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Abstract

In the recent paper of [BR16], the authors show that, for any constant 10−15 > ε > 0 the
communication complexity of ε-approximate Nash equilibria in 2-player n× n games is nΩ(ε),
resolving the long open problem of whether or not there exists a polylogarithmic communication
protocol. In this paper we address an open question they pose regarding the communication
complexity of 2-player ε-approximate correlated equilibria.

For our upper bounds, we provide a communication protocol that outputs a ε-approximate
correlated equilibrium after exchanging Õ(nε−2) bits, saving over the naive protocol which
requires O(n2)-bits. This is in sharp contrast to Nash equilibria where for sufficiently small
constant ε, no o(n2)-communication protocol is known. In the m-player, n-action setting, our
protocol can be extended to a Õ(nm)-bit protocol.

For our lower bounds, we exhibit a simple two player game that has a logarithmic information
lower bound: for any constant ε < 1

8 the two players need to communicate Ω(log n)-bits of
information to compute any ε-correlated equilibrium in the game. For the m-players, 2-action
setting we show a lower bound of Ω(m) bits, which matches the upper bound we provide up to
polylogarithmic terms and shows that the dependence on the number of players is unavoidable.
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1 Introduction

While Nash equilibria are arguably the most studied notion of equilibrium in strategic games,
recent results regarding their communication and computational complexity have undermined their
prevalence as a predictable solution concept when agents are computationally bounded. In particular,
these results show that two players cannot converge to any approximate Nash equilibria in the
limited communication setting where each player only knows its utility function. While there
have been multiple attempts to produce procedures that converge to Nash equilibria of general
games [HM06, GL07, FY03], it has been shown that at least exp(m) bits of communication are
required to compute Nash equilibria of m-player, constant action games [HM07]. For the case
of 2-player games, it has been recently shown that even computing approximate Nash equilibria
requires poly(n) bits of communication [BR16].

In addition even in the setting where all the payoffs matrices are known Nash equilibria seem to
be unnatural due to their computational hardness. Computing any exact Nash equilibrium is known
to be PPAD-complete, making it unlikely to have any polynomial time algorithm [CDT09, DGP09].
Furthermore, it has been shown that under the Exponential Time Hypothesis (ETH) for the class
PPAD, ε-approximate Nash equilibria cannot be computed in time faster than quasi-polynomial in
the number of strategies per player [Rub16]. This almost exactly matches the algorithm of [LMM03].
The picture becomes more bleak when we consider m-player games. In this case, the problem of
even approximating Nash equilibria becomes PPAD-complete [Rub14]. These results suggest that
approximate Nash equilibria may not be efficiently computable.

Correlated equilibria arise as an alternative equilibrium concept. This notion, introduced in
the seminal work of [Aum74], allows agents to cooperate in order to reach stability. Informally,
a strategy profile is a correlated equilibrium when a referee or trusted party can draw strategy
samples according to it and recommend them to the players in such a way that they have no
incentive to consistently deviate, assuming everyone else plays according to their recommendation.
Computationally, correlated equilibria are in sharp contrast to Nash equilibria: there exists an
ellipsoid-based algorithm to compute exact correlated equilibrium in polynomial time even
for multi-player games [PR08], for a large (but not universal) class of games including graphical
games, anonymous games, congestion games and scheduling games. Unfortunately this result is
still unsettling: one can imagine many settings where a referee may not have access to all utility
functions or where players may not want to share such information with a referee.

This is indeed comparable to many interesting communication or distributed computation
problems where if one party knows all parts of the input, it is easy to compute the output (e.g.
disjointness [BGPW13], equality, gap Hamming distance [CR11]). In particular, the hardness
comes only from the distributional nature of the input not the computational aspect,
unlike Nash equilibria.

With this in consideration it becomes more natural to ask whether there is a communication
protocol for computing correlated equilibria better than the naive one where each player sends their
payoff matrix to a referee who computes the answer. In the case of exact correlated equilibria for
2-player games a simple reduction from the distributed version of linear programming shows that
sending the full payoff matrix is indeed optimal [CS89]. For the exact or approximate m-player,
constant action case there are simple procedures that converge quickly and use at most polynomial
communication in the natural parameters of the input [HMC00, CL03, CBL06].

In this paper we address the question posed by [BR16] of settling the communication complexity
of approximate correlated equilibrium. We make progress in both providing non-trivial protocols
and deducing non-trivial lower bounds. The arguments used on the lower bound proofs rely on tools
from information theory, which lower bounds communication complexity.
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1.1 Our results

Upper Bounds. Our upper bounds are similar in spirit to that of [HM10, GR16]. The protocol
we provide is based on a non-adaptive no-regret algorithm by [HMC00]. Unfortunately, this protocol
converges to a different notion of approximate correlated equilibrium and assumes that the
number of actions per player is constant. We overcome both of these barriers with simple
arguments using dimension reduction [JL84], avoiding a huge loss in the analysis caused by the
dimension of the regret matrix. Our result works for general games and has strong implications for
the case of 2-player n-action games and m-player 2-action games. In particular for 2-player n action
games, our protocol saves a factor of n over sending the whole payoff matrix.

Theorem 1. There exists a communication protocol Π such that for any m-player n-action game
Gmn , the players compute a ε-CE after exchanging at most Õ(nmε−2) bits.

Lower Bounds. Our lower bound is similar at a first glance to that of [BR16], but our techniques
differ significantly due to the nature of the solution concepts studied. As it is pointed out in [BR16]
the hardness of proving lower bounds for equilibria lies in being able to hide the solutions (which,
by [Nas51, Aum74], must exist). But unlike computing Nash equilibria, which is equivalent to
computing fixed points of continuous functions, such equivalence for hard problems under oracle
model becomes vague for correlated equilibrium, in part due to its more general nature. This
obstacle becomes clearer when we consider the communication complexity of computing correlated
equilibrium.

Even in this setting we exhibit a hard game in which Ω(log n) bits of communication must be
exchanged for two players to agree on an approximate equilibrium. In the m-player 2-action setting,
we prove a linear lower bound in the number of players. Note that this proves near-optimality of
Theorem 1 and shows that the dependence of the number of players is unavoidable.

Theorem 2. There exists a 2-player n-action game G ∈ G2
n such that Ω(log n) bits of communication

are required for the players to agree on a ε-CE with high probability for some small ε = Ω(1).

Theorem 3. There exists a m-player 2-action game G ∈ Gm
2 such that Ω(m) bits of communication

are required for the players to agree on a ε-CE with high probability for ε < 1/3.

1.2 Related Work

The communication complexity of predictable solution concepts has gained a lot of attention and by
now most problems pertaining exact and approximate Nash equilibria are well understood. It is
known that the communication complexity of computing pure Nash equilibria in 2-player n-action
games is poly(n) [CS04]. For m-player binary action games the complexity escalates to exp(m), even
if we relax the solution concepts from pure to exact Nash or correlated equilibria [HM10]. These
results were extended to the case of approximate Nash equilibria. In particular, [BR16] showed
that the randomized communication complexity of computing ε-Nash equilibria in 2-player n-action
games and m-player binary action games is Ω(nε) and 2Ω(εm) for some constant ε > 0.

Some results are known for the communication complexity of computing correlated equilibria for
the family of m-player binary action games with bounded, integer payoffs. There is a protocol for
the family that computes correlated equilibria after exchanging polynomially many bits in terms of n
and the magnitude of the payoffs [HM10]. The former is based on the polynomial time algorithm for
computing correlated equilibria by [PR08] and the later is based on a no-regret learning algorithm
by [CBL06]. Our results improve upon these for the approximate case by shaving a factor of n and
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removing the dependence and constraints on the payoff function. It is worth noting that in the
same paper they exhibit a family of multiplayer games that do not need to communicate at all to
find exact correlated equilibria.

Query Complexity. Another lens through which to consider the cost of computing equilibria is
that of query complexity. In this model, a single agent has black box access to the payoff function
and can query it on either pure strategies or mixed strategies. A long line of work [FGGS13,
HN13, Bab14, Rub16] has recently established that the query complexity of computing approximate
2-player n-action Nash equilibria and approximate m-player 2-action Nash equilibria is poly(n)
and exp(m), respectively, even for randomized algorithms. For approximate m-player correlated
equilibria, there is an exponential gap between the best randomized algorithms and the deterministic
lower bounds [HN13, Bab14].

In the case of correlated equilibria (and coarse correlated equilibria), [GR16] show that for
m-player binary action games and for any ε < 1/2 the query complexity is Θ(logm). They provide
an algorithm based on multiplicative weights that uses Õ(nmε−2) queries to compute ε-coarse
correlated equilibria in m-player n-action games.

Recently and independently of this work [AG17] have shown a lower bound of Ω(n) for the
randomized communication complexity of approximate correlated equilibria in the domain where
ε < 1

poly(n) . Their techniques and ideas are similar to ours, except their reduction is directly from the
disjointness problem whereas our analysis is based on information-theoretic arguments concerning
the games we propose.

1.3 Future Directions

Though it closes the gap for m-player constant action correlated equilibria, our result leaves open
the gap for the communication complexity of approximate 2-player n-action correlated equilibria.
We are confident that our approach can provide non-trivial communication and query complexity
lower bounds of Ω(ε−1 log) and Ω(nε−1). We conjecture that the right bounds are poly(log n) and
npoly(log n).We share some future directions that might help in settling this question.

• It is known that approximate correlated equilibria with small supports exist [BBP13] with size
O(log2 n). There is a small gap with the best lower bounds (O(log n)). If the upper bounds
were tight, we suspect our techniques could raise lower bounds.

• There exist algorithms to compute approximate correlated and coarse correlated equilib-
ria [BBP13, HN13]. However they either rely on computing exact correlated equilibria, which
is prohibitively expensive in the communication setting, or require polynomially many rounds,
which already brings the communication cost above our conjectured answer. Progress in
algorithms that are distributed in nature and exploit the structure of the solutions could
improve on the cost of the protocol we propose.

• Not much is known about the query complexity of 2-player n-action approximate correlated
equilibria. The folklore lower bound of Ω(n) from games with dominant strategies is significantly
far from the trivial upper bound of O(n2). Recent connections between lower bounds in query
complexity and lower bounds in communication complexity [GPW15, Göö15] suggest that
strong query complexity lower bounds could provide better communication complexity lower
bounds.
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2 Preliminaries

2.1 Game Theoretic definitions

We consider m-player n-action games where each player has a strategy set Ai and a payoff function
ui : A→ [0, 1], where A =

∏
iAi. Let A−i =

∏
j 6=iAj . In 2-player games we will refer to the first

player as Alice and the second player as Bob.
In this paper we will be interested in studying approximate correlated equilibria (CE), approxi-

mate coarse correlated equilibria (CCE) and a different relaxation of exact correlated equilibria due
to [HMC00], which we will refer to as approximate Hart-Mas-Colell Correlated Equilibria (HMCE).

A common interpretation of ε-CCE is that a referee draws a strategy profile a ∈ A according to
the correlated distribution x and recommends action ai to player i. The distribution is a ε-CCE if
no single pure deviation from the recommended action yields a benefit greater than ε for any player.
There is a similar interpretation for the case of ε-CE: a distribution is a ε-CE if any deviation
from the recommended action does not yield a benefit greater than ε for any player. A ε-HMCE
only requires that no player benefits more than ε by changing a single recommendation by any
other action. We now formally define them in terms of regret, in accordance to [BBP13] (for more
standard, equivalent definitions, see e.g. [HN13]).

Definition 1. Let Rij(a) = ui(j, a−i)− ui(a) be the regret of player i for playing switching rule j at

strategy profile a. A distribution x ∈ ∆(A) is an ε-coarse correlated equilibrium if Ea∼x[Rij(a)] ≤ ε
for all players i and actions j ∈ Ai.

Definition 2. Let Rif (a) = ui(f(ai), a−i)− ui(a) be the regret of player i for playing switching rule

f at strategy profile a. A distribution x ∈ ∆(A) is an ε-correlated equilibrium if Ea∼x[Rif (a)] ≤ ε
for all players i and switching rules f : Ai → Ai.

Definition 3. A distribution x ∈ ∆(A) is an ε-Hart-Mas-Colell correlated equilibrium if for every
player i, every action j ∈ Ai and every action k ∈ Ai, Ea−i∼x−i [Rik(a)|ai = j] ≤ ε.

The second and third definitions are relaxations of the definition of exact (ε = 0) correlated
equilibria. However, as noted in [BBP13], approximate HMCE are uninteresting to study from a
communication perspective. For any game there exists a 0-communication that produces 1

k -HMCE:
independently of the payoff functions the players can agree on a set of k strategies in ∆(A) and
directly output a uniform distribution over them, where 1

ε ≤ k ≤ n. It is not hard to see that this is
indeed a 1

k -HMCE. The advantage of working with this definition is that there exists a non-adaptive
no-regret learning algorithms to compute such ε-equilibria for m-player games with a constant
number of actions in a number of rounds polynomial in 1/ε [HMC00]. We adapt the algorithm
into a communication protocol and revisit their analysis with the consideration that the number of
actions per player is part of the input.

2.2 Communication Complexity definitions

In the classical communication problems there are m parties each of which are given inputs
xi ∈ {0, 1}n x = (x1, x2, ..., xm) and who are interested in computing a joint function of their
inputs, f(x), where x = (x1, x2, ..., xm). The (randomized) communication complexity of a protocol
Π for computing the function f(x) is the (expected) number of bits the two parties need to
exchange to compute f(x) by following Π (with high probability). This quantity will be referred
to as CC(Π, f, x). The communication complexity of protocol Π for computing f is the worst-
case communication complexity for any pair of inputs, i.e. CC(Π, f) = maxx CC(Π, f, x). The
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communication complexity of a function f is the minimum communication complexity over all
protocols that compute f , CC(f) = minΠ CC(Π, f).

We will be interested in computing ε-CE, ε-CCE, ε-HMCE of general games G = (A, u)
belonging to the family of m-player n-action games Gm

n with bounded payoff functions. We assume
each player only has access to their payoff function ui. We consider protocols where for every
round t, each player communicates as many bits as it wants. We say that Π is a protocol for
computing ε-CE of the game G if there exists a number of rounds T after which one of the players
outputs a distributions x ∈ ∆(A) that forms a ε-correlated equilibria with high probability. We
let CC(ε − CE,Gm

n ) = minΠ CC(Π, ε − CE,Gm
n ) = minΠ maxG∈Gmn CC(Π, ε − CE, G). We can

analogously define the communication complexity of computing ε-CCE and ε-CE.

2.3 Information Theoretic definitions

Our communication lower bounds are actually based on information theoretic results, so here we
provide the tools that will be used in Section 3. Throughout the paper log is the logarithm in base
2 and ln is the natural logarithm. For further references, we refer the reader to [CT12].

Definition 4 (Entropy). The entropy of a random variable A, denoted by H(A) is defined as∑
a∈Supp(A)

Pr[A = a] log
1

Pr[A = a]
.

Intuitively this quantifies how much uncertainty we have about variable A. This can be extended
to define the relation between various variables. For instance suppose we have possibly correlated
random variable A and B. Then we can define conditional entropy of A given B as H(A|B) :=
H(AB)−H(B). Note that if A = B, the conditional entropy is 0. We formalize this dependency as
mutual information.

Definition 5 (Mutual Information). The mutual information between two random variable A and
B, denoted by I(A;B) is defined as

I(A;B) := H(A)−H(A|B) = H(B)−H(B|A).

The conditional mutual information between A and B given C, denoted by I(A;B|C), is defined as

I(A;B|C) := H(A|C)−H(A|BC) = H(B|C)−H(B|AC).

This quantity measures how much information the random variable B reveals about A and vice-versa
(even conditioned on the value of C). Mutual Information is fundamental to the following metric
between probability distributions.

Definition 6 (Kullback-Leibler Divergence). Given two probability distributions µ1 and µ2 on the
same sample space Ω such that (∀ω ∈ Ω)(µ2(ω) = 0⇒ µ1(ω) = 0), the Kullback-Leibler Divergence
(KL-Divergence for short) between µ1 and µ2 is defined as (also known as relative entropy)

D(µ1||µ2) =
∑
ω∈Ω

µ1(ω) log
µ1(ω)

µ2(ω)
.

We now provide useful properties that will be relevant to our proofs. For KL-divergence we use the
following properties.
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Fact 1. For random variables A,B and C we have

I(A;B|C) = EB,C [D(A|B,C||A|C)] .

where A|B,C is the distribution of random variable A conditioned on B = b, C = c and similarly
for A|C.

Fact 2 (Chain Rule for KL-Divergence). Consider two distributions P (x1, . . . , xn) and Q(x1, . . . , xn).
Then

D(P ||Q) ≥
n∑
i=1

D(P (xi)||Q(xi)).

Definition 7 (Information Complexity). The Information Cost of a 2-party protocol Π that computes
f is defined as

IC(Π) = I(Π;A|B) + I(Π;B|A),

where A is the input to the first party and B is the to the second party. The information cost of f
is simply the minimum information cost over all protocols that compute f .

It is easy to check that CC(f) ≥ IC(f), since 1-bit can carry at most 1-bit of information.

3 Lower Bounds

3.1 Warm up: Best CE requires Ω(log n) bits of communication

Let BCE (”best” CE) be the problem of computing the largest-welfare correlated equilibrium. In
this section we exhibit a simple bimatrix game that requires at least Ω(log n) bits of (randomized)
communication for players to agree on the BCE. Our proof relies on an information-theoretic
argument, which always lower bounds communication. We show this weak lower bound in order to
motivate and ease the main result of this section, the proof of Theorem 2.

Theorem 4. There exists a game G ∈ G2
n such that CC((BCE, G)) = Ω(log n).

Proof. Consider the following permutation game GP : Alice and Bob get random n× n permutation
matrices A,B each with the promise that there is exactly one entry such that Aij = Bij = 1. There
is a unique largest-welfare correlated equilibrium: that in which Alice plays i, Bob plays j and
they obtain a combined welfare of 2. We show that Ω(log n) bits of communication are required
through an information-theoretic argument. We bound the information cost from Bob’s perspective,
I(Π;A|B). This suffices due to the symmetry of the construction. The information cost of game
will be twice that from Bob.

I(Π;A|B) = EΠ,B [D(A|Π, B||A|B)] . (1)

Let F be the distribution of the index i such that Ai,j = Bi,j = 1. Then we can rewrite (1) as

EΠ,B [D(A|Π, B||A|B)] = EΠ,B [D(F |Π, B||F |B)] + EΠ,F,B [D(X|Π, F,B||X|F,B)] ,

≥ EΠ,B [D(F |Π, B||F |B)]

where the inequality holds due to non-negativity of KL divergence. We know (F |Π, Y ) must be a
distribution that concentrates all of it’s mass on i and F |Y is a uniform distribution is simply the
uniform distribution over n elements. Therefore we get that D(F |Π, B||F |B) = log n. Similarly, we
have I(Π;B|A) ≥ log n. Thus CC((BCE, G)) ≥ IC((BCE, G)) = Ω(log n).
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Figure 1: An example of what the modified payoff matrix looks like for Alice.

Even though this bound is possibly not tight it will carry the main intuition of Section 3.2. It
might be tempting to think that the same game should work for the general ε-CE case. Unfortunately
there is a simple 0-communication protocol: both players can immediately output the uniform
distribution over the strategies. No player can gain more than 1

n by consistently deviating. Since
we are only concerned with the domain in which n > 1

ε this protocol correctly outputs a ε−CE.

3.2 Unrestricted lower bound for G2
n

It turns out that a simple modification of the game suffices to carry the result from BCE to ε-CE.
We add a small game on the side which dissuades from large support, 0-communication strategies.
In particular, we show that for ε < 1

8 any ε-CE must allocate most of its mass on the original game.
This allows us to give a simple argument similar to that in the previous section.

Construction Consider the game GP from the proof of Theorem 4 with a slight adjustment: give
each player an additional action n+ 1. Choose ja, jb ∈ [n] independently at random. We refer to
GP as the main part of the game and the remainder as the auxiliary part of the game.

For i 6= ja make uA(n + 1, i) = 1 and 0 otherwise. For j 6= jb, make uB(j, n + 1) = 1 and 0
otherwise. Make uA(jb, n+ 1) = uB(n+ 1, ja) = 1 and uA(i, n+ 1) = 0 for all i ∈ [n+ 1]\{jb}, and
uB(n+ 1, j) = 0 for all j ∈ [n+ 1]\{ja} (see Figure 2 for an example).

As a simple exercise note that after this amendment the uniform distribution is no longer a
ε-correlated equilibrium for ε < 1

2 . Any player can unilaterally switch to the new strategy and gain
1
2 −

1
n from deviating.

Claim 1. For any ε-CE, there is at least Ω(1) fraction of the mass on the main part of the game.
In particular, no ε-CE can have 1− o(1) fraction of the mass on the auxiliary part of the game.

Proof. We consider Alice’s perspective. The argument is symmetric for Bob. Let p0 be the mass this
player assigns to jb× (n+ 1), p1 the mass on ([n]\jb)× (n+ 1), and p2 the mass on (n+ 1)× (n+ 1).

By construction, uB(jb, n+ 1) = uB(n+ 1, n+ 1) = 0 so the payoff for Bob, conditioned on this
column, is p1. By deviating to k ∈ [n] such that uB(jb, k) = 1, Bob can gain a payoff of p0. On the
other hand, by deviating to ja ∈ [n], Bob will gain a payoff of at least p2, since uB(n+ 1, ja) = 1.
So any ε-CE needs to satisfy the following set of inequalities.

p1 > p0 − ε,
p1 > p2 − ε,
p0 + p1 + p2 = 1.

Combining them, we have that

2p1 > p0 + p2 − 2ε = 1− p1 − 2ε. (2)
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Figure 2: Coloring argument.

Rearranging (2), we get that

p1 >
1− 2ε

3
>

1

4
. (3)

Then (3) implies that the total mass on [n]×(n+1) is at most 4 times the mass on ([n]\jb)×(n+1).
Symmetrically, we get that total mass on (n+1)× [n] is at most 4 times the mass on (n+1)×([n]\ja).

Let M be the mass on GP , Mb as the mass on ([n]\jb) × [n] and Mi as the mass on i × [n].
Note that for any recommendation i ∈ [n]\jb to Alice, the mass on n+ 1 can be at most 1/2 + ε/2.
Otherwise, by deviating to jb, Alice gains at least ε gain in payoff. In other words, the mass on
i× (n+ 1) is at most 1+ε

1−εMi ≤ (1 + 3ε)Mi. Then the mass on ([n]\jb)× (n+ 1) is bounded by

(1 + 3ε)
∑

i∈[n]\jb

Mi = (1 + 3ε)Mb < (1 + 3ε)M. (4)

Combining (3) and (4) we have that mass on [n+ 1]× (n+ 1) and (n+ 1)× [n+ 1] is at most
4(1 + 3ε)M . Moreover, p1 > p2 − ε. Concretely we have that

(1 + 3ε)M >p1,

3p1 >p0 + p2.
(5)

The sum of all the masses is 1, which combined with the upper bounds derived and the fact
that ε < 1

8 yields

1 ≤ 2p0 + 2p1 + 2p2 +M < (1 + 8(1 + 3ε))M < 12M,

which is what we wanted to show.

Note that Claim 1 states that for any ε-CE, there is a substantial mass on the main part of
the game. Now we are ready to argue that computing ε-CE in the main part of the game requires
Ω(log n) communication.

Proof of Theorem 2. For each recommendation i ∈ [n] to Alice on any ε-CE, let ~di denote the

distribution on the column. Note that the payoff for following the recommendation is ~di ·ai = ~diπA(i).

Denote j = arg maxk∈[n+1]
~dik, then note that the payoff for deviating in [n] is ~di · aπ−1

A (j) =

maxk∈[n+1]
~dik while the payoff for deviating to n + 1 is ~di · an+1. We split into two cases for ~di:

either maxk∈[n+1]
~dik ≥ 1/8 or maxk∈[n+1]

~dik < 1/8.

In the first case we need ~diπA(i) ≥ 1/4− ε > 1/8 in order for Alice not to deviate. Her prior is
the uniform distribution over n strategies since the input distribution is the uniform distribution
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over permutation matrices. This combined with Fact 1,

I(Π;Yi|X) = D(~di||Un) =
∑
k∈[n]

~dik log ~dikn ≥
log n

8
+H(1/8) = Ω(log n),

where H refers to the binary entropy function. Thus the information cost is Ω(log n). Since
information precludes communication, the lower bound for communication follows.

In the other case note that the current payoff is at most 1/8, while the payoff for deviating
to n+ 1 is at least 1/2. This is a contradiction since 1/2− 1/8 > ε, so this can not happen on a
ε-CE.

Remark 1. Indeed, one can come up with an easier construction if Alice has a dominant strategy
and Bob’s objective is to find Alice’s dominant strategy. However, this is one-sided in a sense that
Bob is the only player who learns from the transcript, compared to our construction where both Alice
and Bob learn from the transcript.

3.3 Unrestricted lower bound for Gm
2

In this section we exhibit a game G ∈ Gm
2 whose ε-correlated equilibrium communication complexity

is Ω(m), proving Theorem 3.

Construction Without loss of generality suppose m is a even number. Each player is equipped
with two actions: 0 and 1. We will refer to the first m/2 as ‘state setters’ and define their payoffs
as follows: let ~R ∈ {0, 1}m/2 be a string of random boolean variables where each coordinate is set
independently at random at with probability 1/2. Then

ui(ai,~a−i) =

{
1 if ai = ri

0 otherwise

We refer to the last m/2 players as ‘imitators’, and define their payoffs as follows:

ui(ai,~a−i) =

{
1 if ~ai−m/2 = ai

0 otherwise

In particular, imitators only get a positive payoff if they manage to successfully imitate their
corresponding state setters. We now characterize the structure of ε-CE for this game.

Claim 2. For any ε-CE, state setter i must have > 1− ε mass on the recommended action ri.

Proof. The payoff for playing ri with probability p is p. Hence putting all the mass in this action
gives a payoff of 1. Therefore for any ε-CE, p > 1− ε.

With a similar proof, we can also show the following:

Claim 3. For any ε-CE, imitator i must have mass > 1− ε on its setter’s action, ri−m/2.

Proof of Theorem 3. Suppose we merge all imitators to one player, Bob, and all state setters to the
other player, Alice. This only makes the communication task easier since for any m-player protocol,
these players can just simulate their own m/2 players. Then let A denote the input for state setters
and B denote the input for imitators, then indeed I(Π;B|A) = 0. But

I(Π;A|B) = I(Π;A) = I(Π;R)

10



since B is a constant and A is completely determined by R. Then

I(Π;R) = D(Rπ||R) ≥
∑

i∈[m/2]

D(Riπ ||Ri) ≥ m ·
1−H(ε)

2
,

where the equality is Fact 1 and the first inequality stems from Fact 2. Taking ε to be a constant
< 1/3 we get the desired information lower bound, which in turn implies multi-player communication
lower bound.

4 Upper Bounds for General Games

In this section we present a communication protocol for computing ε-CE based on an adaptive
algorithm of [HMC00] that converges to ε-HMCE. The overall communication cost of the protocol is
Õ(mn), where the largest factor comes from having to carry out O(n) rounds in order to guarantee
convergence to approximate correlated equilibria. Note that the naive upper bound is O(mnm)
since every player can simply write their utility functions on a common blackboard.

4.1 Warm up: A O(m log n) protocol for CC(ε−HMCE,Gm
n )

We present a protocol based on an algorithm of [HMC00] to compute ε-HMCE. It is worth noting
that in their paper they present two algorithms: an adaptive one and a non-adaptive one. As
it turns out, both require the same number of rounds to converge to ε-HMCE but the adaptive
strategy is technically more challenging to show, which is why we opt for the simpler algorithm.

At a high level, on round t each player looks at the history of strategies h(t) = {s′t : s ∈ A, (t′ < t)}
played up until then and computes a matrix that measures the average regret of not having played
action k whenever action j was played, for all actions k, j ∈ Ai from round 1 up to round t − 1.
They then compute the stationary distribution of this matrix (which [HMC00] shows always exists),
play an action according to it and announce it to everyone else. After T = 1

ε2
rounds, the first

player (or any player) outputs the empirical distribution of actions played zT , where for a given
s ∈ A the probability it gets played is zT (s) = 1

T |{t ≤ T : s = st}|. The beauty of the procedure is
that players only need to communicate the action they perform at the current time period, using
O(log n) bits of communication.

Theorem 5. CC(ε−HMCE,Gm
n ) = O(m log n)

Proof. We reproduce the algorithm and notation in [HMC00].
The matrix At simply counts the regret of not having played action k at time t when action j

was played. The matrices Dt, Rt average the regret and ignore actions with negative regret up until
time t, respectively. It is clear that the communication cost of the protocol will be O(mT log n)
where T is the number of rounds. The proof in [HMC00] shows that O( 1

ε2
) rounds suffice to converge

to the set of ε-HMCE. The following corollary concludes the proof.

Corollary 1. Suppose that at each period t+ 1 every player i chooses strategies according to the
stationary distribution of Rit. Then the empirical distribution of plays zt converges at a rate of O( 1

ε2
)

almost surely as t→∞ to the set of exact correlated equilibria.

11



Algorithm 1 Protocol Π to compute ε-HMCE

• At time t = 1, each player plays according to some arbitrary initial distribution pi1.

• From t = 2 to t = T :

• Each player i computes the matrices Ait, D
i
t, R

i
t where

Ait(j, k) = 1sit=j
[ui(k, s−it )− ui(j, s−it )],

Dit(j, k) =
1

t

∑
τ=1

Aτ (j, k),

Rit(j, k) = max{0, Dt(j, k)}.

• Each player computes the stationary distribution of Rit, p
i
t, plays according to it and announces his move to everyone

else.

• Player 1 outputs the empirical distribution zT of all strategies played.

4.2 From ε-HMCE to ε-CE

There are two issues that prevent us from using the same protocol as a black box for the more
general case. In the first place, the algorithm converges to ε-HMCE, not ε-CE. It can be shown
that ε-HMCE are, in the worst case,

√
nε-CE and this is tight. This implies that in order

to converge to ε-CE we need at most n
ε2

rounds of the protocol. The other problem is that the
algorithm assumes that the number of actions per player is constant and the dependence in the size
of the matrix is hidden in the running time of the procedure. A revision of their analysis gives a
protocol whose communication cost is Õ(nε−2) per player.

The following lemma characterizes convergence to ε-CE in terms of the regret matrix Rit.

Lemma 1. Consider any sequence of plays and let ε ≥ 0. If lim supt→∞maxj{
∑

k R
i
t(j, k)} ≤ ε

for all players i and all actions j ∈ Ai, the sequence of empirical distributions converges to the set
of ε-CE.

Proof. For each player i and every j ∈ Ai we have

∑
k 6=j

Di
T (j, k) =

1

T

T∑
τ=1

∑
k 6=j

Aτ (j, k) =
∑

s∈A:si=j

zT (s)
∑
k 6=j

(
ui(k, s−i)− ui(j, s−i)

)
= Es∼zT (Rif (s)) ≤ ε,

for any switching rule f where the last equality follows from the fact that a switching rule is
just a linear combination of single deviations. Since the sum of the regret of all individual actions is
bounded by ε so is any convex combination of them.

Lemma 2. If the regret matrix for each player i satisfies
√∑

RiT (j, k)2 ≤ ε then we obtain a
√
nε-CE.

Proof. By 1 it suffices to show that maxk{Rit(j, k)} ≤
√
nε.

max
j
{
∑
k

Rit(j, k)} ≤
√
nmax

j

√∑
k

RiT (j, k)2 ≤
√
n

√∑
j,k

RiT (j, k)2 ≤
√
nε,
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where the first inequality follows from the relationship between the `1 and `2 norms, and the
second follows from the relationship between `∞ and `1.

4.3 A small detour: Blackwell’s Approachability Theorem

Before we proceed to the last component of our analysis of the protocol we will need to introduce
Blackwell’s Approachability Theorem [Bla56]. The standard setup considers an agent i who plays
actions ai ∈ Ai and gets payoff vectors in RL, that depends on his action and another action
a−i ∈ A−i chosen by an opponent, possibly adversarially. In other words, agent i’s payoff is of the
form vi : Ai ×A−i → RL. The game is played for many rounds and the agents goal is to make her
average payoff vector, DT = 1

T

∑T
t=1 vi(a

i
t, a
−i
t ), approach some given set C ∈ RL. We say a convex,

closed set C is approachable if there is a procedure that almost surely guarantees that the distance
between DT , C approaches 0 as T goes to ∞, irrespective of the opponents actions. Blackwell’s
Approachability Theorem states necessary and sufficient conditions under which this can be done.

Theorem 6. Let C ∈ RL be a closed, convex set with support function wC . Then C is approachable
if and only if for all λ ∈ RL there is a mixed strategy qλ ∈ ∆(Ai) such that λ · ui(qλ, a−i) ≤ wC(λ),
for all a−i ∈ A−i.

Moreover, the following strategy suffices: at time t + 1 play qλ(Dt) if Dt 6∈ C and arbitrarily

otherwise. The rate of convergence is O( 1√
T

).

[HMC00] use the result directly with L = n2 and the individual payoffs vi mimicking the entries
of the regret matrix RiT . They show that the stationary distribution of the regret matrices is exactly
the vector qλ that guarantees convergence in Blackwell’s Theorem.

In order to understand how the dimension of the vectors plays a role in this we need to take a
close look into the proof of the Theorem. Let ρt be the distance between the average payoff vector
of agent i and the convex set C. The analysis relies on a recursively bounding ρt+1 as a function of
ρt. In particular, the recursion looks like this:

(t+ 1)2ρ2
t+1 ≤ t2ρt + ||vi(ai, a−i)− πC(Dt)||2,

where πC(DT ) is the projection of the average regret vector at time t onto set C. A standard
analysis would bound the rightmost term by a constant (arguing that all points belong to some ball
of bounded radius) and, with the use of a telescoping argument, show that the distance converges
at a rate of O( 1√

T
). However, in our case, if the dimension is a parameter we care about then an

appropriate upper bound on the rightmost term would be O(L) (this is because the vectors lie
on L-dimensional space and are entry-wise bounded due to the nature of the utility functions).
Carrying the analysis as is would then give a regret of O(

√
n
T ), which would in turn significantly

blow up the cost of our communication protocol. We claim that projecting these vectors into
O(log(T ))-dimensional spaces using the Johnson-Lindenstrauss Lemma preserves the validity of the
proof at a small cost on the convergence rate.

Claim 4. After T rounds of the protocol Π the average regret matrix for player i, RiT , is such that√∑
RiT (j, k)2 ≤ 32 log T√

T
.

Proof. We can apply the Johnson-Lindenstraus Lemma [JL84] (with δ = 1
2)1 to the T n2-dimensional

vectors that arise from carrying out the telescoping sum in the analysis of Blackwell’s Theorem.

1The JL states that for any set of m points in Rn there exists a projection f : Rn → Rd, where d > 8 logm
ε2

, that
preserves pairwise distances between the points up to a multiplicative ε factor.
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This reduces their dimension to 32 log T and approximately preserves the `2 norm. The rest of the
analysis of the recursion carries through and we get an additional

√
log(T ) factor on the convergence

rate.

Theorem 7. Protocol Π with T = 1602 n
ε2

log2 n rounds produces a ε-CE.

Proof. By Claim 4, 1602 n
ε2

log2 n rounds produce regret matrices such that
√∑

RiT (j, k)2 ≤ ε√
n

.

Combining this with Lemma 2 finishes the proof.
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