
New Randomized Data Structure Lower Bounds for Dynamic

Graph Connectivity

Sivaramakrishnan Natarajan Ramamoorthy ∗ Anup Rao†

November 1, 2016

Abstract

The problem of dynamic connectivity in graphs has been extensively studied in the cell
probe model. The task is to design a data structure that supports addition of edges and checks
connectivity between arbitrary pair of vertices. Let w, tq, tu denote the cell width, expected
query time and worst case update time of a data structure for connectivity on graphs of size n.
We prove the following,

• For every δ > 0 and any data structure for connectivity with error at most 1
4nδ

, if tu =

o
(

logn
log logn

)
, then tq ≥ Ω

(
δn1−3δ

)
. Patrascu and Thorrup in [PT11] show the same for

data structures with zero errors.

In addition, we simplify the proof of dynamic connectivity lower bound established in the land-
mark paper of Fredman and Saks[FS89]. The result states that for any data structure for

connectivity with constant error bounds, tq ≥ Ω
(

logn
log(w+logn)tu

)
.

∗Computer Science and Engineering, University of Washington, sivanr@cs.washington.edu. Supported by the
National Science Foundation under agreement CCF-1420268 and CCF-1016509
†Computer Science and Engineering, University of Washington, anuprao@cs.washington.edu. Supported by the

National Science Foundation under agreement CCF-1420268.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 167 (2016)

1 Introduction

Dynamic data structures play a key role in algorithm design. Dijkstra’s algorithm, Fibonacci heaps,
hashing, Van Emde Boas trees are some classical examples of dynamic data structures. Proving
lower bounds on the performance of dynamic data structures is usually challenging. Fredman and
Saks [FS89], in their landmark paper, were the first to establish tight lower bounds for several
dynamic problems. Since then, several works have developed techniques to prove lower bounds on
various dynamic data structure problems [PD06, Pǎt07, PT11, Lar12, Yu16, WY16].

A dynamic data structure is an algorithmic primitive for efficiently maintaining some data. In
this paper, we consider the classical problem of graph connectivity. We wish to store a graph,
allowing for the addition and be able to ask whether or not two given vertices are connected. We
use the standard cell-probe model of Yao [Yao81]. The data structure consists of a collection of
memory cells that are used to store the data (the graph), together with an efficient algorithm for
performing updates and queries on the data.

The data structure is said to have update time tu, query time tq and word size w if the algorithm
that maintains the graph uses a table of cells, each of size w and supports two kinds of operations:

• Updates: these are operations that change the graph being stored. In our case we require
that the data structure support the operation Add(u, v), which adds an edge between the
vertices u, v in the graph. During each such update, the data structure reads and writes to
at most tu of the cells.

• Queries: these are operations that compute some function of the data. In our case, we require
that the data structure support the query Conn(u, v) which outputs 1 if u, v are connected
in the graph, and 0 otherwise. During each such operation, the data structure is allowed to
read at most tq of the cells.

The above definitions can be extended to a setting where the algorithm has access to randomness
and is allowed to makes errors. We say that the data structure is an ε-error data structure if the
probability the data structure computes a query incorrectly is at most ε. Here the probability is
over the random choices of the data structure algorithm.

A popular variant of the connectivity problem is the Union-Find problem. Every component in
the graph is now associated with a representative. The updates correspond to adding an edge be-
tween the representative of two components and the query corresponds to finding the representative
of the component the given vertex belong to. Tarjan in [Tar75] showed that n− 1 updates and m
queries can be executed in O(n+mα(m,n)) operations, where α is the inverse Ackerman function.
The classic UNION-FIND algorithm gives O(1) updates and O(log n) query time in the worst case.
Blum in [Blu86] designed a data structure that supports queries in worst case time O(log n/ log tu).
This trade-off lets you achieve tu = tq = O(log n/ log log n). The same data structure supports
operations for dynamic connectivity with time complexity O(log n/ log logn).

In this paper, we focus our attention on lower bounds for dynamic connectivity. Fredman and

Saks [FS89] in their celebrated result were the first to show a lower bound of tq = Ω
(

logn
logwtu

)
in

the cell probe model. When w = O(log n), this matches the upper bound given by [Blu86]. The

trade-off was later improved in [ABAR99] to tq = Ω
(

logn
log tu

)
. This remained the best trade-off for

any dynamic problem, until Patrascu and Demaine in [PD06] showed min{tu, tq} = Ω(log n) for
PARTIAL-SUM and fully dynamic connectivity(for the problem of fully dynamic connectivity, the
updates allow deletion of edges too).

2

It is natural to ask if these lower bounds are tight when tu = o(log n/ log logn) or tq =
o(log n/ log logn). In this context, Patrascu and Thorrup in [PT11] show that for dynamic connec-
tivity if tu = o(log n/ log logn), tq = Ω

(
δn1−2δ

)
for every δ > 0. Their lower bound applies to zero

error randomized data structures, but don’t extend to ones with errors.
In this paper, we revisit both the lower bound questions discussed above. We reprove the result

of [FS89], and show the trade-off demonstrated in [PT11] for polynomially small error randomized
data structures. Our results can be summarized as follows,

1.1 Our Results

For the rest of the discussion, we take tq to be the expected query time and tu to be the worst case
update time. We prove the following two theorems,

Theorem 1 ([FS89]). For any 1
32 - error data structure for dynamic connectivity, it holds that

tq ≥ Ω

(
log n

log tu(log n+ w)

)
.

Our proof starts with the chronogram approach of [FS89], and deviates from thiers in a crucial
step. For a parameter B = (wtu)2, we sample a random forest consisting of two B-ary trees, one
rooted at the vertex 1, and the second rooted at the vertex 2. We pick a sequence of updates to add
the edges of this graph to the data structure, such that the edges closest to the leaves are added
first. We then query the connectivity of a random pair of leaves in the graph.

The choice of the graph ensures that the number of edges at a particular level L of the trees is
a factor B larger than the number of edges that will be added in future updates. In the analysis,
we fix all the updates that correspond to edges that are not at level L. We label each leaf of the
tree with either 1 or 2 depending on which tree it belongs to. We show that even after fixing the
updates outside level L, the entropy of these labels is close to the number of vertices at level L.

B is chosen to ensure that all reads performed by the algorithm after the edges of L have been
added are not enough to recover all the information about the edges of L. This is because the the
number of updates after level L is about a factor of B smaller than the number of edges in L, and
each update can generate at most tu reads.

This lets us argue that even after fixing the cells written during future updates, the entropy
of the labels on the leaves remains quite high. A simple application of Shearer’s lemma from
information theory is then used to show that this means that the algorithm must touch at least
one cell that was modified during the updates corresponding to L to answer the connectivity query.
Overall, this argument lower bounds the query time by the depth of the tree, as desired.

Theorem 2. For δ > 0, any 1
4nδ

-error data structure for dynamic connectivity obeys,

n1−2δtu + tq = Ω

(
δn1−2δ

log2 n

(w + log n) · log tu(log n+ w)

)
.

Corollary 3. For δ > 0, any 1
4nδ

-error data structure for dynamic connectivity with

tu = o
(

logn
log logn

)
, w = O(log n) has tq = Ω

(
δn1−2δ

)
.

3

To prove Theorem 2, we use the distribution described in [PT11]. Here we sample nδ uniformly
random trees, each of the same depth. The root of each tree has approximately n1−δ children, and
all other vertices in the tree have B children.

As before, we construct a sequence of updates, where edges closer to the leaves are added first,
and label every leaf by the name of its root. We argue, as before, that on fixing the updates on all
but one level L, and cells corresponding to the future updates, the entropy of the labels remains
about |L| log nδ > n1−δ log nδ. An application of Shearer’s lemma shows that this means that the
labels of about n1−δ leaves will have roughly the same entropy.

Next we use an encoding argument to show that the data structure can be used to encode
these labels using approximately w · (n1−δtu + nδtq) bits. The argument works by performing an
additional n1−δ updates and nδ connectivity queries and storing the contents of all the cells that
were touched during the process. We argue that the contents of this carefully chosen set of cells
allows one to reconstruct the labels of the leaves. Our lower bound is finally obtained by comparing
the entropy of the labels with the length of the encoding.

[PT11] use the same set of cells implicitly in their argument, but they reduce to a 2-party
communication game computing the equality function. This does not yield them strong lower
bounds when there are errors, since one can compute the equality function quite efficiently when
errors are allowed.

2 Preliminaries

Unless otherwise stated, logarithms in this article are computed base two. Random variables are
denoted by capital letters and values they attain are denoted by lower-case letters. For example, A
may be a random variable and then a denotes a value A may attain and we may consider the event
A = a. Given a = a1, a2, . . . , an, we write a≤i to denote a1, . . . , ai. We define a>i and a≤i similarly.
Similarly, we write a−i to denote a1, · · · , ai−1, ai+1, · · · , an. [`] denotes the set {1, 2, . . . , `}.

We use the notation p(a) to denote both the distribution on the variable a, and the number
Prp[A = a]. The meaning will be clear from context. We write p(a|b) to denote either the distribu-
tion of A conditioned on the event B = b, or the number Pr[A = a|B = b]. Again, the meaning will
be clear from context. Given a distribution p(a, b, c, d), we write p(a, b, c) to denote the marginal
distribution on the variables a, b, c (or the corresponding probability). We often write p(ab) instead
of p(a, b) for conciseness of notation. If W is an event, we write p(W) to denote its probability
according to p. We denote by Ep(a) [g(a)] the expected value of g(a) with respect to a distributed
according to p.

We often work with subset of cells written by the data structure and sequence of updates. When
C is a subset of cells, we think of C as a description of its contents along with the memory locations
and |C| as the number of cells. Similarly, when U is a sequence of updates, we think of |U | as the
number of updates and U to be the description of every update along with the order.

The entropy of a random variable A, conditioned on B is defined to be

Hp(A|B) =
∑
a,b

p(ab) log
1

p(a|b)

For a binary random variable A, we denote the entropy of A to be

h(p(0)) = − [p(0) log p(0) + (1− p(0)) log(1− p(0))] ,

4

where p(0) = Prp(A = 0) The entropy satisfies the chain rule:

Proposition 4 (Chain Rule). H(A1A2|B) = H(A1|B) + H(A2|BA1).

As consequence of the chain rule, demonstrated in [Rad01], we get the following lemma:

Lemma 5 (Shearer’s Lemma). Let X be a random variable on {0, 1}n and S be a distribution on
2[n] such that Pr[i ∈ S] ≥ µ, then

E
S

[H(XS)] ≥ µH(X),

where XS denotes the projection Xi1 · · ·Xik for S = {i1, · · · , ik}.

Proposition 6. Let A and B be random variables on [n], R be a random variable independent of
A and f be a mapping such that Pr[f(B,R) = A] ≥ 1− δ. Then, H(A) ≤ 1 + H(B) + δ log n.

Proof. Let E be the indicator random variable for f(B,R) = A. By the chain rule of entropy,

H(A) = H(A|R) ≤ H(AB|R)

= H(B|R) + H(A|B,R)

≤ H(B) + H(AE|RB)

= H(B) + H(E|RB) + H(A|ERB)

≤ H(B) + 1 + Pr[E = 0]H(A|RB,E = 0)

≤ 1 + H(B) + δ log n.

We used the facts that H(E|RB) ≤ 1 since E is a binary random variable, H(A|B,R,E = 1) = 0
since E = 1 imply R and B determine A and Pr[E = 0] ≤ δ.

Proposition 7 (Stirling’s Approximation). For n ∈ N,

log

(
2n

n

)
≥ 2n− 1− log

√
n

and
log n! = n log n− n+O(log n)

Proposition 8. For n ≥ 1, and 0 < x ≤ 1, (1− x)n ≤ 1− xn+ n2x2.

Proof. Consider f(x) = (1− x)n − 1 + xn− n2x2. We have,

f ′(x) = −n(1− x)n−1 + n− 2n2x = n(1− (1− x)n−1 − 2nx).

Since (1− x)n ≥ 1− xn, we note that,

(1− x)n−1 + 2nx > 1− x(n− 1) + 2nx

= 1 + nx+ x > 1.

This implies that f ′(x) < 0. Therefore, f(x) ≤ f(0) = 0 for 0 ≤ x ≤ 1, as required.

5

• Sample two random B−ary trees T1, T2 rooted at vertices 1 and 2 with n/2 leaves.

• Let the graph be empty to begin with.

• For i ≥ 0, the ith batch of updates correspond to adding edges in Ei in some arbitrary order
to the current graph. Let Ui be the random variable denoting the ith batch of updates.

• Let Q denote the random variable for the query that asks for connectivity between a
random pair of leaves.

Figure 1: Hard Distribution for Dynamic Connectivity with parameters B,n.

3 Dynamic Connectivity

We first show that the space of the data structure can be assumed to be polynomial in the number
of operations, query time and the update time, with incurring a small error to the data structure.

Proposition 9. Let N be the total number of operations to the data structure. Then, the data
structure can be simulated with at most N3(tu + tq)

2 number of cells with additional error of 1
N .

Proof. Consider a random hash g : [s]→
[
N3(tu + tq)

2
]
, where s is the total number of cells used

by the data structure. Every access i to the data structure is simulated with access to g(i). The
probability that two distinct cells hash to the same number is at most 1

N . This adds an additional
error of 1

N to the data structure.

Remark: Without loss of generality, we can take tq ≤ n2 where n is the number of vertices in
the graph. This is because, one can maintain the indicator vector for the edge set using

(
n
2

)
cells

and can answer connectivity queries in
(
n
2

)
time and updates just take one write.

Before we show the proof of Theorem 1, we establish a fact about entropy of a subset of cells
written by the data structure.

Proposition 10. Let C be a subset of the cells, s be the number of cells. Then, H(C) ≤ |C|(log s+
w).

Proof. To encode the set C, we have to write down its contents along with the memory locations.
It takes up at most log

(
s
|C|
)
≤ |C| log s bit to encode the locations of C. Since each cell is w bits

long, it takes up w|C| bits to encode its contents.

For the sake of simplicity, in the discussion to follow, we set w = 2 log n, where n is the size of
the input instance.

3.1 Proof of Theorem 1

We first present a hard distribution on a sequence of updates and queries. Set B = (tu log n)2,
d = logB

n
2 . The underlying graph will be a forest consisting of 2 B-ary trees T1, T2 rooted at

vertices 1 and 2 with n/2 leaves each (Figure 2).

6

d � k

1 2

Vk

Ek

UkUk

U<k

U>k

U<k

U>k

v(0, 1) v(0, n)

B

X

{
Figure 2: The input graph

The depth of a vertex d(v) is the distance from its root. For every k ∈ {0, 1, · · · , d}, let
Vk = {v(k, 1), · · · , v(k, n

Bk
)} denote the set of vertices at depth d − k. For k ∈ {0, · · · , d − 1}, let

Ek = {(u, v)|u ∈ Vk, v ∈ Vk+1, (u, v) ∈ E(T1)∪E(T2)}, where E(T1), E(T2) are set of edges in trees
T1, T2. The set of instructions to the data structure is the sequence UQ sampled in figure 1, where
U = U0 · · ·Ud−1. We now analyze the behavior of a data structure on this input sequence.

Let X = (X1, · · · , Xn) where Xi = Conn(v(i, 0), 1). By Proposition 9, the data structure is
1
16 -error and has at most 8n3(tu + tq)

2 cells.

Lemma 11. H(X|U−k) ≥ n
Bk
− 1− log

√
n
Bk

.

Proof. The input distribution dictates that X|U−k is a balanced n/Bk bit vector, drawn uniform
at random. Therefore H(X|U−k) = log

(
2t
t

)
≥ 2t − 1 − log

√
t, where 2t = n/Bkand the inequality

follows from Proposition 7.

Define Ci to be the random variable denoting the set of cells written during batch i, and not
overwritten by future updates U>i.

Let pi = PrUQ [Q probes a cell in Ci]. We have, tq =
∑d−1

i=0 pi. The following lemma imply the
lower bound on tq as stated in Theorem 1.

Lemma 12. pk ≥ 1
16 − o(1) for all k ∈ {0, · · · d− 2}.

We prove the above lemma at the end of this subsection.

Lemma 13. For every k ∈ {0, 1, · · · , d− 2}, H(X|C>kU−k) ≥ n/Bk(1− o(1)).

Proof. By the chain rule of entropy,

H(X|C>kU−k) ≥ H(X|U−k)− H(C>k|U−k)
≥ H(X|U−k)− H(C>k),

We used the fact that H(C>k) ≥ H(Ck|U−k) which follows from the fact that conditioning only
decreases entropy.

7

An upper bound on H(C>k) = o(n/Bk) would imply the lemma. We have,

|U>k| =
d∑

j=k+1

n/Bj

≤ n

Bk+1
· B

B − 1
.

Since tu is the worst case update time, we can now upper bound |C>k| by |U>k|tu. Proposition 10
and the upper bound on |C>k| imply,

H(C>k) ≤ n/Bk+1 B

B − 1
tu(3 log(2n(tu + tq)) + 2 log 2n) = o(n/Bk),

which follows from the choice of B and tq ≤ 4n2.

Lemma 14. Let k ∈ {0, 1, · · · , d− 2} and S be a uniform random subset of [n] of size 2. Then,

E
S

[H(XS |C>kU−k)] ≥ 2− o(1).

Proof. X|U−k denote the connectivity labels of an equivalence class of size n/Bk, where 2 leaves
belong to the same class if their parents at depth d−k are the same. The projection S corresponds
to a projection onto the equivalence classes given by the set of parents of elements in S at depth d−k.

The distribution on the projection S′ ⊆ [n/Bi] has the property that Pr[i ∈ S′] = 1−
(
n−Bk

2

)
/
(
n
2

)
.

We now proceed to lower bound this probability.(
n−Bk

2

)
/

(
n

2

)
=

(n−Bk)

n
· n−B

k − 1

n− 1
≤
(

1− Bk

n

)2

= 1− 2Bk

n
+
B2k

n2
,

Therefore Pr[i ∈ S′] ≥ 2Bk

n − B2k

n2 . Applying Shearer’s lemma with the projection being S′ imply

E
S

[H(XS |C>kU−k)] ≥
(

2Bk

n
− B2k

n2

)
H(X|C>kU−k).

The bound on H(X|C>kU−k) from Lemma 13 and the fact that Bk/n = o(1) completes the proof.

Lemma 15. For every k ∈ {0, 1, · · · , d− 2}, S ⊂ [n] with |S| = 2,

H(XS |C>kU−k) ≤
9

8
+ 2pk + h(pk) + h

(
1

16

)
.

Proof. Let

E =

{
1, if Q queries into Ck

0, if Q does not query into Ck

8

Let i, j ∈ S. By the chain rule of entropy, we have

H(XS |C>kU−k) ≤ H(E|C>kU−k) + H(XS |C>kU−k, E)

≤ h(pk) + 2pk + H(XS |C>kU−k, E = 0),

where the last equality follows from Pr[E = 1] = pk and H(XS |C>kU−k, E = 1) ≤ 2.
Let E′ be the indicator variable for the error in the output of Conn(i, j) = Xi ⊕Xj . E,E

′ = 0
imply the algorithm knows the output Conn(i, j) without querying into Ck. Since XS is supported
on a universe of size 2, H(XS |C>kU−k, E = 0, E′ = 0) ≤ 1.

By the chain rule of entropy,

H(XS |C>kU−k, E = 0) ≤ H(E′|C>kU−k, E = 0) + H(XS |C>kU−k, E = 0, E′)

≤ h
(

1

16

)
+ 1 +

1

16
H(XS |C>kU−k, E = 0, E′ = 1)

≤ h
(

1

16

)
+

1

8
,

since, Pr[E′ = 1] ≤ 1/16.

Proof of Lemma 12. Lemma 14 implies that

∀k ∈ {0, · · · , d− 2}, E
i,j∈[n]

[H(XiXj |C>kU−k)] ≥ 2− o(1).

Putting together the fact that h
(

1
16

)
+ 1

16 < 0.5 and Lemma 15, we conclude the h(pk) + 2pk ≥
1/2− o(1) for every k ∈ {0, · · · , d− 2}. It follows that pk > 1/16− o(1) which completes the proof
of Lemma 12.

3.2 Threshold Phenomenon in Dynamic Connectivity

We present the proof of Theorem 2.

Proof of Theorem 2. We use the hard distribution defined in [PT11] to prove the lower bound.
Set B = (tu log n)2, h = logB n. Generate a graph as in Figure 3. Sample n1−δ leaves

l1, · · · , ln1−δ uniform at random. Let R(li) ∈ {v1, · · · , vnδ} be the random variable denoting the

root of the leaf li. Let L = {l1, · · · , ln2−δ} be the set of all leaves and L =
(
R(l1), · · · , R(ln

2−δ
)
)

be a random variable denoting the label of roots of all leaves.
Let C∗ be the set of cells read/written during the executing of the following operations. ∀i ∈

[n1−δ], perform Add(li, R(li)). Then, ∀i ∈ [nδ − 1] execute Conn(vi, vi+1) and if the output is 0,
perform Add(vi, vi+1). By Proposition 9, the data structure is 1

3nδ
-error and has at most 8n6−3δ(tu+

tq)
2 cells. By the union bound, the probability that the data structure is correct in answering all

Conn(,) queries is at least 2/3.

Observation 16. E [|C∗|] ≤ 2n1−δtu + nδtq.

Proof. Note that the total number of Add(,) performed at most 2n1−δ. The total number of Conn(,)
executed is nδ.

Lemma 17. E [|C∗|] = Ω
(
δn1−δ logB n

)
.

9

• Sample n1−δ complete B − ary trees of height h.

Let r1, · · · , rn1−δ be the roots of the trees.

• Let v1, · · · , vnδ be nδ vertices(disjoint from the vertices of the trees sampled so far) and
edges incident to them are {(vi, rj)|(i− 1)n1−2δ ≤ j < in1−2δ} for i ∈ [nδ].

Let Ei be the set of edges between vertices at depth h− i+ 1, h− i+ 2. The sequence of updates
are as follows,

• The ith batch of updates corresponding to adding edges Ei in some arbitrary order. i ∈ [h].

• Uh+1 corresponds to the addition of edges that are incident to v1, · · · , vnδ .

Figure 3: Hard Distribution used in Theorem 2 with parameters B, h, n, δ

Proof. Let C1, · · · , Ch+1 be such that Ci is the set of cells written by an Add(,) ∈ Ui and not
overwritten by any updates in U>i. We fix U−i. Take i ≤ (1− δ) logB n.

Claim 18. H(L|U−i) ≥ δn2−δ logn
Bi

(1− o(1)).

Proof. The total number of ways of partitioning a set of size t = n2−δ/Bi into nδ sets of equal size
is t!

((t/nδ)!)nδ
. Since L is an uniform distribution on the support of the partition, we have

H(L|U−i) = log

(
t!

((t/nδ)!)nδ

)
= log t!− (nδ) · log(t/nδ)!

= t log t− t+O(log t)− nδ
(
t

nδ
log

t

nδ
− t

nδ
+O

(
log

t

nδ

))
≥ t log nδ − nδ ·O

(
log

t

nδ

)
,

where the third equality followed from Proposition 7. Now nδ ·O
(
log t

nδ

)
= o(t log nδ) by the choice

of upper bound on i.

Lemma 19. H(L|U−i, C>i) ≥ δn2−δ logn
Bi

(1− o(1)).

Proof. We have,

H(L|U−i, C>i) ≥ H(L|U−i)− H(C>i|U−i)
≥ H(L|U−i)− H(C>i),

where we used the fact that conditioning only decreases entropy. We have,

|U>i| =
d∑

j=k+1

n2−δ/Bj

≤ n

Bi+1
· B

B − 1
.

10

Since tu is the worst case update time, we can now upper bound |C>i| by |U>i|tu. Proposition 10
and the upper bound on |C>i| imply,

H(C>k) ≤ n2−δ/Bi+1 B

B − 1
tu(3 log(2n2−δ(tu + tq)) + 2 log 2n2−δ) = o(n2−δ/Bi),

which follows from the choice of B and tq ≤ n4. The above bound and Claim 18 imply the
lemma.

Lemma 20. For S drawn uniformly from {s|s ⊆ [n2−δ], |s| = n1−δ} ,

H(LS |S,U−i, C>i) ≥ δn1−δ log n (1− o(1)) .

Proof. Let Li denote the set of nodes at depth h − i + 2 in the graph. H(LS |SUf) is the same as
H(LiS′ |S′) where S′ is the collection of parents of elements in S at depth h− i+ 2. The distribution

on the projection S′ ⊆ [n2−δ/Bi] has the property that Pr[i ∈ S′] = 1−
(
n2−δ−Bi
n1−δ

)
/
(
n2−δ

n1−δ

)
. We now

lower bound this probability.(
n2−δ −Bi

n1−δ

)
/

(
n2−δ

n1−δ

)
=

Bi−1∏
j=0

(
n2−δ − nδ − j
n2−δ − j

)

≤
(

1− 1

n

)Bi
≤ 1− Bi

n
+
B2i

n2
,

where the last inequality follows from Proposition 8. Therefore Pr[i ∈ S′] ≥ Bi

n − B2i

n2 . Apply-

ing Shearer’s lemma gives, H(LiS′ |S′, U−i, C>i) ≥
(
Bi

n − B2i

n2

)
· δ
Bi

(
n2−δ log n− o(n2−δ log n)

)
, as

desired. We used the fact that the upper bound on i implies Bi/n = o(1).

Let C∗i ⊂ Ci be the set of cells within C∗. By definition, E [|C∗|] =
∑h

i=1 E [|C∗i |].
Lemma 21. H(LS |S,U−i, C>i) ≤ E [|C∗i |]O(log n) + 1 + 1

3δn
1−δ log n.

Proof. Fix S,U−i, C>i. Consider the following decoding procedure for LS . Let S be the randomness
used by the data structure. For every a1, · · · , an1−δ ∈ [nδ] and j ∈ [n1−δ], we execute Add(lj , aj).
Then, ∀k ∈ [nδ − 1] execute Conn(vk, vk+1) and if the output is 0, perform Add(vi, vi+1). If the
algorithm were correct with all query answers, it would output 0 for every query if and only if
ai = R(li). By the definition of C∗i , we know that every read/write into any cell in Ci is into
C∗i when a1 = R(l1), · · · , an1−δ = R(ln1−δ). Having access to S helps the algorithm execute every
update/query. Knowing U<i, the algorithm can generate C<i and hence any reads into C<i is
made possible. By the guarantee of the data structure, in expectation over S, we have that with
probability at least 2/3, all query answers are correct. We know that when all queries are correct,
we will be able to recover R(l1), · · · , R(ln1−δ). By Proposition 6 and H(LS |S) ≤ δn1−δ log n, we
conclude that H(LS |S,U−i, C>i) ≤ H(C∗i) + 1 + 1

3δn
1−δ log n. We now upper bound H(C∗i). To

encode C∗i , we have to specify the memory locations and its contents. By Proposition 10, it is
upper bounded by E [|C∗i |] ·O(log n+ log tu) bits.

11

Lemma 21 and Lemma 20 imply E [|C∗i |] = Ω
(
δn1−δ

)
. Since it holds for every fixing of i ∈ [d],

we get the desired bound on E [|C∗|]. This completes the proof of Lemma 17.

Lemma 17 and Observation 16 give,

2n1−δtu + nδtq = Ω
(
δn1−δ logB n

)
.

References

[ABAR99] Alstrup, Ben-Amram, and Rauhe. Worst-case and amortised optimality in union-find
(extended abstract). In Proceedings of the Thirty-First Annual ACM Symposium on
Theory of Computing (STOC’99), New York, May 1999. Association for Computing
Machinery.

[Blu86] N. Blum. On the single-operation worst-case time complexity of the disjoint set union
problem. SIAM J. Comput., 15(4):1021–1024, 1986.

[CSRL01] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition, 2001.

[FS89] M. Fredman and M. Saks. The cell probe complexity of dynamic data structures. In
STOC: ACM Symposium on Theory of Computing (STOC), 1989.

[Lar12] K. G. Larsen. The cell probe complexity of dynamic range counting. In Proceedings of
the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY,
USA, May 19 - 22, 2012, pages 85–94, 2012.

[Pǎt07] M. Pǎtraşcu. Lower bounds for 2-dimensional range counting. In Proc. 39th ACM
Symposium on Theory of Computing (STOC), pages 40–46, 2007.

[PD06] M. Pǎtraşcu and E. D. Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM Journal on Computing, 35(4):932–963, 2006. See also STOC’04, SODA’04.

[PT11] M. Pǎtraşcu and M. Thorup. Don’t rush into a union: Take time to find your roots. In
Proc. 43rd ACM Symposium on Theory of Computing (STOC), pages 559–568, 2011.
See also arXiv:1102.1783.

[Rad01] J. Radhakrishnan. Entropy and counting. IIT Kharagpur, Golden Jubilee Volume, on
Computational Mathematics, Modelling and Algorithms (Ed. JC Mishra),, 2001.

[Tar75] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22(2):215–
225, Apr. 1975.

[WY16] O. Weinstein and H. Yu. Amortized dynamic cell-probe lower bounds from four-party
communication. Electronic Colloquium on Computational Complexity (ECCC), 23,
2016.

[Yao81] A. Yao. Should tables be sorted? JACM: Journal of the ACM, 28, 1981.

12

[Yu16] H. Yu. Cell-probe lower bounds for dynamic problems via a new communication model.
In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 362–374, 2016.

13

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

