≥n

Pm(φn).

Furthermore,
lim sup
n→∞

Pn(φn) = lim sup
n→∞

inf
m≥n

Pm(φn).

(Proof in: B.3.)

Let’s unpack Theorem 4.2.4. The quantity supm≥n Pm(φn) is an upper bound
on the price Pm(φn) on or after day n, which we can interpret as the highest price
tag that that P will ever put on φn after we first start checking it on n. We can
imagine a sequence of these values: On day n, we start watching φn. As time goes
on, its price travels up and down until eventually settling somewhere. This happens
for each n. The limit infimum of supm≥n Pm(φn) is the greatest lower bound p past
which a generic φn (for n large) will definitely be pushed after we started watching it.
Preemptive Learning says that if P always eventually pushes φn up to a probability
at least p, then it will learn to assign each φn a probability at least p in a timely
manner (and similarly for least upper bounds).

26

For example, if each individual πAeq7n is eventually recognized as a claim about
digits of π and placed at probability 10% for a long time before being resolved, then
P learns to assign it probability 10% on the main diagonal. In general, if P is going
to learn a pattern eventually, it learns it in a timely manner.

This leaves open the question of whether a logical inductor P is smart enough to
recognize that the πAeq7 should each have probability 10% before they are settled
(assuming the Ackermann digits of π are hard to predict). We will return to that
question in Section 4.4, but first, we examine the reverse question.

4.3 Calibration and Unbiasedness
Theorem 4.2.1 (Provability Induction) shows that logical inductors are good at
detecting patterns in what is provable. Next, we ask: when a logical inductor
learns a pattern, when must that pattern be real? In common parlance, a source of
probabilistic estimates is called well calibrated if among statements where it assigns
a probability near p, the estimates are correct with frequency roughly p.

In the case of reasoning under logical uncertainty, measuring calibration is not
easy. Consider the sequence clusters constructed from correlated clusters of size 1,
10, 100, 1000, . . . , where the truth value of each cluster is determined by the parity
of a late digit of π:

clusters1 :↔“π[Ack(1, 1)] is even”
clusters2 :↔ · · · :↔ clusters11 :↔“π[Ack(2, 2)] is even”

clusters12 :↔ · · · :↔ clusters111 :↔“π[Ack(3, 3)] is even”
clusters112 :↔ · · · :↔ clusters1111 :↔“π[Ack(4, 4)] is even”

and so on. A reasoner who can’t predict the parity of the Ackermann digits of π
should assign 50% (marginal) probability to any individual clustersn for n large. But
consider what happens if the 9th cluster turns out to be true, and the next billion
sentences are all true. A reasoner who assigned 50% to those billion sentences was
assigning the right probabilities, but their calibration is abysmal: on the billionth
day, they have assigned 50% probability a billion sentences that were overwhelmingly
true. And if the 12th cluster comes up false, then on the trillionth day, they have
assigned 50% probability to a trillion sentences that were overwhelmingly false! In
cases like these, the frequency of truth oscillates eternally, and the good reasoner
only appears well-calibrated on the rare days where it crosses 50%.

The natural way to correct for correlations such as these is to check P’s conditional
probabilities instead of its marginal probabilities. This doesn’t work very well in
our setting, because given a logical sentence φ, the quantity that we care about will
almost always be the marginal probability of φ. The reason we deal with sequences
is because that lets us show that φ has reasonable probabilities relative to various
related sentences. For example, if φ := “prg(32) = 17”, then we can use our theorems
to relate the probability of φ to the probability of the sequence (“prg(n) = 17”)n∈N+ ,
and to the sequence (“prg(32) = n”)n∈N+ , and to the sequence (“prg(n) > n”)n∈N+ ,
and so on, to show that φ eventually has reasonable beliefs about prg (hopefully
before P has the resources to simply evaluate prg on input 32). But at the end
of the day, we’ll want to reason about the marginal probability of φ itself. In this
case, approximately-well-calibrated conditional probabilities wouldn’t buy us much:
there are 2n−1 possible truth assignments to the first n− 1 elements of φ, so if we
try to compute the marginal probability of φn from all the different conditional
probabilities, exponentially many small errors would render the answer useless.
Furthermore, intuitively, if φ is utterly unpredictable to P, then the probabilities
of all the different truth assignments to φ≤n−1 will go to 0 as n gets large, which
means the conditional probabilities won’t necessarily be reasonable. (In Section 4.4
will formalize a notion of pseudorandomness.)

Despite these difficulties, we can recover some good calibration properties on the
marginal probabilities if we either (a) restrict our consideration to sequences where
the average frequency of truth converges; or (b) look at subsequences of φ where P

27

has “good feedback” about the truth values of previous elements of the subsequence,
in a manner defined below.

To state our first calibration property, we will define two different sorts of
indicator functions that will prove useful in many different contexts.

Definition 4.3.1 (Theorem Indicator). Given a sentence φ, define ThmΓ(φ) to be
1 if Γ ` φ and 0 otherwise.

Definition 4.3.2 (Continuous Threshold Indicator). Let δ > 0 be a rational number,
and x and y be real numbers. We then define

Indδ(x > y) :=


0 if x ≤ y
x− y
δ

if y < x ≤ y + δ

1 if y + δ < x.

Notice that Indδ(x > y) has no false positives, and that it is linear in the region
between y and y + δ. We define Indδ(x < y) analogously, and we define

Indδ(a < x < b) := min(Indδ(x > a), Indδ(x < b)).

Observe that we can generalize this definition to the case where x and y are expressible
features, in which case Indδ(x > y) is an expressible [0, 1]-feature.

Now we can state our calibration theorem.

Theorem 4.3.3 (Recurring Calibration). Let φ be an e.c. sequence of decidable
sentences, a and b be rational numbers, δ be an e.c. sequence of positive rational
numbers, and suppose that

∑
n

(
Indδi

(a < Pi(φi) < b)
)
i∈N+ = ∞. Then, if the

sequence (∑
i≤n Indδi

(a < Pi(φi) < b) · ThmΓ(φi)∑
i≤n Indδi

(a < Pi(φi) < b)

)
n∈N+

converges, it converges to a point in [a, b]. Furthermore, if it diverges, it has a limit
point in [a, b]. (Proof in: D.3.)

Roughly, this says that if Pn(φn) ≈ 80% infinitely often, then if we look at the
subsequence where it’s 80%, the limiting frequency of truth on that subsequence is
80% (if it converges).

In colloquial terms, on subsequences where P says 80% and it makes sense to
talk about the frequency of truth, the frequency of truth is 80%, i.e., P isn’t seeing
shadows. If the frequency of truth diverges—as in the case with clusters—then P is
still well-calibrated infinitely often, but its calibration might still appear abysmal at
times (if they can’t predict the swings).

Note that calibration alone is not a very strong property: a reasoner can always
cheat to improve their calibration (i.e., by assigning probability 80% to things
that they’re sure are true, in order to bring up the average truth of their “80%”
predictions). What we really want is some notion of “unbiasedness”, which says that
there is no efficient method for detecting a predictable bias in a logical inductor’s
beliefs. This is something we can get on sequences where the limiting frequency of
truth converges, though again, if the limiting frequency of truth diverges, all we can
guarantee is a limit point.

Definition 4.3.4 (Divergent Weighting). A divergent weighting w ∈ [0, 1]N+ is
an infinite sequence of real numbers in [0, 1], such that

∑
n wn =∞.

Note that divergent weightings have codomain [0, 1] as opposed to {0, 1}, meaning
the weightings may single out fuzzy subsets of the sequence. For purposes of intuition,
imagine that w is a sequence of 0s and 1s, in which case each w can be interpreted as
a subsequence. The constraint that the w(n) sum to∞ ensures that this subsequence
is infinite.

28

Definition 4.3.5 (Generable From P). A sequence of rational numbers q is called
generable from P if there exists an e.c. EF-progression q† such that q†n(P) = qn
for all n. In this case we say that q is P-generable. P-generable R-sequences,
Q-combination sequences, and R-combination sequences are defined analogously.

Divergent weightings generable from P are fuzzy subsequences that are allowed
to depend continuously (via expressible market features) on the market history.
For example, the sequence (Ind0.01(Pn(φn) > 0.5))n∈N+ is a P-generable sequence
that singles out all times n when Pn(φn) is greater than 50%. Note that the set of
P-generable divergent weightings is larger than the set of e.c. divergent weightings,
as the P-generable weightings are allowed to vary continuously with the market
prices.
Theorem 4.3.6 (Recurring Unbiasedness). Given an e.c. sequence of decidable
sentences φ and a P-generable divergent weighting w, the sequence∑

i≤n wi · (Pi(φi)− ThmΓ(φi))∑
i≤n wi

has 0 as a limit point. In particular, if it converges, it converges to 0.
(Proof in: D.2.)

Letting w = (1, 1, . . .), this theorem says that the difference between the average
probability Pn(φn) and the average frequency of truth is 0 infinitely often (and 0
always, if the latter converges). Letting each wn be Indδ(a < Pn(φn) < b), we recover
Theorem 4.3.3 (Recurring Calibration). In general, the fraction in Theorem 4.3.6
can be interpreted as a measure of the “bias” of P on the fuzzy subsequence of φ
singled out by w. Then this theorem says that P is unbiased on all P-generable
subsequences where the frequency of truth converges (and unbiased infinitely often
on subsequences where it diverges). Thus, if an e.c. sequence of sentences can be
decomposed (by any P-generable weighting) into subsequences where the frequency
of truth converges, then P learns to assign probabilities such that there is no efficient
method for detecting a predictable bias in its beliefs.

However, not every sequence can be broken down into well-behaved subsequences
by a P-generable divergent weighting (if, for example, the truth values move “pseu-
dorandomly” in correlated clusters, as in the case of clusters). In these cases, it
is natural to wonder whether there are any conditions where P will be unbiased
anyway. Below, we show that the bias converges to zero whenever the weighting w
is sparse enough that P can gather sufficient feedback about φn in between guesses:
Definition 4.3.7 (Deferral Function). A function f : N+ → N+ is called a deferral
function if

1. f(n) > n for all n, and

2. f(n) can be computed in time polynomial in f(n), i.e., if there is some algorithm
and a polynomial function h such that for all n, the algorithm computes f(n)
within h(f(n)) steps.

If f is a deferral function, we say that f defers n to f(n).

Theorem 4.3.8 (Unbiasedness From Feedback). Let φ be any e.c. sequence of
decidable sentences, and w be any P-generable divergent weighting. If there exists a
strictly increasing deferral function f such that the support of w is contained in the
image of f and ThmΓ(φf(n)) is computable in O(f(n+ 1)) time, then∑

i≤n wi · (Pi(φi)− ThmΓ(φi))∑
i≤n wi

hn 0.

In this case, we say “w allows good feedback on φ”. (Proof in: D.5.)

29

In other words, P is unbiased on any subsequence of the data where a polynomial-
time machine can figure out how the previous elements of the subsequence turned
out before P is forced to predict the next one. This is perhaps the best we can hope
for: On ill-behaved sequences such as clusters, where the frequency of truth diverges
and (most likely) no polynomial-time algorithm can predict the jumps, the Pn(φn)
might be pure guesswork.

So how well does P perform on sequences like clusters? To answer, we turn to the
question of how P behaves in the face of sequences that it finds utterly unpredictable.

4.4 Learning Statistical Patterns
Consider the digits in the decimal expansion of π. A good reasoner thinking about
the 101,000,000th digit of π, in lieu of any efficient method for predicting the digit
before they must make their prediction, should assign roughly 10% probability
to that digit being a 7. We will now show that logical inductors learn statistical
patterns of this form.

To formalize this claim, we need some way of formalizing the idea that a sequence
is “apparently random” to a reasoner. Intuitively, this notion must be defined
relative to a specific reasoner’s computational limitations. After all, the digits of
π are perfectly deterministic; they only appear random to a reasoner who lacks
the resources to compute them. Roughly speaking, we will define a sequence to be
pseudorandom (relative to P) if there is no e.c. way to single out any one subsequence
that is more likely true than any other subsequence, not even using expressions
written in terms of the market prices (by way of expressible features):

Definition 4.4.1 (Pseudorandom Sequence). Given a set S of divergent weightings
(Definition 4.3.4), a sequence φ of decidable sentences is called pseudorandom
with frequency p over S if, for all weightings w ∈ S,

lim
n→∞

∑
i≤n wi · ThmΓ(φi)∑

i≤n wi

exists and is equal to p.

Note that if the sequence φ is actually randomly generated (say, by adding (c1, c2, . . .)
to the language of Γ, and tossing a coin weighted with probability p towards heads for
each i, to determine whether to add ci or ¬ci as an axiom) then φ is pseudorandom
with frequency p almost surely.5 Now:

Theorem 4.4.2 (Learning Pseudorandom Frequencies). Let φ be an e.c. sequence
of decidable sentences. If φ is pseudorandom with frequency p over the set of all
P-generable divergent weightings, then

Pn(φn) hn p.

(Proof in: 6.5 or D.8.)

For example, consider again the sequence πAeq7 where the nth element says
that the Ack(n, n)th decimal digit of π is a 7. The individual πAeq7n statements
are easy to write down (i.e., efficiently computable), but each one is difficult to
decide. Assuming there’s no good way to predict the Ackermann digits of π using a
P-generable divergent weighting, P will assign probability 10% to each πAeq7n in a
timely manner, while it waits for the resources to determine whether the sentence is
true or false. Of course, on each individual πAeq7n, P’s probability will go to 0 or 1
eventually, i.e., limm→∞ Pm(πAeq7n) ∈ {0, 1}.

5. Note that actually adding randomness to Γ in this fashion is not allowed, because we
assumed that the axioms of Γ are recursively computable. It is possible to construct a logical
inductors that have access to a source of randomness, by adding one bit of randomness to
the market each day, but that topic is beyond the scope of this paper.

30

Theorem 4.4.2 still tells us nothing about how P handles clusters (defined above),
because the frequency of truth in that sequence diverges, so it does not count as
pseudorandom by the above definition. To handle this case we will weaken our
notion of pseudorandomness, so that it includes more sequences, yielding a stronger
theorem. We will do this by allowing sequences to count as pseudorandom so long
as the limiting frequency of truth converges on “independent subsequences” where
the n+ 1st element of the subsequence doesn’t come until after the nth element can
be decided, as described below. Refer to Garrabrant, Soares, and Taylor (2016) for
a discussion of why this is a good way to broaden the set of sequences that count as
pseudorandom.

Definition 4.4.3 (f -Patient Divergent Weighting). Let f be a deferral function.
We say that a divergent weighting w is f-patient if there is some constant C such
that, for all n,

f(n)∑
i=n

wi(P) ≤ C

In other words, w is f-patient if the weight it places between days n and f(n) is
bounded.

While we are at it, we will also strengthen Theorem 4.4.2 in three additional
ways: we will allow the probabilities on the sentences to vary with time, and with
the market prices, and we will generalize hn to &n and .n.

Definition 4.4.4 (Varied Pseudorandom Sequence). Given a deferral function
f , a set S of f-patient divergent weightings, an e.c. sequence p of Γ-decidable
sentences, and a P-generable sequence p of rational probabilities, φ is called a p-
varied pseudorandom sequence (relative to S) if, for all w ∈ S,∑

i≤n wi · (pi − ThmΓ(φi))∑
i≤n wi

hn 0.

Furthermore, we can replace hn with &n or .n, in which case we say φ is varied
pseudorandom above p or varied pseudorandom below p, respectively.

Theorem 4.4.5 (Learning Varied Pseudorandom Frequencies). Given an e.c. se-
quence φ of Γ-decidable sentences and a P-generable sequence p of rational proba-
bilities, if there exists some f such that φ is p-varied pseudorandom (relative to all
f -patient P-generable divergent weightings), then

Pn(φn) hn pn.

Furthermore, if φ is varied pseudorandom above or below p, then the hn may be
replaced with &n or .n (respectively). (Proof in: D.7.)

Thus we see that P does learn to assign marginal probabilities Pn(clustersn) ≈ 0.5,
assuming the Ackermann digits of π are actually difficult to predict. Note that while
Theorem 4.4.5 requires each pn to be rational, the fact that the theorem is generalized
to varied pseudorandom above/below sequences means that Theorem 4.4.5 is a strict
generalization of Theorem 4.4.2 (Learning Pseudorandom Frequencies).

In short, Theorem 4.4.5 shows that logical inductors reliably learn in a timely
manner to recognize appropriate statistical patterns, whenever those patterns (which
may vary over time and with the market prices) are the best available method for
predicting the sequence using P-generable methods.

4.5 Learning Logical Relationships
Most of the above properties discuss the ability of a logical inductor to recognize
patterns in a single sequence—for example, they recognize e.c. sequences of theorems

31

in a timely manner, and they fall back on the appropriate statistical summaries in
the face of pseudorandomness. We will now examine the ability of logical inductors
to learn relationships between sequences.

Let us return to the example of the computer program prg which outputs either
0, 1, or 2 on all inputs, but for which this cannot be proven in general by Γ.
Theorem 4.2.1 (Provability Induction) says that the pattern

prg012 :=
(
“prg(n) = 0 ∨ prg(n) = 1 ∨ prg(n) = 2”

)
n∈N+

will be learned, in the sense that P will assign each prg012n a probability near 1 in
a timely manner. But what about the following three individual sequences?

prg0 :=
(
“prg(n) = 0”

)
n∈N+

prg1 :=
(
“prg(n) = 1”

)
n∈N+

prg2 :=
(
“prg(n) = 2”

)
n∈N+

None of the three sequences is a sequence of only theorems, so provability induction
does not have much to say. If they are utterly pseudorandom relative to r, then
Theorem 4.4.5 (Learning Varied Pseudorandom Frequencies) says that P will fall
back on the appropriate statistical summary, but that tells us little in cases where
there are predictable non-conclusive patterns (e.g., if prg(i) is more likely to output
2 when helper(i) outputs 17). In fact, if P is doing good reasoning, the probabilities
on the (prg0n,prg1n,prg2n) triplet ought to shift, as P gains new knowledge about
related facts and updates its beliefs. How could we tell if those intermediate beliefs
were reasonable?

One way is to check their sum. If P believes that prg(i) ∈ {0, 1, 2} and it knows
how disjunction works, then it should be the case that whenever Pn(prg012t) ≈ 1,
Pn(prg0t)+Pn(prg1t)+Pn(prg2t) ≈ 1. And this is precisely the case. In fact, logical
inductors recognize mutual exclusion between efficiently computable tuples of any
size, in a timely manner:

Theorem 4.5.1 (Learning Exclusive-Exhaustive Relationships). Let φ1, . . . , φk be k
e.c. sequences of sentences, such that for all n, Γ proves that φ1

n, . . . , φ
k
n are exclusive

and exhaustive (i.e. exactly one of them is true). Then

Pn(φ1
n) + · · ·+ Pn(φkn) hn 1.

Proof sketch. (Proof in: C.11.)

Consider the trader that acts as follows. On day n, they check the prices
of φ1

n . . . φ
k
n. If the sum of the prices is higher (lower) than 1 by some

fixed threshold ε > 0, they sell (buy) a share of each, wait until the
values of the shares are the same in every plausible world, and make a
profit of ε. (It is guaranteed that eventually, in every plausible world
exactly one of the shares will be valued at 1.) If the sum goes above 1 +ε
(below 1− ε) on the main diagonal infinitely often, this trader exploits
P. Logical inductors are inexploitable, so it must be the case that the
sum of the prices goes to 1 along the main diagonal.

This theorem suggests that logical inductors are good at learning to assign
probabilities that respect logical relationships between related sentences. To show
that this is true in full generality, we will generalize Theorem 4.5.1 to any linear
inequalities that hold between the actual truth-values of different sentences.

First, we define the following convention:

Convention 4.5.2 (Constraint). An R-combination A can be viewed as a con-
straint, in which case we say that a valuation V satisfies the constraint if V(A) ≥ 0.

32

For example, the constraint

AND := −2 + φ+ ψ

says that both φ and ψ are true, and it is satisfied by W iff W(φ) = W(ψ) = 1. As
another example, the pair of constraints

XOR := (1− φ− ψ, φ+ ψ − 1)

say that exactly one of φ and ψ is true, and are satisfied by P7 iff P7(φ) +P7(ψ) = 1.

Definition 4.5.3 (Bounded Combination Sequence). By BCS(P) (mnemonic:
bounded combination sequences) we denote the set of all P-generable R-
combination sequences A that are bounded, in the sense that there exists some
bound b such that ‖An‖1 ≤ b for all n, where ‖−‖1 includes the trailing coefficient.

Theorem 4.5.4 (Affine Provability Induction). Let A ∈ BCS(P) and b ∈ R. If, for
all consistent worlds W ∈ PC(Γ) and all n ∈ N+, it is the case that W(An) ≥ b,
then

Pn(An) &n b,
and similarly for = and hn, and for ≤ and .n. (Proof in: C.2.)

For example, consider the constraint sequence

A :=
(
1− prg0n − prg1n − prg2n

)
n∈N+

For all n and all consistent worlds W ∈ PC(Γ), the value W(An) is 0, so applying
Theorem 4.5.5 to A, we get that Pn(An) hn 0. By linearity, this means

Pn(prg0n) + Pn(prg1n) + Pn(prg2n) hn 1,

i.e., P learns that the three sequences are mutually exclusive and exhaustive in a
timely manner, regardless of how difficult prg is to evaluate. Affine Provability
Induction is a generalization of this idea, where the coefficients may vary (day by
day, and with the market prices).

We can push this idea further, as follows:

Theorem 4.5.5 (Affine Coherence). Let A ∈ BCS(P). Then

lim inf
n→∞

inf
W∈PC(Γ)

W(An) ≤ lim inf
n→∞

P∞(An) ≤ lim inf
n→∞

Pn(An),

and
lim sup
n→∞

Pn(An) ≤ lim sup
n→∞

P∞(An) ≤ lim sup
n→∞

sup
W∈PC(Γ)

W(An).

(Proof in: C.1.)

This theorem ties the ground truth on A, to the value of A in the limit, to the value
of A on the main diagonal. In words, it says that if all consistent worlds value An in
(a, b) for n large, then P∞ values An in (c, d) ⊆ (a, b) for n large (because P∞ is a
weighted mixture of all consistent worlds), and P learns to assign probabilities such
that Pn(An) ∈ (c, d) in a timely manner. In colloquial terms, P learns in a timely
manner to respect all linear inequalities that actually hold between sentences, so
long as those relationships can be enumerated in polynomial time.

For example, if helper(i)=err always implies prg(i)=0, P will learn this pattern,
and start assigning probabilities to Pn(“prg(n)=0”) which are no lower than those
of Pn(“helper(n)=err”). In general, if a series of sentences obey some complicated
linear inequalities, then so long as those constraints can be written down in polynomial
time, P will learn the pattern, and start assigning probabilities that respect those
constraints in a timely manner.

33

This doesn’t mean that P will assign the correct values (0 or 1) to each sentence
in a timely manner; that would be impossible for a deductively limited reasoner.
Rather, P’s probabilities will start satisfying the constraints in a timely manner. For
example, imagine a set of complex constraints holds between seven sequences, such
that exactly three sentences in each septuplet are true, but it’s difficult to tell which
three. Then P will learn this pattern, and start ensuring that its probabilities on
each septuplet sum to 3, even if it can’t yet assign particularly high probabilities to
the correct three.

If we watch an individual septuplet as P reasons, other constraints will push the
probabilities on those seven sentences up and down. One sentence might be refuted
and have its probability go to zero. Another might get a boost when P discovers
that it’s likely implied by a high-probability sentence. Another might take a hit
when P discovers it likely implies a low-probability sentence. Throughout all this,
Theorem 4.5.5 says that P will ensure that the seven probabilities always sum to ≈ 3.
P’s beliefs on any given day arise from this interplay of many constraints, inductively
learned.

Observe that Affine Coherence is a direct generalization of Theorem 4.2.1 (Prov-
ability Induction). One way to interpret this theorem is that it says that P is very
good at learning inductively to predict long-running computations. Given any e.c.
sequence of statements about the computation, if they are true then P learns to
believe them in a timely manner, and if they are false then P learns to disbelieve
them in a timely manner, and if they are related by logical constraints (such as by
exclusivity or implication) to some other e.c. sequence of statements, then P learns
to make its probabilities respect those constraints in a timely manner. This is one of
the main reasons why we think this class of algorithms deserves the name of “logical
inductor”.

Affine Coherence can also be interpreted as an approximate coherence condition
on the finite belief-states of P. It says that if a certain relationship among truth
values is going to hold in the future, then P learns to make that relationship hold
approximately in its probabilities, in a timely manner.6

In fact, we can use this idea to strengthen every theorem in sections 4.2-4.4, as
below. (Readers without interest in the strengthened theorems are invited to skip
to Section 4.6.)

Affine Strengthenings

Observe that Theorem 4.5.4 (Affine Provability Induction) is a strengthening of
Theorem 4.2.1 (Provability Induction).

Theorem 4.5.6 (Persistence of Affine Knowledge). Let A ∈ BCS(P). Then

lim inf
n→∞

inf
m≥n

Pm(An) = lim inf
n→∞

P∞(An)

and
lim sup
n→∞

sup
m≥n

Pm(An) = lim sup
n→∞

P∞(An).

(Proof in: B.5.)

To see that this is a generalization of Theorem 4.2.3 (Persistence of Knowledge), it
might help to first replace A with a sequence p of rational probabilities.

6. Another notion of approximate coherence goes by the name of “inductive coherence”
(Garrabrant, Fallenstein, et al. 2016). A reasoner is called inductively coherent if (1)
Pn(⊥) hn 0; (2) Pn(φn) converges whenever φ is efficiently computable and each φn

provably implies φn+1; and (3) for all efficiently computable sequences of provably mutually
exclusive and exhaustive triplets (φn, ψn, χn), Pn(φn)+Pn(ψn)+Pn(χn) hn 1. Garrabrant,
Fallenstein, et al. show that inductive coherence implies coherence in the limit, and argue
that this is a good notion of approximate coherence. Theorems 4.1.2 (Limit Coherence)
and 4.5.5 (Affine Coherence) imply inductive coherence, and indeed, logical induction is a
much stronger notion.

34

Theorem 4.5.7 (Affine Preemptive Learning). Let A ∈ BCS(P). Then

lim inf
n→∞

Pn(An) = lim inf
n→∞

sup
m≥n

Pm(An)

and
lim sup
n→∞

Pn(An) = lim sup
n→∞

inf
m≥n

Pm(An) .

(Proof in: B.2.)

Definition 4.5.8 (Determined via Γ). We say that a R-combination A is deter-
mined via Γ if, in all worlds W ∈ PC(Γ), the value W(A) is equal. Let ValΓ(A)
denote this value.

Similarly, a sequence A of R-combinations is said to be determined via Γ if An
is determined via Γ for all n.

Theorem 4.5.9 (Affine Recurring Unbiasedness). If A ∈ BCS(P) is determined via
Γ, and w is a P-generable divergent weighting,∑

i≤n wi · (Pi(Ai)−ValΓ(Ai))∑
i≤n wi

has 0 as a limit point. In particular, if it converges, it converges to 0. (Proof in: D.1.)

Theorem 4.5.10 (Affine Unbiasedness from Feedback). Given A ∈ BCS(P) that is
determined via Γ, a strictly increasing deferral function f such that ValΓ(An) can
be computed in time O(f(n+ 1)), and a P-generable divergent weighting w,∑

i≤n wi · (Pi(Ai)−ValΓ(Ai))∑
i≤n wi

hn 0.

In this case, we say “w allows good feedback on A”. (Proof in: D.4.)

Theorem 4.5.11 (Learning Pseudorandom Affine Sequences). Given a A ∈ BCS(P)
which is determined via Γ, if there exists deferral function f such that for any
P-generable f -patient divergent weighting w,∑

i≤n wi ·ValΓ(Ai)∑
i≤n wi

&n 0,

then
Pn(An) &n 0,

and similarly for hn, and .n. (Proof in: D.6.)

4.6 Non-Dogmatism
Cromwell’s rule says that a reasoner should not assign extreme probabilities (0
or 1) except when applied to statements that are logically true or false. The rule
was named by Lindley (1991), in light of the fact that Bayes’ theorem says that a
Bayesian reasoner can never update away from probabilities 0 or 1, and in reference
to the famous plea:

I beseech you, in the bowels of Christ, think it possible that you may be
mistaken. – Oliver Cromwell

The obvious generalization of Cromwell’s rule to a setting where a reasoner is
uncertain about logic is that they also should not assign extreme probabilities to
sentences that have not yet been proven or disproven. Logical inductors do not
satisfy this rule, as evidenced by the following theorem:

35

Theorem 4.6.1 (Closure under Finite Perturbations). Let P and P′ be markets
with Pn = P′n for all but finitely many n. Then P is a logical inductor if and only if
P′ is a logical inductor. (Proof in: G.7.)

This means that we can take a logical inductor, completely ruin its beliefs on the
23rd day (e.g., by setting P23(φ) = 0 for all φ), and it will still be a logical inductor.
Nevertheless, there is still a sense in which logical inductors are non-dogmatic, and
can “think it possible that they may be mistaken”:
Theorem 4.6.2 (Non-Dogmatism). If Γ 0 φ then P∞(φ) < 1, and if Γ 0 ¬φ then
P∞(φ) > 0.
Proof sketch. (Proof in: G.4.)

Consider a trader that watches φ and buys whenever it gets low, as
follows. The trader starts with $1. They spend their first 50 cents when
Pn(φ) < 1/2, purchasing one share. They spend their next 25 cents when
Pn(φ) < 1/4, purchasing another share. They keep waiting for Pn(φ) to
drop low enough that they can spend the next half of their initial wealth
to buy one more share. Because φ is independent, there always remains
at least one world W such that W(φ) = 1, so if Pn(φ)→ 0 as n→∞ then
their maximum plausible profits are $1 + $1 + $1 +. . . which diverges,
and they exploit the market. Thus, P∞(φ) must be bounded away from
zero.

In other words, if φ is independent from Γ, then P’s beliefs about φ won’t get stuck
converging to 0 or 1. By Theorem 4.6.1 (Closure under Finite Perturbations), P may
occasionally jump to unwarranted conclusions—believing with “100% certainty”, say,
that Euclid’s fifth postulate follows from the first four—but it always corrects these
errors, and eventually develops conservative beliefs about independent sentences.

Theorem 4.6.2 guarantees that P will be reasonable about independent sentences,
but it doesn’t guarantee reasonable beliefs about theories, because theories can
require infinitely many axioms. For example, let Γ be a theory of pure first-order
logic, and imagine that the language L has a free binary relation symbol “ ∈ ”.
Now consider the sequence ZFCaxioms of first-order axioms of Zermelo-Fraenkel
set theory (ZFC) which say to interpret “ ∈ ” in the set-theoretic way, and note
that ZFCaxioms is infinite. Each individual sentence ZFCaxiomsn is consistent with
first-order logic, but if P∞’s odds on each axiom were 50:50 and independent, then
it would say that the probability of them all being true simultaneously was zero.
Fortunately, for any computably enumerable sequence of sentences that are mutually
consistent, P∞ assigns positive probability to them all being simultaneously true.
Theorem 4.6.3 (Uniform Non-Dogmatism). For any computably enumerable se-
quence of sentences φ such that Γ ∪ φ is consistent, there is a constant ε > 0 such
that for all n,

P∞(φn) ≥ ε.
(Proof in: G.2.)

If φn is the conjunction of the first n axioms of ZFC, Theorem 4.6.3 shows that P∞
assigns positive probability to theories in which the symbol “∈” satisfies all axioms
of ZFC (assuming ZFC is consistent).

Reasoning about individual sentences again, we can put bounds on how far each
sentence φ is bounded away from 0 and 1, in terms of the prefix complexity κ(φ) of
φ, i.e., the length of the shortest prefix that causes a fixed universal Turing machine
to output φ.7

7. We use prefix complexity (the length of the shortest prefix that causes a UTM to
output φ) instead of Kolmogorov complexity (the length of the shortest complete program
that causes a UTM to output φ) because it makes the proof slightly easier. (And, in the
opinion of the authors, prefix complexity is the more natural concept.) Both types of
complexity are defined relative to an arbitrary choice of universal Turing machine (UTM),
but our theorems hold for every logical inductor regardless of the choice of UTM, because
changing the UTM only amounts to changing the constant terms by some fixed amount.

36

Theorem 4.6.4 (Occam Bounds). There exists a fixed positive constant C such
that for any sentence φ with prefix complexity κ(φ), if Γ 0 ¬φ, then

P∞(φ) ≥ C2−κ(φ),

and if Γ 0 φ, then
P∞(φ) ≤ 1− C2−κ(φ).

(Proof in: G.3.)

This means that if we add a sequence of constant symbols (c1, c2, . . .) not
mentioned in Γ to the language L, then P’s beliefs about statements involving those
constants will depend on the complexity of the claim. Roughly speaking, if you ask
after the probability of a claim like “c1 = 10 ∧ c2 = 7 ∧ . . . ∧ cn = −3” then the
answer will be no lower than the probability that a simplicity prior assigns to the
shortest program that outputs (10, 7, . . . ,−3).

In fact, the probability may be a fair bit higher, if the claim is part of a
particularly simple sequence of sentences. In other words, logical inductors can be
used to reason about empirical uncertainty as well as logical uncertainty, by using
P∞ as a full-fledged sequence predictor:

Theorem 4.6.5 (Domination of the Universal Semimeasure). Let (b1, b2, . . .) be a
sequence of zero-arity predicate symbols in L not mentioned in Γ, and let σ≤n =
(σ1, . . . , σn) be any finite bitstring. Define

P∞(σ≤n) := P∞(“(b1 ↔ σ1 = 1) ∧ (b2 ↔ σ2 = 1) ∧ . . . ∧ (bn ↔ σn = 1)”),

such that, for example, P∞(01101) = P∞(“¬b1 ∧ b2 ∧ b3 ∧ ¬b4 ∧ b5”). Let M be a
universal continuous semimeasure. Then there is some positive constant C such that
for any finite bitstring σ≤n,

P∞(σ≤n) ≥ C ·M(σ≤n).

(Proof in: G.5.)

In other words, logical inductors can be viewed as a computable approximation to a
normalized probability distribution that dominates the universal semimeasure. In
fact, this dominance is strict:

Theorem 4.6.6 (Strict Domination of the Universal Semimeasure). The universal
continuous semimeasure does not dominate P∞; that is, for any positive constant C
there is some finite bitstring σ≤n such that

P∞(σ≤n) > C ·M(σ≤n).

(Proof in: G.6.)

In particular, by Theorem 4.6.3 (Uniform Non-Dogmatism), logical inductors assign
positive probability to the set of all completions of theories like PA and ZFC, whereas
universal semimeasures do not. This is why we can’t construct approximately
coherent beliefs about logic by fixing an enumeration of logical sentences and
conditioning a universal semimeasure on more axioms of Peano arithmetic each
day: the probabilities that the semimeasure assigns to those conjunctions must
go to zero, so the conditional probabilities may misbehave. (If this were not the
case, it would be possible to sample a complete extension of Peano arithmetic with
positive probability, because universal semimeasures are approximable from below;
but this is impossible. See the proof of Theorem 4.6.6 for details.) While P∞ is
limit-computable, it is not approximable from below, so (roughly speaking) it can
and does outperform the universal semimeasure when reasoning about arithmetical
claims.

37

4.7 Conditionals
One way to interpret Theorem 4.6.5 (Domination of the Universal Semimeasure)
is that when we condition P∞ on independent sentences about which it knows
nothing, it performs empirical (scientific) induction. We will now show that when
we condition P, it also performs logical induction.

In probability theory, it is common to discuss conditional probabilities such as
Pr(A | B) := Pr(A ∧ B)/Pr(B) (for any B with Pr(B) > 0), where Pr(A | B) is
interpreted as the probability of A restricted to world where B is true. In the domain
of logical uncertainty, we can define conditional probabilities in the analogous way:

Definition 4.7.1 (Conditional Probability). Let φ and ψ be sentences, and let V
be a valuation with V(ψ) > 0. Then we define

V(φ | ψ) :=
{
V(φ ∧ ψ)/V(ψ) if V(φ ∧ ψ) < V(ψ)
1 otherwise.

Given a valuation sequence V, we define

V(− | ψ) := (V1(− | ψ),V2(− | ψ), . . .).

Defining V(φ | ψ) to be 1 if V(ψ) = 0 is nonstandard, but convenient for our theorem
statements and proofs. The reader is welcome to ignore the conditional probabilities
in cases where V(ψ) = 0, or to justify our definition from the principle of explosion
(which says that from a contradiction, anything follows). This definition also caps
V(φ | ψ) at 1, which is necessary because there’s no guarantee that V knows that
φ ∧ ψ should have a lower probability than ψ. For example, if it takes P more than
17 days to learn how “∧” interacts with φ and ψ, then it might be the case that
P17(φ ∧ ψ) = 0.12 and P17(ψ) = 0.01, in which case the uncapped “conditional
probability” of φ ∧ ψ given ψ according to P17 would be twelve hundred percent.

This fact doesn’t exactly induce confidence in P(− | ψ). Nevertheless, we have
the following theorem:

Theorem 4.7.2 (Closure Under Conditioning). The sequence P(− | ψ) is a logical
inductor over Γ ∪ {ψ}. Furthermore, given any efficiently computable enumeration
Ψ ⊆ S of sentences, the sequence

(P1(− | ψ1),P2(− | ψ1 ∧ ψ2),P3(− | ψ1 ∧ ψ2 ∧ ψ3), . . .) ,

where the nth pricing is conditioned on the first n sentences in Ψ, is a logical inductor
over Γ ∪Ψ. (Proof in: G.8.)

In other words, if we condition logical inductors on logical sentences, the result
is still a logical inductor, and so the conditional probabilities of a logical inductor
continues to satisfy all the desirable properties satisfied by all logical inductors. This
also means that one can obtain a logical inductor for Peano arithmetic by starting
with a logical inductor over an empty theory, and conditioning it on PA.

With that idea in mind, we will now begin examining questions about logical
inductors that assume Γ can represent computable functions, such as questions
about P’s beliefs about Γ, computer programs, and itself.

4.8 Expectations
In probability theory, it is common to ask the expected (average) value of a variable
that takes on different values in different possible worlds. Emboldened by our success
with conditional probabilities, we will now define a notion of the expected values of
logical variables, and show that these are also fairly well-behaved. This machinery
will be useful later when we ask logical inductors for their beliefs about themselves.

We begin by defining a notion of logically uncertain variables, which play a
role analogous to the role of random variables in probability theory. For the sake

38

of brevity, we will restrict our attention to logically uncertain variables with their
value in [0, 1]; it is easy enough to extend this notion to a notion of arbitrary
bounded real-valued logically uncertain variables. (It does, however, require carrying
a variable’s bounds around everywhere, which makes the notation cumbersome.)

To define logically uncertain variables, we will need to assume that Γ is capable
of representing rational numbers and proving things about them. Later, we will
use expected values to construct sentences that talk about things like the expected
outputs of a computer program. Thus, in this section and in the remainder of
Section 4, we will assume that Γ can represent computable functions.

Definition 4.8.1 (Logically Uncertain Variable). A logically uncertain variable,
abbreviated LUV, is any formula X free in one variable that defines a unique value
via Γ, in the sense that

Γ ` ∃x : ∀x′ : X(x′)→ x′ = x.

We refer to that value as the value of X. If Γ proves that the value of X is in [0, 1],
we call X a [0,1]-LUV.

Given a [0, 1]-LUV X and a consistent world W ∈ PC(Γ), the value of X in
W is defined to be

W(X) := sup {x ∈ [0, 1] |W(“X ≥ x”) = 1} .

In other words, W(X) is the supremum of values that do not exceed X according to
W. (This rather roundabout definition is necessary in cases where W assigns X a
non-standard value.)

We write U for the set of all [0, 1]-LUVs. When manipulating logically uncertain
variables, we use shorthand like “X < 0.5” for “∀x : X(x)→ x < 0.5”. See Section 2
for details.

As an example, Half := “ν = 0.5” is a LUV, where the unique real number that
makes Half true is rather obvious. A more complicated LUV is

TwinPrime := “1 if the twin prime conjecture is true, 0 otherwise”;

this is a deterministic quantity (assuming Γ actually proves the twin prime conjecture
one way or the other), but it’s reasonable for a limited reasoner to be uncertain about
the value of that quantity. In general, if f : N+ → [0, 1] is a computable function
then “f(7)” is a LUV, because “f(7)” is shorthand for the formula “γf (7, ν)”, where
γf is the predicate of Γ representing f .

With LUVs in hand, we can define a notion of P’s expected value for a LUV X
on day n with precision k. The obvious idea is to take the sum

lim
k→∞

k−1∑
i=0

i

k
Pn(“i/k < X ≤ (i+ 1)/k”).

However, if Pn hasn’t yet figured out that X pins down a unique value, then it
might put high probability on X being in multiple different intervals, and the simple
integral of a [0, 1]-valued LUV could fall outside the [0, 1] interval. This is a nuisance
when we want to treat the expectations of [0, 1]-LUVs as other [0, 1]-LUVs, so instead,
we will define expectations using an analog of a cumulative distribution function. In
probability theory, the expectation of a [0, 1]-valued random variable V with density
function ρV is given by E(V) =

∫ 1
0 x ·ρV (x)dx. We can rewrite this using integration

by parts as

E(V) =
∫ 1

0
Pr(V > x)dx.

This motivates the following definition of expectations for LUVs:

39

Definition 4.8.2 (Expectation). For a given valuation V, we define the approxi-
mate expectation operator EV

k for V with precision k by

EV
k (X) :=

k−1∑
i=0

1
k
V(“X > i/k”).

where X is a [0, 1]-LUV.

This has the desirable property that EV
k (X) ∈ [0, 1], because V(−) ∈ [0, 1].

We will often want to take a limit of EPn

k (X) as both k and n approach ∞. We
hereby make the fairly arbitrary choice to focus on the case k = n for simplicity,
adopting the shorthand

En := EPn
n .

In other words, when we examine how a logical inductor’s expectations change
on a sequence of sentences over time, we will (arbitrarily) consider approximate
expectations that gain in precision at a rate of one unit per day.

We will now show that the expectation operator En possesses properties that
make it worthy of that name.

Theorem 4.8.3 (Expectations Converge). The limit E∞ : S → [0, 1] defined by

E∞(X) := lim
n→∞

En(X)

exists for all X ∈ U . (Proof in: E.4.)

Note that E∞(X) might not be rational.
Because P∞ defines a probability measure over PC(Γ), E∞(X) is the average

value of W(X) across all consistent worlds (weighted by P∞). In other words, every
LUV X can be seen as a random variable with respect to the measure P∞, and E∞
acts as the standard expectation operator on P∞. Furthermore,

Theorem 4.8.4 (Linearity of Expectation). Let a, b be bounded P-generable se-
quences of rational numbers, and let X,Y , and Z be e.c. sequences of [0, 1]-LUVs.
If we have Γ ` Zn = anXn + bnYn for all n, then

anEn(Xn) + bnEn(Yn) hn En(Zn).

(Proof in: E.9.)

For our next result, we want a LUV which can be proven to take value 1 if φ is
true and 0 otherwise.

Definition 4.8.5 (Indicator LUV). For any sentence φ, we define its indicator
LUV by the formula

1(φ) := “(φ ∧ (ν = 1)) ∨ (¬φ ∧ (ν = 0))”.

Observe that 1(φ)(1) is equivalent to φ, and 1(φ)(0) is equivalent to ¬φ.

Theorem 4.8.6 (Expectations of Indicators). Let φ be an e.c. sequence of sentences.
Then

En(1(φn)) hn Pn(φn).
(Proof in: E.10.)

In colloquial terms, Theorem 4.8.6 says that a logical inductor learns that asking for
the expected value of 1(φ) is the same as asking for the probability of φ.

To further demonstrate that expectations work as expected, we will show that
they satisfy generalized versions of all theorems proven in sections 4.2-4.5. (Readers
without interest in the versions of those theorems for expectations are invited to
skip to Section 4.9.)

40

Collected Theorems for Expectations

Definition 4.8.7 (LUV Valuation). A LUV valuation is any function U : U → [0, 1].
Note that EV

n and EV
∞ are LUV valuations for any valuation V and n ∈ N+, and

that every world W ∈ PC(Γ) is a LUV valuation.

Definition 4.8.8 (LUV Combination). An F-LUV-combination B : U ∪ {1} →
Fn is an affine expression of the form

B := c+ ξ1X1 + · · ·+ ξkXk,

where (X1, . . . , Xk) are [0, 1]-LUVs and (c, ξ1, . . . , ξk) are in F . An EF-LUV-
combination, an R-LUV-combination, and a Q-LUV-combination are de-
fined similarly.

The following concepts are all defined analogously to how they are defined for
sentence combinations: B[1], B[X], rank(B), U(B) for any LUV valuation U, F-
LUV-combination progressions, EF-LUV-combination progressions, and
P-generable LUV-combination sequences. (See definitions 3.4.6 and 4.3.5 for details.)

Definition 4.8.9 (Bounded LUV-Combination Sequence). By BLCS(P) (mnemonic:
bounded LUV-combination sequences) we denote the set of all P-generable R-
LUV-combination sequences B that are bounded, in the sense that there exists some
bound b such that ‖Bn‖1 ≤ b for all n, where ‖−‖1 includes the trailing coefficient.

Theorem 4.8.10 (Expectation Provability Induction). Let B ∈ BLCS(P) and
b ∈ R. If, for all consistent worlds W ∈ PC(Γ) and all n ∈ N+, it is the case that
W(Bn) ≥ b, then

En(Bn) &n b,
and similarly for = and hn, and for ≤ and .n. (Proof in: E.8.)

Theorem 4.8.11 (Expectation Coherence). Let B ∈ BLCS(P). Then

lim inf
n→∞

inf
W∈PC(Γ)

W(Bn) ≤ lim inf
n→∞

E∞(Bn) ≤ lim inf
n→∞

En(Bn),

and
lim sup
n→∞

En(Bn) ≤ lim sup
n→∞

E∞(Bn) ≤ lim sup
n→∞

sup
W∈PC(Γ)

W(Bn).

(Proof in: E.7.)

Theorem 4.8.12 (Persistence of Expectation Knowledge). Let B ∈ BLCS(P).
Then

lim inf
n→∞

inf
m≥n

Em(Bn) = lim inf
n→∞

E∞(Bn)

and
lim sup
n→∞

sup
m≥n

Em(Bn) = lim sup
n→∞

E∞(Bn).

(Proof in: E.6.)

Theorem 4.8.13 (Expectation Preemptive Learning). Let B ∈ BLCS(P). Then

lim inf
n→∞

En(Bn) = lim inf
n→∞

sup
m≥n

Em(Bn)

and
lim sup
n→∞

En(Bn) = lim sup
n→∞

inf
m≥n

Em(Bn) .

(Proof in: E.3.)

41

Definition 4.8.14 (Determined via Γ (for LUV-Combinations)). We say that a
R-LUV-combination B is determined via Γ if, in all worlds W ∈ PC(Γ), the value
W(B) is equal. Let ValΓ(B) denote this value.

Similarly, a sequence B of R-LUV-combinations is said to be determined via Γ
if Bn is determined via Γ for all n.

Theorem 4.8.15 (Expectation Recurring Unbiasedness). If B ∈ BLCS(P) is de-
termined via Γ, and w is a P-generable divergent weighting,∑

i≤n wi · (Ei(Bi)−ValΓ(Bi))∑
i≤n wi

has 0 as a limit point. In particular, if it converges, it converges to 0.

Theorem 4.8.16 (Expectation Unbiasedness From Feedback). Given B ∈ BLCS(P)
that is determined via Γ, a strictly increasing deferral function f such that ValΓ(An)
can be computed in time O(f(n+ 1)), and a P-generable divergent weighting w,∑

i≤n wi · (Ei(Bi)−ValΓ(Bi))∑
i≤n wi

hn 0.

In this case, we say “w allows good feedback on B”. (Proof in: E.12.)

Theorem 4.8.17 (Learning Pseudorandom LUV Sequences). Given a B ∈ BLCS(P)
which is determined via Γ, if there exists a deferral function f such that for any
P-generable f -patient divergent weighting w,∑

i≤n wi ·ValΓ(Bi)∑
i≤n wi

&n 0,

then
En(Bn) &n 0.

(Proof in: E.13.)

4.9 Trust in Consistency
The theorems above all support the hypothesis that logical inductors develop rea-
sonable beliefs about logic. One might then wonder what a logical inductor has to
say about some of the classic questions in meta-mathematics. For example, what
does a logical inductor over PA say about the consistency of Peano arithmetic?

Definition 4.9.1 (Consistency Statement). Given a recursively axiomatizable theory
Γ′, define the n-consistency statement of Γ′ to be the formula with one free
variable ν such that

Con(Γ′)(ν) := “There is no proof of ⊥ from Γ′ with ν or fewer symbols”,

written in L using a Gödel encoding. For instance, Con(PA)(“ Ack(10, 10)”) says
that any proof of ⊥ from PA requires at least Ack(10, 10) symbols.

We further define “Γ′ is consistent” to be the universal generalization

“∀n : there is no proof of ⊥ from Γ′ in n or fewer symbols”,

and “Γ′ is inconsistent” for its negation.

42

Theorem 4.9.2 (Belief in Finitistic Consistency). Let f be any computable function.
Then

Pn(Con(Γ)(“f(n)”)) hn 1.
(Proof in: C.4.)

In other words, if Γ is in fact consistent, then P learns to trust it for arbitrary finite
amounts of time. For any fast-growing function f you can name, P eventually learns
to believe Γ is consistent for proofs of length at most, by day n at the latest. In
colloquial terms, if we take a logical inductor over PA and show it a computable
function f that, on each input n, tries a new method for finding an inconsistency in
PA, then the logical inductor will stare at the function for a while and eventually
conclude that it’s not going to succeed (by learning to assign low probability to f(n)
proving ⊥ from PA by day n at the latest, regardless of how long f runs). That is
to say, a logical inductor over PA learns to trust Peano arithmetic inductively.

By the same mechanism, a logical inductor over Γ can learn inductively to
trust the consistency of any consistent theory, including consistent theories that are
stronger than Γ (in the sense that they can prove Γ consistent):

Theorem 4.9.3 (Belief in the Consistency of a Stronger Theory). Let Γ′ be any
recursively axiomatizable consistent theory. Then

Pn(Con(Γ′)(“f(n)”)) hn 1.

(Proof in: C.5.)

For instance, a logical inductor over PA can learn inductively to trust the consistency
of ZFC for finite proofs of arbitrary length (assuming ZFC is in fact consistent).

These two theorems alone are unimpressive. Any algorithm that assumes con-
sistency until proven otherwise can satisfy these theorems, and because every
inconsistent theory admits a finite proof of inconsistency, those naïve algorithms
will disbelieve any inconsistent theory eventually. But those algorithms will still
believe inconsistent theories for quite a long time, whereas logical inductors learn to
distrust inconsistent theories in a timely manner:

Theorem 4.9.4 (Disbelief in Inconsistent Theories). Let Γ′ be an e.c. sequence of
recursively axiomatizable inconsistent theories. Then

Pn(“Γ′n is inconsistent”) hn 1,

so
Pn(“Γ′n is consistent”) hn 0.

(Proof in: C.6.)

In other words, logical inductors learn in a timely manner to distrust inconsistent
theories that can be efficiently named, even if the shortest proofs of inconsistency
are very long.

Note that Theorem 4.9.2 (Belief in Finitistic Consistency) does not say

P∞(“Γ is consistent”)

is equal to 1, nor even that it’s particularly high. On the contrary, by Theorem 4.6.2
(Non-Dogmatism), the limiting probability on that sentence is bounded away from 0
and 1 (because both that sentence and its negation are consistent with Γ). Intuitively,
D never reveals evidence against the existence of non-standard numbers, so P
remains open to the possibility. This is important for Theorem 4.7.2 (Closure Under
Conditioning), which say that logical inductors can safely be conditioned on any
sequence of statements that are consistent with Γ, but it also means that P will
not give an affirmative answer to the question of whether PA is consistent in full
generality.

43

In colloquial terms, if you hand a logical inductor any particular computation,
it will tell you that that computation isn’t going to output a proof ⊥ from the
axioms of PA, but if you ask whether PA is consistent in general, it will start waxing
philosophical about non-standard numbers and independent sentences—not unlike a
human philosopher.

A reasonable objection here is that Theorem 4.9.2 (Belief in Finitistic Consis-
tency) is not talking about the consistency of the Peano axioms, it’s talking about
computations that search for proofs of contradiction from PA. This is precisely
correct, and brings us to our next topic.

4.10 Reasoning about Halting
Consider the famous halting problem of Turing (1936). Turing proved that there is
no general algorithm for determining whether or not an arbitrary computation halts.
Let’s examine what happens when we confront logical inductors with the halting
problem.

Theorem 4.10.1 (Learning of Halting Patterns). Let m be an e.c. sequence of
Turing machines, and x be an e.c. sequence of bitstrings, such that mn halts on input
xn for all n. Then

Pn(“mn halts on input xn”) hn 1.
(Proof in: C.7.)

Note that the individual Turing machines do not need to have fast runtime. All
that is required is that the sequence m be efficiently computable, i.e., it must be
possible to write out the source code specifying mn in time polynomial in n. The
runtime of an individual mn is immaterial for our purposes. So long as the mn all
halt on the corresponding xn, P recognizes the pattern and learns to assign high
probability to “mn halts on input xn” no later than the nth day.

Of course, this is not so hard on its own—a function that assigns probability 1
to everything also satisfies this property. The real trick is separating the halting
machines from the non-halting ones. This is harder. It is easy enough to show that
P learns to recognize e.c. sequences of machines that provably fail to halt:

Theorem 4.10.2 (Learning of Provable Non-Halting Patterns). Let q be an e.c.
sequence of Turing machines, and y be an e.c. sequence of bitstrings, such that qn
provably fails to halt on input yn for all n. Then

Pn(“qn halts on input yn”) hn 0.

(Proof in: C.8.)

Of course, it’s not too difficult to disbelieve that the provably-halting machines will
halt; what makes the above theorem non-trivial is that P learns in a timely manner
to expect that those machines won’t halt. Together, the two theorems above say that
if there is any efficient method for generating computer programs that definitively
either halt or don’t (according to Γ) then P will learn the pattern.

The above two theorems only apply to cases where Γ can prove that the machine
either halts or doesn’t. The more interesting case is the one where a Turing
machine q fails to halt on input y, but Γ is not strong enough to prove this fact.
In this case, P∞’s probability of q halting on input y is positive, by Theorem 4.6.2
(Non-Dogmatism). Nevertheless, P still learns to stop expecting that those machines
will halt after any reasonable amount of time:

Theorem 4.10.3 (Learning not to Anticipate Halting). Let q be an e.c. sequence
of Turing machines, and let y be an e.c. sequence of bitstrings, such that qn does
not halt on input yn for any n. Let f be any computable function. Then

Pn(“qn halts on input yn within f(n) steps”) hn 0.

(Proof in: C.9.)

44

For example, let y be an enumeration of all bitstrings, and let q be the constant
sequence (q, q, . . .) where q is a Turing machine that does not halt on any input.
If Γ cannot prove this fact, then P will never be able to attain certainty about
claims that say q fails to halt, but by Theorem 4.10.3, it still learns to expect
that q will run longer than any computable function you can name. In colloquial
terms, while P won’t become certain that non-halting machines don’t halt (which is
impossible), it will put them in the “don’t hold your breath” category (along with
some long-running machines that do halt, of course).

These theorems can be interpreted as justifying the intuitions that many computer
scientists have long held towards the halting problem: It is impossible to tell whether
or not a Turing machine halts in full generality, but for large classes of well-behaved
computer programs (such as e.c. sequences of halting programs and provably non-
halting programs) it’s quite possible to develop reasonable and accurate beliefs. The
boundary between machines that compute fast-growing functions and machines that
never halt is difficult to distinguish, but even in those cases, it’s easy to learn to
stop expecting those machines to halt within any reasonable amount of time. (See
also the work of Calude and Stay [2008] for other formal results backing up this
intuition.)

One possible objection here is that the crux of the halting problem (and of the
Γ-trust problem) are not about making good predictions, they are about handling
diagonalization and paradoxes of self-reference. Gödel’s incompleteness theorem
constructs a sentence that says “there is no proof of this sentence from the axioms
of PA”, and Turing’s proof of the undecidability of the halting problem constructs a
machine which halts iff some other machine thinks it loops. P learning to trust Γ is
different altogether from P learning to trust itself. So let us turn to the topic of P’s
beliefs about P.

4.11 Introspection
Because we’re assuming Γ can represent computable functions, we can write sentences
describing the beliefs of P at different times. What happens when we ask P about
sentences that refer to itself?

For instance, consider a sentence ψ := “Pn(φ) > 0.7” for some specific n and
φ, where P’s beliefs about ψ should depend on what its beliefs about φ are on the
nth day. Will P figure this out and get the probabilities right on day n? For any
particular φ and n it’s hard to say, because it depends on whether P has learned
how ψ relates to P and φ yet. If however we take an e.c. sequence of ψ which all
say “φ will have probability greater than 0.7 on day n” with n varying, then we can
guarantee that P will learn the pattern, and start having accurate beliefs about its
own beliefs:

Theorem 4.11.1 (Introspection). Let φ be an e.c. sequence of sentences, and a,
b be P-generable sequences of probabilities. Then, for any e.c. sequence of positive
rationals δ → 0, there exists a sequence of positive rationals ε→ 0 such that for all
n:

1. if Pn(φn) ∈ (an + δn, bn − δn), then

Pn(“an < Pn(φn) < bn”) > 1− εn,

2. if Pn(φn) /∈ (an − δn, bn + δn), then

Pn(“an < Pn(φn) < bn”) < εn.

(Proof in: F.1.)

In other words, for any pattern in P’s beliefs that can be efficiently written down
(such as “P’s probabilities on φ are between a and b on these days”), P learns to
believe the pattern if it’s true, and to disbelieve it if it’s false (with vanishing error).

45

At a first glance, this sort of self-reflection may seem to make logical inductors
vulnerable to paradox. For example, consider the sequence of sentences

χ0.5 := (“Pn(χ0.5
n) < 0.5”)n∈N+

such that χ0.5
n is true iff P assigns it a probability less than 50% on day n. Such a

sequence can be defined by Gödel’s diagonal lemma. These sentences are probabilistic
versions of the classic “liar sentence”, which has caused quite a ruckus in the setting
of formal logic (Grim 1991; McGee 1990; Glanzberg 2001; Gupta and Belnap 1993;
Eklund 2002). Because our setting is probabilistic, it’s perhaps most closely related
to the “unexpected hanging” paradox—χ0.5

n is true iff P thinks it is unlikely on day
n. How do logical inductors handle this sort of paradox?
Theorem 4.11.2 (Paradox Resistance). Fix a rational p ∈ (0, 1), and define an
e.c. sequence of “paradoxical sentences” χp satisfying

Γ ` χpn ↔
(
Pn(χpn) < p

)
for all n. Then

lim
n→∞

Pn(χpn) = p.

(Proof in: F.2.)

A logical inductor responds to paradoxical sentences χp by assigning probabilities
that converge on p. For example, if the sentences say “P will assign me a probability
less than 80% on day n”, then Pn (once it has learned the pattern) starts assigning
probabilities extremely close to 80%—so close that traders can’t tell if it’s slightly
above or slightly below. By Theorem 4.3.6 (Recurring Unbiasedness), the frequency
of truth in χp≤n will have a limit point at 0.8 as n → ∞, and by the definition of
logical induction, there will be no efficiently expressible method for identifying a
bias in the price.

Let us spend a bit of time understanding this result. After day n, χ0.8
n is “easy”

to get right, at least for someone with enough computing power to compute Pn(χ0.8
n)

to the necessary precision (it will wind up very close to 0.8 for large n). Before day
n, we can interpret the probability of χ0.8

n as the price of a share that’s going to pay
out $1 if the price on day n is less than 80¢, and $0 otherwise. What’s the value of
this share? Insofar as the price on day n is going to be low, the value is high; insofar
as the price is going to be high, the value is low. So what actually happens on the
nth day? Smart traders buy χ0.8

n if its price is lower than 80¢, and sell it if its price
is higher than 80¢. By the continuity constraints on the traders, each one has a
price at which they stop buying χ0.8

n , and Theorem 4.11.2 (Paradox Resistance) tells
us that the stable price exists extremely close to 80¢. Intuitively, it must be so close
that traders can’t tell which way it’s going to go, biased on the low side, so that it
looks 80% likely to be below and 20% likely to be above to any efficient inspection.
For if the probability seemed more than 80% likely to be below, traders would buy;
and if it seemed anymore than 20% likely to be above, traders would sell.

To visualize this, imagine that your friend owns a high-precision brain-scanner
and can read off your beliefs. Imagine they ask you what probability you assign
to the claim “you will assign probability <80% to this claim at precisely 10am
tomorrow”. As 10am approaches, what happens to your belief in this claim? If you
become extremely confident that it’s going to be true, then your confidence should
drop. But if you become fairly confident it’s going to be false, then your confidence
should spike. Thus, your probabilities should oscillate, pushing your belief so close
to 80% that you’re not quite sure which way the brain scanner will actually call it.
In response to a paradoxical claim, this is exactly how P behaves, once it’s learned
how the paradoxical sentences work.

Thus, logical inductors have reasonable beliefs about their own beliefs even in
the face of paradox. We can further show that logical inductors have “introspective
access” to their own beliefs and expectations, via the medium of logically uncertain
variables:

46

Theorem 4.11.3 (Expectations of Probabilities). Let φ be an efficiently computable
sequence of sentences. Then

Pn(φn) hn En(“Pn(φn)”).

(Proof in: F.3.)

Theorem 4.11.4 (Iterated Expectations). Suppose X is an efficiently computable
sequence of LUVs. Then

En(Xn) hn En(“En(Xn)”).

(Proof in: F.4.)

Next, we turn our attention to the question of what a logical inductor believes
about its future beliefs.

4.12 Self-Trust
The coherence conditions of classical probability theory guarantee that a probabilistic
reasoner trusts their future beliefs, whenever their beliefs change in response to new
empirical observations. For example, if a reasoner Pr(−) knows that tomorrow they’ll
see some evidence e that will convince them that Miss Scarlet was the murderer,
then they already believe that she was the murderer today:

Pr(Scarlet) = Pr(Scarlet | e)Pr(e) + Pr(Scarlet | ¬e)Pr(¬e).

In colloquial terms, this says “my current beliefs are already a mixture of my expected
future beliefs, weighted by the probability of the evidence that I expect to see.”

Logical inductors obey similar coherence conditions with respect to their future
beliefs, with the difference being that a logical inductor updates its belief by gaining
more knowledge about logical facts, both by observing an ongoing process of deduc-
tion and by thinking for longer periods of time. Thus, the self-trust properties of a
logical inductor follow a slightly different pattern:

Theorem 4.12.1 (Expected Future Expectations). Let f be a deferral function (as
per Definition 4.3.7), and let X denote an e.c. sequence of [0, 1]-LUVs. Then

En(Xn) hn En(“Ef(n)(Xn)”).

(Proof in: F.5.)

Roughly speaking, Theorem 4.12.1 says that a logical inductor’s current expectation
of X on day n is already equal to its expected value of X in f(n) days. In particular,
it learns in a timely manner to set its current expectations equal to its future
expectations on any LUV. In colloquial terms, once a logical inductor has figured
out how expectations work, it will never say “I currently believe that the X variables
have low values, but tomorrow I’m going to learn that they have high values”. Logical
inductors already expect today what they expect to expect tomorrow.

It follows immediately from theorems 4.12.1 (Expected Future Expectations)
and 4.8.6 (Expectations of Indicators) that the current beliefs of a logical inductor
are set, in a timely manner, to equal their future expected beliefs.

Theorem 4.12.2 (No Expected Net Update). Let f be a deferral function, and let
φ be an e.c. sequence of sentences. Then

Pn(φn) hn En(“Pf(n)(φn)”).

(Proof in: F.6.)

47

In particular, if P knows that its future self is going to assign some sequence p of
probabilities to φ, then it starts assigning p to φ in a timely manner.

Theorem 4.12.1 (Expected Future Expectations) can be generalized to cases
where the LUV on day n is multiplied by an expressible feature:

Theorem 4.12.3 (No Expected Net Update under Conditionals). Let f be a
deferral function, and let X denote an e.c. sequence of [0, 1]-LUVs, and let w denote
a P-generable sequence of real numbers in [0, 1]. Then

En(“Xn · wf(n)”) hn En(“Ef(n)(Xn) · wf(n)”).

(Proof in: F.7.)

To see why Theorem 4.12.3 is interesting, it helps to imagine the case where X is a
series of bundles of goods and services, and wn is Indδn

(Ef(n)(Xn) > 0.7) for some
sequence of rational numbers δ → 0, as per Definition 4.3.2. This value is 1 if P will
expect the nth bundle to be worth more than 70¢ on day f(n), and 0 otherwise, and
intermediate if the case isn’t quite clear. Then

En
(

“Xn · Indδn

(
Ef(n)(Xn) > 0.7

)
”
)

can be interpreted as P’s expected value of the bundle on day n, in cases where
P is going to think it’s worth at least 70¢ on day f(n). Now assume that
Indδn

(Ef(n)(Xn)) > 0 and divide it out of both sides, in which case the theorem
roughly says

Enow(X | Elater(X) > 0.7) h Enow(Elater(X) | Elater(X) > 0.7),

which says that P’s expected value of the bundle now, given that it’s going to think
the bundle has a value of at least 70¢ later, is equal to whatever it expects to think
later, conditioned on thinking later that the bundle is worth at least 70¢.

Combining this idea with indicator functions, we get the following theorem:

Theorem 4.12.4 (Self-Trust). Let f be a deferral function, φ be an e.c. sequence of
sentences, δ be an e.c. sequence of positive rational numbers, and p be a P-generable
sequence of rational probabilities. Then

En
(

“1(φn) · Indδn

(
Pf(n)(φn) > pn

)
”
)
&n pn · En

(
“Indδn

(
Pf(n)(φn) > pn

)
”
)
.

(Proof in: F.8.)

Very roughly speaking, if we squint at Theorem 4.12.4, it says something like

Enow(φ | Plater(φ) > p) & p,

i.e., if we ask P what it would believe about φ now if it learned that it was going
to believe φ with probability at least p in the future, then it will answer with a
probability that is at least p.

As a matter of fact, Theorem 4.12.4 actually says something slightly weaker, which
is also more desirable. Let each φn be the self-referential sentence “Pf(n)(φn) < 0.5”
which says that the future Pf(n) will assign probability less than 0.5 to φn. Then,
conditional on Pf(n)(φn) ≥ 0.5, Pn should believe that the probability of φn is 0.
And indeed, this is what a logical inductor will do:

Pn
(

“φn ∧ (Pf(n)(φn) ≥ 0.5)”
)
hn 0,

by Theorem 4.2.3 (Persistence of Knowledge), because each of those conjunctions is
disprovable. This is why Theorem 4.12.4 uses continuous indicator functions: With
discrete conjunctions, the result would be undesirable (not to mention false).

48

What Theorem 4.12.4 says is that P attains self-trust of the “if in the future I
will believe x is very likely, then it must be because x is very likely” variety, while
retaining the ability to think it can outperform its future self’s beliefs when its future
self confronts paradoxes. In colloquial terms, if we ask “what’s your probability on
the paradoxical sentence φn given that your future self believes it with probability
exactly 0.5?” then P will answer “very low”, but if we ask “what’s your probability
on the paradoxical sentence φn given that your future self believes it with probability
extremely close to 0.5?” then P will answer “roughly 0.5.”

Still speaking roughly, this means that logical inductors trust their future beliefs
to be accurate and only change for good reasons. Theorem 4.12.4 says that if you
ask “what’s the probability of φ, given that in the future you’re going to believe it’s
more than 95% likely?” then you’ll get an answer that’s no less than 0.95, even if
the logical inductor currently thinks that φ is unlikely.

5 Construction

In this section, we show how given any deductive process D, we can construct a
computable belief sequence, called LIA, that satisfies the logical induction criterion
relative to D. Roughly speaking, LIA works by simulating an economy of traders
and using Brouwer’s fixed point theorem to set market prices such that no trader
can exploit the market relative to D.

We will build LIA from three subroutines called MarketMaker, Budgeter, and
TradingFirm. Intuitively, MarketMaker will be an algorithm that sets market prices
by anticipating what a single trader is about to do, Budgeter will be an algorithm
for altering a trader to stay within a certain budget, and TradingFirm will be an
algorithm that uses Budgeter to combine together an infinite sequence of carefully
chosen e.c. traders (via a sum calculable in finite time) into a single trader that
exploits a given market if any e.c. trader exploits that market. Then, LIA will work
by using MarketMaker to make a market not exploitable by TradingFirm and hence
not exploitable by any e.c. trader, thereby satisfying the logical induction criterion.

To begin, we will need a few basic data types for our subroutines to pass around:
Definition 5.0.1 (Belief History). An n-belief history P≤n = (P1, . . . ,Pn) is a
finite list of belief states of length n.
Definition 5.0.2 (Strategy History). An n-strategy history T≤n = (T1, . . . , Tn)
is a finite list of trading strategies of length n, where Ti is an i-strategy.
Definition 5.0.3 (Support). For any valuation V we define

Support(V) := {φ ∈ S | V(φ) 6= 0},

and for any n-strategy Tn we define

Support(Tn) := {φ ∈ S | Tn[φ] 6≡ 0}.

Observe that for any belief state P and any n-strategy Tn, Support(P) and
Support(Tn) are computable from the finite lists representing P and Tn.

5.1 Constructing MarketMaker

Here we define the MarketMaker subroutine and establish its key properties. In-
tuitively, given any trader T as input, on each day n, MarketMaker looks at the
trading strategy Tn and the valuations P≤n−1 output by MarketMaker on previous
days. It then uses an approximate fixed point (guaranteed to exist by Brouwer’s
fixed point theorem) that sets prices Pn for that day such that when the trader’s
strategy Tn reacts to the prices, the resulting trade Tn(P≤n) earns at most a very
small positive amount of value in any world. Intuitively, the fixed point finds the
trader’s “fair prices”, such that they abstain from betting, except possibly to buy
sentences at a price very close to $1 or sell them at a price very close to $0, thereby
guaranteeing that very little value can be gained from the trade.

49

Lemma 5.1.1 (Fixed Point Lemma). Let Tn be any n-strategy, and let P≤n−1 be
any (n−1)-belief history. There exists a valuation V with Support(V) ⊆ Support(Tn)
such that

for all worlds W ∈ W: W (Tn(P≤n−1,V)) ≤ 0. (5.1.1)

Proof. We will use Brouwer’s fixed point theorem to find “prices” V such that Tn
only ever buys shares for $1 or sells them for $0, so it cannot make a profit in
any world. Intuitively, we do this by making a “price adjustment” mapping called
fix that moves prices toward 1 or 0 (respectively) as long as Tn would buy or sell
(respectively) any shares at those prices, and finding a fixed point of that mapping.

First, we let S ′ = Support(Tn) and focus on the set

V ′ := {V | Support(V) ⊆ S ′}.

Observe that V ′ is equal to the natural inclusion of the finite-dimensional cube [0, 1]S′
in the space of all valuations V = [0, 1]S . We now define our “price adjustment”
function fix : V ′ → V ′ as follows:

fix(V)(φ) := max(0, min(1, V(φ) + T (P≤n−1,V)[φ])).

This map has the odd property that it adds prices and trade volumes, but it does the
trick. Notice that fix is a function from the compact, convex space V ′ to itself, so if
it is continuous, it satisfies the antecedent of Brouwer’s fixed point theorem. Observe
that fix is in fact continuous, because trade strategies are continuous. Indeed, we
required that trade strategies be continuous for precisely this purpose. Thus, by
Brouwer’s fixed point theorem, fix has at least one fixed point Vfix that satisfies, for
all sentences φ ∈ S ′,

Vfix(φ) = max(0, min(1, Vfix(φ) + Tn(P≤n−1,Vfix)[φ])).

Fix a world W and observe from this equation that if Tn buys some shares of φ ∈ S ′
at these prices, i.e. if Tn(P≤n−1,Vfix)[φ] > 0, then Vfix(φ) = 1, and in particular,
W(φ)−Vfix(φ) ≤ 0. Similarly, if Tn sells some shares of φ, i.e. if Tn(P≤n,Vfix)[φ] < 0,
then Vfix(φ) = 0, so W(φ)− Vfix(φ) ≥ 0. In either case, we have

0 ≥ (W(φ)− Vfix(φ)) · Tn(P≤n−1,Vfix)[φ]

since the two factors always have opposite sign (or at least one factor is 0). Summing
over all φ, remembering that Tn(V≤n)[φ] = 0 for φ /∈ S ′, gives

0 ≥
∑
φ∈S

(W(φ)− Vfix(φ)) · Tn(P≤n−1,Vfix)[φ]

= W(Tn(P≤n,Vfix))− Vfix(Tn(P≤n−1,Vfix))

since the values of the “cash” terms W(Tn(P≤n,Vfix)[1]) and Vfix(Tn(P≤n,Vfix)[1])
are by definition both equal to Tn(P≤n,Vfix)[1] and therefore cancel. But

Vfix(Tn(P≤n−1,Vfix)) = 0

by definition of a trading strategy, so for any world W, we have

0 ≥W(Tn(P≤n−1,Vfix)).

Definition/Proposition 5.1.2 (MarketMaker). There exists a computable func-
tion, henceforth named MarketMaker, satisfying the following definition. Given
as input any n ∈ N+, any n-strategy Tn, and any (n − 1)-belief history P≤n−1,
MarketMakern(Tn,P≤n−1) returns a belief state P with Support(P) ⊆ Support(Tn)
such that

for all worlds W ∈ W: W(Tn(P≤n−1,P)) ≤ 2−n. (5.1.2)

50

Proof. Essentially, we will find a rational approximation P to the fixed point Vfix in
the previous lemma, by brute force search. This requires some care, because the set
of all worlds is uncountably infinite.

First, given Tn and P≤n−1, let S ′ := Support(Tn), V ′ = {V | Support(V) ⊆ S ′},
and take Vfix ∈ V ′ satisfying (5.1.1). Let W ′ := {W′ | Support(W) ∈ S ′}, and for
any W, define W′ ∈ W by

W′(φ) :=
{
W(φ) if φ ∈ S ′,
0 otherwise.

Observe that for any W ∈ W, the function V ′ → R given by

V 7→W(Tn(P≤n−1,V)) = W′(Tn(P≤n−1,V))

is a continuous function of V that depends only on W′. Since the set W ′ is finite,
the function

V 7→ sup
W∈W

W(Tn(P≤n−1,V)) = max
W′∈W′

W′(Tn(P≤n−1,V))

is the maximum of a finite number of continuous non-positive functions, and is
therefore continuous and non-positive. Hence there is some neighborhood in V ′
around Vfix with image in (−∞, 2−n) ⊂ R. By the density of rational points in V ′,
there is therefore some belief state P ∈ V ′ ∩QS satisfying (5.1.2), as needed.

It remains to show that such a P can in fact be found by brute force search. First,
recall that a belief state P is a rational-valued finite-support map from S to [0, 1],
and so can be represented by a finite list of pairs (φ, q) with φ ∈ S and q ∈ Q∩ [0, 1].
Since S and [0, 1] ∩Q are computably enumerable, so is the set of all belief states.

Thus, we can computably “search” though all possible Ps, so we need only
establish that given n, Tn, and P≤n−1 we can computably decide whether each
P in our search satisfies (5.1.2) until we find one. First note that the finite set
Support(Tn) can be computed by searching the expression specifying Tn for all the
sentences φ that occur within it. Moreover, equation (5.1.2) need only be be checked
for worlds W′ ∈ W ′, since any other W returns the same value as its corresponding
W′. Now, for any fixed world W′ ∈ W ′ and candidate P, we can compute each value
in the language of expressible features

W′(Tn(P≤n−1,P)) = Tn(P≤n−1,P)[φ] +
∑
φ∈S′

W′(φ) · Tn(P≤n−1,P)[φ]

directly by evaluating the expressible features Tn[φ] on the given belief history
(P≤n−1,P), as φ ∈ S ′ varies. Since W ′ is a finite set, we can do this for all
W′ with a finite computation. Thus, checking whether a belief state P satisfies
condition (5.1.2) is computably decidable, and a solution to (5.1.2) can therefore be
found by enumerating all belief states P and searching through them for the first
one that works.

Lemma 5.1.3 (MarketMaker Inexploitability). Let T be any trader. The sequence
of belief states P defined recursively by

Pn := MarketMakern(Tn,P≤n−1),

with base case P1 = MarketMaker(T1, ()), is not exploited by T relative to any
deductive process D.

Proof. By the definition of MarketMaker, we have that for every n, the belief state
P = Pn satisfies equation (5.1.2), i.e.,

for all worlds W ∈ W and all n ∈ N+: W(Tn(P)) ≤ 2−n.

51

Hence by linearity of W, for all n ∈ N+ we have:

W
(∑

i≤nTi(P)
)

=
∑
i≤n

W(Ti(P)) ≤
∑
i≤n

2−i < 1.

Therefore, given any deductive process D,

sup
{
W
(∑

i≤nTi(P)
) ∣∣∣n ∈ N+,W ∈ PC(Dn)

}
≤ 1 <∞,

so T does not exploit P relative to D.

5.2 Constructing Budgeter

Here we introduce a subroutine for turning a trader with potentially infinite losses
into a trader that will never have less than −$b in any world W ∈ PC(Dn) on any
day n, for some bound b, in such a way that does not affect the trader if it wouldn’t
have fallen below −$b to begin with.

Definition/Proposition 5.2.1 (Budgeter). Given any deductive process D, there
exists a computable function, henceforth called BudgeterD, satisfying the following
definition. Given inputs n and b ∈ N+, an n-strategy history T≤n, and an (n− 1)-
belief history P≤n−1, BudgeterD returns an n-strategy BudgeterDn (b, T≤n,P≤n−1),
such that

if: W
(∑

i≤m Ti(P≤i)
)
≤ −b for some m < n and W ∈ PC(Dm),

then: BudgeterDn (b, T≤n,P≤n−1) = 0,

else: BudgeterDn (b, T≤n,P≤n−1) = (5.2.1)

Tn · inf
W∈PC(Dn)

max

1, −W(Tn)
b+ W

(∑
i≤n−1 Ti(P≤i)

)
−1

.

Proof. Let S ′ =
⋃
i≤n Support(Ti), W ′ = {W | Support(W) ⊆ S ′}, and for any

world W, write

W′(φ) :=
{
W(φ) if φ ∈ S ′,
0 otherwise.

Now, observe that we can computably check the “if” statement in the function
definition. This is because W(

∑
i≤m Ti(P≤i)) depends only on W′ ∈ W ′, a finite

set. We can check whether W′ ∈ PC(Dm) in finite time by checking whether
any assignment of truth values to the finite set of prime sentences occurring in
sentences of Dn yields the assignment W′ on Support(W′). The set of sentences Dn

is computable given n, because D is computable by definition.
It remains to show that the “else” expression can be computed and returns an

n-trading strategy. First, the infimum can be computed over W′ ∈ W ′ ∩ PC(Dn), a
finite set, since the values in the inf depend only on W′, and the inf operator itself can
be re-expressed in the language of expressible features using max and multiplication
by (−1). The values W′(Tn) and W′(

∑
i≤n−1 Ti(P≤i)) are finite sums, and the

denominator b+ W(
∑
i≤n−1 Ti(P≤i)) is a fixed positive rational (so we can safely

multiply by its reciprocal). The remaining operations are all single-step evaluations
in the language of expressible valuation features, completing the proof.

Let us reflect on the meaning of these operations. The quantity b+W(
∑
i<n Ti(P≤i))

is the amount of money the trader has available on day n according to W (assuming

52

they started with a budget of b), and −W(Tn) is the amount they’re going to lose
on day n according to W as a function of the upcoming prices, and so the infimum
above is the trader’s trade on day n scaled down such that they can’t overspend
their budget according to any world propositionally consistent with Dn.

Lemma 5.2.2 (Properties of Budgeter). Let T be any trader, and P be any sequence
of belief states. Given n and b, let Bbn denote BudgeterDn (b, T≤n,P≤n−1). Then:

1. for all b, n ∈ N+, if for all m ≤ n and W ∈ PC(Dm) we have
W
(∑

i≤m Ti(P)
)
> −b, then

Bbn(P) = Tn(P);

2. for all b, n ∈ N+ and all W ∈ PC(Dn), we have

W
(∑

i≤nB
b
i (P)

)
≥ −b;

3. If T exploits P relative to D, then so does Bb for some b ∈ N+.

Part 1.

Proof. Suppose that for some time step n, for all m ≤ n and all worlds W ∈ PC(Dm)
plausible at time m we have

W
(∑

i≤m Ti(P)
)
> −b,

so by linearity of W(−), we have in particular that

b+ W
(∑

i≤n−1 Ti(P)
)
> −W

(
Tn(P)

)
.

Since n− 1 ≤ n, the LHS is positive, so we have

1 >
−W

(
Tn(P)

)
b+ W

(∑
i≤n−1 Ti(P)

) .
Therefore, by the definition of BudgeterD (and Ti(P) = Ti(P≤i)), since the “if”
clause doesn’t trigger by the assumption on the W

(∑
i≤m Ti(P)

)
for m < n,

Bbn(P) ≡ Tn(P) · inf
W∈PC(Dn)

1
/

max

1, −W(Tn(P))
b+ W

(∑
i≤n−1 Ti(P)

)


= Tn(P≤n) · inf
W∈PC(Dn)

1/1

= Tn(P)

as needed.

Part 2.

Proof. Suppose for a contradiction that for some n and some W ∈ PC(Dn),

W
(∑

i≤nB
b
i (P)

)
< −b.

Assume that n is the least such day, and fix some such W ∈ PC(Dn). By
the minimality of n it must be that W(Bbn(P)) < 0, or else we would have

53

W
(∑

i≤n−1B
b
i (P)

)
< −b. Since Bbn(P) is a non-negative multiple of Tn(P), we

also have W(Tn(P)) < 0. However, since Bbn 6≡ 0, from the definition of BudgeterD
we have

W
(
Bbn
)

= W
(
Tn(P)

)
·

(
inf

W′∈PC(Dn)
1
/

max
(

1, −W′(Tn(P))
b+ W′(

∑
i≤n−1 Ti(P))

))

≥W
(
Tn(P)

)
· 1
/

max
(

1, −W(Tn(P))
b+ W(

∑
i≤n−1 Ti(P))

)
(since W

(
Tn(P)

)
< 0)

≥W
(
Tn(P)

)
·
b+ W(

∑
i≤n−1 Ti(P))

−W(Tn(P))
since −W

(
Tn(P)

)
> 0 and Bbn 6≡ 0 implies b+ W(

∑
i≤n−1 Ti(P)) > 0. Hence, this

= −b−W
(∑

i≤n Ti(P)
)
.

Further, since Bbn 6≡ 0, we have

for all j ≤ n− 1: W
(∑

i≤j Ti(P)
)
> −b, which by Part 1 implies that

for all j ≤ n− 1: Bbj (P) = Tj(P), therefore

W(Bbn) ≥ −b−W
(∑

i≤n−1B
b
i (P)

)
, hence

W
(∑

i≤nB
b
i (P)

)
≥ −b.

Part 3.

Proof. By definition of exploitation, the set{
W
(∑

i≤n Ti(P)
) ∣∣∣n ∈ N+,W ∈ PC(Dn)

}
is unbounded above, and is strictly bounded below by some integer b. Then by Part
1, for all n we have Tn(P) = Bbn(P). Thus,{

W
(∑

i≤nB
b
i (P)

) ∣∣∣n ∈ N+,W ∈ PC(Dn)
}

is unbounded above and bounded below, i.e., Bb exploits P relative to D.

5.3 Constructing TradingFirm

Next we define TradingFirm, which combines an (enumerable) infinite sequence of
e.c. traders into a single “supertrader” that exploits a given belief sequence P relative
to D if any e.c. trader does. It does this by taking each e.c. trader, budgeting it,
and scaling its trades down so that traders later in the sequence carry less weight to
begin with.

To begin, we will need a computable sequence that includes every e.c. trader at
least once. The following trick is standard, but we include it here for completeness:

Proposition 5.3.1 (Redundant Enumeration of e.c. Traders). There exists a com-
putable sequence (T k)k∈N+ of e.c. traders such that every e.c. trader occurs at least
once in the sequence.

Proof. Fix a computable enumeration of all ordered pairs (Mk, fk) where Mk is a
Turing machine and fk is a polynomial with coefficients in Z. We define a computable
function

ECT : {Turing machines} × {Integer polynomials} × (n ∈ N+)→ {n-strategies}

54

that runs as follows: ECT(M,f, n) first runs M(n) for up to f(n) time steps, and if
in that timeM(n) halts and returns a valid n-strategy Tn, then ECT(M,f, n) returns
that strategy, otherwise it returns 0 (as an n-strategy). Observe that ECT(Mk, fk,−)
is always an e.c. trader, and that every e.c. trader occurs as ECT(Mk, fk,−) for
some k.

Definition/Proposition 5.3.2 (TradingFirm). Given any deductive process D,
there exists a computable function, henceforth called TradingFirmD, satisfying the
following definition. By Proposition 5.3.1, we fix a computable enumeration T

k

including every e.c. trader at least once, and let

Skn =
{
T kn if n ≥ k
0 otherwise.

Given input n ∈ N+ and an (n− 1)-belief history P≤n−1, TradingFirmD returns an
n-strategy given by

TradingFirmDn (P≤n−1) =
∑
k∈N+

∑
b∈N+

2−k−b · BudgeterDn (b, Sk≤n,P≤n−1). (5.3.2)

Proof. We need only show that the infinite sum in equation (5.3.2) is equivalent to
a computable finite sum. Writing

Bb,kn = BudgeterDn (b, Sk≤n,P≤n−1),

(an n-strategy), the sum on the RHS of (5.3.2) is equivalent to∑
k∈N+

∑
b∈N+

2−k−b ·Bb,kn .

Since Skn = 0 for k > n, we also have Bb,kn = 0 for k > n, so the sum is equivalent to

=
∑
k≤n

∑
b∈N+

2−k−b ·Bb,kn .

Now, assume Cn is a positive integer such that
∑
i≤n ‖Ski (V)‖1 < Cn for all k ≤ n

and any valuation sequence V (we will show below that such a Cn can be computed
from P≤n−1). Since the valuations W and P are always [0, 1]-valued, for any m ≤ n
the values W

(∑
i≤m S

k
i (P≤m)

)
are bounded below by −

∑
i≤m ‖Ski (P≤m)‖1 > −Cn.

By property 1 of BudgeterD (Lemma 5.2.2.1), Bb,kn = Skn when b > Cn, so the sum
is equivalent to

=

∑
k≤n

∑
b≤Cn

2−k−b ·Bb,kn

+

∑
k≤n

∑
b>Cn

2−k−b · Skn


=

∑
k≤n

∑
b≤Cn

2−k−b ·Bb,kn

+

∑
k≤n

2−k−Cn · Skn


which is a finite sum of trading strategies, and hence is itself a trading strategy. Since
the Bb,kn and the Skn are computable from P≤n−1, this finite sum is computable.

It remains to justify our assumption that integers Cn can be computed from
P≤n−1 with Cn >

∑
i≤n ‖Ski (V)‖1 for all k ≤ n and V. To see this, first consider

how to bound a single expressible feature ξ. We can show by induction on the
structure of ξ (see A.2) that, given constant bounds on the absolute value |ζ(V)| of
each subexpression ζ of ξ, we can compute a constant bound on |ξ(V)|; for example,

55

the bound on ζ · η is the product of the bound on ζ and the bound on η. Thus, given
a single trading strategy Ski and any φ, we can compute a constant upper bound on
|Ski [φ](V)| for all V. Since ‖Ski (V)‖1 ≤

∑
φ∈Support(Sk

i
) 2|Ski [φ](V)| and Support(Ski)

is computable, we can bound each ‖Ski (V)‖1, and hence also
∑
i≤n ‖Ski (V)‖1, as

needed.

Lemma 5.3.3 (Trading Firm Dominance). Let P be any sequence of belief states,
and D be a deductive process. If there exists any e.c. trader T that exploits P relative
to D, then the sequence (

TradingFirmDn (P≤n−1)
)
n∈N+

also exploits P (relative to D).

Proof. Suppose that some e.c. trader exploits P. That trader occurs as T k for some
k in the enumeration used by TradingFirmD. First, we show that Sk (from the
definition of TradingFirmD) also exploits P. It suffices to show that there exist
constants c1 ∈ R+ and c2 ∈ R such that for all n ∈ N+ and W ∈ PC(Dn),

W
(∑

i≤n S
k
n(P)

)
≥ c1 ·W

(∑
i≤n T

k
n (P)

)
+ c2.

Taking c1 = 1 and c2 = −
∑
i<k ‖T ki (P))‖1, where ‖ · ‖1 denotes the `1 norm on

R-combinations of sentences, we have

W
(∑

i≤n S
k
n(P)

)
≥ 1 ·W

(∑
i≤n T

k
n (P)

)
−
(∑

i<k ‖T ki (P)‖1
)
,

so Sk exploits P. By Lemma 5.2.2.3, we thus have that for some b ∈ N+, the trader
B
b,k given by

Bb,kn := BudgeterDn (b, Sk≤n,P≤n−1)

also exploits P.
Next, we show that the trader F given by

Fn := TradingFirmDn (P≤n−1)

exploits P. Again, it suffices to show that there exist constants c1 ∈ R+ and c2 ∈ R
such that for all n ∈ N+ and W ∈ PC(Dn),

W

∑
i≤n

Fi

 ≥ c1 ·W
∑
i≤n

Bb,ki

+ c2.

It will suffice to take c1 = 2−k−b and c2 = −2, because we have

W

∑
i≤n

Fi

− 2−k−b ·W

∑
i≤n

Bb,ki


=

∑
(k′,b′) 6=(k,b)

2−k
′−b′ ·W

∑
i≤n

Bb
′,k′

i


≥

∑
(k′,b′) 6=(k,b)

2−k
′−b′ · (−b′) ≥ −2

56

by Lemma 5.2.2.2, hence

W

∑
i≤n

Fi

 ≥ 2−k−b ·W

∑
i≤n

Bb,ki

− 2.

Thus, F exploits P.

5.4 Constructing LIA

We are finally ready to build LIA. With the subroutines above, the idea is now fairly
simple: we pit MarketMaker and TradingFirm against each other in a recursion, and
MarketMaker wins. Imagine that on each day, TradingFirm outputs an ever-larger
mixture of traders, then MarketMaker carefully examines that mixture and outputs
a belief state on which that mixture makes at most a tiny amount of money on net.
Definition/Algorithm 5.4.1 (A Logical Induction Algorithm). Given a deductive
process D, define the computable belief sequence LIA = (LIA1, LIA2, . . .) recursively
by

LIAn := MarketMakern(TradingFirmDn (LIA≤n−1), LIA≤n−1),
beginning from the base case LIA≤0 := ().
Theorem 5.4.2 (LIA is a Logical Inductor). LIA satisfies the logical induction
criterion relative to D, i.e., LIA is not exploitable by any e.c. trader relative to the
deductive process D.
Proof. By Lemma 5.3.3, if any e.c. trader exploits LIA (relative to D), then so
does the trader F := (TradingFirmDn (LIA≤n−1))n∈N+ . By Lemma 5.1.3, F does not
exploit LIA. Therefore no e.c. trader exploits LIA.

5.5 Questions of Runtime and Convergence Rates
In this paper, we have optimized our definitions for the theoretical clarity of results
rather than for the efficiency of our algorithms. This leaves open many interesting
questions about the relationship between runtime and convergence rates of logical
inductors that have not been addressed here. Indeed, the runtime of LIA is under-
specified because it depends heavily on the particular enumerations of traders and
rational numbers used in the definitions of TradingFirm and MarketMaker.

For logical inductors in general, there will be some tradeoff between the runtime
of Pn as a function of n and how quickly the values Pn(φ) converge to P∞(φ) as
n grows. Quantifying this tradeoff may be a fruitful source of interesting open
problems. Note, however, the following important constraint on the convergence
rate of any logical inductor, regardless of its implementation, which arises from the
halting problem:
Proposition 5.5.1 (Uncomputable Convergence Rates). Let P be a logical inductor
over a theory Γ that can represent computable functions, and suppose f : S×Q+ → N
is a function such that for every sentence φ, if Γ ` φ then Pn(φ) > 1 − ε for all
n > f(φ, ε). Then f must be uncomputable.
Proof. Suppose for contradiction that such a computable f were given. We will
show that f could be used to computably determine whether Γ ` φ for an arbitrary
sentence φ, a task which is known to be impossible for a first-order theory that can
represent computable functions. (If we assumed further that Γ were sound as a
theory of the natural numbers, this would allow us to solve the halting problem by
letting φ be a sentence of the form “M halts”.)

Given a sentence φ, we run two searches in parallel. If we find that Γ ` φ, then
we return True. If we find that for some b, n ∈ N+ we have

n > f

(
φ,

1
b

)
and Pn(φ) ≤ 1− 1

b
, (5.5.1)

57

then we return False. Both of these conditions are computably enumerable since f ,
Pn, and verifying witnesses to Γ ` φ are computable functions.

Suppose first that Γ ` φ. Then by definition of f we have Pn(φ) > 1− 1
b for all

n > f
(
φ, 1

b

)
, and hence we find a witness for Γ ` φ and return True. Now suppose

that Γ 0 φ. Then by Theorem 4.6.2 (Non-Dogmatism) we have that P∞(φ) < 1−ε for
some ε > 0, and hence for some b and all sufficiently large n we have Pn(φ) < 1−1/b.
Therefore 5.5.1 holds and we return False. Thus our search always halts and returns
a Boolean value that correctly indicates whether Γ ` φ.

6 Selected Proofs

In this section, we exhibit a few selected stand-alone proofs of certain key theorems.
These theorems hold for any P satisfying the logical induction criterion, which we
recall here:

Definition 3.0.1 (The Logical Induction Criterion). A market P is said to satisfy
the logical induction criterion relative to a deductive process D if there is no
efficiently computable trader T that exploits P relative to D. A market P meeting
this criterion is called a logical inductor over D.

Only our notation (Section 2), framework (Section 3), and continuous threshold
indicator (Definition 4.3.2) are needed to understand the results and proofs in this
section. Shorter proofs of these theorems can be found in the appendix, but those
rely on significantly more machinery.

6.1 Convergence
Recall Theorem 4.1.1 and the proof sketch given:

Theorem 4.1.1 (Convergence). The limit P∞ : S → [0, 1] defined by

P∞(φ) := lim
n→∞

Pn(φ)

exists for all φ.

Proof sketch.

Roughly speaking, if P never makes up its mind about φ, then it can be
exploited by a trader arbitraging shares of φ across different days. More
precisely, suppose by way of contradiction that the limit P∞(φ) does
not exist. Then for some p ∈ [0, 1] and ε > 0, we have Pn(φ) < p − ε
infinitely often and also Pn(φ) > p+ ε infinitely often. A trader can wait
until Pn(φ) < p− ε and then buy a share in φ at the low market price of
Pn(φ). Then the trader waits until some later m such that Pm(φ) > p+ε,
and sells back the share in φ at the higher price. This trader makes a
total profit of 2ε every time Pn(φ) oscillates in this way, at no risk, and
therefore exploits P. Since P implements a logical inductor, this is not
possible; therefore the limit P∞(φ) must in fact exist.

We will define a trader T that executes a strategy similar to this one, and hence
exploits the market P if limn→∞ Pn(φ) diverges. To do this, there are two techni-
calities we must deal with. First, the strategy outlined above uses a discontinuous
function of the market prices Pn(φ), and therefore is not permitted. This is relatively
easy to fix using the continuous indicator functions of Definition 4.3.2.

The second technicality is more subtle. Suppose we define our trader to buy
φ-shares whenever their price Pn(φ) is low, and sell them back whenever their price
is high. Then it is possible that the trader makes the following trades in sequence
against the market P: buy 10 φ-shares on consecutive days, then sell 10 φ-shares;
then buy 100 φ-shares consecutively, and then sell them off; then buy 1000 φ-shares,
then sell them off; and so on. Although this trader makes profit on each batch, it

58

always spends more on the next batch, taking larger and larger risks (relative to
the remaining plausible worlds). Then the plausible value of this trader’s holdings
will be unbounded below, and so it does not exploit P. In short, this trader is not
tracking its budget, and so may have unboundedly negative plausible net worth. We
will fix this problem by having our trader T track how many net φ-shares it has
bought, and not buying too many, thereby maintaining bounded risk. This will be
sufficient to prove the theorem.

Proof of Theorem 4.1.1. Suppose by way of contradiction that the limit P∞ does
not exist. Then, for some sentence φ and some rational numbers p ∈ [0, 1] and ε > 0,
we have that Pn(φ) < p− ε infinitely often and Pn(φ) > p+ ε infinitely often. We
will show that P can be exploited by a trader T who buys below and sells above
these prices infinitely often, contrary to the logical induction criterion.
Definition of the trader T . We will define T recursively along with another
sequence of EF-combinations H (mnemonic: “holdings”) which tracks the sum of
the trader’s previous trades. Our base cases are

T1 := 0

H1 := 0.
For n > 1, we define a recurrence whereby T will buy some φ-shares whenever
φ∗n < p− ε/2, up to (1−Hn−1[φ]) shares when φ∗n < p− ε, and sells some φ-shares
whenever φ∗n > p+ ε/2, up to Hn−1 shares when φ∗n > p+ ε:

Tn[φ] := (1−Hn−1[φ]) · Indε/2(φ∗n < p− ε/2)
−Hn−1[φ] · Indε/2(φ∗n > p+ ε/2),

Tn := Tn[φ] · (φ− φ∗n)
Hn := Hn−1 + Tn.

(6.1.1)

The trade coefficients T [φ] are chosen so that the number of φ-shares Hn[φ] that it
owns is always in [0, 1] (it never buys more than 1−Hn−1[φ] and never sells more
than Hn−1[φ]). Observe that each Tn is a valid trading strategy for day n (see
Definition 3.4.4) because it is of the form ξ · (φ− φ∗n).

To complete the definition, we must ague that T is efficiently computable. For
this, observe that the 3n+ 2 definition (:=) equations defining T1, . . . , Tn above can
be written down in time polynomial in n. Thus, a combination of feature expressions
defining Tn from scratch can be written down in poly(n) time (indeed, the expression
is just a concatenation of n copies of the three “:=” equations written above, along
with the base cases), so T is efficiently computable.

Proof of exploitation. To show T exploits P over D, we must compute upper and
lower bounds on the set of plausible values W(Hn(P)) (since Hn =

∑
i≤n Tn) for

worlds W ∈ PC(Dn).
While proving exploitation, we leave the constant argument P implicit to reduce

clutter, writing, e.g., φ∗i for φ∗i(P) = Pi(φ), Tn[φ] for Tn[φ](P), and so on.
First, since each Ti[1] = −T [φ] · φ∗i, the trader’s “cash” held on day n is

Hn[1] =
∑
i≤n

Ti[1] = −
∑
i≤n

Ti[φ] · φ∗i

which we can regroup, to compare the prices φ∗i to p, as
Hn[1] =

∑
i≤n

(
Ti[φ] · (p− φ∗i)

)
− p ·

∑
i≤n

Ti[φ]

=
∑
i≤n

(
Ti[φ] · (p− φ∗i)

)
− p ·Hn[φ].

59

Now, Ti[φ] > 0 iff φ∗i < p − ε/2, and Ti[φ] < 0 iff φ∗i > p + ε/2, so for all i the
product Ti[φ] · (p− φ∗i) is greater than |Ti[φ]| · ε/2:

Hn[1] ≥ −p ·Hn[φ] +
∑
i≤n

|Ti[φ]| · ε/2.

Moreover, by design, Hn[φ] ∈ [0, 1] for all n, so

Hn[1] ≥ −p+
∑
i≤n

|Ti[φ]| · ε/2.

Now, by assumption, φ∗i lies above and below (p − ε, p + ε) infinitely often, so
from equation (6.1.1), Hi[φ] = 0 and Hi[φ] = 1 infinitely often. Since the sum∑
i≤n |Ti[φ]| is the total variation in the sequence Hi[φ], it must diverge (by the

triangle inequality) as n→∞, so

lim
n→∞

Hn[1] =∞.

Moreover, in any world W, the trader’s non-cash holdings Hn[φ] · φ have value
W(Hn[φ] · φ) = Hn[φ] ·W(φ) ≥ 0 (since Hn[φ] > 0), so its combined holdings
Hn = Hn[1] +Hn[φ] · φ have value

W(Hn) = W(Hn[1] +Hn[φ] · φ) = Hn[1] +Hn[φ] ·W(φ) ≥ Hn[1]

so in every world W we have

lim
n→∞

W(Hn) =∞.

This contradicts that P is a logical inductor; therefore, the limit P∞(φ) must
exist.

6.2 Limit Coherence
Recall Theorem 4.1.2:

Theorem 4.1.2 (Limit Coherence). P∞ is coherent, i.e., it gives rise to an internally
consistent probability measure Pr on the set PC(Γ) of all worlds consistent with Γ,
defined by the formula

Pr(W(φ) = 1) := P∞(φ).
In particular, if Γ contains the axioms of first-order logic, then P∞ defines a proba-
bility measure on the set of first-order completions of Γ.

Proof of Theorem 4.1.2. By Theorem 4.1.1 (Convergence), the limit P∞(φ) exists
for all sentences φ ∈ S. Therefore, Pr(W(φ) = 1) := P∞(φ) is well-defined as a
function of basic subsets of the set of all consistent worlds PC(D∞) = PC(Γ).

Gaifman (1964) shows that Pr extends to a probability measure over PC(Γ) so
long as the following three implications hold for all sentences φ and ψ:

• If Γ ` φ, then P∞(φ) = 1.

• If Γ ` ¬φ, then P∞(φ) = 0.

• If Γ ` ¬(φ ∧ ψ), then P∞(φ ∨ ψ) = P∞(φ) + P∞(ψ).

Since the three conditions are quite similar in form, we will prove them simultaneously
using four exemplar traders and parallel arguments.

60

Definition of the traders. Suppose that one of the three conditions is violated
by a margin of ε, i.e., one of the following four cases holds:

(L1) Γ ` φ, but (I1) P∞(φ) < 1− ε;
(L2) Γ ` ¬φ, but (I2) P∞(φ) > ε;
(L3) Γ ` ¬(φ ∧ ψ), but (I3) P∞(φ ∨ ψ) < P∞(φ) + P∞(ψ)− ε; or
(L4) Γ ` ¬(φ ∧ ψ), but (I4) P∞(φ ∨ ψ) > P∞(φ) + P∞(ψ) + ε.

Let i ∈ {1, 2, 3, 4} be the case that holds. Since the limit P∞ exists, there is some
sufficiently large time sε such that for all n > sε, the inequality Ii holds with n
in place of ∞. Furthermore, since D is a Γ-complete deductive process, for some
sufficiently large sΓ and all n > sΓ, the logical condition Li holds with Dn in place
of Γ. Thus, letting s := max(sε, sΓ), for n > s one of the following cases holds:

(L1
n) Dn ` φ, but (In1) Pn(φ) < 1− ε;

(L2
n) Dn ` ¬φ, but (In2) Pn(φ) > ε;

(L3
n) Dn ` ¬(φ ∧ ψ), but (In3) Pn(φ ∨ ψ) < Pn(φ) + Pn(ψ)− ε; or

(L4
n) Dn ` ¬(φ ∧ ψ), but (In4) Pn(φ ∨ ψ) > Pn(φ) + Pn(ψ) + ε.

(When interpreting these, be sure to remember that each Dn is finite, and D `
indicates using provability using only propositional calculus, i.e., modus ponens. In
particular, the axioms of first order logic are not assumed to be in Dn.)

We now define, for each of the above four cases, a trader that will exploit the
market P. For n > s, let

T 1
n := φ− φ∗n

T 2
n := −(φ− φ∗n)
T 3
n := ((φ ∨ ψ)− (φ ∨ ψ)∗n)− (φ− φ∗n)− (ψ − ψ∗n)
T 4
n := (φ− φ∗n) + (ψ − ψ∗n)− ((φ ∨ ψ)− (φ ∨ ψ)∗n)

and for n ≤ s let T in = 0. Each T in can be written down in O(log(n)) time (the
constant s can be hard-coded at a fixed cost), so these T i are all e.c. traders.

Proof of exploitation. We leave the constant argument P implicit to reduce
clutter, writing, e.g., φ∗i for φ∗i(P) = Pi(φ), Tn[φ] for Tn[φ](P), and so on.

Consider case 1, where L1
n and I1

n hold for n > s, and look at the trader T 1. For
any n > s and any world W ∈ PC(Dn), by linearity of W we have

W
(∑

i≤n T
1
i

)
=
∑
i≤n

T 1
i [φ] ·

(
W(φ)− φ∗i

)
but T 1

i [φ] ≡ 1 iff i > s, so this sum is
=
∑
s<i≤n

1 ·
(
W(φ)− φ∗i

)
.

Now, by our choice of s, W(φ) = 1, and i > s implies φ∗i < 1− ε, so this is
≥
∑
s<i≤n

(1− (1− ε))

= ε · (n− s)
→∞ as n→∞.

In particular, T 1 exploits P, i.e., the set of values{
W
(∑

i≤n Ti

)(
P
) ∣∣∣n ∈ N+,W ∈ PC(Dn)

}
61

is bounded below but not bounded above. The analysis for case 2 is identical: if L2
n

and I2
n hold for n > s, then T 2 exploits P.

Now consider case 3, where L3
n and I3

n hold for n > s. Then for any time step
n > s and any world W ∈ PC(Dn),

W
(∑

i≤n T
3
i

)
=
∑
i≤n

(
(W(¬(φ ∧ ψ))− (φ ∨ ψ)∗i)− (W(φ)− φ∗i)− (W(ψ)− ψ∗i)

)
=
∑
s<i≤n

(W(φ ∨ ψ)−W(φ)−W(ψ))−
(
(φ ∨ ψ)∗i − φ∗i − ψ∗i

)
but by our choice of s, W(φ∨ψ)−W(φ)−W(ψ) = 0, and i > s implies the inequality
(φ ∨ ψ)∗i − φ∗i − ψ∗i < −ε, so the above sum is

≥
∑
s<i≤n

ε

= ε · (n− s)→∞ as n→∞.

So T 3 exploits P, contradicting the logical induction criterion. The analysis for case
4 is identical. Hence, all four implications must hold for P to satisfy the logical
induction criterion.

6.3 Non-dogmatism
Recall Theorem 4.6.2:

Theorem 4.6.2 (Non-Dogmatism). If Γ 0 φ then P∞(φ) < 1, and if Γ 0 ¬φ then
P∞(φ) > 0.

Proof of Theorem 4.6.2. We prove the second implication, since the first implication
is similar, with selling in place of buying. Suppose for a contradiction that Γ 0 ¬φ
but that P∞(φ) = 0.

Definition of the trader T . We define T recursively, along with helper functions
β
k that will ensure that for every k, our trader will by one share of φ for a price of

at most 2−k:

for k = 1, . . . , n:
βkk := 0

for i = k + 1, . . . , n:

βki := Ind2−k−1(φ∗i < 2−k) ·

1−
i−1∑
j=k

βkj


Ti[φ] :=

∑
j≤i

βkj

Ti := Ti[φ] · (φ− φ∗i)

Note that all the equations defining Tn can be written down (from scratch) in
O(n3 log(n)) time, so T is an e.c. trader.

Proof of exploitation. We leave the constant argument P implicit to reduce
clutter, writing, e.g., φ∗i for φ∗i(P) = Pi(φ), Tn[φ] for Tn[φ](P), and so on.

Observe from the recursion above for T that for all i > 0 and k > 0,

0 ≤
i∑

j=k
βkj ≤ 1

62

and for any i and any k ≤ i,
βki ≥ 0.

Next, observe that for any k > 0, for i ≥ some threshold f(k), we will have
φ∗i < 2−k−1, in which case the indicator in the definition of βki will equal 1, at which
point

∑i
j=k β

k
j = 1. Thus, for all n ≥ f(k),

n∑
i=k

βki = 1.

Letting Hn =
∑
i≤n Ti, the following shows that our trader will eventually own an

arbitrarily large number of φ-shares:

Hn[φ] =
∑
i≤n

∑
k≤i

βki

=
∑
k≤n

∑
k≤i≤n

βki

≥
∑
k≤n

f(k)≤n

∑
k≤i≤n

βki

=
∑
k≤n

f(k)≤n

1 →∞ as n→∞ (6.3.1)

Next we show that our trader never spends more than a total of $1.

Hn[1] = −
∑
i≤n

∑
k≤i

βki · φ∗i,

but the indicator function defining βki ensures that φ∗i ≤ 2−k whenever βki is
non-zero, so this is

≥ −
∑
i≤n

∑
k≤i

βki · 2−k

= −
∑
k≤n

2−k ·
∑
k≤i≤n

βki

≥ −
∑
k≤n

2−k · 1

Now, for any world W, since Hn[φ] ≥ 0 for all n and W(φ) ≥ 0, we have

W(Hn) = Hn[1] +Hn[φ]W(φ)
≥ −1 + 0 · 0 ≥ −1

so the values W(Hn) are bounded below as n varies. Moreover, since Γ 0 ¬φ, for
every n there is always some W ∈ PC(Dn) where W(φ) = 1 (since any consistent
truth assignment can be extended to a truth assignment on all sentences), in which
case

W(Hn) ≥ −1 +Hn[φ] · 1
But by equation 6.3.1, this limn→∞Hn[φ] = ∞, so limn→∞W(Hn) = ∞ as well.
Hence, our e.c. trader exploits the market, contradicting the logical induction
criterion. Therefore, if P∞(φ) = 0, we must have Γ ` ¬φ.

63

6.4 Provability Induction
Recall:

Theorem 4.2.1 (Provability Induction). Let φ be an e.c. sequence of theorems.
Then

Pn(φn) hn 1.

Furthermore, let ψ be an e.c. sequence of disprovable sentences. Then

Pn(ψn) hn 0.

Proof of Theorem 4.2.1. This result is actually special case of Theorem 4.4.2, which
will be proven in the next section. For, suppose φ is an e.c. sequence of sentences
with Γ ` φn for all n. Notice that for every i, the indicator ThmΓ(φi), specifying
whether φi is a theorem of Γ, evaluates to 1. Therefore we immediately have that
for any divergent weighting w at all,

lim
n→∞

∑
i<n w(i) · ThmΓ φi∑

i<n w(i) = 1.

That is, the sequence φ is pseudorandom (over any class of weightings) with frequency
1. Hence, by Learning Pseudorandom Frequencies (Theorem 4.4.2),

Pn(φn) hn 1,

as desired. The proof that Pn(ψn) hn 0 proceeds analogously.

Examining the proof of Theorem 4.4.2 in the special case of provability induction
yields some intuition. In this case, the trader defined in that proof essentially buys
φn-shares every round that Pn(φn) < 1− ε. To avoid overspending, it tracks which
φn have been proven so far, and never has more than 1 total share outstanding.
Since eventually each φn is guaranteed to be valued at 1 in every plausible world,
the value of the trader is increased by at least ε (times the number of φn-shares it
purchased) infinitely often. In this way, the trader makes profits for so long as P
fails to recognize the pattern φ of provable sentences.

6.5 Learning Pseudorandom Frequencies
Recall Theorem 4.4.2:

Theorem 4.4.2 (Learning Pseudorandom Frequencies). Let φ be an e.c. sequence
of decidable sentences. If φ is pseudorandom with frequency p over the set of all
P-generable divergent weightings, then

Pn(φn) hn p.

Before beginning the proof, the following intuition may be helpful. If the theorem
does not hold, assume without loss of generality that P repeatedly underprices the
φn. Then a trader can buy φn-shares whenever their price goes below p− ε. By the
assumption that the truth values of the φn are pseudorandom, roughly p proportion
of the shares will pay out. Since the trader only pays at most p− ε per share, on
average they make ε on each trade, so over time they exploit the market. All we
need to do is make the trades continuous, and ensure that the trader does not go
below a fixed budget (as in the proof of Theorem 4.1.1).

Proof of Theorem 4.4.2. Suppose for a contradiction that φ is an e.c. sequence of
Γ-decidable sentences such that for every P-generable divergent weighting w,

lim
n→∞

∑
i<n w(i) · ThmΓ φi∑

i<n w(i) = p,

64

but nevertheless, for some ε > 0 and infinitely many n, |Pn(φn)− p| > ε. Without
loss of generality, assume that for infinite many n,

Pn(φn) < p− ε.

(The argument for the case where Pn(φn) > p+ ε infinitely often will be the same,
and one of these two cases must obtain.)

Definition of the trader T . We define Open : (S ×N)→ B to be the following
(potentially very slow) computable function:

Open(φ, n) =
{

0 if Dn ` φ or Dn ` ¬φ;
1 otherwise.

Open is computable because (remembering that ` stands for propositional provabil-
ity) we can just search through all truth assignments to the prime sentences of all
sentences in Dn that make the sentences in Dn true, and see if they all yield the
same truth value to φ. We now define a much faster function MO : (N× N) → B
(mnemonic: “maybe open”) by

MO(φ, n) =


0 if for some m ≤ n, Open(φ,m)

returns 0 in ≤ n steps

1 otherwise.

Observe that MO(φ, n) runs in O(n2) time, and that for any decidable φ,

• MO(φ, n) = 0 for some sufficiently large n;
• if MO(φ, n) = 0 then Open(φ, n) = 0;
• if MO(φ,m) = 0 and n > m then MO(φ, n) = 0.

(Note that MO may assign a value of 1 when Open does not, hence the mnemonic
“maybe open”.)

We will now use MO to define a trader T recursively, along with a helper function
β to ensure that it never holds a total of more than 1 unit of open (fractional) shares.
We let β1 = 0 and for n ≥ 1,

βn := 1−
∑
i<n

MO(φi, n)Ti[φi];

Tn[φn] := βn · Indε/2(φ∗nn < p− ε/2);
Tn := Tn[φ] · (φn − φ∗nn).

Observe that the expressible feature Tn can be computed (from scratch) in poly(n)
time using MO, so T is an e.c. trader. Notice also that βn and all the Tn(φ) are
always in [0, 1].
A divergent weighting. For the rest of the proof, we leave the constant argument
P implicit to reduce clutter, writing, e.g., φ∗ii for φ∗ii (P) = Pi(φ), Tn[φ] for Tn[φ](P),
and so on.

We will show that the sequence of trade coefficients wn = Tn[φn] made by T
against the market P form a P-generable divergent weighting. Our trader T is
efficiently computable and Tn[φn] ∈ [0, 1] for all n, so it remains to show that, on
input P≤n, ∑

n∈N+

Tn[φn] =∞.

Suppose this were not the case, so that for some sufficiently large m,∑
m<j

Tj [φj] < 1/2. (6.5.1)

65

By the definition of MO, there exists some large m′ such that for all i < m,
MO(φi,m′) = 0. At that point, for any n > m′, we have

βn := 1−
∑
i<n

Ti[φi] ·MO(φi, n)

= 1−
∑

m<i<n

Ti[φi] ·MO(φi, n)

≥ 1−
∑
m<i

Ti[φi]

which, by equation (6.5.1), means that

βn ≥ 1/2.

Then, by the earlier supposition on P, for some n > m′ we have Pn(φn) < p− ε, at
which point

Tn[φn] = βn · Indε/2(φ∗nn < p− ε/2) ≥ βn · 1 ≥ 1/2

which contradicts the 1/2 bound in equation (6.5.1). Hence, the sum
∑
i Ti[φn] must

instead be bounded. This means (Tn[φn])n∈N+ is a P-generable divergent weighting.

Proof of exploitation. Now, by definition of φ being pseudorandom with frequency
p over the class of P-generable divergent weightings, we have that

lim
n→∞

∑
i≤n Ti[φi] · ThmΓ(φi)∑

i≤n Ti[φi]
= p.

Thus, for all sufficiently large n,∑
i≤n

Ti[φi] · ThmΓ(φi) ≥ (p− ε/4) ·
∑
i≤n

Ti[φi].

Now, since our construction makes βn ∈ [0, 1] for all n, we have∑
i≤n

Ti[φi] ·MO(φi) ≤ 1.

Also,

W(φi) ≥ ThmΓ(φi)−MO(φi).

Multiplying this by Ti[φi] and summing over i gives

∑
i≤n

Ti[φi] ·W(φi) ≥

∑
i≤n

Ti[φi] · ThmΓ(φi)

−
∑
i≤n

Ti[φi] ·MO(φi)


≥

∑
i≤n

Ti[φi] · ThmΓ(φi)

− 1

≥ −1 + (p− ε/4)
∑
i≤n

Ti[φi].

By the definition of T , and since φ∗ii ≤ (p− ε/2) whenever Ti[φi] 6= 0,

−
∑
i≤n

Ti[φi] · φ∗ii ≥ −(p− ε/2)
∑
i≤n

Ti[φi].

66

Adding the above two inequalities gives

W

∑
i≤n

Ti

 ≥ −1 + (ε/4)
∑
i≤n

Ti[φi]

→∞ as n→∞

because Ti[φi] is a divergent weighting (as shown above). Hence, T exploits the
market P, contradicting the logical induction criterion. Therefore, for P to satisfy
the logical induction criterion, we must have

lim
n→∞

Pn(φn) = p.

6.6 Provability Induction
Recall Theorem 4.2.1:
Theorem 4.2.1 (Provability Induction). Let φ be an e.c. sequence of theorems.
Then

Pn(φn) hn 1.
Furthermore, let ψ be an e.c. sequence of disprovable sentences. Then

Pn(ψn) hn 0.

Proof of Theorem 4.2.1. Suppose φ is an e.c. sequence of sentences with Γ ` φn for
all n. Notice that for every i, the indicator ThmΓ(φi) evaluates to 1. Therefore we
immediately have that for any divergent weighting w at all,

lim
n→∞

∑
i<n w(i) · ThmΓ φi∑

i<n w(i) = 1.

That is, the sequence φ is pseudorandom (over any class of weightings) with frequency
1. Hence, by Learning Pseudorandom Frequencies (Theorem 4.4.2),

Pn(φn) hn 1,

as desired. The proof that Pn(ψn) hn 0 proceeds analogously.

Examining the proof of Theorem 4.4.2 (Learning Pseudorandom Frequencies) in the
special case of provability induction yields some intuition. In this case, the trader
defined in that proof essentially buys φn-shares every round that Pn(φn) < 1− ε.
To avoid overspending, it tracks which φn have been proven so far, and never has
more than 1 total share outstanding. Since eventually each φn is guaranteed to be
valued at 1 in every plausible world, the value of the trader is increased by at least ε
(times the number of φn-shares it purchased) infinitely often. In this way, the trader
makes profits for so long as P fails to recognize the pattern φ of provable sentences.

7 Discussion

We have proposed the logical induction criterion as a criterion on the beliefs of
deductively limited reasoners, and we have shown that reasoners who satisfy this
criterion (logical inductors) possess many desirable properties when it comes to
developing beliefs about logical statements (including statements about mathematical
facts, long-running computations, and the reasoner themself). We have also given a
computable algorithm LIA for constructing a logical inductor. We will now discuss
applications of logical induction (Section 7.1) and speculate about how and why we
think this framework works (Section 7.2). We then discuss a few variations on our
framework (Section 7.3) before concluding with a discussion of a few open questions
(Section 7.4).

67

7.1 Applications
Logical inductors are not intended for practical use. The algorithm to compare with
logical induction is not Belief Propagation (an efficient method for approximate
inference in Bayesian networks [Pearl 1988]) but Solomonoff’s theory of inductive
inference (an uncomputable method for making ideal predictions about empirical
facts [Solomonoff 1964a]). Just as Solomnoff’s sequence predictor assigns probabilities
to all possible observations and learns to predict any computable environment, logical
inductors assign probabilities to all possible sentences of logic and learns to recognize
any efficiently computable pattern between logical claims.

Solomonoff’s theory involves a predictor that considers all computable hypotheses
about their observations, weighted by simplicity, and uses Bayesian inference to zero
in on the best computable hypothesis. This (uncomputable) algorithm is impractical,
but has nevertheless been of theoretical use: its basic idiom—consult a series of
experts, reward accurate predictions, and penalize complexity—is commonplace in
statistics, predictive analytics, and machine learning. These “ensemble methods”
often perform quite well in practice. Refer to Opitz and Maclin (1999) and Dietterich
(2000) for reviews of popular and successful ensemble methods.

One of the key applications of logical induction, we believe, is the development
of an analogous idiom for scenarios where reasoners are uncertain about logical
facts. Logical inductors use a framework similar to standard ensemble methods,
with a few crucial differences that help them manipulate logical uncertainty. The
experts consulted by logical inductors don’t make predictions about what is going to
happen next; instead, they observe the aggregated advice of all the experts (including
themselves) and attempt to exploit inefficiencies in that aggregate model. A trader
doesn’t need to have an opinion about whether or not φ is true; they can exploit
the fact that φ and ¬¬φ have different probabilities without having any idea what
φ says or what that’s supposed to mean. This idea and others yield an idiom for
building models that integrate logical patterns and obey logical constraints.

In a different vein, we expect that logical inductors can already serve as a drop-in
replacement for formal models of reasoners that assume logical omniscience and/or
perfect Bayesianism, such as in game theory, economics, or theoretical models of
artificial reasoners.

The authors are particularly interested in tools that help AI scientists attain
novel statistical guarantees in settings where robustness and reliability guarantees
are currently difficult to come by. For example, consider the task of designing an
AI system that reasons about the behavior of computer programs, or that reasons
about its own beliefs and its own effects on the world. While practical algorithms
for achieving these feats are sure to make use of heuristics and approximations, we
believe scientists will have an easier time designing robust and reliable systems if
they have some way to relate those approximations to theoretical algorithms that are
known to behave well in principle (in the same way that Auto-Encoding Variational
Bayes can be related to Bayesian inference [Kingma and Welling 2013]). Modern
models of rational behavior are not up to this task: formal logic is inadequate
when it comes to modeling self-reference, and probability theory is inadequate when
it comes to modeling logical uncertainty. We see logical induction as a first step
towards models of rational behavior that work in settings where agents must reason
about themselves, while deductively limited.

When it comes to the field of meta-mathematics, we expect logical inductors to
open new avenues of research on questions about what sorts of reasoning systems
can achieve which forms of self-trust. The specific type of self-trust that logical
inductors achieve (via, e.g., Theorem 4.12.4) is a subtle subject, and worthy of a full
paper in its own right. As such, we will not go into depth here.

7.2 Analysis
Mathematicians, scientists, and philosophers have taken many different approaches
towards the problem of unifying logic with probability theory. (For a sample, refer
to Section 1.2.) In this subsection, we will speculate about what makes the logical

68

induction framework tick, and why it is that logical inductors achieve a variety of
desiderata. The authors currently believe that the following three points are some
of the interesting takeaways from the logical induction framework:
Following Solomonoff and Gaifman. One key idea behind our framework is our
paradigm of making predictions by combining advice from an ensemble of experts in
order to assign probabilities to all possible logical claims. This merges the framework
of Solomonoff (1964a) with that of Gaifman (1964), and it is perhaps remarkable
that this can be made to work. Say we fix an enumeration of all prime sentences of
first-order logic, and then hook LIA (Algorithm 5.4.1) up to a theorem prover that
enumerates theorems of PA (written using that enumeration). Then all LIA ever
“sees” (from the deductive process) is a sequence of sets like

{#92305 or #19666 is true; #50105 and #68386 are true; #8517 is false}.

From this and this alone, LIA develops accurate beliefs about all possible arithmetical
claims. LIA does this in a manner that outpaces the underlying deductive process
and satisfies the desiderata listed above. If instead we hook LIA up to a ZFC-prover,
it develops accurate beliefs about all possible set-theoretic claims. This is very
reminiscent of Solomonoff’s framework, where all the predictor sees is a sequence of
1s and 0s, and they start figuring out precisely which environment they’re interacting
with.

This is only one of many possible approaches to the problem of logical uncertainty.
For example, Adams’ probability logic (1996) works in the other direction, using
logical axioms to put constraints on an unknown probability distribution and then
using deduction to infer properties of that distribution. Markov logic networks
(Richardson and Domingos 2006) construct a belief network that contains a variable
for every possible way of grounding out each logical formula, which makes them
quite ill-suited to the problem of reasoning about the behavior of complex Turing
machines.8 In fact, there is no consensus about what form an algorithm for “good
reasoning” under logical uncertainty should take. Empiricists such as Hintikka (1962)
and Fagin et al. (1995) speak of a set of modal operators that help differentiate
between different types of knowledge; AI scientists such as Russell and Wefald
(1991b), Hay et al. (2012), and Lin et al. (2015) speak of algorithms that are
reasoning about complicated facts while also making decisions about what to reason
about next; mathematicians such as (Briol, Oates, Girolami, Osborne, and Sejdinovic
2015; Briol, Oates, Girolami, and Osborne 2015; Hennig, Osborne, and Girolami
2015) speak of numerical algorithms that give probabilistic answers to particular
questions where precise answers are difficult to generate.

Our approach achieves some success by building an approximately-coherent
distribution over all logical claims. Of course, logical induction does not solve all the
problems of reasoning under deductive limitation—far from it! They do not engage
in meta-cognition (in the sense of Russell and Wefald [1991b]) to decide which facts
to reason about next, and they do not give an immediate practical tool (as in the
case of probabilistic integration [Briol, Oates, Girolami, Osborne, and Sejdinovic
2015]), and they have abysmal runtime and uncomputable convergence bounds. It
is our hope that the methods logical inductors use to aggregate expert advice will
eventually yield algorithms that are useful for various applications, in the same way
that useful ensemble methods can be derived from Solomonoff’s theory of inductive
inference.
Keep the experts small. One of the key differences between our framework
and Solomonoff-inspired ensemble methods is that our “experts” are not themselves
predicting the world. In standard ensemble methods, the prediction algorithm weighs

8. Reasoning about the behavior of a Turing machine using a Markov logic network
would require having one node in the graph for every intermediate state of the Turing
machine for every input, so doing inference using that graph is not much easier than simply
running the Turing machine. Thus, Markov logic networks are ill-suited for answering
questions about how a reasoner should predict the behavior of computations that they
cannot run.

69

advice from a number of experts, where the experts themselves are also making
predictions. The “master algorithm” rewards the experts for accuracy and penalizes
them for complexity, and uses a weighted mixture of the experts to make their own
prediction. In our framework, the master algorithm is still making predictions (about
logical facts), but the experts themselves are not necessarily predictors. Instead, the
experts are “traders”, who get to see the current model (constructed by aggregating
information from a broad class of traders) and attempt to exploit inefficiencies in
that aggregate model. This allows traders to identify (and eliminate) inconsistencies
in the model even if they don’t know what’s actually happening in the world. For
example, if a trader sees that P(φ) + P(¬φ) � 1, they can buy shares of both φ
and ¬φ and make a profit, even if they have no idea whether φ is true or what φ is
about. In other words, letting the experts buy and sell shares (instead of just making
predictions), and letting them see the aggregate model, allows them to contribute
knowledge to the model, even if they have no idea what’s going on in the real world.

We can imagine each trader as contributing a small piece of logical knowledge
to a model—each trader gets to say “look, I don’t know what you’re trying to
predict over there, but I do know that this piece of your model is inconsistent”. By
aggregating all these pieces of knowledge, our algorithm builds a model that can
satisfy many different complicated relationships, even if every individual expert is
only tracking a single simple pattern.
Make the trading functions continuous. As stated above, our framework gets
significant mileage from showing each trader the aggregate model created by input
from all traders, and letting them profit from identifying inconsistencies in that
model. Showing traders the current market prices is not trivial, because the market
prices on day n depend on which trades are made on day n, creating a circular
dependency. Our framework breaks this cycle by requiring that the traders use
continuous betting strategies, guaranteeing that stable beliefs can be found.

In fact, it’s fairly easy to show that something like continuity is strictly necessary,
if the market is to have accurate beliefs about itself. Consider again the paradoxical
sentence χ := “Pn(χ) < 0.5” which is true iff its price in P is less than 50¢ on day
n. If, on day n, traders were allowed to buy when χ < 0.5 and sell otherwise, then
there is no equilibrium price. Continuity guarantees that the equilibrium price will
always exist.

This guarantee protects logical inductors from the classic paradoxes of self-
reference—as we have seen, it allows P to develop accurate beliefs about its current
beliefs, and to trust its future beliefs in most cases. We attribute the success of
logical inductors in the face of paradox to the continuity conditions, and we suspect
that it is a general-purpose method that deductively limited reasoners can use to
avoid the classic paradoxes.

7.3 Variations
One notable feature of the logical induction framework is its generality. The frame-
work is not tied to a polynomial-time notion of efficiency, nor to any specific model
of computation. All the framework requires is a method of enumerating possible
patterns of logic (the “traders”) on the one hand, and a method of enumerating
provable sentences of logic (the “deductive process”) on the other. Our algorithm
then gives a method for aggregating those patterns into a combined model that
respects the logical patterns that actually hold.

The framework would work just as well if we used the set of linear-time traders in
place of the set of poly-time traders. Of course, the market built out of linear-time
traders would not satisfy all the same desirable properties—but the method of
induction, which consists of aggregating knowledge from a collection of traders and
letting them all see the combined model and attempt to exploit it, would remain
unchanged.

There is also quite a bit of flexibility in the definition of a trader. Above, traders
are defined to output continuous piecewise-rational functions of the market prices.
We could restrict this definition (e.g., by having traders output continuous piecewise-

70

linear functions of the market prices), or broaden it (by replacing piecewise-rational
with a larger class), or change the encoding scheme entirely. For instance, we could
have the traders output not functions but upper-hemicontinuous relations specifying
which trades they are willing to purchase; or we could give them oracle access
to the market prices and have them output trades (instead of trading strategies).
Alternatively, we could refrain from giving traders access to the market prices
altogether, and instead let them sample truth values for sentences according to
that sentence’s probability, and then consider markets that are almost surely not
exploited by any of these traders.

In fact, our framework is not even specific to the domain of logic. Strictly
speaking, all that is necessary is a set of atomic events that can be “true” or “false”,
a language for talking about Boolean combinations of those atoms, and a deductive
process that asserts things about those atoms (such as “a ∧ ¬b”) over time. We
have mainly explored the case where the atoms are prime sentences of first order
logic, but the atoms could just as easily be bits in a webcam image, in which case
the inductor would learn to predict patterns in the webcam feed. In fact, some
atoms could be reserved for the webcam and others for prime sentences, yielding an
inductor that does empirical and logical induction simultaneously.

For the sake of brevity, we leave the development of this idea to future works.

7.4 Open Questions
With Definition 3.0.1, we have presented a simple criterion on deductively limited
reasoners, such that any reasoner who meets the criterion satisfies a large number of
desiderata, and any reasoner that fails to meet the criterion can have their beliefs
exploited by an efficient trader. With LIA we have shown that this criterion can be
met in practice by computable reasoners.

The logical induction criterion bears a strong resemblance to the “no Dutch book”
criteria used by Ramsey (1931), de Finetti (1937), Teller (1973), and Lewis (1999) to
support Bayesian probability theory. This fact, and the fact that a wide variety of
desirable properties follow directly from a single simple criterion, imply that logical
induction captures a portion of what it means to do good reasoning under deductive
limitations. That said, logical induction leaves a number of problems wide open.
Here we discuss four, recalling desiderata from Section 1.1:

Desideratum 15 (Decision Rationality). The algorithm for assigning probabilities
to logical claims should be able to target specific, decision-relevant claims, and
it should reason about those claims as efficiently as possible given the computing
resources available.

In the case of logical inductors, we can interpret this desideratum as saying that
it should be possible to tell a logical inductor to reason about one sentence in
particular, and have it efficiently allocate resources towards that task. For example,
we might be curious about Goldbach’s conjecture, and wish to tell a logical inductor
to develop its beliefs about that particular question, i.e. by devoting its computing
resources in particular to sentences that relate to Goldbach’s conjecture (such as
sentences that might imply or falsify it).

Our algorithm for logical induction does not do anything of this sort, and there
is no obvious mechanism for steering its deliberations. In the terminology of Hay
et al. (2012), LIA does not do metalevel reasoning, i.e., it does nothing akin to
“thinking about what to think about”. That said, it is plausible that logical induction
could play a role in models of bounded decision-making agents. For example, when
designing an artificial intelligence (AI) algorithm that does try to reason about
Goldbach’s conjecture, it would be quite useful for that algorithm to have access
to a logical inductor that tells it which other mathematical facts are likely related
(and how). We can imagine a resource-constrained algorithm directing computing
resources while consulting a partially-trained logical inductor, occasionally deciding
that the best use of resources is to train the logical inductor further. At the moment,
these ideas are purely speculative; significant work remains to be done to see how

71

logical induction bears on the problem of allocation of scarce computing resources
when reasoning about mathematical facts.
Desideratum 16 (Answers Counterpossible Questions). When asked questions
about contradictory states of affairs, a good reasoner should give reasonable answers.
In the year 1993, if you asked a mathematician about what we would know about
mathematics if Fermat’s last theorem was false, they would talk about how that
would imply the existence of non-modular elliptic curves. In the year 1994, Fermat’s
last theorem was proven true, so by the principle of explosion, we now know that
if Fermat’s last theorem were false, then 1=2 and

√
2 is rational, because from a

contradiction, anything follows. The first sort of answer seems more reasonable,
and indeed, reasoning about counterpossibilities (i.e., proving a conjecture false by
thinking about what would follow if it were true) is a practice that mathematicians
engage in regularly. A satisfactory treatment of counterpossibilities has proven
elusive; see (Cohen 1990; Vander Laan 2004; Brogaard and Salerno 2007; Krakauer
2012; Bjerring 2014) for some discussion and ideas. One might hope that a good
treatment of logical uncertainty would naturally result in a good treatment of
counterpossibilities.

There are intuitive reasons to expect that a logical inductor has reasonable beliefs
about counterpossibilities. In the days before D has (propositionally) ruled out
worlds inconsistent with Fermat’s last theorem, P has to have beliefs that allow for
Fermat’s last theorem to be false, and if the proof is a long time in coming, those
beliefs are likely reasonable. However, we do not currently have any guarantees of
this form—P∞ still assigns probability 0 to Fermat’s last theorem being false, and so
the conditional probabilities are not guaranteed to be reasonable, so we haven’t yet
found anything satisfactory to say with confidence about P’s counterpossible beliefs.

While the discussion of counterpossibilities may seem mainly academic, Soares
and Fallenstein (2015) have argued that counterpossibilities are central to the problem
of designing robust decision-making algorithms. Imagine a deterministic agent agent
evaluating three different “possible scenarios” corresponding to three different actions
the agent could take. Intuitively, we want the nth scenario (modeled inside the agent)
to represent what would happen if the agent took the nth action, and this requires
reasoning about what would happen if agent(observation) had the output a vs b
vs c. Thus, a better understanding of counterpossible reasoning could yield better
decision algorithms. Significant work remains to be done to understand and improve
the way that logical inductors answer counterpossible questions.
Desideratum 17 (Use of Old Evidence). When a bounded reasoner comes up with
a new theory that neatly describes anomalies in the old theory, that old evidence
should count as evidence in favor of the new theory.
The canonical example of the problem of old evidence is Einstein’s development of
the theory of general relativity and its retrodiction of the precession in Mercury’s
orbit. For hundreds of years before Einstein, astronomers knew that Newton’s
equations failed to model this precession, and Einstein’s retrodiction counted as
a large boost for his theory. This runs contrary to Bayes’ theorem, which says
that a reasoner should wring every drip of information out of every observation the
moment that the evidence appears. A Bayesian reasoner keeps tabs on all possible
hypotheses at all times, and so they never find a new hypothesis in a burst of insight,
and reward it for retrodictions. Humans work differently—scientists spent centuries
without having even one good theory for the precession of Mercury, and the difficult
scientific labor of Einstein went into inventing the theory.

There is a weak sense in which logical inductors solve the problem of old evidence—
as time goes on, they get better and better at recognizing patterns in the data that
they have already seen, and integrating those old patterns into their new models.
That said, a strong solution to the problem of old evidence isn’t just about finding
new ways to use old data every so often; it’s about giving a satisfactory account
of how to algorithmically generate new scientific theories. In that domain, logical
induction has much less to say: they “invent” their “theories” by sheer brute force,
iterating over all possible polynomial-time methods for detecting patterns in data.

72

There is some hope that logical inductors will shed light on the question of how
to build accurate models of the world in practice, just as ensemble methods yield
models that are better than any individual expert in practice. However, the task
of using logical inductors to build practical models in some limited domain is wide
open.

Desideratum 14 (Efficiency). The algorithm for assigning probabilities to logical
claims should run efficiently, and be usable in practice.

Logical inductors are far from efficient, but they do raise an interesting empirical
question. While the theoretically ideal ensemble method (the universal semimeasure
[Li and Vitányi 1993]) is uncomputable, practical ensemble methods often make
very good predictions about their environments. It is therefore plausible that
practical logical induction-inspired approaches could manage logical uncertainty well
in practice. Imagine we pick some limited domain of reasoning, and a collection of
constant- and linear-time traders. Imagine we use standard approximation methods
(such as gradient descent) to find approximately-stable market prices that aggregate
knowledge from those traders. Given sufficient insight and tweaking, would the
resulting algorithm be good at learning to respect logical patterns in practice? This
is an empirical question, and it remains to be tested.

7.5 Acknowledgements
We acknowledge Abram Demski, Benya Fallenstein, Daniel Filan, Eliezer Yudkowsky,
Jan Leike, János Kramár, Nisan Steinnon, Patrick LaVictoire, Paul Christiano, Sam
Eisenstat, Scott Aaronson, and Vadim Kosoy, for valuable comments and discussions.
We also acknowledge contributions from attendees of the MIRI summer fellows
program, the MIRIxLA group, and the MIRIχ group.

This research was supported as part of the Future of Life Institute (futureoflife.org)
FLI-RFP-AI1 program, grant #2015-144576.

References
Aaronson, Scott. 2013. “Why philosophers should care about computational complexity.”

In Computability: Turing, Gödel, Church, and Beyond, edited by B. Jack Copeland,
Carl J. Posy, and Oron Shagrir. MIT Press.

Adams, Ernest W. 1996. A Primer of Probability Logic. University of Chicago Press.

Akama, Seiki, and Newton C. A. da Costa. 2016. “Why Paraconsistent Logics?” In Towards
Paraconsistent Engineering, edited by Seiki Akama, 7–24. Springer.

Bacharach, Michael. 1994. “The epistemic structure of a theory of a game.” Theory and
Decision 37 (1): 7–48.

Battigalli, Pierpaolo, and Giacomo Bonanno. 1999. “Recent results on belief, knowledge and
the epistemic foundations of game theory.” Research in Economics 53 (2): 149–225.

Beygelzimer, Alina, John Langford, and David M. Pennock. 2012. “Learning Performance
of Prediction Markets with Kelly Bettors.” In 11th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2012), edited by Vincent
Conitzer, Michael Winikoff, Wiebe van der Hoek, and Lin Padgham, 1317–1318.
International Foundation for Autonomous Agents / Multiagent Systems.

Binmore, Kenneth. 1992. “Foundations of game theory.” In Advances in Economic Theory:
Sixth World Congress, edited by Jean-Jacques Laffont, 1:1–31.

Bjerring, Jens Christian. 2014. “On Counterpossibles.” Philosophical Studies 168 (2): 327–
353.

Blair, Howard A., and V.S. Subrahmanian. 1989. “Paraconsistent Logic Programming.”
Theoretical Computer Science 68 (2): 135–154.

Boole, George. 1854. An investigation of the laws of thought: on which are founded the
mathematical theories of logic and probabilities. Dover Publications.

73

Briol, François-Xavier, Chris Oates, Mark Girolami, and Michael A. Osborne. 2015. “Frank-
Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees.”
In Advances in Neural Information Processing Systems 28 (NIPS 2015), edited by
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, 1162–1170.
Curran Associates, Inc.

Briol, François-Xavier, Chris Oates, Mark Girolami, Michael A. Osborne, and Dino Sejdi-
novic. 2015. “Probabilistic Integration.” arXiv: 1512.00933 [stat.ML].

Brogaard, Berit, and Joe Salerno. 2007. “Why Counterpossibles are Non-Trivial.” The
Reasoner 1 (1): 5–6.

Calude, Cristian S, and Michael A Stay. 2008. “Most programs stop quickly or never halt.”
Advances in Applied Mathematics 40 (3): 295–308.

Campbell-Moore, Catrin. 2015. “How to Express Self-Referential Probability. A Kripkean
Proposal.” The Review of Symbolic Logic 8 (04): 680–704.

Carnap, Rudolf. 1962. Logical Foundations of Probability. University of Chicago Press.

Christiano, Paul. 2014. Non-Omniscience, Probabilistic Inference, and Metamathematics.
Technical report 2014–3. Berkeley, CA: Machine Intelligence Research Institute. http:
//intelligence.org/files/Non-Omniscience.pdf.

Christiano, Paul F., Eliezer Yudkowsky, Marcello Herreshoff, and Mihály Bárász. 2013.
Definability of Truth in Probabilistic Logic. Early Draft. Berkeley, CA: Machine
Intelligence Research Institute, April 2. https://intelligence.org/files/Definab
ilityTruthDraft.pdf.

Cohen, Daniel. 1990. “On What Cannot Be.” In Truth or Consequences: Essays in Honor
of Nuel Belnap, 123–132. Kluwer Academic Publishers.

de Finetti, Bruno. 1937. “Foresight: Its Logical Laws, Its Subjective Sources.” In Studies
in Subjective Probability, edited by Henry E. Kyburg and Howard E.K. Smokler.
Huntington, New York: Roger E. Kreiger Publishing Co.

De Raedt, Luc. 2008. Logical and Relational Learning. Cognitive Technologies. Springer.

De Raedt, Luc, and Kristian Kersting. 2008. “Probabilistic Inductive Logic Programming.”
In Probabilistic Inductive Logic Programming, 1–27. Springer.

De Raedt, Luc, and Angelika Kimmig. 2015. “Probabilistic (logic) programming concepts.”
Machine Learning 100 (1): 5–47.

Demski, Abram. 2012. “Logical Prior Probability.” Edited by Joscha Bach, Ben Goertzel,
and Matthew Iklé. Artificial General Intelligence. 5th International Conference, AGI
2012 (New York), no. 7716: 50–59.

Dietterich, Thomas G. 2000. “Ensemble Methods in Machine Learning.” In 1st International
workshop on Multiple Classifier Systems (MCS 2000), 1–15. Springer.

Eells, Ellery. 1990. “Bayesian problems of old evidence.” Scientific Theories 14:205–223.

Eklund, Matti. 2002. “Inconsistent Languages.” Philosophy and Phenomenological Research
64 (2): 251–275.

Enderton, Herbert B. 2001. A Mathematical Introduction to Logic. Academic Press.

Fagin, Ronald, and Joseph Y. Halpern. 1987. “Belief, awareness, and limited reasoning.”
Artificial intelligence 34 (1): 39–76.

Fagin, Ronald, Joseph Y. Halpern, Yoram Moses, and Moshe Vardi. 1995. Reasoning about
knowledge, vol. 4. MIT Press Cambridge.

Fuhrmann, André. 2013. “Relevant logics, modal logics and theory change.” PhD diss.,
Australian National University - Research School of Social Sciences.

Gaifman, Haim. 1964. “Concerning Measures in First Order Calculi.” Israel Journal of
Mathematics 2 (1): 1–18.

Gaifman, Haim, and Marc Snir. 1982. “Probabilities over rich languages, testing and
randomness.” Journal of Symbolic Logic 47 (03): 495–548.

74

http://arxiv.org/abs/1512.00933
http://intelligence.org/files/Non-Omniscience.pdf
http://intelligence.org/files/Non-Omniscience.pdf
https://intelligence.org/files/DefinabilityTruthDraft.pdf
https://intelligence.org/files/DefinabilityTruthDraft.pdf

Garber, Daniel. 1983. “Old evidence and logical omniscience in Bayesian confirmation
theory.” Testing scientific theories 10:99–131.

Gärdenfors, Peter. 1988. Knowledge in Flux: Modeling the Dynamics of Epistemic States.
Bradford Books, MIT Press.

Garrabrant, Scott, Tsvi Benson-Tilsen, Siddharth Bhaskar, Abram Demski, Joanna
Garrabrant, George Koleszarik, and Evan Lloyd. 2016. “Asymptotic Logical Un-
certainty and the Benford Test.” In 9th Conference on Artificial General Intelligence
(AGI-16), edited by Bas Steunebrink, Pei Wang, and Ben Goertzel, 9782:202–211.
Lecture Notes in Artificial Intelligence. Springer International Publishing.

Garrabrant, Scott, Benya Fallenstein, Abram Demski, and Nate Soares. 2016. “Inductive
Coherence.” arXiv: 1604.05288 [cs.AI].

Garrabrant, Scott, Nate Soares, and Jessica Taylor. 2016. “Asymptotic Convergence in
Online Learning with Unbounded Delays.” arXiv: 1604.05280.

Gerla, Giangiacomo. 2013. Fuzzy logic: mathematical tools for approximate reasoning.
Vol. 11. Trends in Logic. Springer.

Glanzberg, Michael. 2001. “The Liar in Context.” Philosophical Studies 103 (3): 217–251.

Glymour, Clark. 1980. Theory and Evidence. Princeton University Press.

Gödel, Kurt, Stephen Cole Kleene, and John Barkley Rosser. 1934. On Undecidable
Propositions of Formal Mathematical Systems. Princeton, NJ: Institute for Advanced
Study.

Good, Irving J. 1950. Probability and the Weighing of Evidence. Charles Griffin, London.

Grim, Patrick. 1991. The Incomplete Universe: Totality, Knowledge, and Truth. Mit Press.

Guarino, Nicola. 1998. “Formal Ontology and Information Systems.” In Formal Ontology
in Information Systems: Proceedings of FOIS’98, 46:3–15. Frontiers in Artificial
Intelligence and Applications. Amsterdam: IOS Press.

Gupta, Anil, and Nuel D. Belnap. 1993. The Revision Theory of Truth. MIT Press.

Hacking, Ian. 1967. “Slightly More Realistic Personal Probability.” Philosophy of Science
34 (4): 311–325.

Hailperin, Theodore. 1996. “Sentential probability logic.”

Halpern, Joseph Y. 2003. Reasoning about Uncertainty. Cambridge, MA: MIT Press.

Hay, Nicholas, Stuart J. Russell, Solomon Eyal Shimony, and David Tolpin. 2012. “Selecting
Computations: Theory and Applications.” In Uncertainty in Artificial Intelligence
(UAI-’12), edited by Nando de Freitas and Kevin Murphy, 346–355.

Hennig, Philipp, Michael A. Osborne, and Mark Girolami. 2015. “Probabilistic numerics
and uncertainty in computations.” Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 471 (2179).

Hilbert, David. 1902. “Mathematical Problems.” Bulletin of the American Mathematical
Society 8 (10): 437–480.

Hintikka, Jaakko. 1962. Knowledge and belief: An introduction to the logic of the two
notions. Cornell University Press.

. 1979. “Impossible Possible Worlds Vindicated.” In Game-Theoretical Semantics:
Essays on Semantics by Hintikka, Carlson, Peacocke, Rantala, and Saarinen, edited
by Esa Saarinen, 367–379. Springer.

Hutter, Marcus, John W. Lloyd, Kee Siong Ng, and William T. B. Uther. 2013. “Probabilities
on Sentences in an Expressive Logic.” Journal of Applied Logic 11 (4): 386–420.

Jaynes, E. T. 2003. Probability Theory: The Logic of Science. Edited by G. Larry Bretthorst.
New York: Cambridge University Press.

Jeffrey, Richard. 1983. “Bayesianism with a human face.” Testing scientific theories, min-
nesota studies in the philosophy of science 10:133–156.

75

http://arxiv.org/abs/1604.05288
http://arxiv.org/abs/1604.05280

Joyce, James M. 1999. The Foundations of Causal Decision Theory. Cambridge Studies in
Probability, Induction and Decision Theory. New York: Cambridge University Press.

Kersting, Kristian, and Luc De Raedt. 2007. “Bayesian Logic Programming: Theory and
Tool.” Chap. 10 in Introduction to Statistical Relational Learning, edited by Lise Getoor
and Ben Taskar, 291–322. MIT Press.

Khot, Tushar, Niranjan Balasubramanian, Eric Gribkoff, Ashish Sabharwal, Peter Clark,
and Oren Etzioni. 2015. “Markov Logic Networks for Natural Language Question
Answering.” arXiv: 1507.03045 [stat.ML].

Kingma, Diederik P, and Max Welling. 2013. “Auto-Encoding Variational Bayes.” arXiv:
1312.6114 [stat.ML].

Klir, George, and Bo Yuan. 1995. Fuzzy Sets and Fuzzy Logic. New Jersey: Prentice Hall.

Kok, Stanley, and Pedro Domingos. 2005. “Learning the structure of Markov logic networks.”
In 22nd International Conference on Machine Learning (ICML ’05), 441–448. ACM.

Kolmogorov, A.N. 1950. “Foundations of the Theory of Probability.”

Krakauer, Barak. 2012. “Counterpossibles.” PhD diss., University of Massachusetts -
Amherst.

Kucera, Antonin, and Andre Nies. 2011. “Demuth randomness and computational com-
plexity.” Annals of Pure and Applied Logic 162 (7): 504–513.

Lewis, David. 1999. Papers in metaphysics and epistemology. Vol. 2. Cambridge University
Press.

Li, Ming, and Paul M. B. Vitányi. 1993. An Introduction to Kolmogorov Complexity and
its Applications. 1st ed. New York: Springer.

Lin, Christopher H, Andrey Kolobov, Ece Kamar, and Eric Horvitz. 2015. “Metareasoning
for Planning Under Uncertainty.” arXiv: 1505.00399 [cs.AI].

Lindley, Dennis V. 1991. “Making Decisions.”

Lipman, Barton L. 1991. “How to decide how to decide how to...: Modeling limited
rationality.” Econometrica: Journal of the Econometric Society 59 (4): 1105–1125.

Łoś, Jerzy. 1955. “On the Axiomatic Treatment of Probability.” Colloquium Mathematicae
3 (2): 125–137.

Lowd, Daniel, and Pedro Domingos. 2007. “Efficient Weight Learning for Markov Logic
Networks.” In 11th European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD 2007), edited by Joost N. Kok, Jacek Koronacki,
Ramon Lopez de Mantaras, Stan Matwin, Dunja Mladenič, and Andrzej Skowron,
200–211. Springer.

McCallum, Andrew, Karl Schultz, and Sameer Singh. 2009. “Factorie: Probabilistic pro-
gramming via imperatively defined factor graphs.” In Advances in Neural Information
Processing Systems 22 (NIPS 2009), edited by Y. Bengio, D. Schuurmans, J. D.
Lafferty, C. K. I. Williams, and A. Culotta, 1249–1257. Curran Associates, Inc.

McGee, Vann. 1990. Truth, Vagueness, and Paradox: An Essay on the Logic of Truth.
Hackett Publishing.

Meyer, J-J Ch., and Wiebe Van Der Hoek. 1995. Epistemic logic for AI and computer
science. Cambridge Tracts in Theoretical Computer Science 41. Cambridge University
Press.

Mihalkova, Lilyana, Tuyen Huynh, and Raymond J Mooney. 2007. “Mapping and Revising
Markov Logic Networks for Transfer Learning.” In 22nd Conference on Artificial
Intelligence (AAAI-07), 1:608–614. AAAI Press.

Mortensen, Chris. 2013. Inconsistent Mathematics. Vol. 312. Mathematics and Its Applica-
tions. Springer.

Muggleton, Stephen H., and Hiroaki Watanabe. 2014. Latest Advances in Inductive Logic
Programming. World Scientific.

76

http://arxiv.org/abs/1507.03045
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1505.00399

Muiño, David Picado. 2011. “Measuring and Repairing Inconsistency in Probabilistic
Knowledge Bases.” International Journal of Approximate Reasoning 52 (6): 828–840.

Opitz, David, and Richard Maclin. 1999. “Popular Ensemble Methods: An Empirical Study.”
Journal of Artificial Intelligence Research 11:169–198.

Pearl, Judea. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. San Mateo, CA: Morgan Kaufmann.

Polya, George. 1990. Mathematics and Plausible Reasoning: Patterns of plausible inference.
Vol. 2. Princeton University Press.

Potyka, Nico. 2015. “Solving Reasoning Problems for Probabilistic Conditional Logics with
Consistent and Inconsistent Information.” PhD diss., Fernuniversität.

Potyka, Nico, and Matthias Thimm. 2015. “Probabilistic Reasoning with Inconsistent
Beliefs Using Inconsistency Measures.” In 24th International Joint Conference on
Artificial Intelligence (IJCAI-15), 3156–3163. Buenos Aires, Argentina: AAAI Press.

Priest, Graham. 2002. “Paraconsistent Logic.” In Handbook of Philosophical Logic, 6:287–
393. Kluwer Academic Publishers.

Ramsey, Frank Plumpton. 1931. “Truth and Probability.” In The Foundations of Mathe-
matics and other Logical Essays, edited by Richard Bevan Braithwaite, 156–198. New
York: Harcourt, Brace.

Rantala, Veikko. 1979. “Urn Models: A New Kind of Non-Standard Model for First-Order
Logic.” In Game-Theoretical Semantics: Essays on Semantics by Hintikka, Carlson,
Peacocke, Rantala, and Saarinen, edited by Esa Saarinen, 347–366. Springer.

Richardson, Matthew, and Pedro Domingos. 2006. “Markov Logic Networks.” Machine
Learning 62 (1-2): 107–136.

Rubinstein, Ariel. 1998. Modeling Bounded Rationality. MIT Press.

Russell, Stuart J. 2016. “Rationality and Intelligence: A Brief Update.” In Fundamental
Issues of Artificial Intelligence, 376:7–28. Synthese Library. Springer.

Russell, Stuart J., and Eric H. Wefald. 1991a. Do the Right Thing: Studies in Limited
Rationality. MIT Press.

. 1991b. “Principles of Metareasoning.” Artificial intelligence 49 (1-3): 361–395.

Savage, Leonard J. 1954. “The foundations of statistics.”

. 1967. “Difficulties in the theory of personal probability.” Philosophy of Science 34
(4): 305–310.

Sawin, Will, and Abram Demski. 2013. “Computable probability distributions which
converge on believing true Π1 sentences will disbelieve true Π2 sentences.”

Schlesinger, George N. 1985. Range of Epistemic Logic. Scots Philosophical Monograph.
Elsevier Science Ltd.

Simon, Herbert Alexander. 1982. Models of bounded rationality: Empirically grounded
economic reason. Vol. 3. MIT Press.

Singla, Parag, and Pedro Domingos. 2005. “Discriminative Training of Markov Logic
Networks.” In 20th National Conference on Artificial Intelligence (AAAI-05), 2:868–
873. AAAI Press.

Soares, Nate, and Benja Fallenstein. 2015. “Toward Idealized Decision Theory.” arXiv:
1507.01986 [cs.AI].

Solomonoff, Ray J. 1964a. “A Formal Theory of Inductive Inference. Part I.” Information
and Control 7 (1): 1–22.

. 1964b. “A Formal Theory of Inductive Inference. Part II.” Information and Control
7 (2): 224–254.

Sowa, John F. 1999. Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks-Cole.

77

http://arxiv.org/abs/1507.01986

Sprenger, Jan. 2015. “A Novel Solution to the Problem of Old Evidence.” Philosophy of
Science 82 (3): 383–401.

Teller, Paul. 1973. “Conditionalization and observation.” Synthese 26 (2): 218–258.

Thimm, Matthias. 2013a. “Inconsistency Measures for Probabilistic Logics.” Artificial
Intelligence 197:1–24.

. 2013b. “Inconsistency measures for probabilistic logics.” Artificial Intelligence
197:1–24.

Tran, Son D, and Larry S Davis. 2008. “Event modeling and recognition using markov
logic networks.” In European Conference on Computer Vision, 610–623. Springer.

Turing, Alan M. 1936. “On Computable Numbers, with an Application to the Entschei-
dungsproblem.” Proceedings of the London Mathematical Society, 2nd ser., 42 (230–
265).

Vajda, Steven. 1972. Probabilistic Programming. Probability and Mathematical Statistics:
A Series of Monographs and Textbooks. Academic Press.

Vander Laan, David. 2004. “Counterpossibles and similarity.” Chap. 20 in Lewisian Themes:
The Philosophy of David K. Lewis, edited by Frank Jackson and Graham Priest,
258–275. Oxford University Press.

von Neumann, John, and Oskar Morgenstern. 1944. Theory of Games and Economic
Behavior. 1st ed. Princeton, NJ: Princeton University Press.

Wang, Jue, and Pedro M. Domingos. 2008. “Hybrid Markov Logic Networks.” In 23rd
Conference on Artificial Intelligence (AAAI-08), 2:1106–1111. AAAI Press.

Wood, Frank, Jan-Willem van de Meent, and Vikash Mansinghka. 2014. “A New Approach
to Probabilistic Programming Inference.” In Proceedings of the 17th International
Conference on Artificial Intelligence and Statistics (AISTATS), 33:1024–1032. JMLR
Workshop and Conference Proceedings.

Yen, John, and Reza Langari. 1999. Fuzzy Logic: Intelligence, Control, and Information.
Vol. 1. Pearson.

Zhang, Yitang. 2014. “Bounded gaps between primes.” Annals of Mathematics 179 (3):
1121–1174.

Zilberstein, Shlomo. 2008. “Metareasoning and bounded rationality.” Metareasoning: Think-
ing about Thinking, MIT Press, forthcoming.

Zvonkin, Alexander K., and Leonid A. Levin. 1970. “The Complexity of Finite Objects
and the Development of the Concepts of Information and Randomness by Means of
the Theory of Algorithms.” Russian Mathematical Surveys 25 (6): 83–124.

Zynda, Lyle. 1995. “Old evidence and new theories.” Philosophical Studies 77 (1): 67–95.

78

A Preliminaries

A.1 Organization of the Appendix
The appendix is organized differently from the paper. Here we describe the broad
dependency structure of the proofs and mention the theorems that are proven by
constructing explicit traders (rather than as corollaries). Note that theorems that
were proven in Section 6 are also proven here, but differently (generally much more
concisely, as a corollary of some other theorem).

A. Preliminaries. Appendix A.2 describes expressible features in full detail.
Appendix A.3 defines some notions for combinations, and defines when a sequence
of traders can be “efficiently emulated”, which will be useful in B, D.1, and G.

B. Convergence. Appendix B.1 introduces a tool for constructing traders
(Lemma B.1.3, Return on Investment) that is used in B and D.1. Appendices
B.2 (Affine Preemptive Learning) and B.5 (Persistence of Affine Knowledge) prove
those theorems using Lemma B.1.3, and the remainder of B derives some corollaries
(convergence and non-affine special cases).

C. Coherence. Appendix C.1 proves Affine Coherence, giving (Affine) Prov-
ability Induction as corollaries. The remainder of C derives corollaries of Provability
Induction (consistency and halting) and of Affine Provability Induction (coherence
and exclusive-exhaustive relationships).

D. Statistics. Appendix D.1 proves Affine Recurring Unbiasedness using
Lemma B.1.3, giving Simple Calibration (D.3) as a corollary. Appendices D.4
(Affine Unbiasedness From Feedback) and D.6 (Learning Pseudorandom Affine
Sequences) prove those theorems by constructing traders, and the remainder of
Appendix D derives corollaries (varied and non-affine cases).

E. Expectations. Appendix E.2 proves the Mesh Independence Lemma by
constructing a trader, and E.1 and E.5 prove two other lemmas on expectations;
basic properties of expectations such as convergence and linearity are also proved.
These proofs rely on theorems proven in B and C. The remainder of E proves analogs
for expectations of the convergence, coherence, and statistical theorems by applying
their affine versions to F-combinations expressing expectations.

F. Introspection and Self-Trust. The first part of Appendix F proves intro-
spection properties using Affine Provability Induction and Expectation Provability
Induction. The remainder derives the self-trust properties as applications of theorems
proven in Appendix E.

G. Non-Dogmatism and Closure. Appendix G is mostly self-contained.
Appendix G.1 proves a simple analog of the return on investment lemma with stronger
hypotheses; this is applied to constructing traders in G.2 (Uniform Non-Dogmatism),
G.3 (Occam Bounds), and G.5 (Domination of the Universal Semimeasure), with
non-dogmatism and strict domination as corollaries. Appendix G.8 (Conditionals
on Theories) uses uniform non-dogmatism, preemptive learning, and G.7 (Closure
under Finite Perturbations).

A.2 Expressible Features
This section can be safely skipped and referred back to as desired.

Recall that a trading strategy for day n is given by an affine combination of
sentences with expressible feature coefficients. As such, a machine that implements
a trader must use some notation for writing down those features. Here, to be fully
rigorous, we will make an explicit choice of notation for expressible features. Recall
their definition:

Definition 3.4.3 (Expressible Feature). An expressible feature ξ ∈ F is a
valuation feature expressible by an algebraic expression built from price features φ∗n
for each n ∈ N+ and φ ∈ S, rational numbers, addition, multiplication, max(−,−),
and a “safe reciprocation” function max(1,−)−1.

We write EF for the set of all expressible features, EFn for the set of expressible
features of rank ≤ n, and define an EF-progression to be a sequence ξ such that
ξn ∈ EFn.

79

A (multi-line) string representing an expressible feature will be called a well-
formed feature expression, and will be built from smaller expressions involving
variables (mainly to save space when a particular expression would otherwise need
to be repeated many times).

We define the set of variable feature expressions Ξ inductively to include:

• Past and present market prices: for all i ≤ n and for all ψ ∈ S, there is a
symbol ψ∗i ∈ Ξ.

• Rationals: Q ⊂ Ξ.

• Variables: V ⊂ Ξ.

Further, if ξ ∈ Ξ and ζ ∈ Ξ, then the following operations on them are as well:

• Addition: ξ + ζ ∈ Ξ.

• Multiplication: ξ · ζ ∈ Ξ.

• Maximum: max(ξ, ζ) ∈ Ξ.

• Safe reciprocation: 1/max(1, ξ) ∈ Ξ.

These operations are sufficient to generate all the expressible features we will need.
For example,

−ξ := (−1) · ξ;
min(ξ, ζ) := −max(−ξ,−ζ);

|ξ| := max(ξ,−ξ);

and when ζ ≥ ε for some constant ε > 0, we can define

ξ/ζ := (1/ε) · ξ/max(1, (1/ε) · ζ).

We now define a well-formed feature expression to be a (multi-line) string of the
following form:

v1 := (feature expression with no variables);
v2 := (feature expression involving v1);
· · ·
vk := (feature expression involving v1, . . . , vk−1);
return (feature expression involving v1, . . . , vk),

where the final expression after “return ” is the expression evaluated to actually
compute the expressible feature defined by this code block.

Examples

The following well-formed feature expression defines a rank 7 expressible feature:

v1 := φ∗71 + φ∗42
v2 := v1 − 1
return 3 ·max(v1, v2).

If the market at time 7 has P7(φ1) = 0.8 and the market at time 4 had P4(φ2) = 0,
then this expressible feature evaluates to

3 ·max(v1, v2) = 3 ·max(0.8,−0.2) = 2.4.

80

An n-strategy can now be written down in a very similar format, sharing variable
definitions used in the various coefficients to save space. For example, the following
code defines a 7-strategy:

v1 := φ∗71 + φ∗42
v2 := v1 · v2

T [φ1] := 3 ·max(v1, v2)
T [φ2] := 6 ·max(v1, v2).

T :=
2∑
i=1

T [φi] · (φi − φ∗ni)

return T

Notice that the function φ∗71 returning the current market price of φ1 affects (via
v1) how many shares of φ1 this trader buys. This is permitted, and indeed is crucial
for allowing traders to base their trades on the current market prices.

Dynamic programming for traders

We will often define traders that make use of indexed variables that are defined
recursively in terms of previous indices, as in e.g. the proof of Theorem 4.1.1
(Convergence) in Section 6.1. In particular, we often have traders refer to their own
past trades, e.g. using expressible features of the form Ti[φ] for i < n to define their
trade at time n. This can be written down in polynomial time using the expression
language for features, via dynamic programming. For example, to use previous
trades, a trader can recapitulate all the variables used in all its previous trading
strategies. As long as the trading strategies are efficiently computable given previous
trades as variables, they are still efficiently computable without them (possibly with
a higher-degree polynomial).

A.3 Definitions
Price of a Combination

Definition A.3.1 (Price of a Combination). Given any affine combination

A = c+ ξ1φ1 + · · ·+ ξkφk

of rank ≤ n, observe that the map V 7→ Vn(A) is an expressible feature, called the
price of A on day n, and is given by the expression

A∗n := c+ ξ1φ1
∗n + · · ·+ ξkφk

∗n.

For any valuation sequence U, observe by linearity and associativity that

(V(A))(U) = V(A(U)) = c(U) +
∑
φ

ξφ(U)V(φ).

Buying a Combination

Definition A.3.2 (Buying a Combination). Given any EF-combination A† of
rank ≤ n, we define a corresponding n-strategy called buying A† on day n to
equal

A† −A†∗n.
Observe that buying A on day n is indeed an n-strategy.

81

F-Combinations Corresponding to F-LUV Combinations

Definition A.3.3 (Ex). Let B := c+ ξ1X1 + · · ·+ ξkXk be an F-LUV combination.
Define

Exm(A) = c+ ξ1

m−1∑
i=0

1
m

(“X1 > i/m”) + · · ·+ ξk

m−1∑
i=0

1
m

(“Xk > i/m”)

to be a F-affine combination corresponding to B. Note that V(Exm(B)) = EV
m(B).

Also note that if (Bn)n is bounded, then (Exn(Bn))n is bounded; we will use this
fact freely in what follows.

Efficiently Emulatable Sequence of Traders

In Appendices B, D.1, and G, we will construct traders that allocate their money
across multiple strategies for exploiting the market. In order to speak unambiguously
about multiple overlapping long-term strategies for making trades, we define the
notion of a sequence of traders that can be efficiently emulated by one trader.

Definition A.3.4 (Efficiently Emulatable Sequence of Traders). We say that a
sequence of traders (T k)k is efficiently emulatable if

• the sequence of programs that compute the T k can be efficiently generated;

• those programs for T k have uniformly bounded runtime, i.e., there exists a
constant c such that for all k and all times n, the program that computes T k
runs in time O(nc); and

• for all k and all n < k, we have that T kn is the zero trade.

Efficiently emulatable sequences are so named because a single trader T can emulate
the entire sequence of traders (T k)k. That is, on time n, T can directly compute all
the trading strategies T kn for k ≤ n by listing the appropriate programs and running
them on input n. This can be done in polynomial time by definition of an efficiently
emulatable sequence. We require that T k does not make non-zero trades before time
k so that the emulator T need not truncate any trades made by the T k.

B Convergence Proofs

B.1 Return on Investment
This section provides a useful tool for constructing traders, which will be applied in
Appendix B and Appendix D.1. The reader may wish to first begin with the proof
in Appendix B.2 of Theorem 4.5.7 as motivation of the return on investment lemma.

Statement of the ε-ROI lemma. If we have a logical inductor P, we know
that P cannot be exploited by any trader. It will often be easy to show that if
P fails to satisfy some property, then there is a trader T that takes advantage
of a specific, one-shot opportunity to trade against the market in a way that is
guaranteed to eventually be significantly higher value than the size of the original
investment; and that such opportunities arise infinitely often. In order to use such a
situation to ensure that the market P satisfies the property, we will now show that
logical inductors are not susceptible to repeatable methods for making a guaranteed,
substantial profit.

To define a notion of return on investment, we first define the “magnitude” of
a trade made by a trader, so that we can talk about traders that are profitable in

82

proportion to the size of their trades:

‖T (P)‖mg :=
∑
φ∈S

|T [φ](P)|.

This number will be called the magnitude of the trade. It is just the total number
of shares traded by T against the market P, whether the shares are bought or sold.
Note that the magnitude is not the same as the ‖ − ‖1-norm of T (P); the magnitude
omits the constant term T [1](P).

The magnitude is a simple bound on the value of the holdings Tn(P): for any
world W (plausible or not),∣∣∣∣∣∣

∑
φ∈S

Tn[φ](P) · (W(φ)− Pn(φ))

∣∣∣∣∣∣ ≤
∑
φ∈S

∣∣Tn[φ](P)
∣∣ · 1 = ‖Tn(P)‖mg,

since W(φ) ∈ {0, 1} and Pn(φ) ∈ [0, 1]. Now we define the total magnitude of a
trader over time.
Definition B.1.1 (Magnitude of a Trader). The magnitude ‖T (P)‖mg of a trader
T against the market P is

‖T (P)‖mg :=
∑
n∈N+

‖Tn(P)‖mg ≡
∑
n∈N+

∑
φ∈S

|Tn[φ](P)|.

The magnitude of T is the total number of shares it trades (buys or sells) over
all time.

Now we define what it means for a trader to increase its net value by a substantial
fraction of its investment, i.e., its magnitude.
Definition B.1.2 (ε Return on Investment). For ε > 0, we say that a trader T
trading against P has ε return on investment or ε-ROI if, for all W ∈ PC(Γ),

lim
n→∞

W

∑
i≤n

T ki (P)

 ≥ ε‖T (P)‖mg.

In words, a trader T has ε-ROI if, in the limit of time and deduction, the value
of its holdings is in every world at least ε times its total investment ‖T (P)‖mg. Note
that this does not merely say that T recoups at least an ε fraction of its original cost;
rather, the net value is guaranteed in all worlds consistent with Γ to have increased
by an ε fraction of the magnitude ‖T (P)‖mg of T ’s trades.

Recall from Definition 4.3.5 that a sequence α of rationals is P-generable if there
is some e.c. EF-progression α† such that α†n(P) = αn for all n.

Lemma B.1.3 (No Repeatable ε-ROI). Let P be a logical inductor with respect to
some deductive process D, and let (T k)k∈N+ be an efficiently emulatable sequence of
traders (Definition A.3.4). Suppose that for some fixed ε > 0, each trader T k has
ε-ROI. Suppose further that there is some P-generable sequence α such that for all
k,

‖T k(P)‖mg = αk.

Then
lim
k→∞

αk = 0.

In words, this says roughly that there is no efficient, repeatable method for
producing a substantial guaranteed return on an investment. The condition that α
is P-generable will help with the budgeting done by the trader that emulates the
sequence (T k)k.

83

Proof strategy. We will construct a trader T that emulates the sequence (T k) in
a manner such that if the traders T k did not make trades of vanishing limiting value,
then our trader T would accrue unbounded profit by repeatedly making investments
that are guaranteed to pay out by a substantial amount. Very roughly, on time n,
T will sum together the trades T kn made by all the T k with k ≤ n. In this way, T
will accrue all the profits made by each of the T k.

The main problem we have to deal with is that T risks going deeper and deeper
into debt to finance its investments, as discussed before the proof of Theorem 4.1.1
(Convergence) in Section 6.1. That is, it may be that each T k makes an investment
that takes a very long time for all the worlds W ∈ PC(Dn) plausible at time n to
value highly. In the meanwhile, T continues to spend money buying shares and
taking on risk from selling shares that might plausibly demand a payout. In this
way, despite the fact that each of its investments will eventually become profitable,
T may have holdings with unboundedly negative plausible value.

To remedy this, we will have our trader T keep track of its “debt” and of which
investments have already paid off, and then scale down new traders T k so that T
maintains a lower bound on the plausible value of its holdings. Roughly speaking,
T at time n checks whether the current holdings of T k are guaranteed to have a
positive value in all plausible worlds, for each k ≤ n. Then T sums up the total
magnitudes αk of all the trades ever made by those T k whose trades are not yet
guaranteed to be profitable. This sum is used to scale down all trades made by Tn,
so that the total magnitude of the unsettled investments made by T will remain
bounded.

Proof of Lemma B.1.3.
Proof. We now prove Lemma B.1.3.

We can assume without loss of generality that each αn ≤ 1 by dividing T k’s
trades by max(1, αk).

Checking profitability of investments. At time n, our trader T runs a (possibly
very slow) search process to enumerate traders T k from the sequence (T k)k that
have made trades that are already guaranteed to be profitable, as judged by what is
plausible according to the deductive process D with respect to which P is a logical
inductor. That is, T runs a search for pairs of numbers k,m ∈ N+ such that:∑

i≤m

‖T ki (P)‖mg ≥ (1− ε/3)αk (few future trades), and

inf
W∈PC(Dm)

W
(∑

i≤m T
k
i (P)

)
≥ (2ε/3)αk (guaranteed profit).

If the trader T k has few future trades and guaranteed profit at time m then we say
that the trader’s holdings have matured. We denote the least such m by m(k).

The first condition (few future trades) says that T k has made trades of total
magnitude at least (1− ε/3)αk after time k up until time m. By the assumption
that ‖T k(P)‖mg = αk, for each k there is some time step m such that this condition
holds. By that same assumption, T k will make trades of total magnitude at most
(ε/3)αk in all time steps after m.

The second condition (guaranteed profit) says that the minimum value plausible
at time m of all trades made by T k up until time m is at least (2ε/3)αk. By the
assumption that T k has ε-ROI, i.e., that the minimum value of T k is eventually at
least ε‖T kk ‖mg, the condition of guaranteed profit will hold at some m.

84

The idea is that, since T k will trade at most (ε/3)αk shares after m and the
holdings of T k from trades up until the current time have minimum plausible value
at least (2ε/3)αk, it is guaranteed that the holdings of T k at any time after m will
have minimum plausible value at least (ε/3)αk. This will allow our trader T to “free
up” funds allocated to emulating T k, in the sense that there is no longer ever any
plausible net downside to the holdings from trades made by T k.

Definition of the trader T . For fixed k and m, these two conditions refer to
specific individual computations (namely Dm, the T ki (P) for i ≤ m, and αk). On
time step n, for all k, j ≤ n, our trader T sets Boolean variables open(k, j) := 0
if it is verified in j steps of computation that the holdings of T k have matured;
and open(k, j) := 1 if T k has open investments. Since the holdings of each T k will
eventually mature, for all k there is some n such that open(k, n) = 0.

Let α† be an e.c. EF progression such that for each n we have α†n(P) = αn. Then
T outputs the trading strategy

Tn :=
∑
k≤n

β†k · T
k
n ,

where the β†k are defined recursively by

β†k := 1−
∑
i<k

open(i, k)β†iα
†
i .

That is, the machine computing T outputs the definitions of the budget variables
β†k for each k ≤ n, and then lists the trades

return φ :=
∑
k≤n

β†kT
k
n [φ]

for each φ listed by any of the trades T kn for k ≤ n. As shorthand, we write βk :=
β†k(P). Notice that since (T k)k is efficiently emulatable, we have ∀k : ∀i < k : T ki ≡ 0,
and therefore

∀n : Tn(P) =
∑
k∈N+

βkT
k
n (P).

Note that each open(i, k) is pre-computed by the machine that outputs our trader T
and then is encoded as a constant in the expressible feature β†k. The trade coordinate
Tn[φ] is an expressible feature because the β†k and T kn [φ] are expressible features.

Budgeting the traders T k. Since we assumed each αk ≤ 1, it follows from the
definition of the budget variable β†k that

βkαk ≤ 1−
∑
i<k

open(i, k)βiαi,

and then βk is used as the constant scaling factor for T k in the sum defining T ’s
trades. In this way, we maintain the invariant that for any n,∑

k≤n

open(k, n)βkαk ≤ 1.

Indeed, by induction on k, using the fact that open(i, n) implies open(i,m) for
m ≥ n, we have βk ≥ 0 and the above invariant holds.

In words, this says that out of all the traders T k with investments still open at
time n, the sum of the magnitudes βkαk of their total investments (as budgeted by
the βk) is bounded by 1.

85

Analyzing the value of T ’s holdings. Now we lower bound the value of the
holdings of T from trades against the market P. Fix any time step n and world
W ∈ PC(Dn) plausible at time n. Then we have that the value of T ’s holdings at
time n is

W(
∑
i≤n Ti(P)) =

∑
k≤n

W(
∑
i≤n βkT

k
i (P))

by linearity and by definition of our trader T ;
=

∑
k≤n

open(k,n)

W(
∑
i≤n βkT

k
i (P)) +

∑
k≤n

¬open(k,n)

W(
∑
i≤n βkT

k
i (P))

again by linearity. We analyze the first term, the value of the holdings that have
not yet matured, as follows:∑

k≤n
open(k,n)

W(
∑
i≤n βkT

k
i (P)) ≥ −

∑
k≤n

open(k,n)

βk
∑
i≤n

‖T ki (P)‖mg

≥ −
∑
k≤n

open(k,n)

βk
∑
i∈N+

‖T ki (P)‖mg

= −
∑
k≤n

open(k, n)βkαk

≥ −1,

by the previous discussion of the βk. In short, the βk were chosen so that the
total magnitude of all of T ’s holdings from trades made by any T k that haven’t yet
matured stays at most 1, so that its plausible value stays at least −1.

Now we analyze the second term in the value of T ’s holdings, representing the
value of the holdings that have already matured, as follows:∑

k≤n
¬open(k,n)

W(
∑
i≤n βkT

k
i (P))

=
∑
k≤n

¬open(k,n)

(
W(
∑
i≤m(k) βkT

k
i (P)) + W(

∑
m(k)<i≤n βkT

k
i (P))

)

where m(k) is minimal such that T k has guaranteed profit and makes few future
trades at time m(k), as defined above;

≥
∑
k≤n

¬open(k,n)

βk(2ε/3)αk −
∑

i>m(k)

βk‖T ki (P)‖mg


since by definition of m(k) and the guaranteed profit condition, the value of the
holdings of T k from its trades up until time m(k) is at least (2ε/3)αk in any world
in Dn;

≥
∑
k≤n

¬open(k,n)

(βk(2ε/3)αk − βk(ε/3)αk)

since T k is guaranteed to make trades of magnitude at most (ε/3)αk after time
m(k);

=
∑
k≤n

¬open(k,n)

βk(ε/3)αk.

86

Completing our analysis, we have a lower bound on the value in W of the holdings
of T at time n:

W(
∑
i≤n Ti(P)) ≥ −1 +

∑
k≤n

¬open(k,n)

βk(ε/3)αk.

T exploits P unless α vanishes. Since T is an efficient trader and P is a logical
inductor, T does not exploit P. That is, the set{

W
(∑

i≤n Ti(P)
) ∣∣∣n ∈ N+,W ∈ PC(Dn)

}
is bounded above, since it is bounded below by −1 by the above analysis. In words,
the plausible value of T ’s holdings is always at least −1, so by the logical induction
criterion it cannot go to infinity. Therefore, again by the above analysis, we must
have

lim
n→∞

∑
k≤n

¬open(k,n)

βk(ε/3)αk <∞.

As shown above, for any k the conditions for ¬open(k, n) will eventually be met by
all sufficiently large n. Thus

lim
n→∞

∑
k≤n

¬open(k,n)

βk(ε/3)αk =
∑
k

(ε/3)βkαk <∞.

Now we show that limk→∞ αk = 0. Suppose by way of contradiction that for some
δ ∈ (0, 1), αk > δ for infinitely many k, but nevertheless for some sufficiently large
time step n, we have ∑

i>n

βiαi < 1/2.

Recall that for each i ≤ n, at some time n(i), open(i, n(i)) = 0 verifies that the
holdings of T i have matured. Let N be any number greater than n(i) for all i ≤ n.
Then ∑

i<N

open(i,N)βiαi =
∑
i≤n

0 · βiαi +
∑

n<i<N

open(i,N)βiαi

≤ 0 +
∑

n<i<N

βiαi

≤ 1/2.

So for infinitely many sufficiently large k we have

αkβk = αk

(
1−

∑
i<k

open(i, k)βiαi

)
≥ αk(1− 1/2)
≥ δ/2.

Thus ∑
k

(ε/3)βkαk =∞,

contradicting that this sum is bounded. Therefore in fact αk hk 0, as desired.

87

B.2 Affine Preemptive Learning
Theorem 4.5.7 (Affine Preemptive Learning). Let A ∈ BCS(P). Then

lim inf
n→∞

Pn(An) = lim inf
n→∞

sup
m≥n

Pm(An)

and
lim sup
n→∞

Pn(An) = lim sup
n→∞

inf
m≥n

Pm(An) .

Proof strategy: buying combinations that will appreciate, and ROI. The
inequality

lim inf
n→∞

Pn(An) ≥ lim inf
n→∞

sup
m≥n

Pm(An)

states roughly that Pn cannot infinitely often underprice the R-combination An by
a substantial amount in comparison to any price Pm(An) assigned to An by Pm at
any future time m ≥ n.

Intuitively, if the market P did not satisfy this inequality, then P would be
exploitable by a trader that buys the R-combination An when its price is low, and
then sells it back when, inevitably, the price is substantially higher. If we have sold
back all our shares in some sentence φ, then there is no contribution, positive or
negative, to our net value from our φ-shares (as opposed to their prices); for every
share we owe, there is a matching share that we hold. So if we buy low and sell
high, we have made a profit off of the price differential, and once the inter-temporal
arbitrage is complete we have not taken on any net risk from our stock holdings.

The fact that we can accrue stock holdings that we are guaranteed to eventually
sell back for more than their purchase price is not sufficient to exploit the market.
It may be the case that at every time n we spend $1 on some R-combination that
we eventually sell back at $2, but not until time 4n. (That is, until time 4n, the
price remains low.) Then at every time n we owe −$n in cash, but only have around
$2(n/4) worth of cash from shares we have sold off, for a net value of around −n/2.
Thus we have net value unbounded below and hence do not exploit the market,
despite the fact that each individual investment we make is eventually guaranteed
to be profitable.

To avoid this obstacle, we will apply the ε-return on investment lemma
(Lemma B.1.3) to the sequence of traders (T k)k that enforce the inequality at
time k as described above. That is, T k myopically “keeps P sensible about A” at
time k by buying the R-combination Ak described above if that R-combination is
under-priced at time k, and otherwise T k does nothing. The ROI Lemma guarantees
that the inequality cannot infinitely often fail substantially, or else this sequence
would have δ-ROI for some δ.

The main technical difficulty is that we have to buy the R-combination An
at time n (if it is underpriced), wait for the price of the combination to increase
substantially, and then sell it off, possibly over multiple time steps. The traders T k
will therefore have to track what fraction of their initial investment they have sold
off at any given time.

Proof.
Proof. We show the first equality; the second equality follows from the first by
considering the negated sequence (−An)n.

Since for all n we have supm≥n Pm(An) ≥ Pn(An), the corresponding inequality
in the limit infimum is immediate.

Suppose for contradiction that the other inequality doesn’t hold, so that

lim inf
n→∞

Pn(An) < lim inf
n→∞

sup
m≥n

Pm(An) .

88

Then there are rational numbers ε > 0 and b such that we have

lim inf
n→∞

Pn(An) < b− ε < b+ ε < lim inf
n→∞

sup
m≥n

Pm(An) .

Therefore we can fix some sufficiently large sε such that:

• for all n > sε, we have supm≥n Pm(An) > b+ ε, and

• for infinitely many n > sε, we have Pn(An) < b− ε.

We will assume without loss of generality that each ‖An‖mg ≤ 1; they are
assumed to be bounded, so they can be scaled down appropriately.

An efficiently emulatable sequence of traders. Let A† be an EF -combination
progression such that A†n(P) = An for all n. We now define our sequence of traders
(T k)k. For k ≤ sε, define T

k to be the zero trading strategy at all times n.
For k > sε, define T kn to be the zero trading strategy for n < k, and define T kk to

be the trading strategy

T kk := Underk ·
(
A†k −A

†∗k
k

)
,

where
Underk := Indε/2

(
A†∗kk < b− ε/2

)
.

This is a buy order for the R-combination Ak, scaled down by the continuous
indicator function Underk for the event that Pk has underpriced that R-combination
at time k. Then, for times n > k, we define T k to submit the trading strategy

T kn := −Fn ·
(

Underk ·
(
A†k −A

†∗k
k

))
,

where we define Fn ≥ 0 recursively in the previous fractions Fi:

Fn := Overkn ·
(

1−
∑
k<i<n

Fi

)
,

using the continuous indicator Overkn := Indε/2
(
A†∗nk > b+ ε/2

)
of the R-

combination being overpriced at time n.
In words, T kn is a sell order for the R-combination Ak, scaled down by the fraction

Underk of this R-combination that T k purchased at time k, and also scaled down
by the fraction Fn of the original purchase T kk that will be sold on this time step.
That is,

∑
k<i<n Fi the total fraction of the original purchase Underk ·Ak that has

already been sold off on all previous rounds since time k. Then T kn sells off the
remaining fraction 1−

∑
k<i<n Fi of the R-combination Underk ·Ak, scaled down

by the extent Overkn to which Ak is overpriced at time n.
Notice that since Overki ∈ [0, 1] for all i, by induction on n we have that∑
k<i≤n Fi ≤ 1 and Fn ≥ 0. This justifies thinking of the Fi as portions of the

original purchase being sold off.
By assumption, the EF-combination progression A† is e.c. Also, each trader T k

does not trade before time k. Therefore the sequence of traders (T k)k is efficiently
emulatable (see A.2 on dynamic programming). (The constant sε before which the
T
k≤sε make no trades can be hard-coded in the efficient enumeration.)

89

(ε/2) return on investment for T k. Now we show that each T k has (ε/2)-ROI;
i.e., for all W ∈ PC(Γ),

lim
n→∞

W
(∑

i≤n T
k
i (P)

)
≥ (ε/2)‖T k(P)‖mg.

In words, this says that the trades made by T k across all time are valued positively
in any W ∈ PC(Γ), by a fixed fraction (ε/2) of the magnitude of T k. For k ≤ sε,
this is immediate since ‖T k(P)‖mg = 0 by definition.

For each k > sε, by definition T
k makes a trade of magnitude ‖T kk(P)‖mg =

Underk(P) · ‖Ak‖mg, followed by trades of magnitude∑
n>k

Fn‖T
k

k(P)‖mg ≤ ‖T
k

k(P)‖mg ,

by the earlier comment that the Fn are non-negative and sum to at most 1. Further-
more, by assumption, there is some m > k such that Pm(Ak) > b+ ε. At that point,
Overkm(P) = 1, so that Fm(P) =

(
1−

∑
k<i<m Fi(P)

)
; intuitively this implies that

at time m, T k will sell off the last of its stock holdings from trades in Ak. Formally
we have ∑

k<i≤m

‖T ki (P)‖mg =
(
Fm(P) +

∑
k<i<m

Fi(P)
)
·Underk(P) · ‖Ak‖mg

= ‖T kk(P)‖mg .

Furthermore, for all timesM > m we have FM (P) = 0, so that T kM (P) ≡ 0. Therefore
‖T k(P)‖mg =

∑
k≤i≤n ‖T

k

i (P)‖mg = 2‖T kk(P)‖mg.
Now fix any world W ∈ PC(Γ). Then the limiting value of T k in W is:

lim
n→∞

W
(∑

i≤n T
k
i (P)

)
= W

(∑
k≤i≤m T

k
i (P)

)
since by the above analysis, T ki is the zero trade for i < k and for i > m;

= W
(
T kk (P) +

∑
k<i≤m T

k
i (P)

)
= Underk(P) ·W (Ak − Pk(Ak))

+ Underk(P) ·W
(∑

k<i≤m(−Fi(P)) · (Ak − Pi(Ak))
)

by linearity, by the definition of the trader T k, and since by definition A†∗kk (P) =
Pk(A†k(P)) = Pk(Ak). Note that the prices Pi(Ak) of Ak in the summation change
with the time step i. Then

= Underk(P) ·W (Ak −Ak)

+ Underk(P) ·W
(
−Pk(Ak) +

∑
k<i≤m Fi · Pi(Ak)

)
lim
n→∞

W
(∑

i≤n T
k
i (P)

)
= Underk(P) ·

(
−Pk(Ak) +

∑
k<i≤m Fi · Pi(Ak)

)
,

using linearity to rearrange the terms in the first and second lines, and using that∑
k<i≤m Fi = 1 as shown above. Note that this last quantity does not contain any

stock holdings whose value depends on the world; intuitively this is because T k
sold off exactly all of its initial purchase. The remaining quantity is the difference
between the price at which the R-combination Ak was bought and the prices at
which it was sold over time, scaled down by the fraction Underk(P) of Ak that T k
purchased at time k.

90

If at time step k the R-combination Ak was not underpriced, i.e., Underk(P) = 0,
then

lim
n→∞

W
(∑

i≤n T
k
i (P)

)
= 0 = (ε/2)‖T k(P)‖mg ,

as desired. On the other hand, suppose that Underk(P) > 0. That is,

Indε/2 (Pk(Ak) < b− ε/2) > 0 ,

i.e., Ak was actually underpriced at time k. Therefore

lim
n→∞

W
(∑

i≤n T
k
i (P)

)
≥ Underk(P) ·

(
−(b− ε/2) +

∑
k<i≤m Fi(P) · (b+ ε/2)

)
since when Fi(P) > 0 we have Overkn(P) > 0 and hence Pi(Ak) ≥ b+ ε/2, and using
the fact that Underk(P) is nonnegative;

= Underk(P) · ε

≥ (ε/2)‖T k(P)‖mg ,

since

‖T k(P)‖mg = 2‖T kk(P)‖mg = 2 ·Underk(P) · ‖Ak‖mg ≤ 2 ·Underk(P)

Thus T k has (ε/2)-ROI.

Deriving a contradiction. We have shown that the sequence of traders (T k)k is
bounded, efficiently emulatable, and has (ε/2)-return on investment. The remaining
condition to Lemma B.1.3 states that for all k, the magnitude ‖T k(P)‖mg of all trades
made by T k must equal αk for some P-generable αk. This condition is satisfied for
αk := 2‖T kk(P)‖mg, since as shown above, ‖T k(P)‖mg = 2‖T kk(P)‖mg.

Therefore we can apply Lemma B.1.3 (the ROI lemma) to the sequence of traders
(T k)k. We conclude that αk hk 0. Recall that we supposed by way of contradiction
that the R-combinations in Ak are underpriced infinitely often. That is, for infinitely
many days k, Pk(Ak) < b − ε. But for any such k > sε, T

k

k purchases a full R-
combination Ak, and then sells off the resulting stock holdings for at least b+ ε/2,
at which point T k has profited by at least ε. More precisely, for these k we have

Underk(P) = Indε/2 (Pk(Ak) < b− ε/2) = 1.

Since
αk = 2‖T kk(P)‖mg = 2 ·Underk(P) · ‖Ak‖mg = 2‖Ak‖mg

and ‖Ak‖mg ≥ ε/2 (since Pm(Ak) − Pk(Ak) ≥ ε for some m), we have αk ≥ ε for
infinitely many k, which contradicts αk hk 0.

B.3 Preemptive Learning
Theorem 4.2.4 (Preemptive Learning). Let φ be an e.c. sequence of sentences.
Then

lim inf
n→∞

Pn(φn) = lim inf
n→∞

sup
m≥n

Pm(φn).

Furthermore,
lim sup
n→∞

Pn(φn) = lim sup
n→∞

inf
m≥n

Pm(φn).

Proof. This is a special case of Theorem 4.5.7 (Affine Preemptive Learning), using
the combination An := φn.

91

B.4 Convergence
Theorem 4.1.1 (Convergence). The limit P∞ : S → [0, 1] defined by

P∞(φ) := lim
n→∞

Pn(φ)

exists for all φ.

Proof. By Theorem 4.2.4 (Preemptive Learning),

lim inf
n→∞

Pn(φ) = lim inf
n→∞

sup
m≥n

Pm(φ)

= lim
k→∞

inf
n≥k

sup
m≥n

Pm(φ)

= lim sup
n→∞

Pn(φ).

Since the lim inf and lim sup of Pn(φ) are equal, the limit exists.

B.5 Persistence of Affine Knowledge
Let A ∈ BCS(P). Then

lim inf
n→∞

inf
m≥n

Pm(An) = lim inf
n→∞

P∞(An)

and
lim sup
n→∞

sup
m≥n

Pm(An) = lim sup
n→∞

P∞(An).

Proof strategy: keeping Pm reasonable on all AFn≤m. In the same vein
as the proof in Appendix B.2 of Theorem 4.5.7, the inequality

lim inf
n→∞

inf
m≥n

Pm(An) ≥ lim inf
n→∞

P∞(An)

says roughly that Pm cannot underprice the R-combination An by a substantial
amount infinitely often, where the R-combination is “underpriced” in comparison to
the value of the R-combination as judged by the limiting belief state P∞.

As the proof of the present theorem is quite similar to the proof of Theorem 4.5.7,
we will highlight the differences in this proof, and otherwise give a relatively terse
proof.

Intuitively, if the market P did not satisfy the present inequality then P would
be exploitable by a trader that buys An at any time m such that its price Pm(An)
is lower than its eventual price, and then sells back the R-combination when the
price rises.

We would like to apply the return on investment lemma (Lemma B.1.3) as in
Theorem 4.5.7. One natural attempt is to have, for each n, a trader for that watches
the price of An at all times m ≥ n, buying low and selling high. This proof strategy
may be feasible, but does not follow straightforwardly from the ROI lemma: those
traders may be required to make multiple purchases of An in order to guard against
their prices ever dipping too low. This pattern of trading may violate the condition
for applying the ROI lemma that requires traders to have a total trading volume
that is predictable by a P-generable EF-progression (in order to enable verifiable
budgeting).

Thus we find it easier to index our traders by the time rather than by An. That
is, we will define a sequence of traders (T k)k, where the trader T k ensures that Pk
does not assign too low a price to any An for n ≤ k. Specifically, T k at time k buys
any R-combination An for n ≤ k with Pk(An) sufficiently low, and then sells back
each such purchase as the price Pm(An) rises. In this way, if R-combinations are
ever underpriced at any time above the main diagonal, there is a trader ready to
buy that R-combination in full.

92

Proof.
Proof. We show the first equality; the second equality follows from the first by
considering the negated progression (−An)n.

For every n, since P∞ is the limit of the Pm and since V(An) is continuous as a
function of the valuation V, we have that infm≥n Pm(An) ≤ P∞(An). Therefore the
corresponding inequality in the limit infimum is immediate.

Suppose for contradiction that the other inequality doesn’t hold, so that

lim inf
n→∞

inf
m≥n

Pm(An) < lim inf
n→∞

P∞(An).

Then there are rational numbers ε > 0 and b such that we have

lim inf
n→∞

inf
m≥n

Pm(An) < b− ε < b+ ε < lim inf
n→∞

P∞(An) ,

and therefore we can fix some sufficiently large sε such that

• for all n > sε, we have P∞(An) > b+ ε, and

• for infinitely many n > sε, we have infm≥n Pm(An) < b− ε.

We will assume without loss of generality that each ‖An‖mg ≤ 1; they are
assumed to be bounded, so they can be scaled down appropriately.

An efficiently emulatable sequence of traders. Now we define our sequence
of traders (T k)k. Let A† be an EF -combination progression such that A†n(P) = An
for all n. For n < k, define T kn to be the zero trading strategy. Define T kk to be the
trading strategy

T kk :=
∑

sε<n≤k

(
Undernk ·

(
A†n −A†∗kn

))
,

where
Undernk := Indε/2

(
A†∗kn < b− ε/2

)
.

This is a buy order for each R-combination An for sε < n ≤ k, scaled down by the
continuous indicator function Undernk for the event that An is underpriced at time
k by P. Then, for time steps m > k, we define T km to be the trading strategy

T km := Fm ·
∑

sε<n≤k

(
−Undernk ·

(
A†n −A†∗mn

))
,

where

Fm :=
(

1−
∑

k<i<m

Fi

)
·
∏

sε<n≤k

Overnm

and
Overnm := Indε/2

(
A†∗mn > b+ ε/2

)
.

This trade is a sell order for the entire R-combination comprising the sum of the
scaled R-combinations Undernk (P) · An for sε < n ≤ k purchased at time k by T kk ,
scaled down by the fraction Fm(P). We define Fm so that it represents the fraction
of the original purchase made by the trader T k that has not yet been sold off by
time m, scaled down by the continuous indicator

∏
sε<n≤k Overnm for the event that

all of those R-combinations An for sε < n ≤ k are overpriced at time m.
By assumption, the EF-combination progression A† is e.c., and each trader T k

does not trade before time k. Therefore the sequence of traders (T k)k is efficiently
emulatable (see A.2 on dynamic programming).

93

(ε/2) return on investment for T k. Now we show that each T k has (ε/2)-ROI,
i.e., for all W ∈ PC(Γ):

lim
n→∞

W
(∑

i≤n T
k
i (P)

)
≥ (ε/2)‖T k(P)‖mg .

Roughly speaking, T k gets (ε/2)-ROI for the same reason as the traders in the
proof of Theorem 4.5.7: the stock holdings from each An that T k purchased will
be sold off for at least (ε/2)-ROI, so the sum of the R-combinations is sold off for
(ε/2)-ROI.

Since Overni (P) ∈ [0, 1] for all n and i, by induction on m we have that∑
k<i≤m Fi(P) ≤ 1 and Fm(P) ≥ 0. Therefore for each k > sε, by definition T

k

makes a trade of magnitude ‖T kk(P)‖mg =
∑
sε<n≤k Undernk (P) · ‖An‖mg, followed

by trades of magnitude∑
n>k

Fn(P)‖T kk(P)‖mg ≤ ‖T
k

k(P)‖mg .

By assumption, there is some time m such that Pm(An) > b+ ε/2 for all sε < n ≤ k.
At that point, Overnm(P) = 1 for each such n, so that Fn(P) =

(
1−

∑
k<i<n Fi(P)

)
.

Then at time m, T k will sell of the last of its stock holdings from trades in An, so
that

∑
k<i≤m ‖T

k

i (P)‖mg is equal to(
Fm(P) +

∑
k<i<m

Fi(P)
)
·
∑

sε<n≤k

Undernk (P) · ‖An‖mg = ‖T kk(P)‖mg .

Furthermore, for all timesM > m we have FM (P) = 0, so that T kM (P) ≡ 0. Therefore
‖T k(P)‖mg =

∑
k≤i≤n ‖T

k

i (P)‖mg = 2‖T kk(P)‖mg.
From this point, the proof of return on investment is essentially identical to the

analogous proof of Theorem 4.5.7. The only difference is that here the trader T k
holds a combination of R-combinations. Therefore we will not belabor the details;
inserting a summation

∑
sε<n≤k in front of the trades made by the traders in the

proof of Theorem 4.5.7 will produce the precise derivation.
In short, since T k will eventually hold no net shares, the value of its holdings is

determined by the prices of the shares it trades, regardless of plausible worlds. By
definition, T k purchases a mixture of R-combinations∑

sε<n≤k

(
Undernk (P) ·An

)
,

where each An with Undernk (P) > 0 has price Pk(An) at most b − ε/2 at time k.
Then T k sells off that mixture, at times for which each R-combination has price at
least b+ ε/2. Thus T k eventually has holdings with value at least∑

sε<n≤k

(
Undernk (P) · (b+ ε/2− (b− ε/2))

)
=

∑
sε<n≤k

(
Undernk (P) · ε

)
≥ ε

∑
sε<n≤k

(
Undernk (P) · |An|

)
≥ ε‖T kk (P)‖mg

= (ε/2)‖T k(P)‖mg .

Thus, T k has (ε/2)-ROI.

94

Deriving a contradiction. We have shown that the sequence of traders (T k)k is
bounded, efficiently emulatable, and has (ε/2)-return on investment. The remaining
condition to Lemma B.1.3 states that for all k, the magnitude ‖T k(P)‖mg of all trades
made by T k must equal αk for some P-generable αk. This condition is satisfied for
αk := 2‖T kk(P)‖mg, since as shown above, ‖T k(P)‖mg = 2‖T kk(P)‖mg.

Therefore we can apply Lemma B.1.3 (the ROI lemma) to the sequence of traders
(T k)k. We conclude that αk hk 0. Recall that we supposed by way of contradiction
that infinitely often, some An is underpriced. That is, for infinitely many times k
and indices sε < n ≤ k, Pk(An) < b− ε.

But for any such k and n, T kk will purchase the full R-combination An, as

Undernk (P) = Indε/2 (Pk(An) < b− ε/2) = 1 .

Now αk = 2‖T kk‖mg ≥ 2 · Undernk‖An‖mg = 2‖An‖mg, and ‖An‖mg ≥ ε/2 (since
Pm(An) − Pk(An) ≥ ε for some m). So αk ≥ ε infinitely often, contradicting
αk hk 0.

B.6 Persistence of Knowledge
Theorem 4.2.3 (Persistence of Knowledge). Let φ be an e.c. sequence of sentences,
and p be an e.c. sequence of rational-number probabilities. If P∞(φn) hn pn, then

sup
m≥n
|Pm(φn)− pn| hn 0.

Furthermore, if P∞(φn) .n pn, then

sup
m≥n

Pm(φn) .n pn,

and if P∞(φn) &n pn, then
inf
m≥n

Pm(φn) &n pn.

Proof. The second and third statements are a special case of Theorem 4.5.6 (Persis-
tence of Affine Knowledge), using the combination An := φn; the first statement
follows from the second and third.

C Coherence Proofs

C.1 Affine Coherence
Theorem 4.5.5 (Affine Coherence). Let A ∈ BCS(P). Then

lim inf
n→∞

inf
W∈PC(Γ)

W(An) ≤ lim inf
n→∞

P∞(An) ≤ lim inf
n→∞

Pn(An),

and
lim sup
n→∞

Pn(An) ≤ lim sup
n→∞

P∞(An) ≤ lim sup
n→∞

sup
W∈PC(Γ)

W(An).

Proof. We show the first series of inequalities; the second series follows from the
first by considering the negated progression (−An)n. Let A† be an EF -combination
progression such that A†n(P) = An for all n.

95

Connecting PC(Γ) to P∞. First we show that

lim inf
n→∞

inf
W∈PC(Γ)

W(An) ≤ lim inf
n→∞

P∞(An).

It suffices to show the stronger statement that for any n ∈ N+,

inf
W∈PC(Γ)

W(An) ≤ P∞(An).

This is a generalization of coherence in the limit to affine relationships; its proof will
follow a strategy essentially identical to the one used in the proof of Theorem 4.1
(coherence) to show the particular coherence relationships that are sufficient to imply
ordinary probabilistic coherence. That is, we will construct a trader that waits for
the coherence relationship to approximately hold (so to speak) and for the price
of the corresponding R-combination to approximately converge, and then buys the
combination repeatedly if it is underpriced.

Suppose by way of contradiction that the inequality does not hold, so for some
fixed n there are rational numbers ε > 0 and b and a time step sε such that for all
m > sε we have

Pm(An) < b− ε < b+ ε < inf
W∈PC(Dm)

W(An) .

Therefore we can define a trader T that waits until time sε, and thereafter buys
a full R-combination An on every time step. That is, we take Tm to be the zero
trading strategy for m ≤ sε, and we define Tm for m > sε to be

Tm := A†n −A†∗mn .

Intuitively, since the infimum over plausible worlds of the value of the stocks in this
R-combination is already substantially higher than its price, the value of the total
holdings of our trader T immediately increases by at least 2ε. More formally, we
have that for any time m and any W ∈ PC(Dm),

W

∑
i≤m

Ti(P)

 = W

 ∑
sε<i≤m

Ti(P)


since Tm ≡ 0 for m ≤ sε;

=
∑

sε<i≤m

W(An)− Pi(An)

by linearity, by definition of Ti, and since A†n(P) ≡ An and A†∗mn (P) ≡ Pm(An);
≥

∑
sε<i≤m

b+ ε− (b− ε)

= 2ε(m− sε).

This is bounded below by 0 and unbounded above as m goes to ∞. Thus T exploits
the market P, contradicting that P is a logical inductor. Therefore in fact we must
have

lim inf
n→∞

inf
W∈PC(Γ)

W(An(P)) ≤ lim inf
n→∞

P∞(An(P)),

as desired.

Connecting Pn to P∞ and to fast diagonals. Now we show that

lim inf
n→∞

P∞(An) ≤ lim inf
n→∞

Pn(An).

96

This says, roughly speaking, that affine relationships that hold in the limiting belief
state P∞ also hold along the main diagonal. We show this inequality in two steps.
First, by Theorem 4.5.6 (Persistence of affine knowledege), we have

lim inf
n→∞

P∞(An) ≤ lim inf
n→∞

inf
m≥n

Pm(An).

This says roughly that if the limiting beliefs end up satisfying some sequence of
affine relationships, then eventually all belief states above the main diagonal satisfy
that relationship to at least the same extent. Second, it is immediate that

lim inf
n→∞

inf
m≥n

Pm(An) ≤ lim inf
n→∞

Pn(An),

since for all n, infm≥n Pm(Am) ≤ Pn(An). Thus we have the desired inequality.

C.2 Affine Provability Induction
Theorem 4.5.4 (Affine Provability Induction). Let A ∈ BCS(P) and b ∈ R. If, for
all consistent worlds W ∈ PC(Γ) and all n ∈ N+, it is the case that W(An) ≥ b,
then

Pn(An) &n b,
and similarly for = and hn, and for ≤ and .n.

Proof. We prove the statement in the case of ≥; the case of ≤ is analogous, and the
case of = follows from the other two cases. By Theorem 4.5.5 (Affine Coherence),

lim inf
n→∞

Pn(An) ≥ lim inf
n→∞

inf
W∈PC(Γ)

W(An) ≥ b.

C.3 Provability Induction
Theorem 4.2.1 (Provability Induction). Let φ be an e.c. sequence of theorems.
Then

Pn(φn) hn 1.

Furthermore, let ψ be an e.c. sequence of disprovable sentences. Then

Pn(ψn) hn 0.

Proof. Since φ is a sequence of theorems, for all n and W ∈ PC(Γ), W(φn) = 1. So
by Theorem 4.5.4 (Affine Provability Induction),

Pn(φn) hn 1.

Similarly, since ψ is a sequence of disprovable sentences, for all n and W ∈ PC(Γ),
W(ψn) = 0. So by Theorem 4.5.4 (Affine Provability Induction),

Pn(ψn) hn 0.

C.4 Belief in Finitistic Consistency
Theorem 4.9.2 (Belief in Finitistic Consistency). Let f be any computable function.
Then

Pn(Con(Γ)(“f(n)”)) hn 1.

Proof. Since each statement Con(Γ)(“f(n)”) is computable and true, and Γ can
represent computable functions, each of these statements is provable in Γ. Now
apply Theorem 4.2.1 (Provability Induction) to get the desired property.

97

C.5 Belief in the Consistency of a Stronger Theory
Theorem 4.9.3 (Belief in the Consistency of a Stronger Theory). Let Γ′ be any
recursively axiomatizable consistent theory. Then

Pn(Con(Γ′)(“f(n)”)) hn 1.

Proof. Since each statement Con(Γ′)(“f(n)”) is computable and true, and Γ can
represent computable functions, each of these statements is provable in Γ. Now
apply Theorem 4.2.1 (Provability Induction) to get the desired property.

C.6 Disbelief in Inconsistent Theories
Theorem 4.9.4 (Disbelief in Inconsistent Theories). Let Γ′ be an e.c. sequence of
recursively axiomatizable inconsistent theories. Then

Pn(“Γ′n is inconsistent”) hn 1,

so
Pn(“Γ′n is consistent”) hn 0.

Proof. Since each statement “Γ′n is inconsistent” is provable in PA, and Γ can repre-
sent computable functions, each of these statements is provable in Γ. Now apply
Theorem 4.2.1 (Provability Induction) to get the first desired property.

Similarly, since each statement “Γ′n is consistent” is disprovable in PA, and Γ can
represent computable functions, each of these statements is disprovable in Γ. Now
apply Theorem 4.2.1 (Provability Induction) to get the second desired property.

C.7 Learning of Halting Patterns
Theorem 4.10.1 (Learning of Halting Patterns). Let m be an e.c. sequence of
Turing machines, and x be an e.c. sequence of bitstrings, such that mn halts on input
xn for all n. Then

Pn(“mn halts on input xn”) hn 1.
Proof. Since each statement “mn halts on input xn” is computable and true, and Γ
can represent computable functions, each of these statements is provable in Γ. Now
apply Theorem 4.2.1 (Provability Induction) to get the desired property.

C.8 Learning of Provable Non-Halting Patterns
Theorem 4.10.2 (Learning of Provable Non-Halting Patterns). Let q be an e.c.
sequence of Turing machines, and y be an e.c. sequence of bitstrings, such that qn
provably fails to halt on input yn for all n. Then

Pn(“qn halts on input yn”) hn 0.

Proof. Each statement “qn halts on input yn” is disprovable in Γ. Now apply Theo-
rem 4.2.1 (Provability Induction) to get the desired property.

C.9 Learning not to Anticipate Halting
Theorem 4.10.3 (Learning not to Anticipate Halting). Let q be an e.c. sequence
of Turing machines, and let y be an e.c. sequence of bitstrings, such that qn does
not halt on input yn for any n. Let f be any computable function. Then

Pn(“qn halts on input yn within f(n) steps”) hn 0.

Proof. Since each statement “qn halts on input yn within f(n) steps” is computable
and false, and Γ can represent computable functions, each of these statements is
disprovable in Γ. Now apply Theorem 4.2.1 (Provability Induction) to get the desired
property.

98

C.10 Limit Coherence
Theorem 4.1.2 (Limit Coherence). P∞ is coherent, i.e., it gives rise to an internally
consistent probability measure Pr on the set PC(Γ) of all worlds consistent with Γ,
defined by the formula

Pr(W(φ) = 1) := P∞(φ).
In particular, if Γ contains the axioms of first-order logic, then P∞ defines a proba-
bility measure on the set of first-order completions of Γ.

Proof. The limit P∞(φ) exists by Theorem 4.1.1 (Convergence), so P∞ is well-defined.
Gaifman (1964) shows that P∞ defines a probability measure over PC(Γ) so long as
the following three implications hold for all sentences φ an ψ:

• If Γ ` φ, then P∞(φ) = 1,

• If Γ ` ¬φ, then P∞(φ) = 0,

• If Γ ` ¬(φ ∧ ψ), then P∞(φ ∨ ψ) = P∞(φ) + P∞(ψ).

Let us demonstrate each of these three properties.

• Assume that Γ ` φ. By Theorem 4.2.1 (Provability Induction), P∞(φ) = 1.

• Assume that Γ ` ¬φ. By Theorem 4.2.1 (Provability Induction), P∞(φ) = 0.

• Assume that Γ ` ¬(φ∧ψ). For all W ∈ PC(Γ), W(φ∨ψ) = W(φ) +W(ψ). So
by Theorem 4.5.4 (Affine Provability Induction), P∞(φ∨ψ) = P∞(φ) +P∞(ψ).

C.11 Learning Exclusive-Exhaustive Relationships

Theorem 4.5.1 (Learning Exclusive-Exhaustive Relationships). Let φ1, . . . , φk be k
e.c. sequences of sentences, such that for all n, Γ proves that φ1

n, . . . , φ
k
n are exclusive

and exhaustive (i.e. exactly one of them is true). Then

Pn(φ1
n) + · · ·+ Pn(φkn) hn 1.

Proof. Define An := φ1
n + · · ·+ φkn. Note that for all W ∈ PC(Γ), W(An) = 1.

So by Theorem 4.5.4 (Affine Provability Induction) and linearity,

Pn(φ1
n) + · · ·+ Pn(φkn) = Pn(φ1

n + · · ·+ φkn) = Pn(An) hn 1.

D Statistical Proofs

D.1 Affine Recurring Unbiasedness
Theorem 4.5.9 (Affine Recurring Unbiasedness). If A ∈ BCS(P) is determined via
Γ, and w is a P-generable divergent weighting,∑

i≤n wi · (Pi(Ai)−ValΓ(Ai))∑
i≤n wi

has 0 as a limit point. In particular, if it converges, it converges to 0.

Proof. Define

Biasn :=
∑
i≤n wi · (Pi(Ai)−ValΓ(Ai))∑

i≤n wi
.

Our proof consists of three steps:

99

1. Proving lim supn→∞ Biasn ≥ 0.

2. Noting that the first argument can be applied to the sequence (−An)n to prove
lim infn→∞ Biasn ≤ 0.

3. Proving that, given these facts, (Biasn)n has 0 as a limit point.

The first step will be deferred. The second step is trivial. We will now show that
the third step works given that the previous two do:

Let a := lim infn→∞ Biasn ≤ 0 and b := lim supn Biasn ≥ 0. If a = 0 or b = 0
then of course 0 is a limit point. Otherwise, let a < 0 < b. If 0 is not a limit point of
(Biasn)n, then there are ε > 0 andN ∈ N such that ∀n > N : Biasn /∈ (−ε, ε) ⊆ (a, b).
Choose M > N such that BiasM ∈ (ε, b] and for all n > M , Biasn − Biasn+1 < ε;
sufficiently late adjacent terms are close because

∑
i≤n wi goes to∞ and the absolute

difference between successive numerators is at most 1. Then (Biasn)n>M must remain
positive (it cannot cross the 2ε-wide gap), contradicting that a is also a limit point
and a < 0.

At this point we have shown that the second and third steps follow from the first
step, so we need only show the first step: lim supn→∞ Biasn ≥ 0. Suppose this is
not the case. Then there is some natural N and rational ε ∈ (0, 1) such that for all
n ≥ N , ∑

i≤n wi · (Pi(Ai)−ValΓ(Ai))∑
i≤n wi

< −2ε

or equivalently, ∑
i≤n

wi · (ValΓ(Ai)− Pi(Ai)) > 2ε
∑
i≤n

wi.

An efficiently emulatable sequence of traders. We will consider an infinite
sequence of traders, each of which will buy a “run” of R-combinations, and which
will have ε-ROI. Then we will apply Lemma B.1.3 to derive a contradiction.

Without loss of generality, assume each ‖An‖mg ≤ 1; they are uniformly bounded
and can be scaled down without changing the theorem statement. Let w† be an e.c.
EF progression such that w†n(P) = wn. Let A† be an e.c. EF -combination progression
such that A†n(P) = An. Let A† be equal to

A†n = c+ ξ1φ1 + · · ·+ ξl(n)φl(n),

and define the expressible feature ‖A†n‖mg :=
∑l(n)
i=1 |ξi|.

For k < N , trader T k will be identically zero. For k ≥ N , trader T k will buy
some number of copies of A†n on day n; formally,

T kn := γ†k,n · (A
†
n −A†∗nn),

with γ†k,n to be defined later. To define γ†k,n, we will first define a scaling factor on
the trader’s purchases:

δk := ε

1 + k
.

Now we recursively define

γ†k,n := [n ≥ k] min

δk · w†n, 1− ∑
i≤n−1

γ†k,i‖A
†
n‖mg

 ,

where [n ≥ k] is Iverson bracket applied to n ≥ k, i.e. the 0-1 indicator of that
condition. This sequence of traders is efficiently emulatable, because A† and w† are
e.c., and T k makes no trades before day k.

100

Analyzing the trader. On day n, trader T k attempts to buy δkwn copies of An,
but caps its total budget at 1 dollar; the min in the definition of γ†k,n ensures that
‖T k(P)‖mg ≤ 1.

Observe that
∑
i≤n ‖T

k

i (P)‖mg = max{1,
∑n
i=k δkwn‖An‖mg}. We can use this

to show that ‖T k(P)‖mg = 1. For all n ≥ N ,

2ε
∑
i≤n

wi <
∑
i≤n

wi · (ValΓ(Ai)− Pi(Ai)) ≤ 2
∑
i≤n

wi‖Ai‖mg.

Since the left hand side goes to∞ as n→∞, so does the right hand side. So indeed,∑∞
n=k δkwn‖An‖mg =∞, and ‖T k(P)‖mg = 1.

T
k has ε return on investment. We will now show that each trader T k has ε

return on investment. Trivially, for k < N , T k has ε return on investment, because
‖T k(P)‖mg = 0. So consider k ≥ N .

As shorthand, let γk,n := γ†k,n(P). Let mk be the first m ≥ k for which γk,m <
δkwn. We have γk,n = δkwn for k ≤ n < mk, and γk,n = 0 for n > mk. So for all
W ∈ PC(Γ),

W

(∞∑
n=1

T kn (P)
)

=
∞∑
n=1

W(T kn (P))

=
∑

k≤n≤mk

W(T kn (P))

=
∑

k≤n≤mk

δkwn(W(An)− Pn(An))− (δkwmk
− γk,mk

)(W(Amk
)− Pn(Amk

))

≥
∑

k≤n≤mk

δkwn(W(An)− Pn(An))− δk

=
∑
n≤mk

δkwn(W(An)− Pn(An))−
∑
n<k

δkwn(W(An)− Pn(An))− δk

≥
∑
n≤mk

δkwn(W(An)− Pn(An))− (kδk + δk)

=
∑
n≤mk

δkwn(ValΓAn − Pn(An))− ε

≥ 2ε− ε
= ε.

So each trader T k with k ≥ N makes at least ε profit with trades of total magnitude
1, ensuring that it has ε return on investment.

Deriving a contradiction. Note that the magnitudes of the traders are
P-generable (the first N − 1 have magnitude 0 and the rest have magnitude 1).
By Lemma B.1.3, ‖T k‖mg hk 0. ‖T k‖mg = 1 for all k ≥ N (by the above analysis),
so this is a contradiction.

101

D.2 Recurring Unbiasedness
Theorem 4.3.6 (Recurring Unbiasedness). Given an e.c. sequence of decidable
sentences φ and a P-generable divergent weighting w, the sequence∑

i≤n wi · (Pi(φi)− ThmΓ(φi))∑
i≤n wi

has 0 as a limit point. In particular, if it converges, it converges to 0.

Proof. This is a special case of Theorem 4.5.9 (Affine Recurring Unbiasedness).

D.3 Simple Calibration
Theorem 4.3.3 (Recurring Calibration). Let φ be an e.c. sequence of decidable
sentences, a and b be rational numbers, δ be an e.c. sequence of positive rational
numbers, and suppose that

∑
n

(
Indδi

(a < Pi(φi) < b)
)
i∈N+ = ∞. Then, if the

sequence (∑
i≤n Indδi

(a < Pi(φi) < b) · ThmΓ(φi)∑
i≤n Indδi

(a < Pi(φi) < b)

)
n∈N+

converges, it converges to a point in [a, b]. Furthermore, if it diverges, it has a limit
point in [a, b].

Proof. Define wi := Indδi
(a < φi

∗i < b). By Theorem 4.3.6 (Recurring Unbiased-
ness), the sequence (∑

i≤n wi · (Pi(φi)− ThmΓ(φi))∑
i≤n wi

)
n∈N+

has 0 as a limit point. Let n1, n2, . . . be a the indices of a subsequence of this
sequence that converges to zero. We also know that for all n high enough,

a ≤
∑
i≤n wiPi(φi)∑

i≤n wi
≤ b

because wi = 0 whenever Pi(φi) 6∈ [a, b]. Now consider the sequence(∑
i≤nk

wi · ThmΓ(φi)∑
i≤nk

wi

)
k∈N+

=
(∑

i≤nk
wiPi(φi)∑
i≤n wi

−
∑
i≤nk

wi · (Pi(φi)− ThmΓ(φi))∑
i≤nk

wi

)
k∈N+

The first term is bounded between a and b, and the second term goes to zero,
so the sequence has a lim inf at least a and a lim sup no more than b. By the
Bolzano-Weierstrass theorem, this sequence has a convergent subsequence, whose
limit must be between a and b. This subsequence is also a subsequence of(∑

i≤n wi · ThmΓ(φi)∑
i≤n wi

)
n∈N+

which proves that this sequence has a limit point in [a, b], as desired.

102

D.4 Affine Unbiasedness From Feedback
Theorem 4.5.10 (Affine Unbiasedness from Feedback). Given A ∈ BCS(P) that is
determined via Γ, a strictly increasing deferral function f such that ValΓ(An) can
be computed in time O(f(n+ 1)), and a P-generable divergent weighting w,∑

i≤n wi · (Pi(Ai)−ValΓ(Ai))∑
i≤n wi

hn 0.

In this case, we say “w allows good feedback on A”.
Proof. Without loss of generality, assume that each ‖An‖1 ≤ 1. Define

Biask :=
∑
i≤k wf(i) · (Pf(i)(φf(i))− ThmΓ(φf(i)))∑

i≤k wf(i)

and observe that Biask hk 0 implies the theorem statement, since we need only
consider the sum over n in the support of f . We wish to show that Biask hk 0. We
will show a trader that exploits P under the assumption that lim infk→∞ Biask < 0,
proving Biask &k 0. We can apply the same argument to the sequence (−An)n to
get Biask .k 0.

Suppose lim infk→∞ Biask < 0. Under this supposition, infinitely often, Biask <
−3ε for some rational 0 < ε < 1/6.

Defining the trader. Let w† be an e.c. EF progression such that w†n(P) = wn.
Let A† be an e.c. EF-combination progression such that A†n(P) = An. Recursively
define

β†i := ε ·Wealth†i · w
†
i

Wealth†i := 1 +
∑
j≤i−1

β†j ·
(
A
†∗f(j+1)
f(j) −A†∗f(j)

f(j)

)
in order to define the trader

Tn :=
{
β†i ·

(
A†f(i) −A

†∗n
f(i)

)
− [i > 1] · β†i−1 ·

(
A†f(i−1) −A

†∗n
f(i−1)

)
if ∃i : n = f(i)

0 otherwise.

Note that β†i and Wealth†i have rank at most f(i− 1), and so Tn has rank at most n.

Analyzing the trader. As shorthand, let βi := β†i (P), and Wealthi :=
Wealth†i (P).

Intuitively, on day f(i), T buys Af(i) according to a fraction of its “wealth”
Wealthi (how much money T would have if it started with one dollar), and then
sells Af(i) at a later time f(i + 1). Thus, T makes money if the price of Af(i) is
greater at time f(i+ 1) than at time f(i).

Betting according to a fraction of wealth resembles the Kelley betting strategy
and ensures that the trader never loses more than $1. Wealthi−1 is a lower bound on
T ’s worth in any world W ∈ PC(Df(i)), based on trades T makes on R-combinations
Af(1) through Af(i−1). Thus, since the number of copies of An that T buys is no
more than ε times its current wealth, and ‖An‖ ≤ 1, T ’s minimum worth is bounded
below by −1.

Now it will be useful to write Wealthi in log space. Intuitively, this should be
enlightening because T always bets a fraction of its wealth (similar to a Kelley
bettor), so its winnings multiply over time rather than adding. By induction,

log Wealthi =
∑
j≤i−1

log
(
1 + εwj(Pf(j+1)(Af(j))− Pf(j)(Af(j)))

)

103

This statement is trivial when i = 1. For the inductive step, we have
log Wealthi+1 = log

(
Wealthi + βi(Pf(i+1)(Af(i))− Pf(i)(Af(i)))

)
= log

(
Wealthi + ε ·Wealthi · wi(Pf(i+1)(Af(i))− Pf(i)(Af(i)))

)
= log Wealthi + log

(
1 + εwj(Pf(j+1)(Af(j))− Pf(j)(Af(j)))

)
=
∑
j≤i

log
(
1 + εwj(Pf(j+1)(Af(j))− Pf(j)(Af(j)))

)
For |x| ≤ 1/2, we have log(1 + x) ≥ x − x2. Therefore, since ε < 1/4, wj ≤ 1,

and |Pf(j+1)(Af(j))− Pf(i)(Af(j))| ≤ 1,

log Wealthi ≥
∑
j≤i−1

(
εwj(Pf(j+1)(Af(j))− Pf(j)(Af(j)))

− ε2w2
j (Pf(j+1)(Af(j))− Pf(j)(Af(j)))2

)
≥
∑
j≤i−1

(
εwj(Pf(j+1)(Af(j))− Pf(j)(Af(j)))− ε2)

=
∑
j≤i−1

ε
(
wj(Pf(j+1)(Af(j))− Pf(j)(Af(j)))− ε

)
At this point, it will be useful to show a relation between Pf(j+1)(Af(j)) and

ValΓ(Af(j)). Consider the sequence

A′n :=
{
Af(i) −ValΓ(Af(i)) if ∃i : f(i+ 1) = n

0 otherwise

which is in BCS(P) because ValΓ(Af(j)) is computable in time polynomial in f(j+1).
Of course, each A′n has value 0 in any world W ∈ PC(Γ). So by Theorem 4.5.4
(Affine Provability Induction),

Pn(A′n) hn 0
so for all sufficiently high j, Pf(j+1)(Af(j)) ≥ ValΓ(Af(j)) − ε. Thus, for some
constant C,

log Wealthi ≥
∑
j≤i−1

ε
(
wj(ValΓ(Af(j))− Pf(j)(Af(j)))− 2ε

)
− C

= ε

 ∑
j≤i−1

wj

 (−Biasi−1 − 2ε)− C ′

Now, for infinitely many i it is the case that Biasi−1 < −3ε. So it is infinitely
often the case that log Wealthi ≥ ε2∑

j≤i−1 wi − C ′. Since w is divergent, T ’s
eventual wealth (and therefore max profit) can be arbitrarily high. Thus, T exploits
P.

D.5 Unbiasedness From Feedback
Theorem 4.3.8 (Unbiasedness From Feedback). Let φ be any e.c. sequence of
decidable sentences, and w be any P-generable divergent weighting. If there exists a
strictly increasing deferral function f such that the support of w is contained in the
image of f and ThmΓ(φf(n)) is computable in O(f(n+ 1)) time, then∑

i≤n wi · (Pi(φi)− ThmΓ(φi))∑
i≤n wi

hn 0.

In this case, we say “w allows good feedback on φ”.
Proof. This is a special case of Theorem 4.5.10 (Affine Unbiasedness from Feedback).

104

D.6 Learning Pseudorandom Affine Sequences
Theorem 4.5.11 (Learning Pseudorandom Affine Sequences). Given a A ∈ BCS(P)
which is determined via Γ, if there exists deferral function f such that for any
P-generable f -patient divergent weighting w,∑

i≤n wi ·ValΓ(Ai)∑
i≤n wi

&n 0,

then
Pn(An) &n 0,

and similarly for hn, and .n.

Proof. We will prove the statement in the case of &n; the case of .n follows by
negating the R-combination sequence A, and the case of hn follows from the other
two. Suppose it is not the case that Pn(An) &n 0. Then there is a rational ε > 0
such that Pn(An) < −2ε infinitely often.

Defining the trader. Let A† be an e.c. EF-combination progression such that
A†n(P) = An. Let an affine combination A be considered settled by day m if
W(A) = ValΓ(A) for each W ∈ PC(Dm). We may write Settled(n,m) to be the
proposition that An is settled by day m. Settled(n,m) is decidable; let settled
be a Turing machine deciding Settled(n,m) given (n,m). Now we define a lower-
approximation to Settled:

DefinitelySettled(n,m) :↔ ∃i ≤ m : settled(n, i) returns true within m steps.

Note that

• DefinitelySettled(n,m) can be decided in time polynomial in m when n ≤ m,

• DefinitelySettled(n,m)→ Settled(n,m), and

• If Settled(n,m), then DefinitelySettled(n,M) for some M ≥ m.

To define the trader, first we will define α† recursively by

α†n := (1− C†n) Indε(A†∗nn < −ε)
C†n :=

∑
i<n

[¬DefinitelySettled(i, n) ∨ f(i) > n] · α†i .

The trader itself buys α†n(P) copies of the combination A†n(P) on day n:

Tn := α†n · (A†n −A†∗nn).
Intuitively, C†n is the total number of copies of R-combinations that the trader

has bought that are either possibly-unsettled (according to DefinitelySettled), or
whose deferral time f(i) is past the current time n.

Analyzing the trader. As shorthand, define αn := α†n(P) and Cn := C†n(P).
Some important properties of T are:

• Each Cn ≤ 1.

• αn = 1− Cn when Pn(An) < −2ε.

• Whenever αn > 0, Pn(An) < −ε.

105

•
∑
n∈N+ αn =∞. Suppose this sum were finite. Then there is some time N for

which
∑
n≥N αn < 1/2. For some future time N ′, and each n < N , we have

DefinitelySettled(n,N ′) ∧ f(n) ≤ N ′. This implies that Cn < 1/2 for each
n ≥ N ′. However, consider the first n ≥ N ′ for which Pn(An) < −2ε. Since
Cn < 1/2, αn ≥ 1/2. But this contradicts

∑
n≥N αn < 1/2.

Let b ∈ Q be such that each ‖An‖mg < b. Consider this trader’s profit at time
m in world W ∈ PC(Dm):

∑
n≤m

αn(W(An)− Pn(An))

≥
∑
n≤m

αn(W(An) + ε)

≥
∑
n≤m

αn(ValΓ(An) + ε)− 2b

where the last inequality follows because
∑
n≤m[¬Settled(n,m)]αn ≤ 1, and an

unsettled copy of An can only differ by 2b between worlds, while settled copies of
An must have the same value in all worlds in PC(Dm).

T holds no more than 1 copy of R-combinations unsettled by day M , and an
unsettled combination’s value can only differ by 2b between different worlds while
settled affine combinations must have the same value in different worlds in PC(Dm).
We now show that this quantity goes to ∞, using the fact that A is pseudorandomly
positive.

Observe that α is a divergent weighting. It is also f -patient, since
∑
n≤m[f(n) ≥

m]αn ≤ 1. So by assumption,

lim inf
m→∞

∑
n≤m αn ·ValΓ(An)∑

n≤m αn
≥ 0.

At this point, note that

∑
n≤m

αn(ValΓ(An) + ε) =

∑
n≤m

αn

(∑n≤m αn ·ValΓ(An)∑
n≤m αn

+ ε

)
.

For all sufficiently high m,
∑

n≤m
αn·ValΓ(An)∑
n≤m

αn
≥ −ε/2, and

∑
n∈N+ αn =∞, so

lim inf
m→∞

∑
n≤m

αn(ValΓ(An) + ε) =∞.

If we define g(m) to be the minimum plausible worth at time m over plausible
worlds W ∈ PC(Dm), we see that g(m) limits to infinity, implying that the trader’s
maximum worth goes to infinity. The fact that g(m) limits to infinity also implies
that g(m) is bounded from below, so the trader’s minimum worth is bounded from
below. Thus, this trader exploits the market P.

D.7 Learning Varied Pseudorandom Frequencies
Definition 4.4.4 (Varied Pseudorandom Sequence). Given a deferral function
f , a set S of f-patient divergent weightings, an e.c. sequence p of Γ-decidable
sentences, and a P-generable sequence p of rational probabilities, φ is called a p-
varied pseudorandom sequence (relative to S) if, for all w ∈ S,∑

i≤n wi · (pi − ThmΓ(φi))∑
i≤n wi

hn 0.

106

Furthermore, we can replace hn with &n or .n, in which case we say φ is varied
pseudorandom above p or varied pseudorandom below p, respectively.

Theorem 4.4.5 (Learning Varied Pseudorandom Frequencies). Given an e.c. se-
quence φ of Γ-decidable sentences and a P-generable sequence p of rational proba-
bilities, if there exists some f such that φ is p-varied pseudorandom (relative to all
f -patient P-generable divergent weightings), then

Pn(φn) hn pn.

Furthermore, if φ is varied pseudorandom above or below p, then the hn may be
replaced with &n or .n (respectively).

Proof. We will prove the statement in the case of pseudorandom above; the case of
pseudorandom below is analogous, and the case of pseudorandom follows from the
other cases.

Define An := φn − pn and note that A ∈ BCS(P). Observe that, because A is
varied pseudorandomness above p, for any f -patient divergent weighting w,∑

i≤n wi ValΓAn∑
i≤n wi

&n 0.

Now apply Theorem 4.5.11 (Learning Pseudorandom Affine Sequences) to get

Pn(An) = Pn(φn)− pn &n 0.

D.8 Learning Pseudorandom Frequencies
Definition 4.4.1 (Pseudorandom Sequence). Given a set S of divergent weightings
(Definition 4.3.4), a sequence φ of decidable sentences is called pseudorandom
with frequency p over S if, for all weightings w ∈ S,

lim
n→∞

∑
i≤n wi · ThmΓ(φi)∑

i≤n wi

exists and is equal to p.

Theorem 4.4.2 (Learning Pseudorandom Frequencies). Let φ be an e.c. sequence
of decidable sentences. If φ is pseudorandom with frequency p over the set of all
P-generable divergent weightings, then

Pn(φn) hn p.

Proof. Let q be any rational number less than p. Note that φ is varied pseudorandom
above q, so by Theorem 4.4.5 (Learning Varied Pseudorandom Frequencies),

Pn(φn) &n q.

But we could have chosen any rational q < p, so Pn(φn) &n p. An analogous
argument shows Pn(φn) .n p.

E Expectations Proofs

E.1 Consistent World LUV Approximation Lemma
Lemma E.1.1. Let B ∈ BLCS(P) be a R-LUV combination bounded by some
rational number b. For all natural numbers n and all W ∈ PC(Γ), we have

|EW
n (B)−W(B)| ≤ b/n.

107

Proof. Let W ∈ PC(Γ). For any [0, 1]-LUV X, by Definition 4.8.2,

|EW
n (X)−W(X)| =

∣∣∣∣∣
n−1∑
i=0

1
n
W(“X > i/n”)−W(X)

∣∣∣∣∣
Since Γ can represent computable functions, the number of i values in {0, . . . , n− 1}
for which W(“X > i/n”) = 1 is at least bnW(X)c ≥ nW(X)− 1, so

n−1∑
i=0

1
n
W(“X > i/n”) ≥W(X)− 1/n.

Similarly, the number of i values in {0, . . . , n − 1} for which W(“X > i/n”) is no
more than dnW(X)e ≤ nW(X) + 1, so

n−1∑
i=0

1
n
W(“X > i/n”) ≤W(X) + 1/n.

We now have

|EW
n (B)−W(B)| = |c1(EW

n (X1)−W(X1)) + · · ·+ ck(EW
n (Xk)−W(Xk))|

≤ c1|EW
n (X1)−W(X1)|+ · · ·+ ck|EW

n (Xk)−W(Xk)|
≤ c1/n+ · · ·+ ck/n

≤ b/n.

E.2 Mesh Independence Lemma
Lemma E.2.1. Let B ∈ BLCS(P). Then

lim
n→∞

sup
m≥n
|EPm
n (Bn)− Em(Bn)| = 0.

Proof. We will prove the claim that

lim sup
m→∞

max
n≤m

(
|EPm
n (Bn)− Em(Bn)| − (2/n)

)
≤ 0.

This claim implies that, for any ε > 0, there are only finitely many (n,m) with n ≤ m
such that |EPm

n (Bn)−Em(Bn)| > 2/n+ ε, which in turn implies that, for any ε′ > 0,
there are only finitely many (n,m) with n ≤ m such that |EPm

n (Bn)−Em(Bn)| > ε′.
This is sufficient to show the statement of the theorem.

We will now prove

lim sup
m→∞

max
n≤m

(
EPm
n (Bn)− Em(Bn)− (2/n)

)
≤ 0.

The proof with Em(Bn)−EPm
n (Bn) instead is analogous, and together these inequal-

ities prove the claim.
Suppose this inequality does not hold. Then there is some rational ε > 0 such

that for infinitely many m,

max
n≤m

(EPm
n (Bn)− Em(Bn)− (2/n)) > ε.

Let B† be an e.c. EF-combination progression such that B†n(P) = Bn. Assume
without loss of generality that each ‖Bn‖1 ≤ 1 (they are assumed to be bounded
and can be scaled down appropriately). Define EF-combinations

A†n,m := Exn(B†n)− Exm(B†n)− 2/n,

108

using the F-combinations Ex defined in A.3. As shorthand, we write An,m :=
A†n,m(P). By Lemma E.1.1, for all W ∈ PC(Γ), W(An,m) ≤ 0. We aim to show
Pm(An,m) < ε for all sufficiently high m and n ≤ m, but we cannot immediately
derive this using Theorem 4.5.4 (Affine Provability Induction), since A has two
indices. We get around this difficulty by taking a “softmax” over possible values of
n given a fixed value of m. Specifically, for n ≤ m, define expressible features (of
rank m)

α†n,m := Indε/2
(
A†∗mn,m > ε/2

)
·

(
1−

∑
i<n

α†i,m

)
.

As shorthand, we write αn,m := α†n,m(P). Intuitively, αn,m will distribute weight
among n values for which Am,n is overpriced at time m. Now we define the EF-
combination progression

G†m :=
∑
n≤m

αn,m ·A†n,m.

As shorthand, we write Gm := G†m(P). Fix m and suppose that Pm(An,m) ≥ ε for
some n ≤ m. Then

∑
n≤m αn,m = 1. Therefore,

Pm(Gm) =
∑
n≤m

αn,mPm(An,m) ≥
∑
n≤m

αn,m · ε/2 = ε/2.

So if we can show Pm(Gm) .m 0, that will be sufficient to show that
maxn≤m Pm(An,m) < ε for all sufficiently high m. We now show this. Let
W ∈ PC(Γ). Since each αn,m ≥ 0, and W(An,m) ≤ 0, we have W(Gm) ≤ 0.
So by Theorem 4.5.4 (Affine Provability Induction), Pm(Gm) .m 0; here we use that
(Gm)m is bounded, since the An,m are bounded and since for eachm,

∑
n≤m αn,m ≤ 1

by construction.
So for all sufficiently high m we have maxn≤m Pm(An,m) < ε (or equivalently,

maxn≤m(EPm
n (Bn)−Em(Bn)) < 2/n+ ε). But this contradicts our assumption that

for infinitely many m,

max
n≤m

(EPm
n (Bn)− Em(Bn)− (2/n)) > ε.

E.3 Expectation Preemptive Learning
Theorem 4.8.13 (Expectation Preemptive Learning). Let B ∈ BLCS(P). Then

lim inf
n→∞

En(Bn) = lim inf
n→∞

sup
m≥n

Em(Bn)

and
lim sup
n→∞

En(Bn) = lim sup
n→∞

inf
m≥n

Em(Bn) .

Proof. We prove only the first statement; the proof of the second statement is
analogous. Apply Theorem 4.5.7 (Affine Preemptive Learning) to the bounded
sequence (Exn(Bn))n to get

lim inf
n→∞

EPn
n (Bn) = lim inf

n→∞
sup
m≥n

EPm
n (Bn),

using that by definition Pm(Exn(Bn)) = EPm
n (Bn). By Lemma E.2.1,

lim
n→∞

sup
m≥n
|EPm
n (Bn)− Em(Bn)| = 0

so
lim inf
n→∞

sup
m≥n

EPm
n (Bn) = lim inf

n→∞
sup
m≥n

Em(Bn).

109

E.4 Expectations Converge
Theorem 4.8.3 (Expectations Converge). The limit E∞ : S → [0, 1] defined by

E∞(X) := lim
n→∞

En(X)

exists for all X ∈ U .

Proof. By applying Theorem 4.8.13 (Expectation Preemptive Learning) to the
constant sequence X,X, . . ., we have

lim inf
n→∞

En(X) = lim inf
n→∞

sup
m≥n

Em(X) = lim sup
n→∞

En(X).

E.5 Limiting Expectation Approximation Lemma
Lemma E.5.1. For any B ∈ BLCS(P),

|EP∞
n (Bn)− E∞(Bn)| hn 0.

Proof. By Lemma E.2.1 and by continuity of V 7→ EV
n(Bn),

lim
n→∞

|EP∞
n (Bn)− E∞(Bn)| = lim

n→∞
lim
m→∞

|EPm
n (Bn)− Em(Bn)|

≤ lim
n→∞

sup
m≥n
|EPm
n (Bn)− Em(Bn)|

= 0.

E.6 Persistence of Expectation Knowledge
Theorem 4.8.12 (Persistence of Expectation Knowledge). Let B ∈ BLCS(P).
Then

lim inf
n→∞

inf
m≥n

Em(Bn) = lim inf
n→∞

E∞(Bn)

and
lim sup
n→∞

sup
m≥n

Em(Bn) = lim sup
n→∞

E∞(Bn).

Proof. We prove only the first statement; the proof of the second statement is
analogous. Apply Theorem 4.5.6 (Persistence of Affine Knowledge) to (Exn(Bn))n
to get

lim inf
n→∞

inf
m≥n

EPm
n (Bn) = lim inf

n→∞
EP∞
n (Bn).

We now show equalities on these two terms:

1. By Lemma E.2.1,

lim
n→∞

sup
m≥n
|EPm
n (Bn)− Em(Bn)| = 0

so
lim inf
n→∞

inf
m≥n

Em(Bn) = lim inf
n→∞

inf
m≥n

EPm
n (Bn).

2. By Lemma E.5.1,

lim inf
n→∞

EP∞
n (Bn) = lim inf

n→∞
E∞(Bn).

Together, these three equalities prove the theorem statement.

110

E.7 Expectation Coherence
Theorem 4.8.11 (Expectation Coherence). Let B ∈ BLCS(P). Then

lim inf
n→∞

inf
W∈PC(Γ)

W(Bn) ≤ lim inf
n→∞

E∞(Bn) ≤ lim inf
n→∞

En(Bn),

and
lim sup
n→∞

En(Bn) ≤ lim sup
n→∞

E∞(Bn) ≤ lim sup
n→∞

sup
W∈PC(Γ)

W(Bn).

Proof. We prove only the first statement; the proof of the second statement is
analogous. Apply Theorem 4.5.5 (Affine Coherence) to (Exn(Bn))n to get

lim inf
n→∞

inf
W∈PC(Γ)

EW
n (Bn) ≤ lim inf

n→∞
EP∞
n (Bn) ≤ lim inf

n→∞
En(Bn),

We now show equalities on the first two terms:
1. Let b be the bound on B. By Lemma E.1.1,

lim inf
n→∞

inf
W∈PC(Γ)

|EW
n (Bn)−W(Bn)| ≤ lim inf

n→∞
inf

W∈PC(Γ)
b/n = 0

so
lim inf
n→∞

inf
W∈PC(Γ)

EW
n (Bn) = lim inf

n→∞
inf

W∈PC(Γ)
W(Bn).

2. By Lemma E.5.1,
lim inf
n→∞

|EP∞
n (Bn)− E∞(Bn)| = 0

so
lim inf
n→∞

EP∞
n (Bn) = lim inf

n→∞
E∞(Bn).

Together, these three equalities prove the theorem statement.

E.8 Expectation Provability Induction
Theorem 4.8.10 (Expectation Provability Induction). Let B ∈ BLCS(P) and
b ∈ R. If, for all consistent worlds W ∈ PC(Γ) and all n ∈ N+, it is the case that
W(Bn) ≥ b, then

En(Bn) &n b,
and similarly for = and hn, and for ≤ and .n.
Proof. We prove the statement in the case of ≥; the case of ≤ is analogous, and
the case of = follows from the other two cases. By Theorem 4.8.11 (Expectation
Coherence),

lim inf
n→∞

En(Bn) ≥ lim inf
n→∞

inf
W∈PC(Γ)

W(Bn) ≥ b.

E.9 Linearity of Expectation
Theorem 4.8.4 (Linearity of Expectation). Let a, b be bounded P-generable se-
quences of rational numbers, and let X,Y , and Z be e.c. sequences of [0, 1]-LUVs.
If we have Γ ` Zn = anXn + bnYn for all n, then

anEn(Xn) + bnEn(Yn) hn En(Zn).

Proof. Observe that W(anXn + bnYn − Zn) = 0 for all n and W ∈ PC(Γ). So by
Theorem 4.8.10 (Expectation Provability Induction), En(anXn + bnYn − Zn) hn 0;
the theorem statement immediately follows from the definition of En applied to a
LUV-combination (where anXn + bnYn − Zn is interpreted as a LUV-combination,
not another LUV).

111

E.10 Expectations of Indicators
Theorem 4.8.6 (Expectations of Indicators). Let φ be an e.c. sequence of sentences.
Then

En(1(φn)) hn Pn(φn).

Proof. Observe that W(Exn(1(φn))) = W(φn) for all W ∈ PC(Γ); either

• W(φ) = 0 and W(Exn(1(φn))) =
∑n−1
i=0

1
nW(“1(φn) > i/n”) =

∑n
i=0 0 = 0, or

• W(φ) = 1 and W(Exn(1(φn))) =
∑n−1
i=0

1
nW(“1(φn) > i/n”) =

∑n
i=0

1
n = 1.

So by Theorem 4.5.4 (Affine Provability Induction),

En(1(φn)) hn Pn(φn).

E.11 Expectation Recurring Unbiasedness
Theorem 4.8.15 (Expectation Recurring Unbiasedness). If B ∈ BLCS(P) is de-
termined via Γ, and w is a P-generable divergent weighting,∑

i≤n wi · (Ei(Bi)−ValΓ(Bi))∑
i≤n wi

has 0 as a limit point. In particular, if it converges, it converges to 0.

Proof. Let W ∈ PC(Γ). Apply Theorem 4.5.9 (Affine Recurring Unbiasedness) to
(Exn(Bn))n and w to get that(∑

i≤n wi(Ei(Bi)− EW
i (Bn))∑

i≤n

)
n∈N+

has 0 as a limit point. Furthermore, by Lemma E.1.1, |EW
i (Bn)−ValΓ(Bn)| ≤ b/n

where b is a bound on B. As a result, for any subsequence of(∑
i≤n wi(Ei(Bi)− EW

i (Bn))∑
i≤n

)
n∈N+

that limits to zero, the corresponding subsequence of(∑
i≤n wi(Ei(Bi)−ValΓ(Bn))∑

i≤n

)
n∈N+

also limits to zero, as desired.

E.12 Expectation Unbiasedness From Feedback
Theorem 4.8.16 (Expectation Unbiasedness From Feedback). Given B ∈ BLCS(P)
that is determined via Γ, a strictly increasing deferral function f such that ValΓ(An)
can be computed in time O(f(n+ 1)), and a P-generable divergent weighting w,∑

i≤n wi · (Ei(Bi)−ValΓ(Bi))∑
i≤n wi

hn 0.

In this case, we say “w allows good feedback on B”.

112

Proof. Let W ∈ PC(Γ). Note that if ValΓBn can be computed in time polynomial
in g(n+ 1), then so can ValΓ Exk(Bn). Apply Theorem 4.5.10 (Affine Unbiasedness
from Feedback) to (Exn(Bn))n to get∑

i≤n wi · (Ei(Bi)− EW
i (Bi))∑

i≤n wi
hn 0.

Furthermore, by Lemma E.1.1, |EW
i (Bn)−ValΓ(Bn)| ≤ b/n where b is a bound on

B. As a result, ∑
i≤n wi · (Ei(Bi)−ValΓ(Bi))∑

i≤n wi
hn 0.

as desired.

E.13 Learning Pseudorandom LUV Sequences
Theorem 4.8.17 (Learning Pseudorandom LUV Sequences). Given a B ∈ BLCS(P)
which is determined via Γ, if there exists a deferral function f such that for any
P-generable f -patient divergent weighting w,∑

i≤n wi ·ValΓ(Bi)∑
i≤n wi

&n 0,

then
En(Bn) &n 0.

Proof. We will prove the statement in the case of &; the case of . is analogous, and
the case of h follows from the other cases.

Let b be the bound of B. Let W ∈ PC(Γ). First, note that by Lemma E.1.1,
|EW
i (Bi)−ValΓ(Bi)| ≤ b/i. Therefore,∑

i≤n wi · EW
i (Bi)∑

i≤n wi
hn

∑
i≤n wi ·ValΓ(Bi)∑

i≤n wi
&n 0.

So we may apply Theorem 4.5.11 (Learning Pseudorandom Affine Sequences) to
(Exn(Bn))n to get

En(Bn) &n 0.

F Introspection and Self-Trust Proofs

F.1 Introspection
Theorem 4.11.1 (Introspection). Let φ be an e.c. sequence of sentences, and a,
b be P-generable sequences of probabilities. Then, for any e.c. sequence of positive
rationals δ → 0, there exists a sequence of positive rationals ε→ 0 such that for all
n:

1. if Pn(φn) ∈ (an + δn, bn − δn), then

Pn(“an < Pn(φn) < bn”) > 1− εn,

2. if Pn(φn) /∈ (an − δn, bn + δn), then

Pn(“an < Pn(φn) < bn”) < εn.

Proof. Define ψn := “an < Pn(φn) < bn”.

113

Proof of the first statement. Observe that for all n, and all W ∈ PC(Γ),

Indδn
(an < Pn(φn) < bn) · (1−W(ψn)) = 0,

since regardless of Pn(φn), one of the two factors is 0. Thus, applying Theorem 4.5.4
(Affine Provability Induction) gives

Indδn
(an < Pn(φn) < bn) · (1− Pn(ψn)) hn 0.

Define
εn := Indδn

(an < Pn(φn) < bn) · (1− Pn(ψn)) + 1/n

and note that εn > 0 and εn hn 0. For any n for which Pn(φn) ∈ (an + δn, bn − δn),
the first factor is 1, so Pn(ψn) = 1− εn + 1/n > 1− εn.

Proof of the second statement. Observe that for all n, and all W ∈ PC(Γ),(
Indδn

(Pn(φn) < an) + Indδn
(Pn(φn) > bn)

)
·W(ψn) = 0,

since regardless of Pn(φn), one of the factors is 0. Thus, applying Theorem 4.5.4
(Affine Provability Induction) gives(

Indδn
(Pn(φn) < an) + Indδn

(Pn(φn) > bn)
)
· Pn(ψn) hn 0.

Define

εn :=
(
Indδn

(Pn(φn) < an) + Indδn
(Pn(φn) > bn)

)
· Pn(ψn) + 1/n

and note that εn > 0 and εn hn 0. For any n for which Pn(φn) /∈ (an − δn, bn + δn),
the first factor is 1, so Pn(ψn) < εn.

F.2 Paradox Resistance
Theorem 4.11.2 (Paradox Resistance). Fix a rational p ∈ (0, 1), and define an
e.c. sequence of “paradoxical sentences” χp satisfying

Γ ` χpn ↔
(
Pn(χpn) < p

)
for all n. Then

lim
n→∞

Pn(χpn) = p.

Proof. We prove Pn(φn) &n p and Pn(φn) .n p individually.

1. Suppose it is not the case that Pn(φn) &n p, so Pn(φn) < p− ε infinitely often
for some ε > 0. Observe that for all n, and all W ∈ PC(Γ),

Ind1/n(Pn(φn) < p) · (1−W(φn)) = 0,

since regardless of Pn(φn), one of the factors is 0. Thus, applying Theorem 4.5.4
(Affine Provability Induction) yields

Ind1/n(Pn(φn) < p) · (1− Pn(φn)) hn 0. (F.2.1)

But infinitely often,

Ind1/n(Pn(φn) < p) · (1− Pn(φn)) ≥ 1 · (1− (p− ε)) ≥ ε

which contradicts equation (F.2.1).

114

2. Suppose it is not the case that Pn(φn) .n p, so Pn(φn) > p+ ε infinitely often
for some ε > 0. Observe that for all n, and all W ∈ PC(Γ),

Ind1/n(Pn(φn) > p) ·W(φn) = 0,

since regardless of Pn(φn), one of the factors is 0. Thus, applying Theorem 4.5.4
(Affine Provability Induction) yields

Ind1/n(Pn(φn) > p) · Pn(φn) hn 0. (F.2.2)

But infinitely often,

Ind1/n(Pn(φn) > p) · Pn(φn) ≥ 1 · (p+ ε) ≥ ε

which contradicts equation (F.2.2).

F.3 Expectations of Probabilities
Theorem 4.11.3 (Expectations of Probabilities). Let φ be an efficiently computable
sequence of sentences. Then

Pn(φn) hn En(“Pn(φn)”).

Proof. Observe that for all n, and for all W ∈ PC(Γ), W(Pn(φn)− “Pn(φn)”) = 0
(where Pn(φn) is a number and “Pn(φn)”) is a LUV). Thus, by Theorem 4.8.10
(Expectation Provability Induction),

Pn(φn)− En(“Pn(φn)”) hn 0.

F.4 Iterated Expectations
Theorem 4.11.4 (Iterated Expectations). Suppose X is an efficiently computable
sequence of LUVs. Then

En(Xn) hn En(“En(Xn)”).

Proof. Observe that for all n, and for all W ∈ PC(Γ), W(En(Xn)− “En(Xn)”) = 0
(where En(Xn) is a number and “En(Xn)”) is a LUV). Thus, by Theorem 4.8.10
(Expectation Provability Induction),

En(Xn)− En(“En(Xn)”) hn 0.

F.5 Expected Future Expectations
Theorem 4.12.1 (Expected Future Expectations). Let f be a deferral function (as
per Definition 4.3.7), and let X denote an e.c. sequence of [0, 1]-LUVs. Then

En(Xn) hn En(“Ef(n)(Xn)”).

Proof. Let Ym := Xn if m = f(n) for some n, and Ym := “0” otherwise. Observe
that (Ym)m is e.c.. By Theorem 4.11.4 (Iterated Expectations),

Ef(n)(Xn) hn Ef(n)(“Ef(n)(Xn)”).

115

We now manipulate the encodings f(n) (for the number f(n)) and f(n) (for the
program computing f and its input n). Observe than for all W ∈ PC(Γ),

W(“Ef(n)(Xn)”) = W(“Ef(n)(Xn)”).

So by Theorem 4.8.10 (Expectation Provability Induction),

Ef(n)(Xn) hn Ef(n)(“Ef(n)(Xn)”).

By Theorem 4.8.13 (Expectation Preemptive Learning),

En(Xn) hn En(“Ef(n)(Xn)”).

F.6 No Expected Net Update
Theorem 4.12.2 (No Expected Net Update). Let f be a deferral function, and let
φ be an e.c. sequence of sentences. Then

Pn(φn) hn En(“Pf(n)(φn)”).

Proof. Let ψm := φn if m = f(n) for some n, and ψm := ⊥ otherwise. Observe that
(ψm)m is e.c.. By Theorem 4.11.3 (Expectations of Probabilities),

Pf(n)(φn) hn Ef(n)(“Pf(n)(φn)”).

We now manipulate the encodings f(n) and f(n). Observe that for all W ∈
PC(Γ),

W(“Pf(n)(φn)”) = W(“Pf(n)(φn)”).

So by Theorem 4.8.10 (Expectation Provability Induction),

Pf(n)(φn) hn Ef(n)(“Pf(n)(φn)”).

By Theorem 4.8.6 (Expectations of Indicators),

Ef(n)(1(φn)) hn Ef(n)(“Pf(n)(φn)”).

By Theorem 4.8.13 (Expectation Preemptive Learning),

En(1(φn)) hn En(“Pf(n)(φn)”).

By Theorem 4.8.6 (Expectations of Indicators),

Pn(φn) hn En(“Pf(n)(φn)”).

F.7 No Expected Net Update under Conditionals
Theorem 4.12.3 (No Expected Net Update under Conditionals). Let f be a
deferral function, and let X denote an e.c. sequence of [0, 1]-LUVs, and let w denote
a P-generable sequence of real numbers in [0, 1]. Then

En(“Xn · wf(n)”) hn En(“Ef(n)(Xn) · wf(n)”).

116

Proof. By Theorem 4.11.4 (Iterated Expectations) and Theorem 4.8.10 (Expectation
Provability Induction),

Ef(n)(Xn) hn Ef(n)(“Ef(n)(Xn)”) hn Ef(n)(“Ef(n)(Xn)”)

and thus
Ef(n)(Xn) · wf(n) hn Ef(n)(“Ef(n)(Xn)”) · wf(n).

Observe that for all n, and for all W ∈ PC(Γ),

W(Xn) · wf(n) = W(“Xn · wf(n)”).

So by Theorem 4.8.10 (Expectation Provability Induction),

Ef(n)(Xn) · wf(n) hn Ef(n)(“Xn · wf(n)”).

Similarly, for all n and all W ∈ PC(Γ),

W(“Ef(n)(Xn)”) · wf(n) hn W(“Ef(n)(Xn) · wf(n)”).

So by Theorem 4.8.10 (Expectation Provability Induction),

Ef(n)(“Ef(n)(Xn)”) · wf(n) hn Ef(n)(“Ef(n)(Xn) · wf(n)”).

Combining these,

Ef(n)(“Ef(n)(Xn) · wf(n)”) hn Ef(n)(“Xn · wf(n)”).

So by Theorem 4.8.13 (Expectation Preemptive Learning),

En(“Ef(n)(Xn) · wf(n)”) hn En(“Xn · wf(n)”).

F.8 Self-Trust
Theorem 4.12.4 (Self-Trust). Let f be a deferral function, φ be an e.c. sequence of
sentences, δ be an e.c. sequence of positive rational numbers, and p be a P-generable
sequence of rational probabilities. Then

En
(

“1(φn) · Indδn

(
Pf(n)(φn) > pn

)
”
)
&n pn · En

(
“Indδn

(
Pf(n)(φn) > pn

)
”
)
.

Proof. Define αn := Indδn
(Pf(n)(φn) > pn). By Theorem 4.11.3 (Expectations of

Probabilities),
Pf(n)(φn) hn Ef(n)(“Pf(n)(φn)”)

and so
Pf(n)(φn) · αn hn Ef(n)(“Pf(n)(φn)”) · αn.

Observe that for all W ∈ PC(Γ),

W(1(φn)) · αn = W(“1(φn) · αn”).

So by Theorem 4.8.6 (Expectations of Indicators) and Theorem 4.8.10 (Expectation
Provability Induction),

Pf(n)(φn) · αn hn Ef(n)(1(φn)) · αn hn Ef(n)(“1(φn) · αn”).

117

By two more similar applications of Theorem 4.8.10 (Expectation Provability Induc-
tion),

Ef(n)(“Pf(n)(φn)”) · αn hn Ef(n)(“Pf(n)(φn) · αn”) &n pn · Ef(n)(“αn”).

Combining these,

Ef(n)(“1(φn) · αn”) &n pn · Ef(n)(“αn”).

By Theorem 4.8.13 (Expectation Preemptive Learning),

En(“1(φn) · αn”) &n pn · En(“αn”).

G Non-Dogmatism and Closure Proofs

G.1 Parametric Traders
Now we show that there is no uniform strategy (i.e., efficiently emulatable sequence
of traders) for exposing the logical inductor P to increasing finite amounts of risk,
without also taking on increasing finite amounts of risk.

Lemma G.1.1 (Parametric Traders). Let P be a logical inductor over D. Then
there does not exist an efficiently emulatable sequence of traders (T k)k such that for
all k, the set {

W
(∑

i≤n T
k
i

(
P
)) ∣∣∣n ∈ N+,W ∈ PC(Dn)

}
of plausible values of T k’s holdings is bounded below by −1 and has supremum at
least k.

In words, this lemma states that if P is a logical inductor then there is no
efficiently emulatable sequence of traders (T k)k such that each T k never risks more
than $1, and exposes P to at least $k of plausible risk. To show this lemma, roughly
speaking we sum together scaled versions of some of the T k so that the sum of their
risks converges but the set of their plausible profits diverges. In this proof only we
will use the abbreviation h(j) := j2j for j ∈ N+.

Proof. Suppose for contradiction that such a sequence (T k)k exists. Define a trader
T by the formula

Tn :=
∑

j:h(j)≤n

T
h(j)
n

2j .

This is well-defined as it is a finite sum of trading strategies, and it is efficiently
computable in n because (T k)k is efficiently emulatable. Then for any time n and
any world W ∈ PC(Dn),

W
(∑

i≤n Ti(P)
)

= W

∑
i≤n

∑
j:h(j)≤n

T
h(j)
i (P)

2j


by definition of T and since Th(j)

n ≡ 0 if h(j) > n;

=
∑

j:h(j)≤n

1
2jW

(∑
i≤n T

h(j)
i (P)

)

118

by linearity;

≥
∑
j∈N+

1
2j · (−1)

≥ −1,

by the assumption that the plausible values W
(∑

i≤n T
h(j)
i (P)

)
are bounded below

by −1. Furthermore, for any k ∈ N+, consider the trader Th(k). By assumption, for
some time n and some world W ∈ PC(Dn), we have

W
(∑

i≤n T
h(k)
i (P)

)
≥ h(k) ≡ k2k.

Then, by the above analysis, we have

W
(∑

i≤n Ti(P)
)
≥ 1

2k ·W
(∑

i≤n T
h(k)
i (P)

)
+
∑
j∈N+

1
2j · (−1)

≥ k2k
2k − 1

= k − 1.

Thus we have shown that the plausible values W
(∑

i≤n Ti(P)
)
of our trader T are

bounded below by −1 but unbounded above, i.e. T exploits the market P. This
contradicts that P is a logical inductor, showing that this sequence (T k)k cannot
exist.

G.2 Uniform Non-Dogmatism
Recall Theorem 4.6.3:

Theorem 4.6.3 (Uniform Non-Dogmatism). For any computably enumerable se-
quence of sentences φ such that Γ ∪ φ is consistent, there is a constant ε > 0 such
that for all n,

P∞(φn) ≥ ε.

Roughly speaking, to show this, we will construct a parametric trader using
Lemma G.1.1 by defining an efficiently emulatable sequence (T k)k of traders. Each
trader T k will attempt to “defend” the probabilities of the φi from dropping too far
by buying no more than k + 1 total shares in various φi when they are priced below
1/(k+1). If the property doesn’t hold of P, then each T k will buy a full (k+1)-many
shares, at a total price of at most −1. But since the φi are all collectively consistent,
there is always a plausible world that values the holdings of T k at no less than
k + 1 − 1 = k. Then the parametric trader that emulates (T k)k will exploit P,
contradicting that P is a logical inductor.

Proof. We can assume without loss of generality that for each φi that appears in
the sequence of sentences φ, that same sentence φi appears in φ infinitely often,
by transforming the machine that enumerates φ into a machine that enumerates
(φ1, φ1, φ2, φ1, φ2, φ3, φ1, · · ·). Futhermore, we can assume that φ is efficiently com-
putable by, if necessary, padding φ with copies of > while waiting for the enumeration
to list the next φi.

119

Constructing the traders. We now define our sequence (T k)k of traders. For
n < k, let T kn be the zero trading strategy. For n ≥ k, define T kn to be the trading
strategy

T kn := (k + 1− Boughtkn) · Lowkn · (φn − φ∗nn),
where

Lowkn := Ind1/(2k + 2)

(
φ∗nn <

1
k + 1

)
and

Boughtkn :=
∑
i≤n−1

‖T ki ‖mg.

We will make use of the convention for writing the coefficients of a trade:

T kn [φn] ≡ (k + 1− Boughtkn) · Lowk
n.

In words, T kn is a buy order for (k + 1− Boughtkn)-many shares of φn, scaled down
by the extent Lowk

n to which φn is priced below 1/(k + 1) at time n. The quantity
Boughtkn measures the total number of shares that T k has purchased before the
current time step n.

For some fixed polynomial independent of k, the T k are uniformly computable
with runtime bounded by that polynomial as a function of n, using the discussion in
A.2 on dynamic programming. Furthermore, T kn ≡ 0 for n < k by definition. Hence
(T k)k is an efficiently emulatable sequence of traders as defined in A.3.4.

Note that by the definition of T kn , the magnitude ‖T kn (P)‖mg of the trade is
bounded by k + 1− Boughtkn(P). By definition of Boughtkn and by induction on n,
we have that

Boughtk1(P) = 0 ≤ k + 1
as Boughtk1 is an empty sum, and

Boughtkn+1(P) =
∑
i≤n+1

‖T ki (P)‖mg

= Boughtkn(P) + ‖T kn (P)‖mg

≤ Boughtkn(P) + k + 1− Boughtkn(P)
= k + 1.

In words, T k never trades more than k + 1 shares in total. Furthermore, since by
definition Low is always non-negative, we have that

‖T kn (P)‖mg = |T kn [φn](P)| = |(k + 1− Boughtkn(P)) · Lowk
n(P)| ≥ 0.

Analyzing the value of T k. Fix T k and a time step n. For any plausible world
W ∈ PC(Dn), the value in W of holdings from trades made by T k up to time n is

W
(∑

i≤n T
k
i (P)

)
= W

(∑
i≤n T

k
i [φi](P) · (φi − φ∗ii (P))

)
=

∑
i≤n

T ki [φi](P) ·W(φi)

+
∑
i≤n

T ki [φi](P) · (−Pi(φi)),

by linearity and by the definition φ∗ii (P) ≡ Pi(φi). We analyze the second term first,
which represents the contribution to the value of T k from the prices of the φi-shares

120

that it has purchased up to time n. We have that∑
i≤n

T ki [φi](P) · (−Pi(φi))

≥
∑
i≤n

‖T ki ‖mg ·
(
− 1
k + 1

)
since ‖T ki (P)‖mg = T ki [φi](P) ≥ 0 and since Pi(φi) ≤ 1/(k+ 1) whenever Lowki (P) is
non-zero;

≥ −k + 1
k + 1

= −1,

since T k never purchases more than k + 1 shares. Now consider the value∑
i≤n

T ki [φi](P) ·W(φi)

in W of the stock holdings from trades made by T k up to time n. Since both W(φi)
and T ki [φi](P) are non-negative, this value is non-negative. Hence we have shown
that

W
(∑

i≤n T
k
i (P)

)
≥ −1 + 0 = −1,

i.e. the total value of T k is bounded below by −1.
Furthermore, since Γ ∪ φ is consistent, there is always a plausible world W ∈

PC(Dn) such that ∀i ≤ n : W(φi) = 1, and therefore

W
(∑

i≤n T
k
i (P)

)
≥ −1 +

∑
i≤n

T kn [φ](P).

Exploitation by the parametric trader. Now suppose by way of contradiction
that the market P does not satisfy the uniform non-dogmatism property. Then for
every k, in particular the property does not hold for ε = 1/(2k + 2), so there is
some φi in the sequence φ such that P∞(φi) < 1/(2k + 2). Since by assumption
φi appears infinitely often in φ, for some sufficiently large n we have Pn(φn) ≡
Pn(φi) < 1/(2k + 2), at which point

Lowkn(P) = Ind1/(2k + 2)

(
Pn(φn) < 1

k + 1

)
= 1.

Therefore
T kn [φn] = (k + 1− Boughtkn),

so that ∑
i≤n

‖T ki (P)‖mg = Boughtkn(P) + k + 1− Boughtkn(P) = k + 1.

Thus
W
(∑

i≤n T
k
i (P)

)
≥ −1 + k + 1 = k.

In words, once the price of some φi dips below 1/(2k+2), the trader T k will purchase
the remaining k + 1− Boughtkn(P) shares it will ever buy. Then in a world W that
witnenesses that φ is consistent with Γ, all the shares held by T k are valued at $1
each, so T k has stock holdings valued at k + 1, and cash holdings valued at no less
than −1.

121

Therefore each T
k has plausible value bounded below by −1 and at least k

in some plausible world at some time step, and therefore Lemma G.1.1 applies,
contradicting that P is a logical inductor. Therefore in fact P does satisfy the uniform
non-dogmatism property.

G.3 Occam Bounds
Recall Theorem 4.6.4:

Theorem 4.6.4 (Occam Bounds). There exists a fixed positive constant C such
that for any sentence φ with prefix complexity κ(φ), if Γ 0 ¬φ, then

P∞(φ) ≥ C2−κ(φ),

and if Γ 0 φ, then
P∞(φ) ≤ 1− C2−κ(φ).

We show the result for φ such that Γ 6` ¬φ; the result for Γ 6` φ follows by
considering ¬¬φ and using the coherence of P∞.

Roughly speaking, we will construct an efficiently emulatable sequence of traders
(T k)k where T k attempts to ensure that Pn(φ) does not drop below 2−κ(φ)/(k + 1)
for any φ. We do this by having T k purchase shares in any φ that are underpriced
in this way, as judged by a computable approximation from below of 2−κ(φ). The
trader T k will purchase at most k + 1 shares in each φ, and hence spend at most
$2−κ(φ) for each φ and at most $1 in total. On the other hand, if the market P
does not satisfy the Occam property with constant C = 1/(k + 1), then for some φ
with Γ 6` ¬φ, we will have that T k purchases a full k + 1 shares in φ. Since there is
always a plausible world that values φ at $1, T k will have a plausible value of at
least $k, taking into account the $1 maximum total prices paid. This contradicts
Lemma G.1.1, so in fact P satisfies the Occam property.

To implement this strategy, we will use tools similar to those used in the proof
of Theorem 4.6.3, and the proof is similar in spirit, so we will elide some details.

Proof. Observe that 2−κ(φ) is approximable from below uniformly in φ, since we
can (slowly) enumerate all prefixes on which our fixed UTM halts and outputs φ.
Let φ be an efficiently computable enumeration of all sentences. Let M be a Turing
machine that takes an index i into our enumeration and takes a time n, and outputs
a non-negative rational number. We further specify that M runs in time polynomial
in i + n, satisfies ∀n, i : M(n, i) ≤ 2−κ(φi), and satisfies limt→∞M(n, i) = 2−κ(φi).
Note that since we are using prefix complexity, we have

∑
φ∈S 2−κ(φ) ≤ 1. (We can

assume without loss of generality that M(n, i) > 0 for all i ≤ n, by padding the
sequence φ with φ1 while waiting until M(n, i) > 0 to enumerate φi, using the fact
that our UTM outputs each φ for some prefix.)

We define a sequence of traders (T k)k. For n < k, define T kn to be the zero
trading strategy. For n ≥ k, define T kn to be the trading strategy given by

T kn :=
∑
i≤n

(k + 1− Boughtkn(i)) · Lowk
n(i) · (φi − φ∗ni),

where
Lowkn(i) := IndM(n, i)/(2k + 2)

(
φ∗n <

M(n, i)
k + 1

)
and

Boughtkn(i) :=
∑

j≤n−1
T kj [φi].

122

This is similar to the parametric trader used in the proof of Theorem 4.6.3, except
that here on time n, T k buys any φi when Pn(φi) is too low, and Boughtkn(i) tracks
the number of shares bought by T

k in each φi individually up to time n. By
the discussion of dynamic programming in A.2, (T k)k is an efficiently emulatable
sequence of traders. (We use that M(n, i) is pre-computed by the machine that
computes T k, and hence appears in the feature expression for T kn as a constant
which is strictly positive by assumption.)

Observe that for each i, by induction on n we have Boughtkn(i) ≤ k + 1, so
that T k only buys positive shares in the various φi, and T

k only buys up to k + 1
shares of φi. Further, T

k only buys φi-shares at time n if the price Pn(φi) is below
1/(k + 1)-th of the approximation M(n, i) to 2−κ(φ), i.e.

Pn(φi) <
M(n, i)
k + 1 ≤ 2−κ(φi)

k + 1 .

Therefore T k spends at most $2−κ(φi) on φi-shares, and hence spends at most $1 in
total.

Suppose for contradiction that P does not satisfy the Occam property. Then for
every k there exists some φi such that the limiting price of φi is

P∞(φi) <
2−κ(φi)

(2k + 2) ,

but nevertheless Γ 0 ¬φi. Then for some time step n we will have that Pn(φi) <
M(n, i)/(2k + 2), and hence Lowk

n(i) = 1. At that point T k will purchase k +
1− Boughtkn(i) shares in φi, bringing Boughtkn+1(i) to k + 1; that is, T k will have
bought k+ 1 shares of φi. Since φ is consistent with Γ, there is some plausible world
W ∈ PC(Dn) that values those shares at $1 each, so that the total value of all of the
holdings from trades made by T k is at least k. By Lemma G.1.1 this contradicts
that P is a logical inductor, so in fact P must satisfy the Occam property.

G.4 Non-Dogmatism
Theorem 4.6.2 (Non-Dogmatism). If Γ 0 φ then P∞(φ) < 1, and if Γ 0 ¬φ then
P∞(φ) > 0.
Proof. This is a special case of 4.6.4, since κ(φ) > 0 for any φ.

G.5 Domination of the Universal Semimeasure
Theorem 4.6.5 (Domination of the Universal Semimeasure). Let (b1, b2, . . .) be a
sequence of zero-arity predicate symbols in L not mentioned in Γ, and let σ≤n =
(σ1, . . . , σn) be any finite bitstring. Define

P∞(σ≤n) := P∞(“(b1 ↔ σ1 = 1) ∧ (b2 ↔ σ2 = 1) ∧ . . . ∧ (bn ↔ σn = 1)”),
such that, for example, P∞(01101) = P∞(“¬b1 ∧ b2 ∧ b3 ∧ ¬b4 ∧ b5”). Let M be a
universal continuous semimeasure. Then there is some positive constant C such that
for any finite bitstring σ≤n,

P∞(σ≤n) ≥ C ·M(σ≤n).

Proof. Let (σi)i be an e.c. enumeration of all finite strings. Let l(σ) be the length
of σ. Define

φi := “(b1 ↔ σi1 = 1) ∧ (b2 ↔ σi2 = 1) ∧ . . . ∧ (bl(σi) ↔ σil(σi) = 1)”

to be the sentence saying that the string (b1, b2, . . .) starts with σi. Suppose the
theorem is not true; we will construct a sequence of parametric traders to derive a
contradiction through Lemma G.1.1.

123

Defining a sequence of parametric traders. To begin, let A(σ, n) be a lower-
approximation of M(σ) that can be computed in time polynomial in n and the
length of σ. Specifically, A must satisfy

• A(σ, n) ≤M(σ), and

• limn→∞A(σ, n) = M(σ).

Now, recursively define

α†k,n,i :=

Ind 1
4(k+1)

(
φ∗n

i

A(σi,n) <
1

2(k+1)

)
if A(σi, n) > 0 ∧ n ≥ k ∧ i ≤ n

0 otherwise

β†k,n,i := min(α†k,n,i, 1− γ
†
k,n,i)

γ†k,n,i :=
∑

m<n,j≤m

β†k,m,jφ
∗m
j +

∑
j<i

β†k,n,jφ
∗n
j

in order to define a parametric trader

T kn :=
∑
i≤n

βk,n,i · (φi − φ∗ni)

As shorthand, we write αk,n,i := α†k,n,i(P), βk,n,i := β†k,n,i(P), γk,n,i := γ†k,n,i(P).
Intuitively,

• αk,n,i is the number of copies φi that T
k would buy on day n if it were not for

budgetary constraints. It is high if Pn obviously underprices φi relative to M
(which can be checked by using the lower-approximation A).

• βk,n,i is the actual number of copies of φi that T
k buys, which is capped by

budgetary constraints.

• γk,n,i is the amount of money T k has spent on propositions φ1, . . . , φn−1
“before considering” buying φi on day n. We imagine that, on each day n, the
trader goes through propositions in the order φ1, . . . , φn.

Analyzing the sequence of parametric traders. Observe that T k spends at
most $1 in total, since βk,n,i ≤ 1−γk,n,i. Now we will analyze the trader’s maximum
payout. Assume by contradiction that P∞ does not dominate M . Define

Purchasedk,n,i :=
∑
m≤n

βk,n,i

to be the number of shares of σi that T has bought by time n, and

MeanPayoutk,n :=
∑
i∈N+

M(σi)Purchasedk,n,i.

to be the “mean” value of stocks purchased by time n according to the semimeasure
M . Both of these quantities are nondecreasing in n. Now we show that there is
some N such that MeanPayoutk,n ≥ k + 1 for all n ≥ N :

• Every purchase costing c corresponds to MeanPayoutk,n increasing by at least
c · 2(k + 1). This is because the trader only buys φi when Pn(φi)

A(σi,n) <
1

2(k+1) ,
and A(σi, n) ≤M(σi).

124

• For some N , MeanPayoutk,N ≥ k + 1. Suppose this is not the case. Since we
are supposing that P∞ does not dominate the universal semimeasure, there
is some i such that P∞(φi) < M(σi)

8(k+1) . So we will have Pn(φi) < M(σi)
8(k+1) for

infinitely many n; let N be the set of such n.
For all sufficiently high n we have A(σi, n) ≥M(σi)/2, so for all sufficiently
high n ∈ N ,

Pn(φi)
A(σi, n)

≤ Pn(φi)
M(σi)/2

≤ 1
4(k + 1)

and so there is some infinite subset N ′ ⊆ N for which αk,n,i = 1. By
assumption, ∀n : MeanPayoutk,n < k + 1, so the trader never has spent
more than $1/2 (using the previous step), so γk,n,i ≤ 1/2. This means
βk,n,i ≥ 1/2, which implies an increase in mean payout MeanPayoutk,n −
MeanPayoutk,n−1 ≥M(σi) > 0. But this increase happens for infinitely many
n, so limn→∞MeanPayoutk,n = ∞. This contradicts the assumption that
MeanPayoutk,N < k + 1 for all N .

• MeanPayoutk,N is nondecreasing in N , so MeanPayoutk,n ≥ k + 1 for all
n ≥ N .

Using this lower bound on MeanPayoutk,n, we would now like to show that T k’s
purchases pay out at least k + 1 in some W ∈ PC(D∞). To do this, define

MaxPayoutk,n := sup
σ∈B≤N+

∑
σ′

i prefix of σ

Purchased(σi, n)

to be the maximum amount that T k’s purchases pay out over all possible strings
(finite and infinite). Since M is a semimeasure over finite and infinite bitstrings,
we have MeanPayout(n) ≤ MaxPayout(n). Since each φi is independent of Γ, T k’s
maximum worth is at least

lim sup
n→∞

MaxPayout(ε, n)− 1 ≥ lim sup
n→∞

MeanPayout(ε, n)− 1 ≥ k + 1− 1 = k.

This is sufficient to show a contradiction using Lemma G.1.1.

G.6 Strict Domination of the Universal Semimeasure
Recall Theorem 4.6.6 (Strict Domination of the Universal Semimeasure):

Theorem 4.6.6 (Strict Domination of the Universal Semimeasure). The universal
continuous semimeasure does not dominate P∞; that is, for any positive constant C
there is some finite bitstring σ≤n such that

P∞(σ≤n) > C ·M(σ≤n).

Proof. Consider the sets of codes for Turing machines

A0 := {M | M halts on input 0 and outputs 0}
and

A1 := {M | M halts on input 0 and outputs 1}.

Both of these sets are computably enumerable and disjoint, so by Theorem 4.6.3
(Uniform Non-Dogmatism), P∞ assigns positive measure to the set [A] of infinite
bitstrings that encode a separating set for A0 and A1, i.e., a set A such that
A ∩A0 = ∅ and A ⊇ A1.

Thus it suffices to show that the universal semimeasure assigns 0 measure to [A].
This is a known result from computability theory, using the fact that A0 and A1

125

are recursively inseparable; see for example Kucera and Nies 2011. Here we give an
elementary proof sketch.

Suppose for contradiction thatm computes a universal semimeasure andm([A]) =
r > 0; we argue that we can compute some separating set A. Let q ∈ [4r/5, r] ∩Q.
There is some fixed k such that the finite binary subtree Ak consisting of finite
prefixes of length k of strings in [A] is assigned m(Ak) ∈ [r, 6r/5].

On input n, we can run m on the set of strings of length up to n until the
set of extensions of strings in Ak has measure at least q; this will happen because
m([A]) > q. Then we output 0 if the majority of the measure is on strings with nth
bit equal to 0, and we output 1 otherwise. If we output 0 but in fact n ∈ A1, then
there is measure at most 6r/5− 2r/5 = 4r/5 on extensions of strings in Ak that are
consistent with separating A0 and A1; but this is impossible, as [A] has measure
r. Likewise if we output 1 then it can’t be that n ∈ A0. Thus we have recursively
separated A0 and A1, contradicting that A0 and A1 are recursively inseparable.

G.7 Closure under Finite Perturbations
Recall Theorem 4.6.1 (Closure under Finite Perturbations):

Theorem 4.6.1 (Closure under Finite Perturbations). Let P and P′ be markets
with Pn = P′n for all but finitely many n. Then P is a logical inductor if and only if
P′ is a logical inductor.

In short, a trader that exploits P also exploits P′ since all but finitely many of
its trades are identically valued. The proof mainly concerns a minor technical issue;
we have to make a small adjustment to the trader to ensure that it makes exactly
the same trades against P′ as it does against P.

Proof. Assume there is a trader T which exploits P. We will construct a new trader
T
′ that exploits P′. Fix N large enough that Pn = P′n for all n ≥ N .
We will define T ′ so that it makes the same trades against the market P′ as the

trader T makes against P. That is, we want that for all n,

T ′n(P′) = Tn(P).

It is insufficient to set the trading strategy T ′n equal to Tn for all n. This is because
Tn may infinitely often make different trades given the history P′≤n instead of the
history P≤n. For example, it may be that every day T buys V1(φ)-many shares
in φ against V; in this case if P′1(φ) 6= P1(φ), then at each time n, Tn(P′) will buy
a different number of shares from Tn(P). Roughly speaking, we will patch this
problem by copying T , but feeding it “false reports” about the market prices so that
it appears to the Tn that they are reacting to P rather than P′.

More precisely, let F be a computable function from feature expressions to feature
expressions, in the expression language discussed in A.2. For a feature expression α,
we define F (α) to be identical to α but with all occurrences of an expression φ∗i for
i < N replaced by a constant Pi(φ).

Note that F is efficiently computable: by the assumption that Pn = P′n for all
n ≥ N , only finitely many constants Pi(φ) are needed, and can be hard-coded into
F . Furthermore, F behaves as intended: for any α, we have F (α)(P′) = α(P) (using
a slight abuse of notation, treating α as both an expression and as the feature thus
expressed). This follows by structural induction the expression α, where every step
is trivial except the base cases for symbols φ∗i with i < N , which follow from the
definition of F . Now we define

T ′n :=
∑
φ∈S

F (Tn[φ])(φ− φ∗n)

126

for any n. This is efficiently computable because Tn and F are both e.c. Furthermore,
for all n ≥ N , we have that T ′n(P′) = Tn(P). Therefore for any n we have that∣∣∣W(∑i≤n Ti

(
P
))
−W

(∑
i≤n T

′
i

(
P′
))∣∣∣

≤
∣∣W(∑i<N Ti

(
P
))
−W

(∑
i<N T

′
i

(
P′
))∣∣ ,

which is a fixed constant, where we use that all terms for i ≥ N cancel with each
other. This says that at all times and all plausible worlds, there is a fixed upper
bound on the difference between the values of T against P and of T ′ against P′.
Thus if {

W
(∑

i≤n Ti
(
P
)) ∣∣∣n ∈ N+,W ∈ PC(Dn)

}
is bounded below but unbounded above, then so is{

W
(∑

i≤n T
′
i

(
P′
)) ∣∣∣n ∈ N+,W ∈ PC(Dn)

}
.

Therefore, if some trader exploits P, so that P is not a logical inductor, then some
trader exploits P′, so P′ also fails to be a logical inductor. Symmetrically, if P′ is
not a logical inductor, then neither is P.

G.8 Conditionals on Theories
Theorem 4.7.2 (Closure Under Conditioning). The sequence P(− | ψ) is a logical
inductor over Γ ∪ {ψ}. Furthermore, given any efficiently computable enumeration
Ψ ⊆ S of sentences, the sequence

(P1(− | ψ1),P2(− | ψ1 ∧ ψ2),P3(− | ψ1 ∧ ψ2 ∧ ψ3), . . .) ,

where the nth pricing is conditioned on the first n sentences in Ψ, is a logical inductor
over Γ ∪Ψ.

Since P is a logical inductor over Γ, there is some Γ-complete deductive process
D over which P is a logical inductor. Let D′ be any deductive process. Write

ψ◦n :=
∧

ψ∈D′n

ψ

for the conjunction of all sentences ψ that have appeared in D′ up until time n. (We
take the empty conjunction to be the sentence >.) Write P◦ to mean the market
(Pn(− | ψ◦n))n∈N+ .

We will show the slightly more general fact that for any e.c. D′, if the theory

Γ ∪ {ψ′ | ∃n : ψ′ ∈ D′n}

is consistent, then P◦ is a logical inductor over the deductive process D◦, complete
for that theory, defined for any n by D◦n := Dn ∪D′n. This implies the theorem by
specializing to the {ψ}-complete deductive process ({ψ}, {ψ}, {ψ}, . . .), and to the
Ψ-complete deductive process ({ψ1}, {ψ1, ψ2}, {ψ1, ψ2, ψ3}, . . .) (where we pad with
> to ensure this sequence is efficiently computable).

Roughly speaking, we’ll take a supposed trader T ◦ that exploits P◦ and construct
a trader T that exploits P. We’d like our trader T to mimic T ◦ “in the worlds where
ψ◦n is true”, and otherwise remain neutral. A first attempt would be to have our
trader buy the combination

φ ∧ ψ◦n −
Pn(φ ∧ ψ◦n)
Pn(ψ◦n) · ψ◦n

127

whenever T ◦ buys a share in φ. The idea is to make a purchase that behaves like a
conditional contract that pays out if φ is true but only has any effect in worlds where
ψ◦n is true. That is, the hope is that the price of this combination is 0; in worlds
where ψ◦n is false, the stock holdings from this trade are valued at 0; and in worlds
where ψ◦n is true, the stock holdings have the same value as that of purchasing a
φ-share against P◦.

There are some technical problems with the above sketch. First, the ratio of
probabilities in front of ψ◦n in the above trade is not well-defined if Pn(ψ◦n) = 0; we
will fix this using a safe reciprocation, after correcting the market using Lemma G.7
(closure under finite perturbations). Second, if Pn(φ ∧ ψ◦n) is greater than Pn(ψ◦n),
then their ratio is not the same as the conditional probability Pn(φ | ψ◦n) = P◦n(φ)
as defined in 4.7.1; in this case, our trader has stock holdings with a different value
from those of the original trader exploiting P◦. If we simply replace the ratio with
the conditional probability Pn(φ | ψ◦n), then when Pn(φ∧ψ◦n) > Pn(ψ◦n), the value of
the cash holdings is different. Instead we will replace the ratio with a market feature
that acts like the ratio when the trade is a sell order, but becomes the conditional
probability when the trade is a buy order. We now implement this strategy.

Proof. Let D, D◦, and P◦ be defined as above.
We may assume that the collection of sentences that appear in D◦ is consistent.

If not, then no trader exploits P◦: for all sufficiently large n the set of plausible
worlds PC(D◦n) is empty, so the set of plausible values of any trader’s holdings is a
finite set, and hence bounded above.

We may further assume without loss of generality that there exists a rational
ε > 0 such that Pn(ψ◦n) > ε for all n. Indeed, by Theorem 4.6.3 (uniform non-
dogmatism), since D◦ is consistent, there is some ε > 0 such that P∞(ψ◦n) > ε for
all sufficiently large n. Hence by Theorem 4.2.4 (preemptive learning), we have
lim infn→∞ Pn(ψ◦n) > ε. This implies that there are only finitely many time steps n
such that Pn(ψ◦n) ≤ ε. Therefore by Lemma G.7 (closure under finite perturbations),
the market P′ defined to be identical to P except with P′n(ψ◦n) with 1 for all such
n is still a logical inductor, and has the desired property. If we show that P◦

′
is a

logical inductor, then again by Lemma G.7, P◦ is also a logical inductor.
Now suppose some trader T ◦ exploits P◦. We will construct a trader T that

exploits P. Consider the EF-combination

Selln(φ) := φ ∧ ψ◦n −
(φ ∧ ψ◦n)∗n

max(ε, ψ◦n∗n) · ψ
◦
n

and

Buyn(φ) := φ ∧ ψ◦n −max
(

1, (φ ∧ ψ◦n)∗n
max(ε, ψ◦n∗n)

)
· ψ◦n,

parametrized by a sentence φ. We write (Selln(φ))∗n for the expressible feature that
computes the price of the EF -combination Selln(φ) at time n, defined in the natural
way by replacing sentences with their ∗n duals, and likewise for (Buyn(φ))∗n.

Now define the trader T by setting

Tn :=
∑
φ

max(0, T ◦n [φ]◦) · (Buyn(φ)− (Buyn(φ))∗n)

−max(0,−T ◦n [φ]◦) · (Selln(φ)− (Selln(φ))∗n)

where T ◦n [φ]◦ is defined to be the market feature T ◦n [φ] with every occurrence of χ∗i
replaced with

max
(

1, (χ ∧ ψ◦i)∗i

max(ε, ψ◦i
∗i)

)
.

128

That is, T ◦n [φ]◦ is defined so that T ◦n [φ]◦(P) = T ◦n [φ](P◦), i.e., this market feature
behaves against the market P just as T ◦n [φ] behaves against the conditional market
P◦.

We analyze the value of the trades made by T against P according to each term
in the above summation and by cases. First suppose that T ◦n [φ]◦(P) ≥ 0. Then
max(0,−T ◦n [φ]◦(P)) = 0. Let W be any world. Using linearity of W throughout, we
have

W(max(0, T ◦n [φ]◦(P)) · (Buyn(φ)− (Buyn(φ))∗n)(P))
= T ◦n [φ]◦(P) ·W(Buyn(φ)(P)− (Buyn(φ))∗n(P))

= T ◦n [φ]◦(P) ·W
(
φ ∧ ψ◦n −max

(
1, (φ ∧ ψ◦n)∗n(P)

max(ε, ψ◦n∗n(P))

)
· ψ◦n

)
+ T ◦n [φ]◦(P) ·W

(
(φ ∧ ψ◦n)∗n(P)−max

(
1, (φ ∧ ψ◦n)∗n(P)

max(ε, ψ◦n∗n(P))

)
· ψ◦n

∗n(P)
)

by definition of Buy;

= T ◦n [φ]◦(P) ·W
(
φ ∧ ψ◦n −max

(
1, Pn(φ ∧ ψ◦n)

Pn(ψ◦n)

)
· ψ◦n

)
+ T ◦n [φ]◦(P) ·

(
Pn(φ ∧ ψ◦n)−max

(
1, Pn(φ ∧ ψ◦n)

Pn(ψ◦n)

)
· Pn(ψ◦n)

)
by definition of the ∗n duals and by the assumption that Pn(ψ◦n) > ε;

≥ T ◦n [φ]◦(P) · (W (φ ∧ ψ◦n)− Pn(φ | ψ◦n) ·W (ψ◦n)) ,

by definition of Pn(φ | ψ◦n), where we use the fact that T ◦n [φ]◦(P) ≥ 0 to lower-bound
the cash term by 0.

Now suppose on the other hand that T ◦n [φ]◦(P) ≤ 0. Then max(0, T ◦n [φ]◦(P)) = 0.
Again let W be any world; using linearity throughout, we have

W(−max(0,−T ◦n [φ]◦(P)) · (Selln(φ)− (Selln(φ))∗n)(P))
= T ◦n [φ]◦(P) ·W(Selln(φ)(P)− (Selln(φ))∗n(P))

= T ◦n [φ]◦(P) ·W
(
φ ∧ ψ◦n −

Pn(φ ∧ ψ◦n)
Pn(ψ◦n) · ψ◦n

)
+ T ◦n [φ]◦(P) ·

(
Pn(φ ∧ ψ◦n)− Pn(φ ∧ ψ◦n)

Pn(ψ◦n) · Pn(ψ◦n)
)

as above, and by the definition of Sell;

≥ T ◦n [φ]◦(P) · (W (φ ∧ ψ◦n)− Pn(φ | ψ◦n) ·W (ψ◦n)) ,

by definition of Pn(φ | ψ◦n), where the cash term simply cancels, and where we
use the fact that T ◦n [φ]◦(P) ≤ 0, the fact that W (ψ◦n) ≥ 0, and the fact that
Pn(φ ∧ ψ◦n)/Pn(ψ◦n) ≥ Pn(φ | ψ◦n) to lower-bound the value of the −ψ◦n term.

Since at least one of T ◦n [φ]◦(P) ≤ 0 or T ◦n [φ]◦(P) ≥ 0 must hold, we have shown
that for all n and all worlds W ∈ PC(Dn), the value W

(
Tn(P)

)
is at least as great

as ∑
φ

T ◦n [φ](P◦) ·


1− P◦n(φ) if W(φ ∧ ψ◦n) = 1 and W(ψ◦n) = 1,
−P◦n(φ) if W(φ ∧ ψ◦n) = 0 and W(ψ◦n) = 1,
0 if W(φ ∧ ψ◦n) = 0 and W(ψ◦n) = 0.

where we use the fact that T ◦n [φ]◦(P) = T ◦n [φ](P◦) and the fact that Pn(φ|ψ◦n) =
P◦n(φ). (Since W ∈ PC(Dn) is propositionally consistent, it cannot be the case that
W(φ ∧ ψ◦n) = 1 and W(ψ◦n) = 0.)

129

Notice that in worlds W such that W(ψ◦n) = 1, the value of the trades made by
T
◦ in φ against P◦ is precisely

W
(
T ◦n [φ](P◦) · (φ− φ∗n(P◦))

)
=
{

1− P◦n(φ) if W(φ) = 1
−P◦n(φ) if W(φ) = 0.

In particular, for any world W ∈ PC(D◦n) plausible at time n according to D◦,

W
(∑

i≤n Ti(P)
)

= W
(∑

i≤n T
◦
i (P◦)

)
.

Since T ◦ exploits P◦ over D◦, by definition the set{
W
(∑

i≤n T
◦
i (P◦)

)
| n ∈ N+,W ∈ PC(D◦n)

}
is bounded below and unbounded above. Therefore the set{

W
(∑

i≤n Ti(P)
)
| n ∈ N+,W ∈ PC(Dn)

}
is unbounded above, since for all n we have D◦n ⊇ Dn and hence PC(D◦n) ⊆
PC(Dn).

It remains to show that this set is unbounded below. Suppose for contradiction
that it is not, so there is some infinite sequence {(Wi, ni)} with Wi ∈ PC(Dni

) on
which the value Wi

(∑
j≤ni

Tj(P)
)
of T is unbounded below.

We may assume without loss of generality that each Wi is inconsistent with
D
◦. Indeed, if there is no subsequence with this property and with the values of T

unbounded below, then the Wi consistent with D
◦ have the corresponding values

Wi

(∑
j≤ni

Tj(P)
)

= Wi

(∑
j≤ni

T ◦j (P◦)
)
unbounded below, contradicting that T ◦

exploits P◦ over D◦. Having made this assumption, there is an infinite sequence mi

with Wi(ψ◦mi−1) = 1 ∧Wi(ψ◦mi
) = 0 for all i.

We may further assume without loss of generality that for each i, we have ni ≤
mi− 1. Indeed, for any n ≥ mi, we have by the above analysis that Wi

(
Tn(P)

)
≥ 0;

in this case replacing ni withmi−1 would only decrease the values Wi(
∑
j≤ni

Tj(P)),
and hence would preserve that this sequence is unbounded below.

In particular, it is the case that ψ◦mi−1 propositionally implies ψ◦ni
. Because

Wi(ψ◦mi−1) = 1 and Wi ∈ PC(Dni
), this implies Wi ∈ PC(D◦ni

), i.e., Wi was
plausible at time step ni according to D◦. But then we have that the sequence of
values Wi(

∑
j≤ni

Tj(P)) = Wi(
∑
j≤ni

T ◦j (P◦)) is unbounded below, contradicting
that T ◦ exploits P◦ over D◦.

Thus we have shown that, assuming that T ◦ exploits P◦ over D◦, also T exploits
P over D. This contradicts that P is a logical inductor, so in fact it cannot be that
T
◦ exploits P◦; thus P◦ is a logical inductor over D◦, as desired.

130

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

