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Abstract

We study the random resolution refutation system defined in [Buss et al. 2014].
This attempts to capture the notion of a resolution refutation that may make mistakes
but is correct most of the time. By proving the equivalence of several different def-
initions, we show that this concept is robust. On the other hand, if P 6= NP, then
random resolution cannot be polynomially simulated by any proof system in which
correctness of proofs is checkable in polynomial time.

We prove several upper and lower bounds on the width and size of random resolu-
tion refutations of explicit and random unsatisfiable CNF formulas. Our main result
is a separation between polylogarithmic width random resolution and quasipolynomial
size resolution, which solves the problem stated in [Buss et al. 2014]. We also prove
exponential size lower bounds on random resolution refutations of the pigeonhole prin-
ciple CNFs, and of a family of CNFs which have polynomial size refutations in constant
depth Frege.

1 Introduction

The following system for refuting propositional CNFs was introduced in [6]. Let F be a CNF
in variables x1, . . . , xn and let 0 < ε < 1.

Definition 1.1 An ε-random resolution distribution, or ε-RR distribution, of F is a prob-
ability distribution D on pairs (Bi,Πi)i∼D such that

1. for each i ∈ D, Bi is a CNF in variables x1, . . . , xn and Πi is a resolution refutation
of F ∧Bi

2. for every α ∈ {0, 1}n, Pri∼D[Bi is satisfied by α] ≥ 1− ε.

The size and the width of D are defined respectively as the maximum size and maximum
width of the refutations Πi (if these maxima exist).
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This definition was first proposed by Stefan Dantchev. Its appearance in [6] is ultimately
motivated by an open problem in bounded arithmetic, which we will explain in a moment,
after we mention some basic properties and equivalent formulations.

It is sound as a refutational system, in the sense that if F has an ε-RR distribution
then F is unsatisfiable. To see this, consider any assignment α ∈ {0, 1}n. Since ε < 1, there
is at least one pair (Bi,Πi) such that α satisfies Bi and Πi is a resolution refutation of F ∧Bi.
So α cannot also satisfy F , by the soundness of resolution. The system is also complete,
since resolution is complete and we can take D to consist of a single pair (B,Π) where B is
any tautology and Π is a (possibly exponential sized) resolution refutation of F .

On the other hand, as defined, it is not a propositional proof system in the sense of Cook
and Reckhow [10], because it is defined by a semantic condition that presumably cannot
be tested in polynomial time (see Proposition 3.3). Nevertheless it makes perfect sense
to compare the complexity of proofs in it with proofs in the standard proof systems, in
particular with resolution and bounded depth Frege. We prove some results in this direction
in this work. Note also that the definition is particular to resolution, and we must take care
if we try to generalize it. For example, if we instead define a random Frege distribution
system, in which B and Π can contain arbitrary formulas, then we can trivially refute any
unsatisfiable F by setting B = ¬F .

As with some concepts of probabilistic computation studied in computation complex-
ity theory, one can use the linear programming duality to give an equivalent definition of
the system based on probability distributions over inputs rather than over proofs (see Def-
inition 2.5). This is very useful if one needs to prove lower bounds. Another essentially
equivalent formulation is in terms of semantic resolution derivations. This means, roughly
speaking, that instead of having an auxiliary formula that is satisfied with high probability,
we consider semantic derivations with respect to a large subset of inputs, where lines in the
proof are clauses. In a sense, this captures better the intuitive idea of a proof with errors.

Let us also mention that while we tend to think of the error ε as something small, there
is a simple amplification lemma that allows us to shrink the error at some cost in proof size.
Thus, for the questions we are interested in, without loss of generality we can take ε = 1

2
.

We now turn to connections with bounded arithmetic. One of the central problems there
is to show, in the relativized setting where an undefined relation symbol has been added
to the language, that the set ∀Σb

1(T i2), consisting of all ∀Σb
1 consequences of the bounded

arithmetic theory T i2, gets strictly bigger as i increases. It is known that ∀Σb
1(T 2

2 ) is bigger
than ∀Σb

1(T 1
2 ) [8], but there are no higher separations known, and it cannot be ruled out

that ∀Σb
1(T 2

2 ) is already the same as ∀Σb
1(T2).

There is a more-or-less equivalent question in propositional proof complexity: show that
the set of polylogarithmic width CNFs with quasipolynomial size refutations in depth i
Frege strictly increases as i increases.1 Here the system R(log) [16], which can be thought
of as depth 1

2
Frege, corresponds to the theory T 2

2 and corresponding separations are known.

1We emphasize that we are interested in this question for quasipolynomial size proofs. This matches the
natural question in bounded arithmetic, and a separation for polynomial size is known [11], using a padded
pigeonhole principle PHP(logn)k which has short proofs in some depth i, but is such that the exponential
size lower bound for PHP in depth i + 1 gives a quasipolynomial lower bound for the padded version.
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That is, we can separate R(log) from weaker fragments of constant depth Frege, but not
from stronger ones (see for example [21]).

Since the problem of separating ∀Σb
1(T 2

2 ) from ∀Σb
1(T2) has been notoriously open for

many years, it was proposed in [6] to consider, in place of T 2
2 , a theory of similar strength

but of a rather different nature, namely Jeřábek’s theory of approximate counting [13]. This
theory, called APC2 in [6], consists of T 1

2 +sWPHP(PV2) where PV2 is a formalization of the
FPNP functions and sWPHP(PV2) expresses that no such function is a surjection from [a]
onto [2a], for any a.

A separation of ∀Σb
1(APC2) from ∀Σb

1(T2) is still open, but [6] does show separations for
subtheories of APC2. However, they leave the following as an open problem: show an ∀Σb

1

separation between T 1
2 + sWPHP(PV1) and T2, where sWPHP(PV1) is the surjective weak

pigeonhole principle only for FP functions.
A reason why this problem was interesting was the following proposition, which reduces

it to a natural-looking question about the complexity of propositional proofs.

Proposition 1.2 ([6]) Suppose T 1
2 +sWPHP(PV1) ` ∀n∃y<t(n) θ(n, y), where θ is sharply

bounded, and everything is relativized. Then the propositional translation 〈∀y<t(n)¬θ(n, y)〉
has a polylogarithmic width 1/q(n)-RR distribution, for q any quasipolynomial.

Hence one way to solve the open problem mentioned above would be to prove width lower
bounds on random resolution, for any CNF which has quasipolynomial size constant depth
Frege refutations.

However, the problem specifically about T 1
2 + sWPHP(PV1) was solved in [3], without

using Proposition 1.2 or proving a lower bound on random resolution — instead the proof
used the properties of the formula sWPHP(PV1) in an essential way.

In this paper we solve the more general problem about random resolution, by proving
that the propositional translation of the coloured polynomial local search principle CPLS [19],
which has polynomial size resolution refutations, does not have narrow 1/2-random resolution
distributions. Previously, lower bounds on random resolution have only been known for
treelike refutations [6] or for relatively small errors ε [17].

The proof is based on a lemma that looks like a rudimentary version of the switching
lemmas used in propositional proof complexity (see the discussion at the start of Section 4).
Although this does not give a new separation in bounded arithmetic, we believe that the
result is interesting for other reasons. It has been conjectured that in order to separate higher
fragments of T2, we only need switching lemmas for certain more complicated tautologies,
similar to CPLS (see for example [22]). Nevertheless, all attempts in this direction have
failed so far because of the complexity of the associated combinatorial problems. Our proof
gives us some hope that eventually it will be possible to prove such lemmas.

The paper is organized as follows. In Section 2 we fix our notation, prove some basic
facts about random resolution distributions and present some equivalent or almost equivalent
definitions, in terms of refutations with respect to a distribution over assignments, semantic
resolution refutations, and refutations with random extension clauses.
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In Section 3 we prove some upper bounds. We show that random 3-CNFs (Proposi-
tion 3.2) and the retraction weak pigeonhole principle (Proposition 3.5) have narrow, and
thus quasipolynomial size, 1/2-RR distributions, while they require exponential sized refuta-
tions in standard resolution. Using the upper bound on random 3-CNFs we show that, under
a standard hypothesis, 1/2-RR is not simulated by any Cook-Reckhow proof system (Propo-
sition 3.3). We also discuss random resolution refutations with respect to the the uniform
distribution on assignments (defined below) and observe that this system is unreasonably
strong.

In Section 4 we describe our approach to lower bounds, and then use it first to prove that
the bit pigeonhole principle requires exponential size 1/2-RR distributions (Theorem 4.3).

In Section 5, using the same approach, we show our main result, that there is a family
of logarithmic width CNFs which have polynomial size resolution refutations, but do not
have polylogarithmic width 1/2-RR distributions (Theorem 5.10). This answers the open
problem about random resolution posed in [6].

In Section 6 we adapt the argument from Section 5 to show that there is a family of
logarithmic width CNFs which have polynomial size refutations in constant depth Frege (in
fact in Res(2)), but require exponential size 1/2-RR distributions.

In Section 7 we prove a form of feasible interpolation for treelike random resolution
(Theorem 7.1) and derive size lower bounds on treelike RR distributions for a family of
3-CNFs (Corollary 7.2).

In Section 8 we show that the usual formalization of the pigeonhole principle requires
exponential size 1/2-RR distributions (Theorem 8.1).

Finally in Section 9 we briefly discuss “random” versions of stronger proof systems than
resolution, and show that the argument of Section 8 can be extended to prove exponential size
lower bounds on 1/2-random constant depth Frege distributions for the pigeonhole principle.

Acknowledgments. We would like to thank Pavel Hrubeš and Jan Kraj́ıček for dis-
cussions and valuable suggestions. In particular, the proof of Proposition 3.6 generalizes an
idea of Hrubeš.

2 Basic properties and alternative definitions

We first introduce some notation. We identify CNF formulas with sets of clauses. We will
use 0 (false) and 1 (true) to represent truth values. For a formula F and an assignment α
of truth values to its variables, we denote by F [α] the truth value to which the formula
is evaluated by α. If ρ is a partial assignment, we denote by F ρ the formula obtained by
substituting ρ into F and simplifying the formula (that is, replacing a conjunction by 0 if
one conjunct is 0, etc.).

The width of a clause is the number of literals it contains. The width and size of a
refutation are respectively the width of its widest clause and the total number of clauses. A
k-CNF is a CNF in which every clause has width at most k.
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We will often use the notation

p1 ∧ · · · ∧ pr → q1 ∨ · · · ∨ qs

to stand for the clause ¬p1 ∨ · · · ∨ ¬pr ∨ q1 ∨ · · · ∨ qs, where p1, . . . , pr, q1, . . . , qr can be any
literals. In this notation the resolution rule can, for example, have the form: from A∧p→ C
and A ∧ ¬p → D conclude A → C ∨ D, where p is a literal, A is a conjunction of literals
and C and D are clauses.

If p is a literal, we will sometimes write p = 1 instead of the literal p and p = 0 instead of
the literal ¬p. Similarly we will write p 6= 1 or p 6= 0 to mean respectively ¬p or p. If p1, . . . , pr
are literals and β ∈ {0, 1}r we write p̄ = β to stand for the conjunction

∧
1≤i≤k pi = βi where

each conjunct is formally either pi or its negation, as above; and p̄ 6= β to stand for the
disjunction

∨
1≤i≤k pi 6= βi. The following observation will be useful:

Lemma 2.1 The CNF
∧
{p̄ 6= β : β ∈ {0, 1}r} has a refutation of width r, using 2r − 1

resolution steps.

We write [n] for {0, . . . , n − 1}. When we formalize combinatorial principles as CNFs,
if the principle involves a function f : [n] → [m] we will often formalize f by introduc-
ing variables for its “bit-graph”. That is, for each x < n we introduce logm variables
(f(x))0, . . . , (f(x))logm−1 representing the value of f(x) in binary. For the sake of simplicity,
in this situation we will assume that m is a power of 2. For y < m we will write f(x) = y to
stand for the conjunction

∧
i(f(x))i = βi, where β ∈ {0, 1}logm is y written in binary, and

we will write f(x) 6= y for the disjunction
∨
i(f(x))i 6= βi.

A standard example here is the bit pigeonhole principle BPHPn (see Section 4 below).
Suppose n = 2k. Then BPHPn is a contradictory propositional CNF asserting that f is an
injection from [n+ 1] to [n]. In our notation, it consists of clauses

f(x) 6= y ∨ f(x′) 6= y

for all x < x′ < n+ 1 and all y < m. Each clause has width 2k.
Because we deal with propositional refutation systems, rather than proof systems, for

us the natural translation into propositional logic of a true first order principle, such as the
pigeonhole principle PHP, is a family of unsatisfiable CNFs that we want to refute, rather
than a family of tautologous DNFs that we want to prove. Therefore we will use the same
name, PHP, for both this family of CNFs and the original principle. It should be clear from
the context which is meant, and the propositional version will often be written with a size
parameter, for example as PHPn.

2.1 Random resolution distributions

In the rest of this section, let F be a CNF in variables x1, . . . , xn and let 0 < ε < 1.
Our definition of the size of an ε-RR distribution above does not take into account the

size of the sample space. We show now that the size of the sample space can be bounded,
at the cost of slightly increasing the error ε.
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Lemma 2.2 If F has an ε-RR distribution, then it also has 2ε-RR distribution of the same
size and width, in which the sample space has size O(n/ε).

Proof. Given the probability distribution (Bi,Πi)i∼D, consider m random samples i1, . . . , im.
By the Chernoff bound, for each α the probability that Bij [α] 6= 1 for more than a fraction 2ε

of them samples is at most e−εm/3. The probability that this happens for some α is at most 2n

times larger. Hence if m > 3 ln 2
ε
n, there is nonzero probability that this does not happen for

any α. We pick a set of samples for which it does not happen, and let the new distribution D′
be given by the uniform distribution on {i1, . . . , im}.

We next show an “amplification” result, that we can decrease the error ε at the cost of
increasing the width and size.

Lemma 2.3 Suppose F has an ε-RR distribution of width w and size s. Then for every
k ≥ 1 it also has an εk-RR distribution of width at most kw and size O(sk).

Proof. Given (Bi,Πi)i∼D, take the distribution (Bi1...ik ,Πi1...ik)(i1...ik)∼Dk , where Bi1...ik is the

CNF formula obtained from
∨k
`=1Bi` by applying the distributive law and Πi1...ik is a refu-

tation composed of the refutations Πi1 , . . . ,Πik . In more detail, every clause C of Bi1...ik has
the form C1 ∨ · · · ∨ Ck where each C` is a clause of Bi` . For every fixed tuple C2, . . . , Ck
we can use Πi1 to derive C ′ := C2 ∨ · · · ∨ Ck from C and F . Then for every fixed tuple
C3, . . . , Ck we can use Πi2 to derive C3 ∨ · · · ∨ Ck from C ′ and F , and so on until we derive
the empty clause.

Corollary 2.4 Let “small” mean either “polylogarithmic width” or “quasipolynomial size”.
Then for any quasipolynomial q(n), F has a small 1/2-RR distribution if and only if F has
a small 1/q(n)-RR distribution.

The system we are most interested in is narrow random resolution. This is 1/2-RR with
polylogarithmic width (and hence quasipolynomial size) distributions.

2.2 Random resolution refutations

Definition 2.5 Let ∆ be a probability distribution on {0, 1}n. An (ε,∆)-random resolution
refutation, or (ε,∆)-RR refutation, of F is a pair (B,Π) such that

1. B is a CNF in variables x1, . . . , xn and Π is a resolution refutation of F ∧B

2. Prα∼∆[B[α] = 1] ≥ 1− ε.

Note that this definition is, in general, not sound. In particular, let F be any (nonempty)
CNF whatsoever. Let C be any clause from F and let α be an assignment which falsifies C.
Let ∆ be the distribution that puts all its weight on the single assignment α, and let B be
the CNF

∧
i xi = xi[α]. Then B is true with probability 1 over ∆, and we can easily derive
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the empty clause from F ∧B, since B contains the negation of each literal in C as a singleton
clause. See also Section 3.4 below.

However, if an (ε,∆)-RR refutation exists for all distributions ∆, then this is equivalent
to the existence of an ε-RR distribution, as follows.

Proposition 2.6 The following are equivalent.

1. F has an ε-RR distribution of width w and size s.

2. F has an (ε,∆)-RR refutation of width w and size s for every distribution ∆ on {0, 1}n.

Proof. This is an immediate consequence of the minimax theorem. Consider a zero-sum
game between two players, called the Prover and the Adversary, in which the Prover picks
a pair (B,Π) such that B is a CNF and Π is a refutation of F ∧ B of width w and size s,
and the Adversary picks an assignment α. The payoff is B[α], that is, the Prover gets 1 if α
satisfies B and 0 otherwise.

Then condition 1 says that the Prover has a mixed strategy to achieve a payoff of at least
1− ε, and condition 2 says that the Adversary does not have a mixed strategy to achieve a
payoff less than 1− ε. By the minimax theorem these statements are equivalent.

Our main use of RR refutations will be to prove lower bounds on RR distributions, by
carefully choosing a suitable distribution ∆. To help with this we extend the notion of RR
refutations to distributions over partial assignments, as these will appear in resolution lower
bounds.

Definition 2.7 Let R be a distribution of partial assignments to the variables x1, . . . , xn.
An (ε,R)-RR refutation of F is a pair (B,Π) such that

1. B is a CNF and Π is a resolution refutation of F ∧B

2. Prρ∼R[Bρ = 0] ≤ ε.

Proposition 2.8 The following are equivalent.

1. F has an ε-RR distribution of width w and size s.

2. F has an (ε,R)-RR refutation of width w and size s for every distribution R over
partial assignments.

Proof. Suppose condition 1 holds and let R be any distribution over partial assignments.
Define a distribution ∆ over total assignments as follows: choose ρ ∼ R at random, then
extend it to a total assignment by setting all unset variables to 0. Let (B,Π) be the (ε,∆)-RR
refutation of F given by Proposition 2.6, so that Prα∼∆[B[α] = 0] ≤ ε. By the construction
of ∆ it follows that Prρ∼R[Bρ = 0] ≤ ε, and thus (B,Π) is also a (ε,R)-RR refutation of F .

The other direction is immediate from Proposition 2.6.
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2.3 Semantic resolution refutations

Semantic derivations were introduced in [15]. We will use the special case defined by clauses.

Definition 2.9 Let A ⊆ {0, 1}n be a nonempty set of truth assignments. We say that a
formula C is a semantic consequence overA of formulas C1, . . . , Cr, written C1, . . . , Cr �A C,
if every assignment in A that satisfies C1, . . . , Cr also satisfies C.

A degree d semantic resolution refutation of F over A is a sequence Π of clauses, ending
with the empty clause, in which every clause either belongs to F or is a semantic consequence
over A of at most d earlier clauses.

For the sake of simplicity we will only consider degree 2 semantic resolution refutations,
which we will simply call semantic resolution refutations.

Definition 2.10 Let ∆ be a probability distribution on {0, 1}n. An (ε,∆)-semantic refuta-
tion of F is a pair (A,Π) such that

1. Π is a semantic refutation of F over A, and

2. Prα∼∆[α ∈ A] ≥ 1− ε.

One can also define an ε-semantic resolution distribution and prove that it is equivalent
to the existence of (ε,∆)-semantic resolution refutations for all distributions ∆, in the same
manner as our proof in Proposition 2.6 that an ε-RR distribution is equivalent to the existence
of (ε,∆)-RR refutations for all distributions ∆. We leave this easy exercise to the reader.

Proposition 2.11 If F has an (ε,∆)-RR refutation of width w and size s, then it also has
an (ε,∆)-semantic resolution refutation of width ≤ w and size ≤ s.

In the opposite direction, if F has has an (ε,∆)-semantic refutation of width w and size s,
then it also has an (ε,∆)-RR refutation of width O(w) and size at most O(sw2).

Proof. The first part follows immediately by letting A be the set of assignments that satisfy
the auxiliary CNF B from the RR refutation. For the second part, let (A,Π) be the (ε,∆)-
semantic refutation of F . We may assume, by adding dummy premises as necessary, that
every semantic consequence step in Π has exactly two premises.

Suppose C1, C2 and C are clauses such that C1, C2 �A C. We claim that for all literals
x ∈ C1 and y ∈ C2 we have �A x ∧ y → C. For otherwise there would exist some α ∈ A
with C ∪ {¬x,¬y}[α] = 0, which implies that C[α] = 0 and x[α] = y[α] = 1, whence
C1[α] = C2[α] = 1, which contradicts the assumption. Let BC1,C2,C be the CNF∧

{x ∧ y → C : x ∈ C1, y ∈ Cr}

(the clauses of this CNF may contain repeated variables).
Let B be the conjunction of the CNFs BC1,C2,C over all semantic consequence steps

C1, C2 �A C in the semantic refutation Π. By the claim, B[α] = 1 for every α ∈ A. Hence
Prα∼∆[B[α] = 1] ≥ Prα∼∆[α ∈ A] ≥ 1− ε.
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It remains to construct a small resolution refutation of F ∧ B. We can derive C from
C1, C2 and BC1,C2,C as follows. For each y ∈ C2, we derive y → C by resolving C1 with all
clauses in the set {x ∧ y → C : x ∈ C1} in turn. After O(w2) steps, we have derived every
clause in the set {y → C : y ∈ C2}. Resolving all these clauses with C2 in turn, another
O(w) steps, gives us C. We replace every semantic consequence step in Π with a derivation
of this form.

2.4 Random extension clauses

The paper [5] considered the problem of proving lower bounds on bounded depth Frege
proofs with connectives defined using counting modulo a prime, and reduced it to a problem
about proving lower bounds on Nullstellensatz proofs containing certain specific low degree
extension polynomials. These polynomials use additional variables rj and have the following
property: for every fixed assignment α to the original variables xi, the extension polynomials
are zero with high probability, if we fix the new variables rj randomly.

Unfortunately, this property alone cannot be used for proving lower bounds. In [7] the
authors showed that for every unsatisfiable set of low degree polynomials, there exist some
extension polynomials that have the above property but are such that using them, one can
derive a contradiction with a low degree proof.

In contrast to this, resolution with random extension clauses is a nontrivial concept. We
will show that it is essentially equivalent to RR distributions.

Definition 2.12 A resolution refutation with ε-random extension clauses is a pair (B,Π)
such that

1. B is a CNF containing additional variables r1, . . . , r` not appearing in F

2. Π is a resolution refutation of F ∧B

3. for every α ∈ {0, 1}n, Prβ[B[α, β] = 1] ≥ 1− ε where the probability is with respect to
an assignment β to the variables r̄ chosen uniformly from {0, 1}`.

Proposition 2.13 If F has a resolution refutation with ε-random extension clauses of
width w and size s, then it has an ε-RR distribution of width w and size s.

In the other direction, if F has an ε-RR distribution of width w and size s, then it also
has a resolution refutation with 3ε-random extension clauses of width w + log(n/ε2) +O(1)
and size O(sn/ε2).

Proof. The first part follows by substituting a random assignment to the variables r̄ into B.
For the second part, let ` = log(n/ε2) + c, where c is a constant which we will specify

later. By Lemma 2.2, there is a 2ε-RR distribution of F with width w and size s and with a
sample space containing m = O(n/ε) pairs (Bi,Πi). Let the probabilities of the samples be
p1, . . . , pm. We will approximate these numbers by multiples of 2−`. Choose Q1, . . . , Qm so
that each Qi is 2`pi rounded down, or up, to an integer in such a way that

∑
iQi = 2`. Let
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p′i = Qi/2
`. Then for every subset I ⊆ [n] we have

∣∣∑
i∈I pi −

∑
i∈I p

′
i

∣∣ < m/2` ≤ ε, where
the last inequality holds if we take c sufficiently large.

Distribute the strings β ∈ {0, 1}` among the formulas Bi so that the fraction of strings
assigned to Bi is p′i. More formally, take a mapping ι : {0, 1}` → [m] such that the preimage
of each i has size p′i2

`. For β ∈ {0, 1}` let Bβ be the CNF∧
{r1 =β1 ∧ · · · ∧ r`=β` → C : C is a clause in Bι(β)}.

This is logically equivalent to r̄= β → Bι(β). Let B be the CNF
∧
β∈{0,1}` Bβ.

Clearly, any substitution β to the variables r̄ in B produces the formula Bι(β). Hence for
every assignment α to x̄ the probability that a random assignment β to r̄ falsifies F is, by
construction, at most 3ε. Hence B satisfies the third part of Definition 2.12.

For the second part of Definition 2.12, we must construct a small refutation of F ∧ B.
First, for each β, we use the refutation Πι(β) to derive the clause r̄ 6= β from Bβ. We
then apply Lemma 2.1. The resulting refutation has size O(s2`) = O(sn/ε2) and width
w + ` = w + log(n/ε2) +O(1), as required.

3 Upper bounds

3.1 Random 3-CNFs

We will show that random 3-CNFs with sufficiently high density have small RR distributions,
while as is well-known, they only have exponentially large resolution refutations [9]. We will
first prove a lemma.

Lemma 3.1 Let F := C1 ∧ . . . ∧ Cm be a k-CNF formula such that for every assignment α
the number of clauses that are satisfied by α is ≤ δm for some constant 0 < δ < 1. Then F
has a δ-RR distribution of width k and size 2k which can be constructed in polynomial time.

Proof. Define a distribution of auxiliary CNFs Bi as follows. Choose i ∈ {1, . . . ,m} uni-
formly at random. The clause Ci is a disjunction y1 ∨ . . . ∨ yl of l literals, l ≤ k; we set Bi

simply to be the conjunction ¬y1 ∧ . . . ∧ ¬yl. Then we can derive the empty clause from
Ci and Bi in just l resolution steps, and for any fixed α, the probability that random Bi is
satisfied by α is ≥ 1− δ.

Proposition 3.2 A random 3-CNF with n variables and 64n clauses has a 1/2-RR distri-
bution of constant width and constant size with probability exponentially close to 1.

Proof. Let m = 64n. Let C1, . . . , Cm be randomly chosen 3-clauses. We claim that the prob-
ability that there exists an assignment α that satisfies more than 15

16
m clauses is exponentially

small. To prove this claim, let α be a fixed truth assignment. Let Nα denote the number of
clauses that are not satisfied by α. The expectation of Nα is m/8. By the Chernoff bound,

Pr[Nα ≤ m
16

] ≤ e−( 1
2

)2· 1
2
·m
8 = e−

m
64 .
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Thus the probability that there is any α for which Nα ≤ m
16

is, by the union bound, at most
2n · e−m64 = e(ln 2−1)n, which is exponentially small.

By Lemma 3.1, it follows that a random 3-CNF with n variables and 64n clauses has a
15/16-RR distribution of width 3 and size 6, with probability 1− o(1). By Lemma 2.3, such
3-CNFs also have 1/2-RR distributions of constant width and size.

3.2 The PCP Theorem and random resolution proofs

We address the natural question of whether random resolution can be presented as a standard
propositional proof system in the sense of Cook and Reckhow [10], or at least whether it can
be polynomially simulated by such a system. Because we want to compare other systems
with random resolution, we adapt the definition to refutation systems — this makes no
difference to the result, since any proof system can be considered as a refutation system and
vice versa. The essential property of Cook and Reckhow’s definition is that one can test
the correctness of refutations in polynomial time, that is, that the binary relation “Π is a
refutation of F” is decidable in deterministic polynomial time. The other two properties,
soundness and completeness, are satisfied by random resolution.

In order to state our question formally, we must say which object we choose to represent
a refutation in random resolution, and what polynomial simulation means. We will consider
1/2-RR distributions in which all samples have the same weight. Such a distribution can be
written down simply as a list of pairs (Bi,Πi), and we can use Lemma 2.2 to convert any
1/2-RR distribution into this form.

Polynomial simulation of refutation systems can be defined also in this case, where cor-
rectness may not be decidable in polynomial time, in essentially the same way as for standard
refutation systems. Let R1 and R2 be binary relations defining two refutation systems in
the general sense described above. Then f is a polynomial simulation of R1 by R2 if f is
computable in polynomial time and satisfies the condition

R1(Π, F )→ R2(f(Π, F ), F ).

We will prove that random resolution cannot be polynomially simulated by a standard
refutation system unless P = NP. This is an easy corollary of the PCP Theorem, an
equivalent version of which is (see Theorem 11.9 in [2]):

PCP Theorem There exists a polynomial time computable function g and a constant δ < 1
such that for every CNF formula F , g(F ) is a 3-CNF formula such that

1. if F is satisfiable, then g(F ) is also satisfiable

2. if F is unsatisfiable, then every assignment satisfies at most a fraction δ of the clauses
of g(F ).

Proposition 3.3 If P 6= NP, then 1/2-RR cannot be polynomially simulated by any Cook-
Reckhow refutation system.
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Proof. By Lemma 3.1, the PCP Theorem implies that if F is unsatisfiable, then g(F ) has a
δ-RR distribution constructable in polynomial time. The error δ can be reduced to 1/2 by
Lemma 2.3 and, again, this can be done in polynomial time. Let h denote the polynomial
time computable function h that from a given unsatisfiable CNF formula F produces a
1/2-RR distribution that refutes g(F ).

Suppose that 1/2-RR can be polynomially simulated by a refutation system given by a
polynomial time binary relation R and let f be the simulation. Then we can test whether
F is satisfiable by computing R(f(h(F ), g(F )), g(F )).

In particular, 1/2-RR is not itself a Cook-Reckhow refutation system if P 6= NP.

3.3 The retraction weak pigeonhole principle

We can also separate narrow random resolution from resolution using an explicit sequence
of CNFs. The retraction weak pigeonhole principle (see [8, 13]), which we denote rWPHPn,
asserts that there is no pair of functions f : [2n] → [n] and g : [n] → [2n] such that
g(f(x)) = x for all x < n. In particular, if rWPHP fails for f and g, then f is an injection
and g is a surjection, so both the injective and surjective forms of the usual weak pigeonhole
principle fail.

We formalize this as a propositional contradiction, which talks about f and g via their
bit-graphs. So suppose n = 2k. Then rWPHPn is a CNF with variables (f(x))i for x < 2n
and i < k, for the ith bit of the value of f(x), and variables (g(y))i for y < n and i < k + 1,
for the ith bit of the value of g(y). It consists of the clauses

f(x) = y → (g(y))i = xi for x < 2n, y < n and i < k + 1

where xi is the ith bit of x. This is logically equivalent to f(x) = y → g(y) = x for every x
and y.

Proposition 3.4 Every resolution refutation of rWPHPn requires width at least n and ex-
ponential size.

Proof. It is easy to show the width lower bound by a Prover-Adversary argument, in which
the Adversary maintains a partial matching between [2n] and [n] of size up to n.

Let m be the total number of variables in rWPHPn and let ` be its initial width. Then
m ≤ O(n log n) and ` ≤ O(log n). By a well-known result of Ben-Sasson and Wigderson [4],
if rWPHPn has a refutation of size s then it has one of width `+

√
m log s. A straightforward

calculation shows that our width lower bound implies an exponential size lower bound.

Proposition 3.5 The formulas rWPHPn have narrow 1/2-RR distributions.
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Proof. Choose x < 2n uniformly at random and let Bx be the (k + 1)-CNF∧
y<n

g(y) 6= x.

In any total assignment this is true with probability at least 1/2.
For the narrow refutation, first for each y < n resolve the clause g(y) 6= x from Bx

with the clauses f(x) 6= y ∨ (g(y))i = xi for i = 0, . . . , k from rWPHPn. The result is the
clause f(x) 6= y. Once we have all clauses f(x) 6= y we can derive the empty clause with a
narrow resolution derivation, using Lemma 2.1.

3.4 RR refutations over the uniform distribution

As discussed in Section 2.2, the definition of (ε,∆)-RR refutations is unreasonably strong if
we are able to fix the distribution ∆. We show in this section that the distribution does not
have to be unnatural for this to happen.

Let Un be the uniform distribution on {0, 1}n. We show first that, for every constant k,
every unsatisfiable k-CNF has a small size and width random resolution refutation with
respect to Un. In fact we prove something slightly more general, that this is true even
for k−CNFs which are satisfied with some small probability. Note that it follows that the
(ε,Un)-RR refutation system is not sound.

Proposition 3.6 For every k ∈ N and ε > 0, there exist s ∈ N and δ > 0 such that for every
k-CNF formula F that is satisfied with probability ≤ δ in Un, there exists an (ε,Un)-RR
refutation of size ≤ s.

Proof. The proof is by induction on k. First suppose k = 1. We put δ = ε. The 1-CNF
F is just a conjunction of literals. If F has two complementary literals we can derive the
empty clause in one step. So suppose that F has m literals, with no pair of complementary
ones, and is satisfied with probability ≤ δ. Then m ≥ dlog2 δe. Let the auxiliary CNF B
be a single clause consisting of dlog2 δe negated literals from F . Clearly, B has the desired
properties.

Now suppose that the proposition is true for k and let ε be given. Let ` be the largest
integer such that (1 − 2−(k+1))` ≤ ε and let r := (` − 1)(k + 1). Let δ > 0 be the constant
given by the inductive assumption for k and ε2−r. Let F be a (k + 1)-CNF that is satisfied
with probability ≤ δ2−r. Now there are two cases.

First, suppose that F has ` disjoint clauses (meaning that no two clauses share a common
variable, negated or not negated). Then let Γ be a conjunction of such a set of clauses. Then
Γ is satisfied with probability exactly (1 − 2−(k+1))` ≤ ε. Let B be ¬Γ written as a CNF.
Then B has at most (k+1)` clauses, each of size `, and B is satisfied with probability ≥ 1−ε.
Since ` is a constant, we also have a constant size refutation of Γ ∧ B, and hence of F ∧ B,
since Γ is a subset of the clauses of F .

Otherwise, there exists a set of variables X of size r such that every clause of F contains
a variable from X. Consider any assignment σ to the variables X. Then F σ is a k-CNF
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and by the assumption of the proposition, F σ is satisfied with probability at most δ. By
the inductive hypothesis there exists a formula Bσ such that F σ ∧ Bσ has a constant size
refutation and Bσ is satisfied with probability ≥ 1− ε2−r. Hence F ∧

∧
σ Bσ has a constant

size refutation and
∧
σ Bσ is satisfied with probability at least 1− ε, where the conjunction

is over all assignments σ to the variables X.

One can prove a similar proposition for other parameters, either by applying Lemma 2.3
or by modifying the proof above. For example, for every constant k, every unsatisfiable k-
CNF F has an (ε,Un)-RR refutation with polylogarithmic width and ε−1 quasipolynomial.

We next show that any narrow CNF with a small resolution refutation has a narrow RR
refutation with respect to Un. When proving size lower bounds, the first step often is to
reduce the width of a refutation by applying a random restriction. The proposition shows
that in the case of RR refutations there is another possibility, if the distribution is uniform
or close to uniform: we can reduce the width by increasing the error. We do something like
this in the proof of Theorem 4.3 below.

Proposition 3.7 Suppose F has width v and there is a resolution refutation of F of size s.
Then for every k ≥ 1, F also has a (2−k,Un)-RR refutation of size 2s and width ≤
2 max{v, k + dlog se}.

Proof. Let Π be a refutation of F of size s. Let w = max{v, k+dlog se} and say that a clause
is wide if it has width at least w. Each wide clause is falsified by at most 2n−w ≥ 2n−k/s
total assignments. Let A be the set of assignments which falsify any wide clause in Π. Then
|A| ≤ 2n−k. Delete all wide clauses from Π and let Σ be the resulting sequence of clauses. We
can view Σ as a semantic resolution refutation over {0, 1}n \A. Hence, by Proposition 2.11,
there exists a (2−k,Un)-RR refutation of F of size 2s and width 2w.

It is clear that this proposition can be generalized in at least two ways. First, we may
weaken the assumption that F has a small resolution refutation to the assumption that F
has an ε-RR refutation, with some error ε that will be added to the parameter in the narrow
proof. Second, we can use an arbitrary distribution ∆ instead of Un, with a suitably modified
concept of the width. Namely, we could define the width of a clause C with respect to ∆ by

width∆(C) := log(Prα∼∆[C[α] = 0])−1.

4 Lower bounds for the bit pigeonhole principle

We present the first of our three main lower bounds on RR distributions. Before going into
details, we outline the basic structure that the proofs will follow.

In this section and in Section 8 we prove size lower bounds on versions of the pigeonhole
principle, by first using a random restriction to reduce to a width lower bound. In Section 5,
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on the coloured polynomial local search principle, we only prove a width lower bound, as it
already has small resolution refutations; however in Section 6 we use this width bound to
prove a size lower bound on a related principle.

To prove width lower bounds on a 1/2-RR distribution, we use Proposition 2.8 to con-
vert the distribution into a (1/2,R)-RR refutation (B,Π) with respect to a distribution R
on partial assignments (we will use the terms “restriction” and “partial assignment” inter-
changeably). The crucial thing is to choose the distribution R carefully.

The ideal would be that there are many restrictions ρ from R which make the auxiliary
formula B true, thus making it vanish and leaving us with a resolution refutation for which
we already have a lower bound. To this end we use a sort of rudimentary version of the
switching lemma, which we call a fixing lemma (a different lemma in each case, because it
depends on the formula F ). Intuitively this shows that, with reasonably high probability, ρ
fixes the value of B to either true or false. From the definition of a (1/2,R)-RR refutation we
know that Bρ = 0 with probability at most a half, so we can conclude that many restrictions ρ
make B true.

However, in practice it is not possible to achieve the ideal that ρ makes B true. Instead
we only ask that the restricted formula Bρ cannot be falsified by any “legal” extension σ ⊇ ρ.
What counts as a legal extension depends on F , and the definition is chosen so so that we
can both prove the fixing lemma and then prove a width lower bound on Π by an adversary
argument, in which the adversary only works with legal extensions of ρ.

The proof of a fixing lemma should, in principle, be a special case of a proof of a switching
lemma, since we are essentially switching a CNF to a decision tree of height 0, or to a trivial
DNF. However in the one case we consider in which a switching lemma is known, for the (non-
bit) pigeonhole principle, we do not use it directly, but rather prove our own fixing lemma.
One reason is that the usual lemma works with syntactic transformations of formulas and
does not seem to guarantee that our semantic condition on B, that B is satisfied with high
probability, is preserved. For the CPLS formula in the next section, there is unlikely to be
any traditional switching lemma. This is because, understood very broadly, such a lemma
would imply strong size lower bounds on CPLS in constant depth Frege, while we know that
CPLS already has polynomial size refutations in resolution.

We continue with our lower bound proof for BPHPn. Let n = 2k. As already described,
this is a contradictory CNF asserting that a function f is an injection from [n+ 1] to [n]. It
has variables (f(x))j for each x < n+ 1 and j < k, for the jth bit of the value of f(x), and
consists of clauses

f(x) 6= y ∨ f(x′) 6= y

for all x < x′ < n+ 1 and all y < n.
In our proof, we will only consider partial assignments in which, for every x, either all or

none of the variables (f(x))j are set. We identify such assignments with the corresponding
partial functions from n+ 1 pigeons to n holes.

Given a probability p, define the distributionRp of partial injections ρ from [n+1] into [n]
as follows: choose the domain of ρ by putting each pigeon into the domain independently at
random with probability 1 − p, then choose uniformly at random from all possible partial
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injections with this domain (if all n + 1 pigeons get put into the domain, we just take ρ to
be empty). For the rest of the proof, set p = n−1/2 and w = n1/3.

Lemma 4.1 (fixing lemma) Let n be sufficiently large. Suppose B is a w-CNF such that
Pr[Bρ = 0] ≤ 1/2. Then

Pr[there exists a partial injection σ ⊇ ρ with Bσ = 0] ≤ 3/4.

Proof. Let S be the set of ρ ∈ Rp for which there exists a partial injection σ ⊇ ρ which
falsifies B. Partition S into the set S0 of restrictions which falsify B, and the set S1 of
restrictions which do not falsify B themselves, but which have an extension to a partial
injection which falsifies B. We know Pr[S0] ≤ 1/2, so it remains to bound the size of S1.

Consider any ρ ∈ S1. No clause in B is falsified by ρ, but there must be at least one
clause which is falsified in some partial injection σ ⊇ ρ. Let C be the first such clause and
let σ be such an extension of ρ falsifying it. Let x be the first pigeon mentioned in C which
is not in the domain of ρ, and let i < w be the position in C at which the first variable from
pigeon x appears. Let σ′ be σ restricted to the pigeons in the domain of ρ together with
pigeon x.

Define a function θ on S1 by θ : ρ 7→ (σ′, i), where σ′ and i are chosen as above. Then θ
is an injection, because we can first recover C from θ(ρ) as the first clause of B which is
falsified in some extension of σ′ to a partial injection; then we can recover x as the pigeon
associated with the variable at position i in C; and finally we can recover ρ from σ′ by
unsetting pigeon x.

If a restriction ρ sets m > 0 pigeons, then the probability of ρ is

Pr[ρ] = (1− p)mpn+1−m (n−m)!

n!
.

Hence Pr[σ′]/Pr[ρ] = (1− p)/p(n−m). By the Chernoff bound, the number of pigeons m is
such that (1 − p)/(n −m) > 2/3 with exponentially high probability in n. Let Sbad be the
set of restrictions for which this bound fails, so that Pr[σ′]/Pr[ρ] > 2/3p for ρ ∈ S1 \ Sbad.
Partition S1 \ Sbad into subsets S0, . . . , Sw−1 according to the second component i of θ. On
each Si, the first component θ1 of θ is an injection from Rp to Rp which increases probability
by at least 2/3p. Therefore

Pr[θ1[Sβ]] =
∑
ρ∈Si

Pr[θ1(ρ)] >
2

3p

∑
ρ∈Si

Pr[ρ] =
2

3p
Pr[Sβ].

Since Pr[θ1[Si]] ≤ 1 we can conclude that Pr[Si] < 3p/2, and hence that Pr[S1 \ Sbad] <
3pw/2 = 3n−1/6/2. Since Pr[Sbad] is also exponentially small, the result follows.

Theorem 4.2 BPHPn has no 1/2-RR distribution of width w = n1/3.
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Proof. We will show that BPHPn has no (1/2,Rp)-RR refutation with this width. Suppose
for a contradiction that there is such a refutation (B,Π), where B is the auxiliary w-CNF
which is false in Rp with probability at most 1/2.

By Lemma 4.1, for a random ρ ∈ Rp with probability at least 1/4 there is no extension
of ρ to a partial injection which falsifies any clause from B. Thus by the Chernoff bound we
can fix one such restriction ρ which also leaves at least pn/2 = n1/2/2 holes free.

Now consider any clause C in the refutation Π. Suppose we have a partial injection σ ⊇ ρ
that falsifies C, and suppose that C is derived by resolution from clauses D ∨ v and E ∨¬v,
where v is a variable (f(x))j for some x < n+ 1 and j < k. Since |C| ≤ n1/3 we may assume
without loss of generality that σ sets at most n1/3 pigeons not set in ρ. Hence we can find a
free hole to assign to pigeon x, thus extending σ to a partial injection which falsifies either
D ∨ v or E ∨ ¬v.

In this way, working inductively up through the refutation, we can find a partial injec-
tion σ ⊇ ρ which falsifies some initial clause. But this is a contradiction, since a partial
injection cannot falsify any clause from BPHPn, and by our choice of ρ a partial injection
extending ρ cannot falsify any clause from B.

We show size lower bounds by combining the argument of Theorem 4.2 with a standard
application of random restrictions to remove wide clauses from Π.

Theorem 4.3 BPHPn has no 1/2-RR distribution of subexponential size, that is, of size
< 2n

ε
for some ε > 0.

Proof. Suppose (B,Π) is a subexponential size (1/2,Rp)-RR refutation of BPHPn. Let
p = n−1/2 and w = n1/3 as above.

Let C be any clause that mentions at least w pigeons, and choose literals v1, . . . , vw
from C such that vi comes from the ith pigeon mentioned by C. Consider ρ chosen at
random from Rp. Then for any i we have that ρ satisfies vi with probability (1 − p)/2.
However these events are not completely independent for different i, since ρ is constrained to
be a partial injection. We claim that the probability that ρ does not satisfy any vi is bounded
above by (2/3)w. To see this, first note that we can view ρ as being chosen step-by-step,
starting with the pigeons associated with the literals v1, . . . , vw in that order, choosing in
turn whether each pigeon is put in the domain of ρ and, if so, which hole it goes to. When
the ith pigeon is considered there are m holes available, for some m with n − w < m ≤ n,
and of these at least n/2− w will satisfy vi. Hence the probability vi is satisfied, given the
choices already made for previous pigeons, is at least (1 − p)(n/2 − w)/(n − w) > 1/3 for
sufficiently large n. Hence, for large n, C is satisfied with probability ≥ 1− (2/3)w. By the
union bound, with exponential high probability ρ satisfies every clause in Π that mentions w
or more pigeons.

Now the arguments of Lemma 4.1 and Theorem 4.2 go through, with some tweaks. Firstly,
they still work if we replace the width of a clause C with the number of pigeons mentioned
in C. In particular Lemma 4.1 works if we only assume that each clause in B mentions no
more than w pigeons – we just need to use the index i to record which of those w pigeons σ
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extends ρ by, rather than recording the position of the relevant literal. Secondly, in the proof
of Lemma 4.1 we ignored a set Sbad of restrictions ρ with a certain undesirable property,
and it was safe to do this because the probability of Sbad was exponentially small. We now
add to Sbad the set of restrictions ρ which do not satisfy every clause that mentions w or
more pigeons, and can then safely assume that every clause C that we consider in the proof
mentions fewer than w pigeons, to give the required bound on i.

5 A separation of resolution from narrow RR

The coloured polynomial local search principle (CPLS) was introduced in [19]. The proposi-
tional version of it was studied in [23]. We refer to those two papers for more on the principle,
and only remark here that it is a good candidate for proving separations of this kind because
it is in some sense “complete” among narrow CNFs with short resolution refutations, while
at the same time its combinatorial structure is simple enough that we are able to come up
with useful random restrictions. We take our definitions from [23].

Consider a leveled directed graph whose nodes consist of all pairs (i, x) from [a] × [b].
We refer to (i, x) as node x on level i. If i < a − 1, this node has a single neighbour in the
graph, node fi(x) on level i+1. Every node in the graph is coloured with some set of colours
from [c]. CPLS expresses that the following three sentences cannot all be true at once.

1. Node 0 on level 0 has no colours.

2. For every node x on every level i < a− 1, if the neighbour fi(x) of x on level i+ 1 has
any colour y, then x also has colour y.

3. Every node x on the bottom level a− 1 has at least one colour, u(x).

We will express this principle as a family of propositional contradictions. Let a be any
natural number and let b and c be powers of two. We will define a CNF formula CPLSa,b,c,
in the following propositional variables.

• For each i < a, x < b and y < c, there is a variable Gi(x, y), expressing whether
colour y is present at node (i, x).

• For each i < a, x < b and j < log b, there is a variable (fi(x))j, standing for the jth
bit of the value of fi(x).

• For each x < b and j < log c, there is a variable (u(x))j, standing for the jth bit of the
value of u(x).

Definition 5.1 The formula CPLS consists of the following three sets of clauses, which we
will call Axioms 1, 2 and 3:

Axiom 1. For each y < c, the clause

¬G0(0, y)
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Axiom 2. For each i < a− 1, each pair x, x′ < b and each y < c, the clause

fi(x) = x′ ∧Gi+1(x′, y)→ Gi(x, y)

Axiom 3. For each x < b and each y < c, the clause

u(x) = y → Ga−1(x, y).

Note that we do not require fi to be one-to-one. However, our lower bound proof will
also work for the contradiction that additionally contains the clauses fi(x) 6= y ∨ fi(x′) 6= y
for all x 6= x′ and all y.

Proposition 5.2 CPLSa,b,c has polynomial size resolution refutations.

Proof. For i < a, let Mi be the set of clauses {
∨
y<cGi(x, y) : x < b} expressing that every

node at level i has a colour. We can derive Ma−1 from Axiom 3, using Lemma 2.1. Then
repeatedly using Axiom 2 and Lemma 2.1 we can derive Ma−2, Ma−3, etc. Once we have M0

we can derive a contradiction from Axiom 1. For more detail see [23].

We define a class of partial assignments which we will use in our lower bound argument.
We first define the important notion of a path in a partial assignment.

Definition 5.3 A path in a partial assignment β is a sequence of nodes (i, x0), . . . , (i+k, xk)
of maximal length such that fi+j(xj) = xj+1 in β for each j ∈ [0, k).

A path may consist of only one node. Thus every node is on some unique path (as long
as all functions fi are partial injections).

Definition 5.4 (legal restriction) A legal restriction is a partial assignment β with the
following properties.

L1. At every node (i, x), either all variables (fi(x))j are set, or none are. At every level i,
the variables that are set define fi as a partial injection.

L2. For every node (i, x) on the path π beginning at (0, 0), we have Gi(x, y) = 0 for every
colour y. Furthermore π does not reach all the way to the bottom level a−1. We call π
the zero path.

L3. Every other path π is either starred or coloured, where

(a) if π is starred, then for every node (i, x) on π, no colour Gi(x, y) is set

(b) if π is coloured, then there is some single colour y such that for every node (i, x)
on π, Gi(x, y) = 1 and Gi(x, y

′) = 0 for all colours y′ 6= y.
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L4. For every node (a−1, x) on the bottom level, let π be the path containing (a−1, x). If π
is starred then all variables (u(x))j are unset. If π is coloured then u(x) = y where y
is the unique colour such that Gi(x, y) = 1.

We state two obvious lemmas, without proof.

Lemma 5.5 No legal restriction falsifies CPLSa,b,c.

Lemma 5.6 Let ρ ⊆ σ be legal restrictions. Let z be a variable that is not set by ρ, but
is set in σ. Then there exists a unique minimal legal extension ρ ⊂ σ′ ⊆ σ that sets z and
extends ρ in one of the following two ways.

1. It changes some starred path into a coloured path.

2. It sets some value fi(x) that is not set in ρ. This necessarily means connecting two
paths. Either at least one of these is starred, or they both have the same colouring.
The resulting path inherits the colouring of one, or both paths. If they are both starred,
then so is the resulting path.

In either case if a node (a−1, x) which was previously on a starred path is now on a coloured
path, then σ′ also sets u(x) = y where y is the colour of the path.

We now define a distribution of random restrictions for which we will be able to prove a
form of switching lemma.

Definition 5.7 (random restriction) Fix parameters 0 < p, q < 1. Let Rp,q be the distri-
bution of random restrictions chosen as follows.

R1. For each pair i < a and x < b, with probability (1 − p) include (i, x) in a set Z. For
each i < a, choose fi uniformly at random from the partial injections from the domain
{x < b : (i, x) ∈ Z} into b.

R2. Colour the path beginning at (0, 0) so that Gi(x, y) = 0 for all nodes (i, x) on that path.

R3. For every other path π, with probability (1 − q) colour π randomly with one colour.
That is, choose uniformly at random a colour y and, for every node (i, x) on π, set
Gi(x, y) = 1 and set Gi(x, y

′) = 0 for all y′ 6= y.

R4. Finally consider each node (a − 1, x) on the bottom level. It is on some path π. If π
was coloured at step R3, then set u(x) = y where y is the unique colour assigned to π
(that is, Ga−1(x, y) = 1). Otherwise leave u(x) undefined.

Abusing notation, we will also use Rp,q to denote the set of restrictions which have
nonzero probability in Rp,q. Note that this contains all legal restrictions.

For the rest of this section we will fix parameters as follows.

a = b = n, c = bn1/7c, p = n−4/7, q = n−2/7, w = bn1/8c (1)
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where b and c are powers of 2. We will use the well-known Chernoff bound several times
to show that the probability of an event is exponentially small (or exponentially high), by
which we mean that the probability is less than exp(−nε) (or more than 1− exp(−nε)) for
some constant ε > 0.

Given a restriction σ, we will say that a node (i+ 1, x) is free if it is not in the range of
the partial function fi defined by σ. We will say that a node is zero, starred or coloured if
the path containing it is respectively zero, starred or coloured.

Lemma 5.8 (good restrictions) We say that a restriction ρ ∈ Rp,q is good if all of the
following hold.

G1. No path in ρ is longer than n5/7. (It follows that ρ is legal.)

G2. At all levels i, there are at most 2np = 2n3/7 nodes (i, x) for which fi(x) is undefined.

G3. At all levels i ≥ 1, there are least npq/2 = n1/7/2 free, starred nodes.

Otherwise ρ is bad. Then the probability that ρ ∼ Rp,q is bad is exponentially small.

Proof. For item G1, for a fixed vertex (i, x) the probability that there is a path of length `
starting at (i, x) is at most (1 − p)`. Using the union bound we can bound the probability,
for ` = n5/7, by

n2(1− p)` ≈ n2 exp(−p`) = n2 exp(−n1/7).

Items G2 and G3 follow immediately from the Chernoff bound.

In the following lemma and proof probabilities, expectations etc. are over ρ ∼ Rp,q.

Lemma 5.9 (fixing lemma) Let n be sufficiently large and let B be a w-CNF such that

Pr[Bρ = 0] ≤ 1/2.

Then
Pr[there exists a legal σ ⊇ ρ with Bσ = 0] ≤ 3/4.

Proof. Let S denote the set of ρ ∈ Rp,q for which there exists a legal σ ⊇ ρ falsifying B.
Let S0 = {ρ ∈ S : ρ falsifies B}, let Sbad = {ρ ∈ S : ρ is bad} and let S1 = S\(S0∪Sbad). By
assumption Pr[ρ ∈ S0] ≤ 1/2 and by Lemma 5.8 we know that Pr[ρ ∈ Sbad] is exponentially
small. So it is enough to show that Pr[ρ ∈ S1] is small. To estimate this probability, we will
construct a mapping θ : S1 → Rp,q. For every ρ ∈ S1, we fix some legal extension σ that
falsifies B and define θ(ρ) as follows.

Let C be the first clause of B that is falsified by σ and let z be the first variable of C
that is not fixed by ρ – such a z must exist, because C is not falsified by ρ. Let σ′ be the
minimal legal extension ρ ⊂ σ′ ⊆ σ that fixes z, as given by Lemma 5.6. We put θ(ρ) := σ′.
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Let us compare the probabilities of ρ and θ(ρ). For i = 0, . . . , n − 2 let Zi be the set of
nodes (i, x) for which fi(x) is defined in ρ. Let mi = |Zi| and m =

∑
imi. Let r be the

number of coloured and s the number of starred paths in ρ. Then the probability of ρ is

Pr[ρ] := (1− p)mpn2−m ·
n−2∏
i=0

(n−mi)!

n!
·
(

1− q
c

)r
qs

where the three parts of the product calculate respectively the probability of this choice for
the domain of the functions fi, this choice for the values of the fi, and this choice of a way of
colouring paths. According to Lemma 5.6, there are two possible ways in which σ′ extends ρ.

1. Some starred path in ρ is coloured in σ′. Then going from ρ to σ′ increases r by one,
decreases s by one and leaves the other parameters the same. Hence

Pr[θ(ρ)]

Pr[ρ]
=

1− q
c
· 1

q
≥ 1

2n1/7
· n2/7 =

1

2
n1/7.

2. Some value fi(x) undefined in ρ is set in σ′. Then mi and m increase by one. For the
other parameters, there are two cases.

(a) If this connects a starred path to the zero path or a coloured path, or if it connects
two starred paths, then s decreases by one and r is unchanged. So

Pr[θ(ρ)]

Pr[ρ]
=

1− p
p
· 1

n−mi

· 1

q
≥ n4/7

2
· 1

2n3/7
· n2/7 =

1

4
n3/7

where we have n−mi ≤ 2n3/7 by Lemma 5.8, since ρ is good.

(b) If it connects two coloured paths, then r decreases by one and s is unchanged. So

Pr[θ(ρ)]

Pr[ρ]
=

1− p
p
· 1

n−mi

· c

1− q
≥ n4/7

2
· 1

2n3/7
· n1/7 =

1

4
n2/7.

The mapping θ is not one-to-one, but is at most 3w-to-one. This is because we can
recover ρ from θ(ρ) as follows. We find the clause C by taking the first clause in B which
is not satisfied by θ(ρ). Then it suffices to know the position of the literal z in the clause C
(a number less than w) and, if θ(ρ) was obtained by connecting two paths and the resulting
path has a colour, to know whether this path inherited the colour from the first part, the
second part, or from both parts.

Now partition S1 as S1
0 , . . . , S

1
3w−1 where S1

i = {ρ ∈ S1 : ρ is the ith preimage of θ(ρ)}.
Then

Pr[S1
i ] =

∑
ρ∈S1

i

Pr[ρ] =
∑
ρ∈S1

i

Pr[θ(ρ)]
Pr[ρ]

Pr[θ(ρ)]
≤ 2n−1/7

∑
ρ∈S1

i

Pr[θ(ρ)] ≤ 2n−1/7

where we use that
∑

ρ∈S1
i

Pr[θ(ρ)] ≤ 1, since θ is injective on S1
i . It follows that Pr[S1] ≤

6wn−1/7 ≤ 6n1/8−1/7, giving the required bound.
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We can now prove our main result.

Theorem 5.10 For all sufficiently large n, the formula CPLSa,b,c with our parameters a =
b = n and c = bn1/7c does not have a 1/2-RR distribution of width n1/8.

Proof. Suppose the formula has a 1/2-RR distribution of width w. By Proposition 2.8 it also
has (1/2,Rp,q)-RR refutation (B,Π) of width w. We will show that this implies w ≥ n1/8.

By the definition of a RR-refutation over partial assignments, Prρ∼Rp,q [B
ρ = 0] ≤ 1/2.

By Lemmas 5.8 and 5.9 there is a good ρ ∈ Rp,q such that no legal extension of ρ falsifies B.
Fix such a ρ.

We will prove the width lower bound using the well-known Prover-Adversary game. By
replacing all clauses with their negations and reversing the direction of the arrows, we can
view Π as a strategy for the Prover in the following game: at each turn the Prover either
asks the Adversary for the value of a variable, or forgets a variable from memory to free the
space for re-use; he wins as soon as the assignment in his memory falsifies either a clause of
CPLS or a clause of B (as these were the initial clauses of Π). We will show that to have a
winning strategy the Prover must be able to remember at least n1/8 variables simultaneously.
The width lower bound follows immediately.

So suppose the Prover is limited to remembering at most w variables. The Adversary’s
strategy is to always have in mind a legal extension σ of ρ which satisfies the conjunction
currently known by the Prover, and is small in a certain sense.

Define the ρ-size of a legal extension σ ⊇ ρ as follows. Let m be the number of nodes
(i, x) for which the edge fi(x) is defined in σ but not in ρ. Let σ− be the smallest legal
extension of ρ which contains all these edges; we could alternatively define σ− by adding
these edges to ρ, suitably colouring any starred paths that are now connected to coloured
paths or the zero path, and extending u appropriately. Now σ and σ− have the same paths.
We let r be the number of paths starred in σ− but coloured in σ. The ρ-size of σ is then m+r.
The following claim generalises Lemma 5.6.

Claim If D is a conjunction of size ` < c and a legal extension σ ⊇ ρ satisfies D, then D is
also satisfied by a legal extension σ′ ⊇ ρ with ρ-size at most `.

Proof of claim. Suppose that D mentions m variables of the form (fi(x))j and r variables of
the form Gi(x, y) or (u(x))j. We first extend ρ to σ− by setting every edge fi(x) mentioned
in D the same way it is set in σ and colouring as necessary to make this a legal restriction.
This deals with the (fi(x))j variables, and every path in σ− is now a section of a path in σ.

We now extend σ− to σ′ by colouring some paths. For each remaining variable Gi(x, y)
or u(x) not already set in σ−, consider the path on which the corresponding node lies in σ.
It cannot be a starred path, or the variable would not be set. If it is coloured, we colour the
path it lies on in σ− the same way as it is coloured in σ. All that remains is a set of variables
of the form Gi(x, y) where (i, x) lies on the zero path in σ but not on the (shorter) zero path
in σ−. Since σ satisfies D, these variables must appear negatively in D. Since ` < c, there
must be some colour y that is not mentioned in any of these variables. Hence we can colour
the paths on which they lie with colour y, and this will satisfy D. By construction the ρ-size
of σ′ is at most m+ r = `. This completes the proof of the claim.
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Now suppose the Prover’s current memory consists of a conjunction D of size ` ≤ w =
n1/8, and the Adversary knows a legal extension σ ⊇ ρ which satisfies D. By the claim, we
may assume that the ρ-size of σ is at most `. There are now three cases in the Adversary’s
strategy, depending on what the Prover does.

Suppose the Prover forgets a variable. Then the Adversary can apply the claim to shrink
the legal extension to one of ρ-size at most `− 1.

Suppose the Prover queries a variable (fi(x))j. If this is already set in σ, reply with its
value. Otherwise choose a free node (i + 1, x′) on the next level down. This must exist by
item G3 of the definition of a good restriction and the fact that the ρ-size of σ is less than
n1/7/2. Extend σ to σ′ by setting fi(x) = x′ and extending colourings appropriately. By
item G1 of the definition of a good restriction and the bound on ρ-size, the zero path in σ′

cannot reach all the way to the bottom level, so σ′ is legal. Reply with the value of the
variable in σ′.

Suppose the variable queries a variable Gi(x, y) or u(x). If this is already set in σ, reply
with its value. Otherwise, extend σ to σ′ by colouring the corresponding path with some
arbitrary colour y. Reply with the value of the variable in σ′.

Finally we observe that the Prover cannot win against this strategy, since no legal ex-
tension of ρ falsifies any clause from CPLSa,b,c or from B.

6 A separation of constant-depth Frege from RR

We exhibit a narrow CNF which requires exponential size 1/2-RR distributions but which,
unlike the pigeonhole principle, has polynomial size refutations in constant depth Frege, in
fact in Res(2). Here Res(2), introduced in [16], is an extension of resolution in which clauses
may contain conjunctions of pairs of literals.

The formula is CPLS2, a variant of CPLS. For each i, x, y, instead of the single variable
Gi(x, y) it has two variables G0

i (x, y) and G1
i (x, y). To express that colour y is present at

node (i, x) we now use the conjunction G0
i (x, y) ∧G1

i (x, y).

Definition 6.1 The formula CPLS2
a,b,c consists of the following three sets of clauses:

Axiom 1’. For each y < c, the clause

¬G0
0(0, y) ∨ ¬G1

0(0, y)

Axiom 2’. For each i < a− 1, each pair x, x′ < b and each y < c, the two clauses

fi(x) = x′ ∧G0
i+1(x′, y) ∧G1

i+1(x′, y)→ G0
i (x, y)

fi(x) = x′ ∧G0
i+1(x′, y) ∧G1

i+1(x′, y)→ G1
i (x, y)

Axiom 3’. For each x < b and each y < c, the two clauses

u(x) = y → G0
a−1(x, y)

u(x) = y → G1
a−1(x, y).
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As before, these respectively express that node (0, 0) has no colours; that every colour
present at node (i+ 1, fi(x)) is also present at node (i, x); and that colour u(x) is present at
node (a− 1, x).

Proposition 6.2 CPLS2
a,b,c has polynomial size Res(2) refutations.

Proof. Let F be the formula (a conjunction of 2-DNFs) obtained by taking CPLSa,b,c and
replacing every occurrence of the literal Gi(x, y) with G0

i (x, y)∧G1
i (x, y) and every occurrence

of the literal ¬Gi(x, y) with ¬G0
i (x, y) ∨ ¬G1

i (x, y). Then by making the same substitution
into the resolution refutation of CPLSa,b,c given by Proposition 5.2, we get a small Res(2)
refutation of F . On the other hand, F is easily derivable from CPLS2

a,b,c in Res(2).

The idea of the lower bound proof is first to hit a small RR distribution with a random
restriction which reduces its width and transforms CPLS2 into CPLS, and then to reuse
our width lower bound argument for CPLS. In fact, our initial random restriction will
only give small width as measured with respect to positive literals Gi(x, y). This is not
an insignificant measure of width; recall that in the small resolution refutation of CPLS in
Proposition 5.2, the wide clauses are of the form

∨
y Gi(x, y). We will then show that there

is no subexponential size 1/2-RR distribution for CPLS if all clauses may only contain a
small number of positive literals Gi(x, y), but any number of other literals.

Definition 6.3 The positive G-width of a clause C is the number of positive literals of
the form Gi(x, y) which appear in C. As usual, the positive G-width of a refutation Π is
the maximum of this value over all clauses in Π and the positive G-width of a distribution
(Bj,Πj)j∼D is the maximum over all refutations Πj.

We fix the same parameters (1) as in the previous section, that is a = b = n, c = bn1/7c,
p = n−4/7, q = n−2/7 and w = bn1/8c, where b and c are powers of 2.

Lemma 6.4 If CPLS2 has a 1/2-RR distribution of size s, then the original formula CPLS
has a 1/2-RR distribution of size ≤ O(s2) with positive G-width ≤ O(log s).

Proof. Suppose that there exists a 1/2-RR distribution of size s for CPLS2. By Lemmas 2.2
and 2.3 it follows that there is a 1/2-RR distribution Π′ = (Bj,Π

′
j)j∈D for CPLS2 of size

s′ = O(s2) in which the sample size |D| is no more than four times the number of variables
and, in particular, is polynomial in n.

Choose a random substitution θ as follows. Independently for each triple (i, x, y), choose
b ∈ {0, 1} at random, then replace each occurrence of the variableGb

i(x, y) with the constant 1
and replace each occurrence of the variable G1−b

i (x, y) with the variable Gi(x, y). We claim
that Π := (θ(Bj), θ(Π

′
j))j∈D is a 1/2-RR distribution for CPLS. To see this, first observe

that every clause of CPLS2 under θ is either satisfied or simplifies into a clause of CPLS,
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hence θ(Π′j) is a resolution refutation of CPLS ∧ θ(Bj) for each j. Now, for any assignment

α to the variables of CPLS, define an assignment α′ to the variables of CPLS2 as

v[α′] =


1 if v has the form Gb

i(x, y)
Gi(x, y)[α] if v has the form G1−b

i (x, y)
v[α] otherwise

where b ∈ {0, 1} is the value chosen by θ for the triple (i, x, y). Then θ(Bj)[α] = Bj[α
′], so

since Bj[α
′] = 1 with probability at least 1/2 for j ∼ D, the same is true for θ(Bj)[α].

Furthermore, if a clause C has positive G-width larger than log s′, then either there is
some triple (i, x, y) for which C contains both literals G0

i (x, y) and G1
i (x, y), or there are more

than log s′ many triples (i, x, y) for which C contains at least one of the literals G0
i (x, y) or

G1
i (x, y). In the first case θ(C) is always satisfied, and in the second case it is satisfied with

probability > 1 − (1/2)log s′ = 1 − 1/s′. So by the union bound we may assume that with
nonzero probability all such clauses in Π′ are satisfied and can be removed, so that we can
find a Π with positive G-width O(log s) as required.

Theorem 6.5 For all sufficiently large n, the formula CPLS2
a,b,c with the parameters (1)

above does not have a 1/2-RR distribution of size ≤ 2n
1/17

.

Proof. Suppose that CPLS2
a,b,c has a 1/2-RR distribution of size ≤ 2n

1/17
. If n is sufficiently

large, then by Lemma 6.4, CPLSa,b,c has a 1/2-RR distribution with size O(22n1/17
) and with

positive G-width O(n1/17).
Let R′p,q be the random restriction from Definition 5.7 in the previous section, with two

changes. Firstly, we add a new step at the beginning of the construction of a restriction:

R0. For each colour y < c, with probability 1/2 set Gi(x, y) = 0 for every node (i, x).

We call these colours forbidden. Secondly, when we choose random colours for paths at
step R3 of Definition 5.7, we choose only from the colours which are not forbidden.

By an averaging argument (or one direction of Proposition 2.8) it follows that CPLSa,b,c
has a (1/2,R′p,q)-RR refutation (B,Π) which preserves the bounds on size and positive G-
width. We would now like to repeat the proof of Theorem 5.10. However, that proof required
a bound of n1/8 on the width of all clauses in Π. This no longer holds, but we will show that
with high probability all clauses wider than n1/8 are satisfied by a random ρ.

Formally, in Lemma 5.8 we defined the notion of a good restriction ρ as one for which
three well-behavedness conditions on paths and colourings hold, and showed that a random
restriction is good with exponentially high probability. We now extend the notion by adding
two extra conditions:

G4. No more than 2
3
c colours are forbidden by ρ.

G5. Every clause in Π of width greater than n1/8 is satisfied by ρ.
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We will show that a random restriction satisfies these conditions with exponentially high
probability (this is immediate for G4). This is then enough for the proof of Theorem 5.10 to
go through; in fact, it would be enough to prove that the extra conditions are satisfied with
probability 1− ε for a sufficiently small ε. Condition G5 is used in the two places where the
proof of Theorem 5.10 uses the bound on width. Firstly, in the fixing lemma, we need the
width bound for clauses which the restriction ρ does not satisfy; but we only need this for
restrictions in ρ ∈ S1, which only contains good restrictions, so G5 is enough. Secondly, we
use the width bound to limit the Prover’s memory in the Prover-Adversary argument; but
at this point we have fixed one good restriction so may assume by G5 that all wide clauses
have been satisfied and removed from the refutation. Condition G4 is used when we need to
keep track of the number of available colours. It changes some calculations by a factor of 3,
which does not affect anything important.

It remains to prove that G5 is satisfied with high probability. Let C be any clause of width
w ≥ n1/8. We will show that the probability that C is not satisfied by ρ is exponentially
smaller than 2−2n1/17

. By the assumption on the width of C, one of the following four things
must be true.

1. C contains the literal Gi(x, y) for at least w/4 distinct triples (i, x, y).

2. C contains the literal ¬Gi(x, y) for at least w/4 distinct triples (i, x, y).

3. C contains a variable from fi(x) for at least w/(4 log b) many distinct pairs (i, x).

4. C contains a variable from u(x) for at least w/(4 log c) many distinct values x.

For a sufficiently large n, Case 1 cannot happen, because we are given that the refutation
has positive G-width O(n1/17). We postpone Case 2 to the end of the proof.

For Case 3, recall that for each pair (i, x) the variables (fi(x))j are all given values with
probability (1 − p), and those values are unbiased coin tosses that are almost independent:
they are only subject to the constraint that fi is a partial injection. Hence it is not hard
to show, as in the proof of Theorem 4.3, that in this case C is satisfied with probability at
least 1− (2/3)w/(4 log b) ≥ 1− 2−n

1/9
for large n.

In Case 4, the values of the variables (u(x))j, as chosen by steps R3 and R4 of Defi-
nition 5.7, are again almost independent unbiased coin tosses; however this time they are
biased by the fact that the value y of u(x) must not be a forbidden colour. By the union
bound over the log c values of j, the following is true with exponentially high probability,
where we write yj for the jth binary bit of y:

Let Y be the set of colours which are not forbidden. Then for every j < log c the
fraction of colours y ∈ Y with yj = 0 is in the interval [1

3
, 2

3
]. (This implies the same

condition for yj = 1.)

Thus again C is satisfied with probability at least 1− δn1/8
for some constant δ < 1.

Finally for Case 2, we exploit the fact that ρ sets almost all variables Gi(x, y) to 0. We
consider two subcases. Let m =

√
w/2 ≥ n1/16/2.
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2a. C contains a literal of the form ¬Gi(x, y) for at least m distinct colours y

2b. C contains a literal of the form ¬Gi(x, y) for at least m distinct pairs (i, x).

In Case 2a, since every colour is forbidden independently in ρ with probability 1/2, we have

that C is satisfied with probability at least 1− (1/2)n
1/16/2.

For Case 2b, we first prove a claim.

Claim There exists γ < 1 such that given a set Z of m ≤ n/2 nodes (i, x), the number of
paths in ρ touched by any node in Z is at least m/3 with probability ≥ 1− γm.

Proof of claim. Let Z be given. We will lower bound the probability by the probability of a
simpler event: that in an n×n table, if we randomly choose n node-disjoint paths running all
the way from the top row to the bottom row of the table, at least m/3 paths are touched by
nodes in Z. Notice then that, without changing the probability, we can replace this event by
one in which the paths are fixed to be the n columns, and the nodes Z are chosen randomly
by picking a fixed number of nodes from each row.

So, suppose that the elements of this random set Z are chosen one by one. Suppose that
we already have chosen i elements and we want to choose the (i+ 1)st element in a row j in
which we already chose k ≤ i elements. Clearly, the number of the remaining nodes in row j
that are in empty columns is at least n/2, because we assume m ≤ n/2. Hence we will hit
a new column with probability at least 1/2.

Consecutive events are dependent, because the probability depends on the current con-
figuration. Therefore we compare this process with another one. Consider a counter that is
initially set to zero. At each step we increase the value of the counter by 1 with probability
1/2, and keep the value the same with probability 1/2. One can show by induction that the
probability that the value in the counter is k after i steps is a lower bound on the probability
that we have hit exactly k columns after i steps in the previous process. The value of the
counter is, however, equivalent to the sum of independent 0 − 1 random variables, and we
can apply the Chernoff bound to it. This proves the claim.

Once we have the claim, we use the fact that given a path π in ρ and a colour y, the
variable Gi(x, y) is set to 0 in ρ at every node (i, x) on π with probability close to 1, and in
particular greater than 1/2. This is independent for distinct paths, and hence C is satisfied

with probability at least 1 − 2−m/3. Since 2−m/3 ≤ 2−n
1/16/6 this proves that C is satisfied

with the required probability.
Thus we have shown that condition G5 is satisfied by a random ρ with exponentially

high probability. This reduces the proof of this theorem to the proof of Theorem 5.10.

7 Feasible interpolation

In this section we prove a form of feasible interpolation for RR distributions in which the
resolution refutations are treelike. Feasible interpolation is one of the two main tools for
proving lower bounds in propositional proof complexity (the other being random restrictions).
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Therefore it is important to fully understand the limitations of this method. It seems that
the standard form of feasible interpolation does not hold for random resolution, but as
we will show, one can prove lower bounds using randomized communication protocols and
obtain lower bounds at least for treelike proofs. The idea of the proof is not new; similar
arguments have been used in other papers for different proof systems (see [12] for one of the
first applications of this argument). Furthermore, in [17] Kraj́ıček proved a lower bound on
a stronger type of communication protocol, which enabled him to prove a lower bound for
general (that is, daglike) random resolution refutations. However his proof seems only to
work for a small error and does not give a nontrivial bound for constant ε > 0.

Theorem 7.1 Let x̄, ȳ, z̄, ū be disjoint tuples of variables with x̄ = x1 . . . xn and ȳ = y1 . . . yn.
Let F (x̄, z̄) and G(ȳ, ū) be CNF formulas in the variables shown. Suppose that

F ∧G ∧
n∧
j=1

(¬xj ∨ ¬yj)

is unsatisfiable and has an ε-RR distribution in which the refutations Πi are treelike and have
size at most s. Then there exists a randomized communication protocol P for two players
with the following properties. When the players are given assignments α and β in {0, 1}n
such that ∃z̄.F [α, z̄] = 1 and ∃ū.G[β, ū] = 1, then

1. with probability ≥ 1− ε the players find some j such that αj = βj = 1

2. they use O(log s) communication bits.

Proof. Given α and β such that ∃z̄.F [α, z̄] = 1 and ∃ū.G[β, ū] = 1, each player picks some γ
(respectively δ) such that F [α, γ] = 1 (G[β, δ] = 1). Then jointly they randomly pick
some (Bi,Πi) from the RR distribution. If the auxiliary formula Bi is not satisfied by the
assignment α, β, γ, δ then the protocol may fail, but this happens with probability at most ε.
Otherwise, the following protocol succeeds in finding the bit j. The players pick a clause C
in Πi such that the subtree above C has size between 1

3
s and 2

3
s. They exchange bits in order

to find out whether C is falsified by α, β, γ, δ. If so, they continue with the subtree above C.
Otherwise, they delete all clauses above C from Πi and continue with the modified tree.
Since the resulting stumps are satisfied, as are all clauses of F and G, the players eventually
reach a clause ¬xj ∨ ¬yj that is falsified by α, β. Since the size of the tree decreases by a
factor of at least 1/3 at each step, the number of bits they use is O(log n).

We will show an application of Theorem 7.1 that gives an exponential size lower bound
on treelike RR distributions. Note, however, that such a lower bound (for a different CNF,
of nonconstant width) was already been proved in [6].

Recall that the disjointness function is defined for two n-bit strings by Dn(x, y) = 1 if
and only if xj ∧yj = 0 for all j. The probabilistic communication complexity of this function
is Ω(n) [14]. Reduction of this function to the Karchmer-Wigderson games are known for
several partial Boolean functions. For example, Raz and Wigderson [20] showed a reduction
to the following problem:
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Let V be a set of 3m vertices. Player I is given a partial matching P (a set of
independent edges) on V of size m. Player II is given a clique Q on V of size
2m+ 1. The goal is to find an edge e ∈ P ∩Q.

They prove that every probabilistic protocol for this game with error at most 1/3 needs
Ω(m) communication bits.

This problem defines a partial Boolean function where the variables stand for the edges,
the minterms are partial matchings of size m, and the maxterms are cliques of size 2m+ 1.
The fact that every maxterm intersects every minterm can be stated as a tautology in the
usual way. The negation of this tautology is an unsatisfiable CNF formula of the form used
in the theorem above. The variables x̄ and ȳ stand for the edges, the variables z̄ represent a
one-to-one mapping from a set of size m into the set of edges, and the variables ū represent a
one-to-one mapping from an 2m+1-element set into the set of vertices. Such a formalization
gives a formula with clauses of nonconstant size, but using extension variables we can modify
it to a 3-CNF. Thus we get:

Corollary 7.2 There exists a sequence of unsatisfiable 3-CNF formulas of polynomial size
such that all treelike 1

3
-RR distributions have size 2Ω(

√
n), where n is the number of variables.

8 Lower bounds for the pigeonhole principle

We now consider the usual formalization of the pigeonhole principle, rather than the bit-
graph version. It will be convenient to distinguish pigeons from holes, so let U and V be
disjoint sets of vertices with |U | = n+ 1 and |V | = n. The CNF formula PHPn has variables
pij for i ∈ U and j ∈ V and consists of clauses

1.
∨
j∈V pij for all i ∈ U

2. ¬pij ∨ ¬pi′j for all i, i′ ∈ U with i 6= i′ and all j ∈ V .

Theorem 8.1 PHPn has no 1/2-RR distribution of size less than 2Ω(n1/12).

Proof. Let Mn be the set of all total assignments to the PHP variables arising from partial
matchings of size n, equipped with the uniform distribution. That is, choose uniformly
at random a partial matching M that matches every hole but leaves exactly one pigeon
unmatched, and set pij = 1 if (i, j) ∈M and pij = 0 otherwise.

By Proposition 2.6, it suffices to prove that every (1/2,Mn)-RR refutation of PHPn has

size 2Ω(n1/12). So suppose that we have a resolution refutation Π of PHPn ∧ B, where B is
our auxiliary CNF formula satisfying the condition

PrM∼Mn [B[M ] = 0] ≤ 1/2.

By Lemma 2.3 we can reduce this probability to 1/4 by increasing the size at most quadrat-
ically. This will only influence the constant in the exponent, so we can assume without loss
of generality that Π already has this property.
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Further, we observe that any clause C in Π that contains a pair of literals ¬pij,¬pi′j, for
some i 6= i′, can be replaced by the clause ¬pij ∨ ¬pi′j of PHPn that is at least as strong as
C. This may require some simple modification of the proof, but in any case the resulting
proof can only be smaller. Therefore, we can assume without loss of generality that every
clause C in Π contains at most one negative literal ¬pij for every j ∈ V , except for clauses
of the form ¬pij ∨ ¬pi′j.

We will use random restrictions twice. First we apply a random restriction to reduce the
width of B and then we apply it again to prove a fixing lemma. In this proof we will use a
less standard concept of width, introduced by Ajtai in [1]. For a clause C, we define wec(C),
the edge covering width or ec-width of C, to be the smallest size of a set W ⊆ U ∪ V that
covers all edges mentioned in C. Formally,

wec(C) := min{|W | | ∀i ∈ U, j ∈ V, (pij ∈ C ∨ ¬pij ∈ C)→ (i ∈ W ∨ j ∈ W )}.

If Φ is a CNF formula, then wec(Φ) is the maximum of the ec-widths of its clauses.
We will denote by Rm the set of partial matchings of size n − m equipped with the

uniform distribution. We will often identify ρ ∈ Rm with the following partial assignment:

1. set pij = 1 if (i, j) ∈ ρ,

2. set pij = 0 if (i, j) 6∈ ρ and either i or j is in the domain of ρ,

3. the value of pij is undefined otherwise.

The set of vertices covered by the matching ρ will be called the support of ρ and denoted by
supp(ρ).

Lemma 8.2 There exist constants c > 0 and 0 < d < 1 such that for every clause C and
every 1 ≤ ` ≤ n1/2,

Pr[wec(C
ρ) > `] ≤ d`,

where the probability is over ρ ∼ Rbcn1/4c.

Proof. We will use the following elementary estimate. Let X ⊆ [n], |X| = x and y ∈ N be
fixed, and choose Y ⊆ [n] with |Y | = y at random. Then

Pr[|X ∩ Y | ≥ `] ≤
(exy

n`

)`
. (2)

Given a clause C, let E+ ⊆ U × V be the bipartite graph determined by the positive
literals of C. Let E− ⊆ U × V be determined by the negative literals.

We will first prove that the width of the subclause of positive literals is small with high
probability. Let

A := {i ∈ U : degE+(i) ≥ 2n1/2`}.

We consider two cases.
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Case 1. Suppose |A| ≥ 2n1/2. We will show that in this case C is satisfied by ρ, and
hence wec(C

ρ) = 0, with high probability. Think of ρ being constructed by first selecting
its domain D ⊆ U and then gradually defining ρ(i) for i ∈ D, where we begin with pigeons
i ∈ A ∩D. Note that |A ∩D| ≥ 2n1/2 − cn1/4 ≥ n1/2 provided that n is large enough.

Suppose ρ(i) has been fixed for the first k < n1/2 elements i ∈ A ∩D. We will estimate
the probability that (i, ρ(i)) ∈ E+ for the next element i ∈ A ∩ D. Note that there are at
least 2n1/2` − k ≥ n1/2` neighbours of i in the graph E+ that are not in the range of ρ as
constructed so far. So the probability is at least n1/2`/n. Hence the probability that C is
not satisfied after the value of ρ(j) is decided for the first dn1/2e elements j ∈ A ∩D is

≤
(

1− n1/2`

n

)dn1/2e

= (1− o(1))e−`.

Case 2. Suppose |A| < 2n1/2. Let D ⊆ U and R ⊆ V denote respectively the domain
and range of ρ. Let H be the set of all E+-neighbours of U \ (A∪D). Then (A\D)∪ (H \R)
covers all edges (i, j), for pij ∈ Cρ, so for the lemma it is enough to show this set is small.

By applying (2) with Y = U \D, we have

Pr[|A \D| ≥ `/4] ≤
(

e · 2n1/2 · cn1/4

(n+ 1)`/4

)`/4
≤ c`1,

for some constant c1 < 1.
We have |H| ≤ cn1/4 · 2n1/2` = 2cn3/4`. Using (2) with Y = V \R, we have

Pr[|H \R| ≥ `/4] ≤
(

e · 2cn3/4` · cn1/4

n`/4

)`/4
= (4ec2)`/4,

which is exponentially small if 4ec2 < 1.

To prove that the width measured by the negative literals is also small, recall that the
degree of every j ∈ V in E− is at most 2. Hence the argument of Case 2 (with U and V
switched) gives us the required bound.

Needless to say, if both the positive and the negative parts of Cρ have ec-width ≤ `/2,
then wec(C

ρ) ≤ `.

Lemma 8.3 (fixing lemma) Let B be a CNF formula such that wec(B) ≤ ` and

PrM∼Mn [B[M ] = 1] ≥ 1/2.

Let ρ ∼ Rm, where ` < m < n. Then the probability that there exists an extension σ ⊇ ρ to
a partial matching such that |σ| < n and Bσ = 0 is at most

1

2
+
`m(m− 1)

n−m+ 1
.
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Proof. Let S0 := {ρ ∈ Rm | Bρ = 0}. Clearly, |S0|/|Rm| ≤ ε, because we can view
sampling Rm as follows. First choose a random size-n matching M ∈ Mn and then choose
randomly ρ ⊆M . If Bρ = 0 then also B[M ] = 0.

Let S1 be the set of all ρ ∈ Rm such that Bρ 6= 0 and there exists σ ⊇ ρ such that |σ| < n
and Bσ = 0. We will upper-bound |S1| by defining a one-to-one mapping θ : S1 → Rm−1×[`].

Let orderings of the clauses of B, of partial matchings, of elements of U ∪V and elements
of U × V be fixed. For every clause C of B, pick a set WC witnessing that wec(C) ≤ `. Let
ρ ∈ S1 be given.

Claim There exists a clause C in B and a pair (i, j) disjoint with ρ such that Cρ 6= 0,
Cσ′

= 0 for some σ′ ⊇ ρ ∪ {(i, j)}, and i ∈ WC or j ∈ WC.

Proof of claim. Take a clause C of B such that Cσ = 0 for some σ ⊇ ρ, |σ| < n. Since
Bρ 6= 0, and hence also Cρ 6= 0, there exists a pair (i, j) ∈ σ \ ρ and a literal z ∈ C such that
zρ = z and z{(i,j)} = 0. This can happen in several ways:

1. z is ¬pij, or

2. z is pij′ for some j′ 6= j, or

3. z is pi′j for some i′ 6= i.

In case 1 we take the pair (i, j). We do the same if i ∈ WC in case 2 or j ∈ WC in case 3.
Otherwise j′ ∈ WC in case 2 and i′ ∈ WC in case 3. Consider case 2. Then j′ may be in the
range of σ or may not, but if it is not, then we can extend σ to a partial matching σ′ that
contains j′ in its range, because |σ| < n. Thus either σ or σ′ has a pair (i′′, j′) such that
j′ ∈ WC and, certainly, Cσ′

= Cσ = 0. Case 3 is similar. This proves the claim.

Define θ : Rm → Rm−1 by θ(ρ) := (ρ ∪ {(i, j)}, k), where (i, j) is the first pair satisfying
the condition in the claim, and k is the order of i in WC , or the order of j in WC if i is not
in WC .

We need to show that θ is one-to-one. Let ρ′ := ρ∪{(i, j)}. Given ρ′, we can determine C,
because it is the first clause of B such that Cρ′ either is 0 or can be set to 0 by an extension
of ρ′. The number k determines which pair (x, y) ∈ ρ′ with the property “x ∈ WC or y ∈ WC”
is (i, j).

Thus |S1| is at most ` · |Rm−1|. Hence

Prρ∼Rm [ρ ∈ S1] ≤ `|Rm−1|
|Rm|

=
`
(
n+1
m−1

)(
n

m−2

)
(n+ 2−m)!(

n+1
m

)(
n

m−1

)
(n+ 1−m)!

=
`m(m− 1)

n−m+ 1
.

Now we can finish the proof of the theorem in a similar way as in the previous lower
bounds. Let ` = δn1/12 for a sufficiently small constant δ > 0. We will show that the
(1/4,Mn)-RR refutation Π of PHPn has size ≥ 1

2
(1/d)`, where d is the constant from

Lemma 8.2.
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For a contradiction, suppose that the size of Π is < 1
2
(1/d)`. Let n1 := bcn1/4c. For a

random ρ from Rn1 , the expected number of assignments from Mn that extend ρ and do
not satisfy Bρ is at most 1/4 of all assignments fromMn that extend ρ. Hence, by Markov’s
inequality, with probability ≥ 1/2 for a random ρ, Bρ is satisfied by at least 1/2 of such
assignments.

By Lemma 8.2, for a random ρ from Rn1 , all clauses of Bρ have ec-width at most ` with
probability > 1/2. Hence there exists ρ ∈ Rn1 such that both Bρ is satisfied by ≥ 1/2 of the
assignments extending ρ and all clauses of Bρ have ec-width ≤ `. We take the refutation Πρ

of Bρ ∧ PHPn1 obtained from Π by restricting by this particular ρ.

Next we apply Lemma 8.3 with n1 instead of n, and m = ηn
1/3
1 , where η > 0 is a

sufficiently small constant. The constants δ and η can, clearly, be chosen so that 2` < m
and the estimate on the probability in Lemma 8.3 is positive. Let Π′ be the refutation after
applying the restriction from Lemma 8.3 to Πρ. In this refutation the auxiliary clauses are
converted to clauses that cannot be falsified by any partial matching of size < m.

The rest of the proof is a standard adversary argument for proving a lower bound on
the width. We traverse Π′ from the empty clause at the bottom towards the initial clauses.
For each clause we consider, we find a partial matching σ such that supp(σ) ⊇ WC and
Cσ = 0. Without loss of generality we can furthermore assume that |σ| ≤ `, because C
is falsified by the edges of σ that are incident with WC . At the beginning we have σ = ∅.
When going through a resolution step where C is derived from C1 and C2, we extend, if
necessary, σ to σ′ in an arbitrary way to ensure WC1 ,WC2 ⊆ supp(σ′). This is possible,
because |WC1|+ |WC2| ≤ 2` < m. One of the clauses Ci must be falsified by σ′ because the
resolution rule is sound. We pick the falsified clause and, if necessary, reduce the size of the
restriction to ≤ `.

In this way we never reach an initial clause, because they cannot be falsified by par-
tial matchings of size < m. Hence such a refutation does not exist and |Π| ≥ 1

2
(1/d)` =

1
2
(1/d)δn

1/12
. (Recall that 1/d is a constant greater than 1.)

9 Stronger refutation systems

We will briefly discuss the possibility of defining stronger random refutation systems. We
speak about refutation systems, rather than proof systems, because we want to present then
as generalizations random resolution; this is not essential and one can equivalently present
these systems as proof systems with auxiliary formulas.

Given a refutation system P in which one can refute all unsatisfiable CNFs, we define
ε-random P distributions and ε-random P refutations exactly as in Definitions 1.1 and 2.5,
except that we replace resolution refutations with refutations in P . Note that the refuted
formulas F and auxiliary formulas B are still CNFs, no matter whether the refutation system
also uses more complex formulas. This is essential because otherwise we may be able to refute
every formula trivially.2

2Certainly, some generalizations are possible; for example, cutting planes with auxiliary sets of inequali-
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To give an example of a nontrivial random refutation system, we consider the random
constant depth Frege system. By Proposition 6.2 and Theorem 6.5, this system is stronger
than random resolution, since it has polynomial size refutations of CPLS2. We will show
that it does not have subexponential size refutations of the pigeonhole principle.

Theorem 9.1 PHPn has no 1/2-random constant depth Frege distribution of subexponential
size.

Proof. (sketch) To prove the theorem, we will combine the proof of Theorem 8.1 with a lower
bound on constant depth Frege proofs.

We start by observing that Definition 2.7 and Proposition 2.8 can be adapted to the
random constant depth Frege system, so it suffices to prove a lower bound on 1/2-random
constant depth Frege refutations with respect to the same distributions on partial assign-
ments as in the proof of Theorem 8.1, namely partial matchings of appropriate sizes.

Let such a refutation (B,Π) of PHPn be given. In the first phase, we focus on the
auxiliary CNF B. We apply random restrictions to reduce the ec-width of clauses in B and
to “fix” it in the sense of Lemma 8.3. Note that once we “fix” B, the ec-width of B will play
no role in the rest of the proof.

In the second phase, we apply random restrictions again, this time to define an evaluation
of formulas in the refutation. The concept of evaluation was introduced in [18]; here we
will use the simplified version of Urquhart and Fu [24]. An evaluation is an assignment of
matching decision trees to all formulas of the refutation and their subformulas. (We will
define matching decision trees below.) We say that a formula is evaluated true (false) if the
tree assigned to it has all leaves labeled 1 (respectively 0). Evaluations have three basic
properties:

1. the clauses of PHPn are evaluated true,

2. Frege rules preserve the property of being evaluated true, and

3. the contradiction ⊥ is evaluated false.

Hence the existence of an evaluation of a set of bounded depth formulas implies that the set
is not a refutation of PHPn. In the usual proof of the lower bound on bounded depth Frege
refutations of PHPn one shows, that given a set Φ of depth-d formulas of size ≤ 2n

δd , for
some constant δd > 0, then after hitting Φ by a random restriction ρ ∈ Rm, for a sufficiently
small m, there exists an evaluation of formulas Φρ. Thus one gets a lower bound of 2n

δd on
the size of depth-d Frege refutations of PHPn.

In the case of random constant depth Frege refutations, the assumptions of the refutation
moreover include B. It follows that for our lower bound, it suffices to prove that B is also
evaluated true. But this is exactly what the fixing lemma guarantees.

We will now define matching decision trees and explain the last argument in more detail.
A matching decision tree T is a finite labeled rooted tree where each node that is not a leaf

ties, instead of CNFs, seem to be a nontrivial random refutation system.
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is labeled by an element v ∈ U ∪ V , the leaves are labeled by 0s and 1s, and the edges of
T are labeled by pairs (u, v) ∈ U × V where u, or v is the label of the upper vertex of the
labeled edge. The labeling furthermore must satisfy the following two conditions.

1. For every branch b of T , the labels of the edges of b are disjoint, i.e., they form a partial
matching.

2. Let s be a node of T , let v be its label, and let ρ be the partial matching defined by
the path from the root to s. If s is not a leaf, then the labels of the outgoing edges of
s are all pairs (v, u) (or (u, v), depending on whether v ∈ U or v ∈ V ) that are disjoint
with ρ.

To get some intuition, imagine that there is a bijection f between U and V (which, in reality,
is impossible) and that T represents a subject querying f about the holes associated with
pigeons and the pigeons associated with holes. After a certain number of queries, the subject
decides to accept, or to reject f .

We say that a matching decision tree T represents a formula φ if the following condition
is satisfied.

(*) For every branch b, if ρ is the partial matching defined by b and a ∈ {0, 1} is the label
of the leaf of b, then φρ = a.

Evaluations are defined by several conditions, but this property of evaluations is all we need
to prove that all clauses of B are evaluated true. Indeed, suppose that B is not evaluated as
true. Then the tree assigned to B has some branch with label 0. Thus, according to (*), we
get some partial matching ρ such that Bρ = 0. But the condition that Fixing Lemma 8.3
guarantees with high probability is that such a ρ does not exist and this is the condition
that we ensured in the first phase of our proof.
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