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Abstract

We survey the computational foundations for public-key cryptography. We discuss the com-
putational assumptions that have been used as bases for public-key encryption schemes, and
the types of evidence we have for the veracity of these assumptions.

1 Introduction

Let us go back to 1977. The first (or fourth, depending on your count) “Star Wars” movie was re-
leased, ABBA recorded “Dancing Queen” and in August, Martin Gardner described in his Scientific
American column the RSA cryptosystem [RSA78], whose security relies on the difficulty of integer
factoring. This came on the heels of Diffie, Hellman, and Merkle’s 1976 invention of public-key
cryptography and the discrete-logarithm based Diffie–Hellman key exchange protocol [DH76b].

Now consider an alternative history. Suppose that, in December of that year, a mathematician
named Dieter Chor discovered an efficient algorithm to compute discrete logarithms and factor
integers. One could imagine that, in this case, scientific consensus would be that there is some-
thing inherently impossible about the notion of public-key cryptography, which anyway sounded
“too good to be true”. In the ensuing years, people would occasionally offer various alternative
constructions for public-key encryption, but, having been burned before, the scientific and techno-
logical communities would be wary of adapting them, and treat such constructions as being insecure
until proven otherwise.

This alternative history is of course very different from our own, where public-key cryptography
is a widely studied and implemented notion. But are the underlying scientific facts so different?
We currently have no strong evidence that the integer factoring and discrete logarithm problems
are actually hard. Indeed, Peter Shor [Sho97] has presented an algorithm for this problem that
runs in polynomial time on a so-called “quantum computer”. While some researchers (including
Oded Goldreich [Gole, Golg]) have expressed deep skepticism about the possibility of physically
implementing this model, the NSA is sufficiently concerned about this possibility to warn that
government and industry should transition away from these cryptosystems in the “not too far
future” [NSA15]. In any case we have no real justification to assume the nonexistence of a clas-
sical (i.e., not quantum) algorithm for these problems, especially given their strong and not yet
fully understood mathematical structure and the existence of highly non trivial subexponential
algorithms [LLJMP90, COS86].

In this tutorial I want to explore the impact on the theory of cryptography of such a hypo-
thetical (or perhaps not so hypothetical) scenario of a breakthrough on the discrete logarithm and
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factoring problems, and use this as a launching pad for a broader exploration of the role of hard-
ness assumptions in our field. I will discuss not just the mathematical but also the social and
philosophical aspects of this question. Such considerations play an important role in any science,
but especially so when we deal with the question of which unproven assumptions we should believe
in. This is not a standard tutorial or a survey, in the sense that it is more about questions than
answers, and many of my takes on these questions are rather subjective. Nevertheless, I do think
it is appropriate that students or anyone else who is interested in research on the foundations of
cryptography consider these types of questions, and form their own opinions on the right way to
approach them.

Acknowledgements. This survey is written in honor of Oded Goldreich’s 60th birthday. I
was first exposed to the beauty of the foundations of cryptography through Oded, and while we
may not always agree on specific issues, his teachings, writing, and our discussions have greatly
influenced my own views on this topic. Oded wrote many essays worth reading on issues related
to this survey, such as subjectivity and taste in science [Gola], computational assumptions in
cryptography [Gold, Golb], as well as the distinction between pure and applied (or “intellectual”
versus “instrumental”) science [Golc, Golf]. I also thank Benny Applebaum, Nir Bitansky, and Shai
Halevi for extremely insightful comments on earlier versions of this survey that greatly improved
its presentation.

1.1 What Is Special About Public-Key Cryptography?

Perhaps the first instance of an unjustified subjective judgment in this survey is my singling out of
the integer factoring and discrete logarithm problems, as well as other “public key type” assump-
tions, as particularly deserving of suspicion. After all, given that we haven’t managed to prove
P 6= NP , essentially all cryptographic primitives rest on unproven assumptions, whether it is the
difficulty of factoring, discrete log, or breaking the AES cipher. Indeed, partially for this reason,
much of the work on theoretical cryptography does not deal directly with particular hard prob-
lems but rather builds a web of reductions between different primitives. Reduction-based security
has been a resounding success precisely because it allows to reduce the security of a great many
cryptographic constructions to a relatively small number of simple-to-state and widely studied as-
sumptions. It helped change cryptography from an alchemy-like activity which relied on “security
by obscurity” to a science with well-defined security properties that are obtained under precisely
stated conjectures, and is often considered the strongest component in secure applications.

Given the above, one can think of the canonical activity of a theoretical cryptographer as con-
structing a new (typically more sophisticated or satisfying stricter security notions) cryptographic
primitive from an old primitive (that would typically be simpler, or easier to construct).1 The
“bottommost layer” of such primitives would have several candidate constructions based on various
hardness assumptions, and new developments in cryptanalytic algorithms would simply mean that
we have one fewer candidate.

The intuition above is more or less accurate for private-key cryptography. Over the last three
decades, cryptographers have built a powerful web of reductions showing constructions of a great

1For example, by my rough count, out of the nearly 800 pages of Goldreich’s two-volume canonical text [Gol01,
Gol04], fewer than 30 deal with concrete assumptions.
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many objects from the basic primitive of one-way functions.2 And indeed, as discussed in Section 2
below, we do have a number of candidate constructions for one way functions, including not just
constructions based on factoring and discrete logarithms, but also constructions based on simple
combinatorial problems such as planted clique [JP00], random SAT [AC08], Goldreich’s expander-
based candidate [Gol11], as well as the many candidate block ciphers, stream ciphers, and hash
functions such as [DR13, NIS02, Ber08, BDPVA11] that are widely used in practice and for many
of which no significant attacks are known despite much cryptanalytic effort.

However, for public-key cryptography, the situation is quite different. There are essentially only
two major strains of public-key systems.3 The first family consists of the “algebraic” or “group-
theoretic” constructions based on integer factoring and the discrete logarithm problems, including
the Diffie–Hellman [DH76b] (and its elliptic curve variants [Mil85, Kob87]), RSA [RSA78], Ra-
bin [Rab79], Goldwasser–Micali [GM82] schemes and more. The second family consists of the “ge-
ometric” or “coding/lattice”-based systems of the type first proposed by McEliece [McE78] (as well
as the broken Merkle-Hellman knapsack scheme [MH78]). These were invigorated by Ajtai’s paper
on lattices [Ajt96], which was followed by the works of Ajtai-Dwork [Aw97], Goldreich-Goldwasser-
Halevi [GGH97], and Hoffstein et al. [HPS98] giving public-key systems based on lattices, and by
the later work of Regev [Reg09] who introduced the Learning With Errors (LWE) assumption and
showed its equivalence to certain hardness assumptions related to lattices.4

The known classical and quantum algorithms call into question the security of schemes based
on the algebraic/group-theoretic family. After all, as theoreticians, we are interested in schemes
for which efficient attacks are not merely unknown but are nonexistent. There is very little evi-
dence that this first family satisfies this condition. That still leaves us with the second family of
lattice/coding-based systems. Luckily, given recent advances, there is almost no primitive achieved
by the group-theoretic family that cannot be based on lattices, and in fact many of the more
exciting recent primitives, such as fully homomorphic encryption [Gen09] and indistinguishability
obfuscation [GGH+13], are only known based on lattice/coding assumptions.

If, given these classical and quantum algorithms, we do not want to trust the security of these
“algebraic”/“group theoretic” cryptosystems, we are left in the rather uncomfortable situation
where all the edifices of public-key cryptography have only one foundation that is fairly well studied,
namely the difficulty of lattice/coding problems. Moreover, one could wonder whether talking
about a ”web of abstractions” is somewhat misleading if, at the bottommost layer, every primitive
has essentially only a single implementation. This makes it particularly important to find out
whether pubic key cryptography can be based on radically different assumptions. More generally,
we would like to investigate the “assumption landscape” of cryptography, both in terms of concrete
assumptions and in terms of relations between different objects. Such questions have of course
interested researchers since the birth of modern cryptography, and we will review in this tutorial
some of the discoveries that were made, and the many open questions that still remain.

2These include some seemingly public-key notions such as digital signatures which were constructed from one-way
functions using the wonderful and surprising notion of pseudorandom functions put forward by Goldreich, Goldwasser,
and Micali [GGM86], as well as universal one-way hash functions [NY89, Rom90].

3I think this is a fair statement in terms of all systems that have actually been implemented and widely used
(indeed by the latter metric, one might say there is only one major strain). However, as we will discuss in Section 5
below, there have been some alternative suggestions, including by this author.

4Admittedly, the distinction into “geometric” versus “algebraic” problems is somewhat subjective and arbitrary. In
particular, lattices or linear codes are also Abelian groups. However, the type of problems on which the cryptographic
primitives are based are more geometric or “noisy” in nature, as opposed to the algebraic questions that involve exact
group structure.
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Remark 1.1. One way to phrase the question we are asking is to understand what type of structure
is needed for public-key cryptography. One-way functions can be thought of as a completely
unstructured object, both in the sense that they can be implemented from any hard-on-the-average
search or “planted” problem [IL89], as well as that they directly follow from functions that have
pseudorandom properties. In contrast, at least at the moment, we do not know how to obtain
public-key encryption without assuming the difficulty of structured problems, and (as discussed in
Remark 3.1) we do not know how to base public-key encryption on private-key schemes. The extent
to which this is inherent is the topic of this survey; see also my survey [Bar14] for more discussion
on the role of structure in computational difficulty.

1.2 Organization

In the rest of this tutorial we discuss the assumption landscape for both private and public-key
cryptography (see Sections 2 and 3, respectively). Our emphasis is not on the most efficient schemes,
nor on the ones that provide the most sophisticated security properties. Rather we merely attempt
to cover a sample of candidate constructions that represents a variety of computational hardness
assumptions. Moreover, we do not aim to provide full mathematical descriptions of those schemes—
there are many excellent surveys and texts on these topics— but rather focus on their qualitative
features.

Many of the judgment calls made here, such as whether two hardness assumptions (that are
not known to be equivalent) are “similar” to one another, are inherently subjective. Section 6 is
perhaps the most subjective part of this survey , where we attempt to discuss what it is about a
computational problem that makes it hard.

2 Private-Key Cryptography

Before talking about public-key cryptography, let us discuss private-key cryptography, where we
have a much cleaner theoretical and practical picture of the landscape of assumptions. The funda-
mental theoretical object of private-key cryptography is a one-way function:

Definition 1 (One-way function). A function F : {0, 1}∗ → {0, 1}∗ is a one-way function if there
is a polynomial-time algorithm mapping r ∈ {0, 1}∗ to F (r) and for every probabilistic polynomial-
time algorithm A, constant c, and sufficiently large n,

Pr
w=F (r);r←R{0,1}n

[F (A(w)) = w] < n−c .

We denote by OWF the conjecture that one-way functions exist.

While a priori the definition of one-way functions does not involve any secret key, in a large
body of works it was shown (mainly through the connection to psuedorandomness enabled by the
Goldreich–Levin theorem [GL89]) that OWF is equivalent to the existence of many cryptographic
primitives including:

• Pseudorandom generators [HILL99]

• Pseudorandom functions and message authentication codes [GGM86]
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• Digital signatures [Rom90]5

• Commitment schemes [Nao91].

• Zero knowledge proofs for every language in NP [GMW87].6

(See Goldreich’s text [Gol01, Gol04] for many of these reductions as well as others.)
Thus, OWF can be thought of as the central conjecture of private-key cryptography. But what

is the evidence for the truth of this conjecture?

2.1 Candidate Constructions for One-Way Functions

”From time immemorial, humanity has gotten frequent, often cruel, reminders that
many things are easier to do than to reverse”, Leonid Levin.

The main evidence for the OWF conjecture is that we have a great number of candidate con-
structions for one-way functions that are potentially secure. Indeed, it seems that “you can’t throw
a rock without hitting a one-way function” in the sense that, once you cobble together a large
number of simple computational operations then, unless the operations satisfy some special prop-
erty such as linearity, you will typically get a function that is hard to invert (indeed, people have
proposed some formalizations of this intuition, see Sections 2.1.4 and 2.1.5). Here are some example
candidate constructions for one-way functions:

2.1.1 Block Ciphers, Stream Ciphers and Hash Functions

Many practical constructions of symmetric key primitives such as block ciphers, stream ciphers,
and hash functions are believed to satisfy the security definitions of pseudorandom permutations,
pseudorandom generators, and collision-resistant hash functions, respectively. All these notions
imply the existence of one-way functions, and hence these primitives all yield candidate one-way
functions. These constructions (including DES, AES, SHA-x, etc.) are typically described in terms
of a fixed finite input and key size, but they often can be naturally generalized (e.g., see [MV12]).
Note that practitioners often require very strong security from these primitives, and any attack
faster than the trivial 2n (where n is the key size, block size, etc.) is considered a weakness.
Indeed, for many constructions that are considered weak or ”broken”, the known attacks still
require exponential time (albeit with an exponent much smaller than n).7

5While from the perspective of applied cryptography, digital signatures are part of public-key cryptography, from
our point of view of computational assumptions, they belong in the private-key world. We note that the current
constructions of digital signatures from symmetric primitives are rather inefficient, and there are some negative
results showing this may be inherent [BM07].

6Actually, zero-knowledge proofs for languages outside of P imply a slightly weaker form of “non-uniform” one-way
functions, see [OW93].

7The claim that is easy to get one-way functions might seem contradictory to the fact that there have been
successful cryptanalytic attacks even against cryptographic primitives that were constructed and widely studied by
experts. However, practical constructions aim to achieve the best possible efficiency versus security tradeoff, which
does require significant expertise. If one is fine with losing, say, a factor 100 in the efficiency (e.g., build a 1000-round
block cipher instead of a 10-round one), then the task of constructing such primitives becomes significantly easier.
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2.1.2 Average Case Combinatorial Problems: Planted SAT, Planted Clique, Learning
Parity with Noise

A planted distribution for an NP problem can be defined as follows:

Definition 2 (NP relations and planted problems). A relation R ⊆ {0, 1}∗ × {0, 1}∗ is an NP
relation if there is a polynomial p(·) such that |y| ≤ p(|x|) for every (x, y) ∈ R and there is a
polynomial-time algorithm M that on input (x, y) outputs 1 iff (x, y) ∈ R.

A probabilistic polynomial-time algorithm G is a sampler for R if, for every n, G(1n) outputs
with probability 1 a pair (x, y) such that (x, y) ∈ R.

We say that an algorithm A solves the planted problem corresponding to (G,R) if, for every n,
with probability at least 0.9, (x,A(x)) ∈ R where (x, y) is sampled from G(1n).

We say that the planted problem corresponding to (G,R) is hard if there is no probabilistic
polynomial-time algorithm that solves it.

The following simple lemma shows that hard planted problems imply the OWF conjecture:

Lemma 2.1. Suppose that there exists a hard planted problem (G,R). Then there exists a one-way
function.

Proof. We will show that a hard planted problem implies a weak one-way function, which we define
here as a function F such that for every probabilistic polynomial-time A and sufficiently large m,

Pr
x=F (r);r←R{0,1}m

[F (A(x)) = x] < 0.9 . (1)

That is, we only require that an adversary fails to invert the function with probability larger than
90%, as opposed to nonnegligible probability as required in Definition 1. It is known that the
existence of weak one-way functions implies the existence of strong ones (e.g., see [IL89],[Gol01,
Sec 2.3]). Let G be a generator for a hard planted problem and let R be the corresponding
relation. By padding, we can assume without loss of generality that the number of coins that G
uses on input 1n is nc for some integer c ≥ 1. For every r ∈ {0, 1}∗, we define F (r) = x where
(x, y) = G(1n; r1 . . . rnc) where n = b|r|1/cc, and G(1n; r) denotes the output of G on input 1n and
coins r.

We now show that F is a weak one-way function. Indeed, suppose towards a contradiction that
there exists a probabilistic polynomial-time algorithm A violating (1) for some sufficiently large m,
and let n = bm1/cc. This means that

Pr
(x,y)=G(1n;r1,...,n);r←R{0,1}m

[G(1n;A(x)) = x] ≥ 0.9 ,

which in particular implies that, if we let A′(x) = G(1n;A(x)), then with probability at least 0.9,
A′(x) will output a pair (x′, y′) with x′ = x and (x′, y′) ∈ R (since the latter condition happens with
probability 1 for outputs of G). Hence we get a polynomial-time algorithm to solve the planted
problem with probability at least 0.9 on length n inputs.

Using this connection, there are several natural planted problems that give rise to candidate
one way functions:
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The planted clique problem: It is well known that, in a random Erdős–Rényi graph Gn,1/2
(where every pair gets connected by an edge with probability 1/2), the maximum clique size will
be (2− o(1)) log n [GM75, BE76]. However, the greedy algorithm will find a clique of only 1 · log n
size, and Karp asked in 1976 [Kar76] whether there is an efficient algorithm to find a clique of size
(1 + ε) log n. This remains open till this day. In the 1990s, Jerrum [Jer92] and Kucera [Kuc95]
considered the easier variant of whether one can find a clique of size k � log n that has been planted
in a random graph by selecting a random k-size set and connecting all the vertices in it. The larger
k is, the easier the problem, and at the moment no polynomial-time algorithm is known for this
question for any k = o(

√
n). By the above discussion, if this problem is hard for any k > 2 log n,

then there exists a one-way function. Juels and Peinado [JP00] showed that, for k = (1 + ε) log n,
the planted distribution is statistically close to the uniform distribution. As a result there is a hard
planted distribution (and hence a one-way function) as long as the answer to Karp’s question is
negative.

Planted constraint satisfaction problems: A (binary alphabet) constraint satisfaction prob-
lem is a collection of functions C = {C1, . . . , Cm} mapping {0, 1}n to {0, 1} such that every function
Ci depends on at most a constant number of the input bits. The value of C w.r.t. an assignment
x ∈ {0, 1}n is defined as 1

m

∑m
i=1Ci(x). The value of C is its maximum value over all assignments

x ∈ {0, 1}n.
There are several models for random constraint satisfaction problems. One simple model is the

following: for every predicate P : {0, 1}k → {0, 1} and numbers n,m, we can select C1, . . . , Cm by
choosing every Ci randomly and independently to equal P (y1, . . . , yk) where y1, . . . , yk are random
and independent literals (i.e., equal to either xj or to 1− xj for some random j). Using standard
measure concentration results, the following can be shown:

Lemma 2.2. For predicate P : {0, 1}k → {0, 1} and every ε > 0 there exists some constant
α (depending on k, ε) such that, if m > αn and C = (C1, . . . , Cm) is selected at random from
the above model, then with probability at least 1 − ε, the value of C is in [µ − ε, µ + ε] where
µ = Ex←R{0,1}k [P (x)].

There are several planted models where, given x ∈ {0, 1}n, we sample at random an instance
C such that the value of C w.r.t. x is significantly larger than µ. Here is one model suggested in
[BKS13]:

Definition 3. Let P, n,m be as above, let x ∈ {0, 1}n, and D be some distribution over {0, 1}k. The
(D, δ, x) planted model for generating a constraint satisfaction problem is obtained by repeating the
following for i = 1, . . . ,m: with probability δ sample a random constraint Ci as above; otherwise
sample a string d from D, and sample y1, . . . , yk to be random literals as above conditioned on the
event that these literals applied to x yield d, and let Ci be the constraint P (y1, . . . , yk).

Analogously to Lemma 2.2, if C is sampled from the (D, δ, x) model, then with high probability
the value of C w.r.t. x will be at least (1− δ)µD− ε where µD = Ex←RD[P (x)]. If µD > µ, then we
can define the planted problem as trying to find an assignment with value at least, say, µD/2+µ/2.
[BKS13] conjectured that this planted problem is hard as long as D is a pairwise independent
distribution. This conjecture immediately gives rise to many candidate one-way functions based
on predicates such as k-XOR, k-SAT, and more.

It was shown by Friedgut [Fri99] that every random constraint satisfaction problem satisfies a
threshold condition in the sense that, for every ε, as n grows, there is a value m(n) such that the
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probability that a random instance of (1 − ε)m(n) constraints has value 1 is close to 1, while the
probability that a random instance of (1 + ε)m(n) has value 1 is close to 0. It is widely believed
that the value m(n) has the value α∗n for some constant α∗ depending on the problem (and are
concrete guesses for this constant for many predicates) but this has not yet been proven in full
generality and in particular the case of 3SAT is still open. It is also believed that, for k sufficiently
large (possibly even k = 3 is enough), it is hard to find a satisfying (i.e., value 1) assignment for a
random k-SAT constraint satisfaction problem where m(n) is very close (but below) the threshold.
Using a similar reasoning to [JP00] (but much more sophisticated techniques), Achlioptas and
Coja-Oghlan [AC08] showed that this conjecture implies the hardness of a certain planted variant
and hence yields another candidate for one-way functions.

2.1.3 Unsupervised learning and Distributional One-Way Functions

Unsupervised learning applications yield another candidate for one-way functions. Here one can
describe a model M as a probabilistic algorithm that, given some parameters θ ∈ {0, 1}n, samples
from some distribution M(θ). The models studied in machine learning are all typically efficiently
computable in the forward direction. The challenge is to solve the inference problem of recovering
θ (or some approximation to it) given s independent samples x1, . . . , xs from M(θ).8

Consider s that is large enough so that the parameters are statistically identifiable.9 For sim-
plicity, let us define this as the condition that, for every θ, with high probability over the choice of
x = (x1, . . . , xs) from M(θ), it holds that

Pθ′(x)� 2−nPθ(x) (2)

for every θ′ 6= θ, where for every set of parameters ϑ and x = (x1, . . . , xs),

Pϑ(x) =

s∏
i=1

Pr[M(ϑ) = xi] .

Now, suppose that we had an algorithm A that, given x = (x1, . . . , xs), could sample uni-
formly from the distribution on uniform parameters θ′ and random coins r1, . . . , rs conditioned on
M(θ′; ri) = xi for all i ∈ {1, . . . , s}. Then (2) implies that, if the elements in x itself were sampled
from M(θ) then with probability 1 − o(1) the first output θ′ of A will equal θ. Thus, if there is
a number of samples s where the unsupervised learning problem for M is statistically identifiable
but computationally hard, then the process θ, r1, . . . , rs 7→M(θ; r1), . . . ,M(θ; rs) is hard to invert
in this distributional sense. But Impagliazzo and Luby [IL89] showed that the existence of not just
weak one-way functions but even distributional one-way functions implies the existence of standard
one-way functions, and hence any computationally hard unsupervised learning problem yields such
a candidate.

The Learning Parity with Noise (LPN) problem is one example of a conjectured hard unsu-
pervised learning problem that has been suggested as a basis for cryptography [GKL93, BFKL93].
Here the parameters of the model are a string x ∈ {0, 1}n and a sample consists of a random

8This is a very general problem that has been considered in other fields as well, often under the name “parameter
estimation problem” or “inverse problem”, e.g., see [Tar05].

9In many applications of machine learning, the parameters come from a continuous space, in which case they are
typically only identifiable up to a small error. For simplicity, we ignore this issue here, as it is not very significant in
our applications.
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a ∈ {0, 1}n and a bit b = 〈a, x〉 + η (mod 2), where η is chosen to equal 0 with probability 1 − δ
and 1 with probability δ for some constant δ > 0. Using concentration of measure one can show
that this model is statistically identifiable as long as the number of samples s is at least some
constant times n, but the best known “efficient” algorithm requires exp(Θ(n/ log n)) samples and
running time [BKW03] ([Lyu05] improved the number of samples at the expense of some loss in
error and running time). Thus, if this algorithm cannot be improved to work in an optimal number
of samples and polynomial time, then one-way functions exist.10

2.1.4 Goldreich’s One-Way Function Candidate

Goldreich has proposed a very elegant concrete candidate for a one-way function [Gol11] which has
caught several researchers’ interest. Define an (n,m, d) graph to be a bipartite graph with n left
vertices, m right vertices, and right degree d. Goldreich’s function GolH,P : {0, 1}n → {0, 1}m is
parameterized by an (n,m, d) graph H and a predicate P : {0, 1}d → {0, 1}. For every x ∈ {0, 1}m
and j ∈ [m], the jth output bit of Goldreich’s function is defined as GolH,P (x)j = P (x←−

Γ H(j)
), where

we denote by
←−
ΓH(j) the set of left-neighbors of the vertex j in H, and xS denotes the restriction

of x to the coordinates in S.
Goldreich conjectured that this function is one way as long as P is sufficiently “structureless”

and H is a sufficiently good expander. Several follow-up works showed evidence for this conjecture
by showing that it is not refuted by certain natural families of algorithms [CEMT09, Its10]. Other
works showed that one needs to take care in the choice of the predicate P and ensure that it is
balanced, as well as not having other properties that might make the problem easier [BQ12]. Later
works also suggested that Goldreich’s function might even be a pseudorandom generator [ABW10,
App12, OW14]. See Applebaum’s survey [App15] for more about the known constructions, attacks,
and (several surprising) applications of Goldreich’s function and its variants.

2.1.5 Random Circuits

Perhaps the most direct formalization of the intuition that if you cobble together enough operations,
then you get a one-way function comes from a conjecture of Gowers [Gow96] (see also [HMMR05]).
He conjectured that for every n, there is some polynomial m = m(n) such that, if we choose
a sequence σ = (σ1, . . . , σm) of m random local permutations over {0, 1}n, then the function
σ1 ◦ · · ·σm would be a pseudorandom function. We say that σ : {0, 1}n → {0, 1}n is a local
permutation if it is obtained by applying a permutation on {0, 1}3 on three of the input bits. That
is, there exist i, j, k ∈ [n] and a permutation π : {0, 1}3 → {0, 1}3 such that σ(x)` = x` if ` 6∈ {i, j, k}
and σ(x)i,j,k = π(xi, xj , xk). The choice of the sequence σ consists of the seed for the pseudorandom
function. Since pseudorandom functions imply one-way functions, this yields another candidate.

10Clearly, the lower the noise parameter δ, the easier this problem, but the best known algorithm requires δ to
at most a logarithmic factor away from the trivial bound of δ = 1/n (where with good probability one could get
n non-noisy linear equations). As δ becomes smaller, and in particular smaller than 1/

√
n, the problem seems to

acquire some structure and becomes more similar to the learning with errors problem discussed in Section 4.2 below.
Indeed, as we mention there, in this regime Alekhnovich [Ale11] showed that the learning parity with noise problem
can yield a public-key encryption scheme.
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2.1.6 Private-Key Cryptography from Public-Key Assumptions

While it is an obvious fact, it is worth mentioning that all the assumptions implying public-key
cryptography also imply private-key cryptography as well. Thus one can obtain one-way functions
based on the difficulty of integer factoring, discrete logarithm, learning with errors, and all of
the other assumptions that have been suggested as bases for public-key encryption and digital
signatures.

3 Public-Key Cryptography: an Overview

We have seen that there is a wide variety of candidate private-key encryption schemes. From a
superficial search of the literature, it might seem that there are a great many public-key systems as
well. However, the currently well-studied candidates fall into only two families: schemes based on
the difficulty of algebraic problems on certain concrete Abelian groups, and schemes based on the
difficulty of geometric problems on linear codes or integer lattices; see Figure 1.

Family Sample cryptosys-
tems

Structural properties

“Algebraic”
family:
Abelian groups

Diffie–Hellman (El-
Gamal, elliptic curve
cryptography), RSA

Polynomial-time quantum al-
gorithm, subexponential clas-
sical algorithms (for all but
elliptic curves), can break in
NP ∩ coNP

“Geometric”
family: coding
/ lattices

Knapsack (Merkle–
Hellman), McEliece,
Goldreich–
Goldwasser–Halevi,
Ajtai–Dwork, NTRU,
Regev

Can break in NP ∩ coNP or
SZK. Non trivial classical and
quantum algorithms for spe-
cial cases (knapsack, principal
ideal lattices)

Figure 1: The two “mainstream” families of public-key cryptosystems

Do these two families contain all the secure public schemes that exist? Or perhaps (if you think
large-scale quantum computing could become a reality, or that the existing classical algorithms
for the group-based family could be significantly improved) are lattices/codes the only source for
secure public-key cryptography? The short answer is that we simply do not know, but in this
survey I want to explore the long answer.

We will discuss some of the alternative public-key systems that have been proposed in the
literature (see Section 5 and Figure 3) and ask what is the evidence for their security, and also to
what extent are they truly different from the first two families. We will also ask whether this game
of coming up with candidates and trying to break them is the best we can do or is there a more
principled way to argue about the security of cryptographic schemes.

As mentioned, our discussion will be inherently subjective. I do not know of an objective way
to argue that two cryptographic schemes belong to the “same family” or are “dissimilar”. Some
readers might dispute the assertion that there is any crisis or potential crisis in the foundations of
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public-key cryptography, and some might even argue that there is no true difference between our
evidence for the security of private and public-key cryptography. Nevertheless, I hope that even
these readers will find some “food for thought” in this survey which is meant to provoke discussion
more than to propose any final conclusions.

Remark 3.1. One could ask if there really is an inherent difference between public-key and private-
key cryptography or maybe this is simply a reflection of our ignorance. That is, is it possible to
build a public-key cryptosystem out of an arbitrary one-way function and hence base it on the
same assumptions as private-key encryption? The answer is that we do not know, but in a seminal
work, Impagliazzo and Rudich [IR89] showed that this cannot be done via the standard form of
black-box security reductions. Specifically, they showed that, even given a random oracle, which
is an idealized one-way function, one cannot construct a key-exchange protocol with a black-box
proof that is secure against all adversaries running in polynomial time (or even ω(n6) time, where
n is the time expended by the honest parties). Barak and Mahmoody [BM09] improved this to
ω(n2) time, thus matching Merkle’s 1974 protocol discussed in Section 5.1 below.

4 The Two “Mainstream” Public-Key Constructions

I now discuss the two main families of public-key constructions- ones that have their roots in the
very first systems proposed by Diffie and Hellman [DH76b], Rivest Shamir and Adleman [RSA78],
Rabin [Rab79], Merkle and Hellman [MH78], and McEliece [McE78] in the late 1970s.

4.1 The “Algebraic” Family: Abelian-Group Based Constructions

Some of the first proposals for public-key encryption were based on the discrete logarithm and the
factoring problems, and these remain the most widely deployed and well-studied constructions.
These were suggested in the open literature by Diffie and Hellman [DH76b], Rivest, Shamir, and
Adelman [RSA78] and Rabin [Rab79], and in retrospect we learned that these scheme were dis-
covered a few years before in the intelligence community by Ellis, Cocks, and Williamson [Ell99].
Later works by Miller [Mil85] and Koblitz [Kob87] obtained analogous schemes based on the discrete
logarithm in elliptic curve groups.

These schemes have a rich algebraic structure that is essential to their use in the public-key
setting, but also enable some nontrivial algorithmic results. These include the following:

• The factoring and discrete logarithm problems both fall in the class TFNP, which are NP
search problems where every input is guaranteed to have a solution. Problems in this class
cannot be NP-hard via a Cook reduction unless NP = coNP [MP91].11 There are also some
other complexity containments known for these problems [GK93, BO06].

• The integer factoring problem and discrete logarithm problem over Z∗p have subexponential

algorithms running in time roughly exp(Õ(n1/3)), where n is the bit complexity [LLJMP90].

• Very recently, quasipolynomial -time algorithms were shown for the discrete logarithm over
finite fields of small characteristic [JP16].

11The proof is very simple and follows from the fact that, if SAT could be reduced via some reduction R to a
problem in TFNP, then we could certify that a formula is not in SAT by giving a transcript of the reduction.
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• There is no general sub-exponential discrete logarithm algorithm for elliptic curves, though
sub-exponential algorithms are known for some families of curves such as those with large
genus [ADH99]

• Shor’s algorithm [Sho97] yields a polynomial time quantum algorithm for both the factoring
and discrete logarithm problem.

4.2 The “Geometric Family”: Lattice/Coding/Knapsack-Based Cryptosystems

The second type of public-key encryption candidates also have a fairly extended history.12 Merkle
and Hellman proposed in 1978 their knapsack scheme [MH78] (which, together with several of its
variants, was later broken by lattice reduction techniques [Sha83]). In the same year, McEliece pro-
posed a scheme based on the Goppa code [McE78]. In a seminal 1996 work, Ajtai [Ajt96] showed
how to use integer lattices to to obtain a one-way function based on worst-case assumptions. Moti-
vated by this work, Goldreich, Goldwasser, and Halevi [GGH97], as well as Ajtai and Dwork [Aw97]
gave lattice-based public-key encryption schemes (the latter based also on worst-case assumptions).
Around the same time, Hoffstein, Pipher, and Silverman constructed the NTRU public-key sys-
tem [HPS98], which in retrospect can be thought of as a [GGH97]-type scheme based on lattices of
a particularly structured form. In 2003, Regev [Reg03] gave improved versions of the Ajtai–Dwork
cryptosystem. In 2003 Alekhnovich [Ale11] gave a variant of the Ajtai–Dwork system based on
the problem of learning parity with (very small) noise, albeit at the expense of using average-case
as opposed to worst-case hardness assumptions. See the survey [Pei15] for a more comprehensive
overview of lattice-based cryptography.

Remark 4.1 (discreteness + noise = hardness?). One way to think about all these schemes is that
they rely on the brittleness of the Gaussian elimination algorithm over integers or finite fields. This
is in contrast to the robust least-squares minimization algorithm that can solve even noisy linear
equations over the real numbers. However, when working in the discrete setting (e.g., when x is
constrained to be integers or when all equations are modulo some q), no analog of least-squares
minimization is known. The presumed difficulty of this problem and its variants underlies the
security of the above cryptosystems.

The Learning with Errors Problem (LWE). The cleanest and most useful formalization of
the above intuition was given by Regev [Reg09], who made the following assumption:

Definition 4. For functions δ = δ(n) and q = q(n), the learning with error (LWE) problem with
parameters q, δ is the task of recovering a fixed random s ∈ Znq , from poly(n) examples (a, b) of the
form

b = 〈s, a〉+ bηc (mod q) (3)

where a is chosen at random in Znq and η is chosen from the normal distribution with standard
deviation δq.

12The terminology of “group based” versus “lattice/code based” is perhaps not the most descriptive, as after all,
lattices and codes are commutative groups as well. One difference seems to be the inherent role played by noise in
the lattice/coding based constructions, which gives them a more geometric nature. However, it might be possible
to trade non-commutativity for noise, and it has been shown that solving some lattice-based problems reduces to
non-Abelian hidden subgroup problems [Reg04].
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Private key: s←R Znq

public-key: (a1, b1), . . . , (am, bm) where each pair (ai, bi) is
sampled independently according to (3).

Encrypt m ∈ {0, 1}: Pick σ1, . . . , σm ∈ {±1}, output (a′, b′)
where a′ =

∑m
i=1 σiai (mod q) and b′ =

∑m
i=1 σibi + b q2c

(mod q).

Decrypt (a′, b′): Output 0 iff |〈s, a′〉 − b′ − b q2c (mod q)| <
q/100.

Figure 2: Regev’s simple public-key cryptosystem based on the LWE problem [Reg09]. The scheme
will be secure as long as LWE holds for these parameters and m� n log q. Decryption will succeed
as long as the noise parameter δ is o(1/

√
m).

The LWE assumption is the assumption that this problem is hard for some δ(n) of the form n−C

(where C is some sufficiently large constant). Regev [Reg09] and Peikert [Pei09] showed that it is
also equivalent (up to some loss in parameters) to its decision version where one needs to distinguish
between samples of the form (a, b) as above and samples where b is simply an independent random
element of Zq. Using this reduction, LWE can be easily shown to imply the existence of public-key
cryptosystems, see Figure 2.

Regev [Reg09] showed that if the LWE problem with parameter δ(n) is easy, then there is a
Õ(n/δ(n))-factor (worst-case) approximation quantum algorithm for the gap shortest vector problem
on lattices. Note that even if one doesn’t consider quantum computing to be a physically realizable
model, such a reduction can still be meaningful, and recent papers gave classical reductions as
well [Pei09, BLP+13].

The LWE assumption is fast becoming the centerpiece of public-key cryptography, in the sense
that a great many schemes for “plain” public-key encryption, as well as encryption schemes with
stronger properties such as fully homomorphic [Gen09, BV11], identity based, or more, rely on this
assumption, and there have also been several works which managed to “port” constructions and
intuitions from the group-theoretic world into LWE-based primitives (e.g., see [PW11, CHKP12]).

Ideal/ring LWE. The ideal or ring variants of lattice problems correspond to the case when the
matrix A has structure that allows to describe it using n numbers as opposed to n2, and also often
enables faster operations using a fast-Fourier-transform like algorithm. Such optimizations can be
crucial for practical applications. See the manuscript [Pei16] for more on this assumption and its
uses.

Approximate GCD. While in lattice-based cryptography we typically think of lattices of high
dimension, when the numbers involved are large enough one can think of very small dimensions
and even one-dimensional lattices. The computational question used for such lattices is often the
approximate greatest common denominator (GCD) problem [How01] where one is given samples of
numbers obtained by taking an integer multiple of a secret number s plus some small noise, and
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the goal is to recover s (or at least distinguish between this distribution and the uniform one).
Approximate GCD has been used for obtaining analogs of various lattice-based schemes (e.g.,
[vDGHV10]).

Structural properties of lattice-based schemes. The following structural properties are
known about these schemes:

• All the known lattice-based public-key encryption schemes can be broken using oracle access
to an O(

√
n) approximation algorithm for the lattice closest vector problem. Goldreich and

Goldwasser showed that such an efficient algorithm exists if the class SZK (which is a subset
of AM ∩ coAM) is in P (or BPP, for that matter). Aharonov and Regev showed this also
holds if NP ∩ coNP ⊆ P [AR05]. Note that, while most experts believe that NP ∩ coNP
is not contained in P, this result can still be viewed as showing that these lattice-based
schemes have some computational structure that is not shared with many one-way function
candidates.

• Unlike the lattice-based schemes, we do not know whether Alekhnovich’s scheme [Ale11] is
insecure if AM ∩ coAM ⊆ P although it does use a variant of the learning parity with very
low noise, which seems analogous to the closest vector problem with an approximation factor
larger than

√
n. A recent result of Ben-Sasson et al. [BBD+16] suggests that using such a

small amount of noise might be an inherent limitation of schemes of this general type.13

• The order-finding problem at the heart of Shor’s algorithm can be thought of as an instance of
a more general hidden subgroup problem. Regev showed a reduction from lattice problem into
this problem for diehedral groups [Reg04]. Kuperberg gave a subexponential (i.e., exp(O(

√
n))

time) quantum algorithm for this problem [Kup05], though it does not yield a subexponential
quantum algorithm for the lattice problems since Regev’s reduction has a quadratic blowup.

• A sequence of recent results showed that these problems are significantly easier (both quan-
tumly and classically) in the case of principal ideal lattices which have a short basis that is
obtained by taking shifts of a single vector (see [CDPR15] and the references therein).

The bottom line is that these schemes still currently represent our best hope for secure public-
key systems if the group-theoretic schemes fail for a quantum or classical reason. However, the most
practical variants of these schemes are also the ones that are more structured, and even relatively
mild algorithmic advances (such as subexponential classical or quantum algorithms) could result
in the need to square the size of the public-key or worse. Despite the fact that this would only be
a polynomial factor, this can have significant real-world implications. One cannot hope to simply
“plug in” a key of 106 or 109 bits into a protocol designed to work for keys of 103 bits and expect it to
work as is, and so such results could bring about significant changes to the way we do security over
the Internet. For example, it could lead to a centralization of power, where key exchange will be so
expensive that users would share public-keys with only a few large corporations and governments,
and smaller companies would have to route their communication through these larger corporations.

13[BBD+16] define a general family of public-key encryption schemes which includes Alekhnovich’s scheme as
well as Regev’s and some other lattice-based schemes. They show that under a certain conjecture from additive
combinatorics, all such schemes will need to use noise patterns that satisfy a generalized notion of being

√
n-sparse.
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Remark 4.2 (Impagliazzo’s worlds). In a lovely survey, Impagliazzo [Imp95] defined a main task
of computational complexity as determining which of several qualitatively distinct “worlds” is the
one we live in, see Figure 4. That is, he looked at some of the various possibilities that, as far as we
know, the open questions of computational complexity could resolve in, and saw how they would
affect algorithms and cryptography.

As argued in Section 2 above, there is very strong evidence that one-way functions exist, which
would rule out the three worlds Impagliazzo named as “Algorithmica”,“Heuristica”, and “Pessi-
land”. This survey can be thought of as trying to understand the evidence for ruling out the
potential world “Minicrypt” where private-key cryptography (i.e., one-way functions) exist but not
public-key cryptography. Impagliazzo used the name “Cryptomania” for the world in which public-
key crypto, secure multiparty computation, and other similar primitives exist; these days people also
refer to “Obfustopia” as the world where even more exotic primitives such as indistinguishability
obfuscation [GGH+13] exist.

Scheme Computational assumption Notes

Merkle puzzles [Mer78] Strong one way functions Only quadratic security

Alekhnovich [Ale11] Solving linear mod 2 equations with
≈ 1/

√
n noise

Mod 2 analog of Regev/Ajtai–
Dwork, though not known
to be solvable in NP ∩
coNP/SZK

ABW Scheme 1 [ABW10] Planted 3LIN with n1.4 clauses and
noise n−0.1

Similar to refuting random
3SAT with n1.4 clauses,
has nondeterministic refu-
tation; some similarities to
Alekhnovich

ABW Scheme 2 [ABW10] Planted 3LIN with m clauses and
noise δ + unbalanced expansion with
parameters (m,n, δm)

Some similarities to
Alekhnovich

ABW Scheme 3 [ABW10] Nonlinear constant locality PRG with
expansion m(n) + unbalanced expan-
sion with parameters (m,n, log n)

At best nΩ(logn) security

Couveignes, Rostovtsev,
Stolbunov [Cou06, RS06]

Isogeny star problem Algebraic structure, similari-
ties to elliptic curve cryptogra-
phy, subexponential quantum
algorithm

Patarin HFE sys-
tems [Pat96]

Planted quadratic equations Several classical attacks

Sahai–Waters IO based
system [SW14]

Indistinguishality obfuscation or wit-
ness encryption

All currently known IO/WE
candidates require much
stronger assumptions than
Lattice schemes

Figure 3: A nonexhaustive list of some “non-mainstream” public-key candidates. See also Section 5
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World Condition Algorithmic implications Cryptographic implica-
tions

Algorithmica P = NP Algorithmic paradise, all NP
and polynomial-hierarchy
problems can be solved

Essentially no crypto

Heuristica No average-case hard
NP problem

Almost algorithmic paradise
(though harder to solve prob-
lems in polynomial hierarchy)

Essentially no crypto

Pessiland No hard planted NP
problem (i.e., one-way
functions)

Have hard on average algorith-
mic problem though can do all
unsupervised learning

Essentially no crypto

Minicrypt No public-key crypto Algorithmic benefits minimal
(can factor large integers, do
discrete log, solve linear equa-
tions with very small noise)

CPA and CCA secure private-
key encryption, pseudoran-
dom functions, digital signa-
tures, zero-knowledge proofs,
etc.

Cryptomania LWE conjecture holds
but not IO

No algorithmic benefits known
for lack of IO

All of the above plus CPA
and CCA secure public-key
encryption, secure multiparty
computation, fully homomor-
phic encryption, private infor-
mation retrieval, etc.

Obfustopia LWE and IO All of the above plus a grow-
ing number of applications in-
cluding functional encryption,
witness encryption, deniable
encryption, replacing random
oracles in certain instances,
multiparty key exchange, and
many more.

Figure 4: A variant of Impagliazzo’s worlds from [Imp95]. We have redefined Cryptomania to
be the world where LWE holds and denote by “Obfustopia” the world where indistinguishability
obfuscators (IO) exist (see also [GPSZ16]).
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5 Alternative public-key constructions

The group-theoretic and lattice-based families described above represent the main theoretical and
practical basis for public-key encryption, as well as the more advanced applications, including
secure multiparty computation [Yao82, GMW87], fully homomorphic encryption [Gen09, BV11],
and many other primitives. However, there have been other proposals in the literature. We do not
attempt a comprehensive survey here but do give some pointers (for another perspective, see also
the NIST report [CJL+16]; these days, such alternative constructions are often grouped under the
category of “post-quantum cryptography”).

5.1 Merkle puzzles

The first public-key encryption proposed by an academic researcher was Ralph Merkle’s “puzzle-
based” scheme which he submitted to the Communications of the ACM in 1975 [Mer78] (as well as
described in a project proposal for his undergraduate security class in the University of Berkeley),
see Figure 5.14

Merkle’s scheme can yield up to a quadratic gap between the work required to run the scheme
and work required to break it, in an idealized (and not fully specified) model. Biham, Goren
and Ishai [BGI08] showed that this model can be instantiated using exponentially strong one way
functions.

Merkle conjectured that it should be possible to obtain a public-key scheme with an exponential
gap between the work of the honest parties and the adversary but was unable to come up with a
concrete candidate. (The first to do so would be Diffie and Hellman, who, based on a suggestion
of John Gill to look at modular exponentiation, came up with what is known today as the Diffie–
Hellman key exchange.) As mentioned in Remark 3.1, [BM09] (building on [IR89]) showed that
Merkle’s original protocol is optimal in the setting where we model the one-way function as a
random oracle and measure running time in terms of the number of queries to this function.

We should note that, although n2 security is extremely far from what we could hope for, it is
not completely unacceptable. As pointed out by Biham et al. [BGI08], any superlinear security
guarantee only becomes better with technological advances, since, as the honest parties can afford
more computation, the ratio between their work and the adversary’s grows.

5.2 Other Algebraic Constructions

There were several other proposals made for public-key encryption schemes. Some of these use
stronger assumptions than those described above, for the sake of achieving better efficiency or
some other attractive property. We briefly mention here schemes that attempt to use qualitatively
different computational assumptions.

14Merkle’s scheme, as well as the Diffie–Hellman scheme it inspired, are often known in the literature as key-
exchange protocols, as opposed to a public-key encryption schemes. However, a key-exchange protocol that takes
only two messages (as is the case for both Merkle’s and Diffie–Hellman’s schemes) is essentially the same as a
(randomized) public-key encryption scheme, and indeed Diffie and Hellman were well aware that the receiver can
use the first message as a public key that can be placed in a “public file” [DH76b]. I believe that this confusion in
notation arose from the fact that the importance of randomization for encryption was not fully understood until the
work of Goldwasser and Micali [GM82]. Thus, Diffie and Hellman reserved the name “public-key encryption” for a
deterministic map we now call a trapdoor permutation that they envisioned as yielding an encryption by computing
it in the forward direction and a signature by computing its inverse.
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Assumptions: f : S → {0, 1}∗ is an ”ideal” 1-to-1 one-way
function, that requires almost |S| times as much time to
invert as it does to compute. Let n = |S|.

Private key: x1, . . . , x√n that are chosen independently at
random in S.

public-key: f(x1), . . . , f(x√n)

Encrypt m ∈ {0, 1}: Pick x at random in S, and if f(x)
appears in the public-key then output f(x), h(x)⊕m where
h(·) is a “hardcore bit function” that can be obtained, e.g.,
by the method of Goldreich–Levin [GL89]. If f(x) is not in
the public-key then try again.
Decrypt (y, b): Output h(xi)⊕b where i is such that f(xi) =
y.

Figure 5: In Merkle’s puzzle-based public-key encryption, the honest parties make ≈
√
n invocation

to an ideal one-way function, while an adversary making � n invocations would not be able to
break it

Hidden field equations. Patarin [Pat96] (following a work of Matsumoto and Imai [MI88]) pro-
posed the Hidden Field Equations (HFE) cryptosystem. It is based on the difficulty of a “planted”
variant of the quadratic equation problem over a finite field. The original HFE system was broken
by Kipnis and Shamir [KS99], and some variants have been attacked as well. It seems that currently
fewer attacks are known for HFE-based signatures, though our interest here is of course only in
public-key encryption; see [CDF03] for more information about known attacks.

Isogeny star. Rostovtsev and Stolbunov [RS06] (see also [Cou06]) proposed a cryptographic
scheme based on the task of finding an isogeny (an algebraic homomorphism) between two elliptic
curves. Although this scheme is inspired by elliptic-curve cryptography, its security does not reduce
to the security of standard elliptic-curve based schemes. In particular, there are no known quantum
algorithms to attack it, though there have been some related results [CJS14, BJS14]. Another
group-theoretic construction that was suggested is to base cryptography on the conjugacy problem
for braid groups though some attacks have been shown on these proposals (e.g., see [MU07] and
references therein).

5.3 Combinatorial(?) Constructions

Applebaum, Barak and Wigderson [ABW10] tried to explore the question of whether public-key
encryption can be based on the conjectured average-case difficulty of combinatorial problems. Ad-
mittedly, this term is not well defined, though their focus was mostly on constraint satisfaction
problems, which are arguably the quintessential combinatorial problems.

[ABW10] gave a construction of a public-key encryption scheme (see Figure 6) based on the
following conjectures:

18



Assumptions:
(i) There is a constant d and some f : {0, 1}d → {0, 1}
such that, if we choose a random (n,m, d) graph H, then
the map G : {0, 1}n → {0, 1}m where GH(x)j = f(x←−

Γ H(j)
)

is a pseudorandom generator, where
←−
ΓH(j) denotes the

left-neighbors of j in H.

(ii) It is hard to distinguish between a random (n,m, d)
graph H and a random (n,m, d) graph where we plant
a set S of right vertices of size k = O(log n) such that

|
←−
ΓH(S)| = k − 1 where

←−
ΓH(S) denotes the set of left-

neighbors of S in H.

Key Generation: Choose a random (n,m, d) graph H
with a planted nonexpanding set S. The public-key is H,
and the private key is S.

Encrypt m ∈ {0, 1}: If m = 0 then output a random
y ∈ {0, 1}m. If m = 1 pick random x ∈ {0, 1}n and output
y = GH(x).

Decrypt y: Output 1 iff yS ∈ {GH(x)|S : x ∈ {0, 1}n}. By

our condition this set has at most 2k−1 elements.

Figure 6: The ABW Goldreich-generator-based encryption scheme (a simplified variant)

• A local pseudorandom generator : this is a strengthening of the assumption that Golreich’s
one-way function discussed in Section 2.1.4 is secure. Namely, we assume that we can obtain
a pseudorandom generator mapping n bits to m bits where every output bit applies some
predicate f to a constant number d of input bits. Furthermore, we assume that we can do so
by choosing which input bits map into which output bits using a random (n,m, d) bipartite
graph as defined in Section 2.1.4.15

• The unbalanced expansion problem: this is the problem of distinguishing between a random
(n,m, d) bipartite graph as above, and such a graph where we plant a set S of size k of left
vertices such that S has at most k − 1 neighbors on the right-hand side (as opposed to the
(d − 1 − o(1))k neighbors you would expect in a random graph).16 Expansion problems in
graphs have been widely studied (e.g., see [HLW06]), and at the moment no algorithm is
known for this range of parameters.

The larger m is compared with n, the stronger the first assumption and the weaker the second

15[ABW10] also gave a version of their cryptosystem which only assumed that the function is one way, and more
general reductions between these two conditions were given in [App12].

16One only needs to conjecture that it has to distinguish between these graphs with some constant bias, as there
are standard techniques for hardness amplification in this context.
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assumption. Increasing the parameter k makes the second problem harder (and in fact, depending
on m/n, at some point the assumption becomes unconditionally true since there would exist such
a nonexpanding set with high probability even in a random graph). Moreover, there is always
a way to solve the expansion problem in

(
n
k

)
time, and so smaller values of k make the problem

quantitatively easier. [ABW10] showed that, if both assumptions hold for a set of parameters
(n,m, d, k) where k = O(log n), then there exists a public-key cryptosystem.

By construction, the above cryptosystem cannot achieve better than nΩ(logn) security which is
much better than the n2 obtained by Merkle puzzles but still far from ideal. It also relies on the
somewhat subtle distinction between nO(k) and poly(n)2O(k) complexity. [ABW10] showed how to
get different tradeoffs if, instead of using a non-linear function f for the pseudo-random generator,
we use a linear function with some probabilistic additional noise. The noise level δ should satisfy
δk = O(1/ log n) for efficient decryption, and so the lower the noise level we consider (and hence
the stronger we make our assumption on the pseudo-random generator), the larger value of k we
can afford. In particular, if we assume a sufficiently low level of noise, then we can get k to be so
large as to avoid the second assumption (on difficulty of detecting nonexpanding sets) altogether.
However, there is evidence that at this point the first assumption becomes more “structured” since
it admits a non-constructive short certificate [FKO06].

Using such a linear function f raises the question of to which extent these schemes are different
from coding-based schemes such as Alekhnovich’s. Indeed, there are similarities between these
schemes and the main difference is the use of the unbalanced expansion assumption. An important
question is to find the extent to which this problem is combinatorial versus algebraic. We do not
yet fully understand this question, nor even the right way to formally define it, but it does seem
key to figuring out whether the [ABW10] scheme is truly different from the coding/lattices-based
constructions. On one hand, the unbalanced expansion questions “feels” combinatorial. On the
other hand, the fact that we require the set S to have fewer than S neighbors implies that, if
we define for each right-vertex j in H a linear equation corresponding to the sum of variables in←−
ΓH(S), then the equations corresponding to S are linearly dependent. So this problem can be
thought of as the task of looking for a short linear dependency.

Thinking about the noise level might be a better way of considering this question than the
combinatorial versus algebraic distinction. That is, one could argue that the main issue with the
coding/lattice-based constructions is not the algebraic nature of the linear equations (after all, both
the knapsack and approximating kXOR problems are NP hard). Rather, it is the fact that they
use a noise level smaller than 1/

√
n (or, equivalently, a larger than

√
n approximation factor) that

gives them some structure that could potentially be a source of weakness. In particular, using
such small noise is quite analogous to using an approximation factor larger than

√
n for lattice

problems, which is the reason why lattice-based schemes can be broken in NP ∩ coNP. However,
at the moment no such result is known for either the [Ale11] or [ABW10] schemes.

This viewpoint raises the following open questions:

• Can we base a public-key encryption scheme on the difficulty of solving O(n) random kXOR
equations on n variables with a planted solution satisfying 1 − ε of them for some constant
ε > 0?

• Does the reliance on the unbalanced expansion problem introduce new structure in the prob-
lem? For example, is there a nondeterministic procedure to certify the nonexistence of a
short non-expanding subset in a graph?
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One way to get evidence for a negative answer for the second question would be to get a worst-
case NP hardness of approximation result for the unbalanced expansion problem with parameters
matching those used by [ABW10]. We do not at the moment know whether such a result is likely
or not to hold.

5.4 Public-key Cryptography from Indistinguishability Obfuscators

From the early writing of Diffie and Hellman [DH76a], it seems that one of the reasons why they
believed that public-key cryptography is at least not inherently impossible is the following: Given
a block cipher/pseudorandom permutation collection {pk}, one could imagine fixing a random key
k and letting Pk be a program that on input x outputs pk(x). Now, if Pk was compiled via some
“optimizing compiler” to a low-level representation such as assembly language, one could imagine
that it would be hard to “extract” k from this representation. Thus, one can hope to obtain a
public-key encryption scheme (or, more accurately, a trapdoor permutation family) by letting the
public encryption key be this representation of Pk, which enables computing the map x 7→ pk(x),
and letting the private decryption key (or trapdoor) be the secret key k that enables computing the
map y 7→ p−1

k (y). It seems that James Ellis, who independently invented public-key encryption at
the British intelligence agency GCHQ, had similar thoughts [Ell99].

Diffie and Hellman never managed to find a good enough instantiation of this idea, but over the
years people have kept trying to look for such an obfuscating compiler that would convert a program
P to a functionally equivalent but “inscrutable” form. Many practical attempts at obfuscation have
been broken, and the paper [BGI+12] showed that a natural definition for security of obfuscation is
in fact impossible to achieve. However, [BGI+12] did give a weaker definition of security, known as
indistinguishability obfuscation (IO), and noted that their impossibility result did not rule it out.
(See the survey [Bar16].)

In a recent breakthrough, a candidate construction for an IO compiler was given by [GGH+13].
They also showed (see Figure 7) that an IO compiler is sufficient to achieve Diffie and Hellman’s
dream of constructing a public-key encryption scheme based only on one-way functions.17 Now
from a first look, this might seem to make as much sense as a bottle opener made out of diamonds:
after all, we can already build public-key encryption from the learning with error assumption, while
building IO from LWE would be a major breakthrough with a great many applications. Indeed,
many of the current candidate constructions for IO would be easily broken if LWE was easy. (And
in fact might be broken regardless [MSZ16].)

However, a priori, it is not at all clear that achieving IO requires an algebraic approach. While
at the moment it seems far removed from any techniques we have, one could hope that a more
combinatorial/program transformation approach can yield an IO obfuscator without relying on
LWE. One glimmer of hope is given by the observation that despite the great many applications of
IO, so far we have not been able to obtain primitives such as fully homomorphic encryption that
imply that AM ∩ coAM * BPP (see also [AS15]). In contrast, such primitives do follow from
LWE.

17Another construction (which enjoyed extra interesting properties) of a public key encryption scheme from IO was
given by [SW14].
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Assumptions: G : {0, 1}n → {0, 1}2n is a pseudorandom
generator. O : {0, 1}∗ → {0, 1}∗ is an indistinguishabilty
obfuscation (IO) compiler. Let n = |S|.

Private key: x0 ∈R {0, 1}n.

public-key: y0 = G(x0)

Encrypt m ∈ {0, 1}: Let Fm : {0, 1}n → {0, 1} be defined
as follows:

Fm(x) =

{
m G(x) = y0

0 otherwise

Output O(Cm) where Cm is a canonical circuit for Fm.

Decrypt C: Output C(x0). Indeed C(x0) = Fm(x0) = m.

Argument for security: We need to shoe that
(y0, Ey0(0)) is indistinguishable from (y0, Ey0(1)). By pseu-
dorandomness of G, this is indistinguishable from the case
that y0 is chosen at random in {0, 1}2n. But then with high
probability y0 6∈ G({0, 1}n) and hence F0 and F1 both equal
the identically zero function, and hence O(C0) and O(C1) are
indistinguishable by the I.O. property.

Figure 7: Public Key Encryption from Indistinguishabilty Obfuscation and One-Way Functions.

6 Is Computational Hardness the Rule or the Exception?

As long as the P versus NP question remains open, cryptography will require unproven assump-
tions. Does it really make sense to distinguish between an assumption such as the hardness of LWE
and assuming hardness of the problems that yield private-key encryption? This is a fair question.
After all, many would argue that the only real evidence we have that P 6= NP is the fact that a
lot of people have tried to get algorithms for NP-hard problems and failed. That same evidence
exists for the LWE assumption as well.

However, I do feel there is a qualitative difference between these assumptions. The reason is that
assuming P 6= NP yields a coherent and beautiful theory of computational difficulty that agrees
with all current observations. Thus we accept this theory not only because we do not know how to
refute it, but also because, following Occam’s razor principle, one should accept the cleanest/most
parsimonious theory that explains the world as we know it. The existence of one-way functions, with
the rich web of reductions that have been shown between it and other problems, also yields such a
theory. Indeed, these reductions have shown that one-way functions are a minimal assumption for
almost all of cryptography.

In contrast, while LWE has many implications, it has not been shown to be minimal for “Cryp-
tomania” in the sense that it is not known to be implied by any primitives such as public-key
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encryption or even stronger notions such as fully homomorphic encryption. We also do not have a
clean theory of average-case hardness that would imply the difficulty of LWE (or the existence of
public-key encryptions).

In fact, I believe it is fair to say that we don’t have a clean theory of average-case hardness at
all.18 The main reason is that reductions—which underpin the whole theory of worst-case hardness,
as well as the web of reductions between cryptographic primitives—seem to have very limited
applicability in this setting. As a rule, a reduction from a problem A to a problem B typically
takes a general instance of A and transforms it to a structured instance of B. For example, the
canonical reduction from 3SAT to 3COL takes a general formula ϕ and transforms it into a graph
G that has a particular form with certain gadgets that correspond to every clause of ϕ. While this
is enough to show that, if A is hard in the worst-case then so is B, it does not show that, if A
is hard on, say, uniformly random instances, then this holds for B as well. Thus reductions have
turned out to be extremely useful for relating the worst-case complexity of different problems, or
using the conjectured average-case hardness of a particular problem to show the hardness of other
problems on tailored instances (as we do when we construct cryptographic primitives based on
average-case hardness). However, by and large, we have not been able to use reductions to relate
the hardness of natural average-case problems, and so we have a collection of incomparable tasks
including integer factoring, discrete logarithms, the RSA problem, finding planted cliques, finding
planted assignments in 3SAT formulas, LWE, etc. without any reductions between them.19

Even the successful theory of worst-case complexity is arguably more descriptive or predictive
than explanatory. That is, it tells us which problems are hard, but it does not truly explain to
us why they are hard. While this might seem as not a well-defined question, akin to asking “why
is 17 a prime?”, let me try to cast a bit more meaning into it, and illustrate how an explanatory
theory of computational difficulty might be useful in situations such as average-case complexity,
where reductions do not seem to help.

What makes a problem easy or hard? To get some hints on answers, we might want to look at
what algorithmicists do when they want to efficiently solve a problem, and what cryptographers do
when they want to create a hard problem. There are obviously a plethora of algorithmic techniques
for solving problems, and in particular many clever data structures and optimizations that can
make improvements that might be moderate in theory (e.g., reducing an exponent) but make all
the difference in the world in practice. However, if we restrict ourselves to techniques that help
show a problem can be solved in better than brute force, then there are some themes that repeat
themselves time and again. One such theme is local search. Starting with a guess for a solution
and making local improvements is a workhorse behind a great many algorithms. Such algorithms
crucially rely on a structure of the problem where local optima (or at least all ones you are likely
to encounter) correspond to global optima. In other words, they rely on some form of convexity.

Another theme is the use of algebraic cancellations. The simplest such structure is linearity,
where we can continually deduce new constraints from old ones without a blowup in their com-
plexity. In particular, a classical example of cancellations in action is the algorithm to efficiently
compute the determinant of a matrix, which works even though at least one canonical definition

18Levin [Lev86] has proposed a notion of completeness for average-case problems, though this theory has not been
successful in giving evidence for the hardness of natural problems on natural input distributions.

19One notable exception is the set of reductions between different variants of lattice problems, which is enabled
by the existence of a worst-case to average-case reduction for these problems [Ajt96]. However, even there we do
not know how to relate these problems to tasks that seem superficially similar such as the learning parity with
noise [GKL93, BFKL93] problem.

23



of it involves computing a sum on an exponential number of terms.
On the cryptography side, when applied cryptographers try to construct a hard function such

as a hash function or a block cipher, there are themes that recur as well. To make a function that is
hard to invert, designers try to introduce nonlinearity (the function should not be linear or close to
linear over any field and in fact have large algebraic degree so it is hard to “linearize”) and nonlocality
(we want the dependency structure of output and input bits to be “expanding” or “spread out”).
Indeed, these themes occur not just in applied constructions but also in theoretical candidates such
as Goldreich’s [Gol11] and Gowers’ [Gow96] (where each takes one type of parameters to a different
extreme).

Taken together, these observations might lead to a view of the world in which computational
problems are presumed hard unless they have a structural reason to be easy. A theory based
on such structure could help to predict, and more than that to explain, the difficulty of a great
many computational problems that currently we cannot reach with reductions. However, I do not
know at the moment of any such clean theory that will not end up “predicting” some problems
are hard where they are in fact solvable by a clever algorithm or change of representation. In the
survey [BS14], Steurer and I tried to present a potential approach to such a theory via the conjecture
that the sum of squares convex program is optimal in some domains. While it might seem that
making such conjectures is a step backwards from cryptography as a science towards “alchemy”,
we do hope that it is possible to extract some of the “alchemist intuitions” practitioners have,
without sacrificing the predictive power and the mathematical crispness of cryptographic theory.
However, this research is still very much in its infancy, and we still do not even know the right way
to formalize our conjectures, let alone try to prove them or study their implications. I do hope that
eventually an explanatory theory of hardness will emerge, whether via convex optimization or other
means, and that it will not only help us design cryptographic schemes with stronger foundations
for their security, but also shed more light on the mysterious phenomena of efficient computation.
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