
Lower Bounds and PIT for Non-Commutative Arithmetic circuits
with Restricted Parse Trees

Guillaume Lagarde∗ Nutan Limaye† Srikanth Srinivasan‡

Abstract

We investigate the power of Non-commutative Arithmetic Circuits, which compute polynomials
over the free non-commutative polynomial ring F〈x1, . . . ,xN〉, where variables do not commute. We
consider circuits that are restricted in the ways in which they can compute monomials: this can
be seen as restricting the families of parse trees that appear in the circuit. Such restrictions capture
essentially all non-commutative circuit models for which lower bounds are known. We prove several
results about such circuits.

1. We show explicit exponential lower bounds for circuits with up to an exponential number of
parse trees, strengthening the work of Lagarde, Malod, and Perifel (ECCC 2016), who prove
such a result for Unique Parse Tree (UPT) circuits which have a single parse tree.

2. We show explicit exponential lower bounds for circuits whose parse trees are rotations of
a single tree. This simultaneously generalizes recent lower bounds of Limaye, Malod, and
Srinivasan (Theory of Computing 2016) and the above lower bounds of Lagarde et al., which
are known to be incomparable.

3. We make progress on a question of Nisan (STOC 1991) regarding separating the power of Al-
gebraic Branching Programs (ABPs) and Formulas in the non-commutative setting by showing
a tight lower bound of nΩ(logd) for any UPT formula computing the product of d n×n matrices.
When d ≤ logn, we can also prove superpolynomial lower bounds for formulas with up to
2o(d) many parse trees (for computing the same polynomial). Improving this bound to allow
for 2O(d) trees would yield an unconditional separation between ABPs and Formulas.

4. We give deterministic white-box PIT algorithms for UPT circuits over any field (strengthening
a result of Lagarde et al. (2016)) and also for sums of a constant number of UPT circuits with
different parse trees.

∗Univ Paris Diderot, Sorbonne Paris Cité, IRIF, UMR 7089 CNRS, F-75205 Paris, France. Email:
guillaume.lagarde@irif.fr.
†Department of Computer Science and Engineering, IIT Bombay, Mumbai, India. Email: nutan@cse.iitb.ac.in.
‡Department of Mathematics, IIT Bombay, Mumbai, India. Email: srikanth@math.iitb.ac.in.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 77 (2017)

1 Introduction

In this paper, we study questions related to Arithmetic Circuits, which are computational devices that
use arithmetic operations (such as + and ×) to compute multivariate polynomials over a field F. While
the more standard work in this area deals with the commutative polynomial ring F[x1, . . . ,xN], there is
also a line of research, initiated by Hyafil [14] and Nisan [22], that studies the complexity of computing
polynomials from the non-commutative polynomial ring F〈x1, . . . ,xN〉, where monomials are simply
strings over the alphabet X = {x1, . . . ,xN}. The motivation for this is twofold: firstly, the study of
polynomial computations over non-commutative algebras (e.g. the algebra of matrices over F) naturally
leads to such questions [8, 7], and secondly, computing, say, the Permanent non-commutatively1 is at
least as hard as computing it in the commutative setting and thus, the lower bound question should be
easier to tackle in this setting.

In an influential result, Nisan [22] justified this by proving exponential lower bounds for non-
commutative formulas, and more generally Algebraic Branching Programs (ABPs), computing the De-
terminant and Permanent (and also other polynomials). The method used by Nisan to prove this lower
bound can also be seen as a precursor to the method of Partial derivatives in Arithmetic circuit complex-
ity (introduced by Nisan and Wigderson [23]), variants of which have been used to prove a large body
of lower bound results in the area [23, 26, 11, 16, 18].

While lower bounds for general non-commutative circuits remain elusive, we do have other lower
bounds that strengthen Nisan’s result. Recently, Malod, along with two of the authors of this paper
showed [20] that Nisan’s method can be extended to prove lower bounds for skew circuits, which are
circuits where every ×-gate has at most one non-variable input. Also, the first author, Malod and Per-
ifel [19] proved lower bounds for another variant of non-commutative circuits that they defined to be
unambiguous circuits (that we describe below). While these two results both strengthen Nisan’s result,
they are incomparable to each other, as shown by [19].

In this paper, we build on the above work to prove lower bounds that generalize these results signif-
icantly and also make progress on other problems related to non-commutative circuits. The circuits we
consider are restricted in the ways they are allowed to compute monomials. We do this by restricting
the “parse trees” that are allowed to appear in the circuits. Informally, the polynomial computed by any
arithmetic circuit C can be written down as an exponentially-large sum of subcircuits, each of which
contains only multiplication gates and hence computes a single monomial2; each such subcircuit gives
rise to a tree, which we call a parse tree of C (see [19] and references therein for the background of
parse trees), that tells us how the monomial was computed. For example, for the circuit C in Figure 1,
the monomial x1x2x3x4 may be computed in C as (x1 ·x2) · (x3 ·x4) or as (x1 · (x2 ·x3) ·x4), each of which
comes from a parse tree of C.

All the non-commutative circuit classes for which we know lower bounds can be defined by restric-
tions on the parse trees that appear in them. ABPs are circuits where all parse trees are left combs (i.e.
a tree where every internal node has two children and the left child is always a leaf); skew circuits are
equivalent in power to circuits where the parse trees are twisted combs (i.e. a tree where every internal
node has two children and at least one of the two children is always a leaf); and unambiguous circuits
(that we will call Unique Parse Tree (UPT) circuits below) are defined to be circuits that have only one
parse tree. It is thus natural to consider other restrictions on the structure of the parse trees that appear
in a circuit. We prove several results about such circuits.

Our results. We start by considering circuits that only contain a few different parse trees. The motiva-
tion for this is the lower bound of [19] for the case of circuits with a single parse tree and a construction

1We can define the Permanent in the non-commutative polynomial ring by ordering the variables in each monomial in the
commutative permanent, say, in increasing order of the rows in which they appear.

2different subcircuits could compute the same monomial

1

+

x2 x3x1 x4

×x1 x4

× ×

+

x2 x3

×x1 x4

×

x1 x2 x3 x4

× ×

×

Figure 1: From left to right: a non-commutative arithmetic circuit C; two ways in which the monomial
x1x2x3x4 is computed in the circuit; the corresponding parse trees

in [20] that shows that poly(N,d)-sized circuits with exp(Ω(d)) many parse trees3 evade all currently
known techniques for proving lower bounds for non-commutative circuits. We prove exponential lower
bounds for circuits that contain up to an exponential number of parse trees.

Theorem 1 (Informal). For any N ≥ 2, there is an explicit polynomial F on N variables of degree d
such that any circuit C with at most 2d1/4

parse trees computing F must have size at least 2d1/4
.

Next, we consider structural restrictions on the collections of parse trees that appear in our circuits.
As mentioned above, skew circuits are circuits where all parse trees are twisted combs, which can be
seen as trees obtained by starting with a left comb (which defines an ABP) and successively applying
rotations to the internal nodes that swap the children. We say that a circuit C is rotation Unique Parse
tree (rotUPT) if there is a single tree T such that all the parse trees of C can be obtained as rotations
of T .4 We show the following result that simultaneously generalizes the skew circuit lower bound of
Limaye et al. [20] as well as the UPT circuit lower bound of Lagarde et al. [19].

Theorem 2 (Informal). For any N ≥ 2, there is an explicit polynomial F on N variables of degree d
such that any rotUPT circuit C computing F must have size NΩ(d).

We also consider the problem of separating ABPs from formulas, which was posed by Nisan [22]
and is the non-commutative arithmetic analogue of separating NL from NC1. Equivalently, this is the
question of whether (an entry of) the product of d n× n matrices, all of whose entries are distinct
variables, can be computed by a poly(n,d)-sized non-commutative formula. The standard divide-and-
conquer approach yields, for every even ∆, a non-commutative formula of depth ∆ and size nO(∆d2/∆)

computing this polynomial and a size nO(logd) formula in general. Further, these formulas can be seen
to have a unique parse tree (i.e. they are UPT). We show that this upper bound is nearly tight for UPT
formulas and every choice of ∆.

Theorem 3 (Informal). Any UPT formula of depth ∆ for multiplying d n× n matrices must have size
nΩ(∆d1/b∆/2c).5 In particular, any UPT formula for this polynomial must have size nΩ(logd).

We are also able to extend this to the setting of formulas with ‘few’ parse trees. However, for this
result, we need an upper bound on the number d of matrices (see Remark 36 for more on this).

Theorem 4 (Informal). Say d ≤ logn. Any formula with k ≤ 2o(d) parse trees for multiplying d n× n
matrices must have size nω(1).

Finally, we consider the Polynomial Identity Testing (PIT) problem for non-commutative circuits
with restricted parse trees. Lagarde et al. [19] show that deterministic PIT algorithms for UPT circuits

3A close look at the circuits in [20] indicates that just about all parse trees of fan-in 2 appear in these circuits.
4There can be exp(Ω(d)) of these, as in the case of skew circuits.
5Our bounds are actually better stated in terms of the ×-depth of the formula.

2

can be obtained by adapting a PIT algorithm for ABPs due to Arvind, Joglekar and Srinivasan [3].
However, this technique only works over fields of characteristic zero. Here, we give a straightforward
adaptation of an older PIT algorithm of Raz and Shpilka [25] (also for non-commutative ABPs) to show
that PIT for UPT circuits can be solved in deterministic polynomial time over all fields. We also consider
circuits that are sums of UPT circuits (with possibly different parse trees). By using ideas from the work
of Gurjar, Korwar, Saxena and Thierauf [12], we show that PIT for a sum of constant number of UPT
circuits can be solved in deterministic polynomial time (over any field).

Theorem 5 (Informal). The PIT problem for the sum of k UPT circuits of size s can be solved determin-
istically in time sO(2k).

Related work. Hrubeš, Wigderson and Yehudayoff [13] initiated a study of the asymptotics of the
classical sum-of-squares problem in mathematics and showed that a suitable result in this direction
would yield strong lower bounds against general non-commutative circuits. While this line of work is
currently the only feasible attack on the problem of general circuit lower bounds, we do not yet have any
lower bounds using this technique.

Nisan and Wigderson [23] prove results that imply6 some lower bounds for UPT formulas computing
iterated matrix product. For depth-3 formulas, they prove an optimal nd bound on computing the product
of d n×n matrices. For depths ∆ > 3 though, the lower bound is only exp(Θ(d1/∆)) and thus does not
yield anything non-trivial when ∆ approaches logd. Indeed, the proof method of this result in [23] is not
sensitive to the value of n and holds for any n≥ 2. Such a method cannot yield non-trivial lower bounds
for general formulas since we do have poly(d)-sized formulas in the setting when n = O(1).

The results of Kayal, Saha, and Saptharishi [17] and Fournier, Limaye, Malod, and Srinivasan [10]
together also prove a superpolynomial lower bound on the size of regular formulas (defined by [17])
computing the product of d n× n matrices in the commutative setting. While these formulas (in the
non-commutative setting) are definitely UPT, the converse is not true.

Arvind, Mukhopadhyay and Raja [4] and Arvind, Joglekar, Mukhopadhyay and Raja [2] have some
recent work on PIT algorithms for general non-commutative circuits that run in time polylogarithmic
in the degree of the circuit and polynomial in the size of the circuit. Our results are incomparable with
theirs, since our algorithms run in time polynomial in both degree and size but are deterministic, whereas
the algorithms of [4, 2] are faster (especially in terms of degree) but randomized.

An earlier manuscript of Arvind and Raja [6] contains a claim that the PIT problem for non-
commutative skew circuits has a deterministic polynomial time algorithm, but the proof is unfortunately
flawed.7

Techniques. The techniques used to prove the lower bounds in this paper are generalizations of the
techniques of Hyafil [14] and Nisan [22]. Given a homogeneous polynomial f ∈ F〈X〉 of degree d, we
associate with it an Nd/2×Nd/2 matrix whose rows and columns are labelled by monomials (i.e. strings
over X) m of degree d/2 each. Nisan [22] considers the matrix M[f] where the (m1,m2)th entry is the
coefficient of the monomial m1m2 in f . In [20, 19], along with our co-authors, we considered the more
general family of matrices MY [f] where Y ⊆ [d] is of size d/2 and the (m1,m2)th entry of MY [f] is
the coefficient of the monomial m such that the projection of m to the locations in Y gives m1 and the
locations outside gives m2.

This is the general technique we use in this paper as well, though choosing the right Y requires some
work. In the proof of Theorem 1, it is chosen at random (in a similar spirit to a multilinear lower bound
of Raz [24]). In the proof of Theorem 2, it is chosen in a way that depends on the structure of the parse
trees in the circuit (combining the approaches of [20, 19]). In the proof of Theorem 3, it is applied (after

6The results of [23] in fact hold in the stronger commutative set-multilinear setting.
7Private communication with the authors.

3

a suitable restriction) in a way that keeps the iterated matrix product polynomial high rank but reduces
the rank of the UPT formula.

For the PIT algorithm for sums of UPT circuits, we use an observation of Gurjar et al. [12] (also see
[22, 25]) that any polynomial P that has a small ABP has a small set of characterizing identitites such
that Q = P iff Q satisfies these identities. We are able to show (using a suitable decomposition lemma
of [19]) that a similar fact is also true more generally in the case that P has a small UPT circuit. If Q
also has a small UPT circuit, then checking these identities for Q reduces to a PIT circuit for a single
UPT circuit, for which we already have algorithms. In this way, given two UPT circuits (with different
parse trees) computing P,Q, we can check if P−Q = 0. Extending this idea exactly as in [12], we can
efficiently check if the sum of any small number of UPT circuits is 0.

2 Preliminaries

We refer the reader to the survey [27] for standard definitions regarding arithmetic circuits.

2.1 Non-commutative polynomials

Throughout, we use X = {x1, . . . ,xN} to denote the set of variables. We work over the non-commutative
ring of polynomials F〈X〉 where monomials are strings over the alphabet X : for example, x1x2 and x2x1
are distinct monomials in this ring. For d ∈ N, we use Md(X) to denote the set of monomials (i.e.
strings) over the variables in X of degree exactly d.

For i, j ∈ N, we define [i, j] to be the set {i, i+1, . . . , j} (the set is empty if i > j). We also use the
standard notation [i] to denote the set [1, i].

Given homogeneous polynomials g,h ∈ F〈X〉 of degrees dg and dh respectively and an integer j ∈
[0,dh], we define the j-product of g and h — denoted g× j h — as follows:

• When g and h are monomials, then we can factor h uniquely as a product of two monomials h1h2
such that deg(h1) = j and deg(h2) = dh− j. In this case, we define g× j h to be h1 ·g ·h2.

• The map is extended bilinearly to general homogeneous polynomials g,h. Formally, let g,h be
general homogeneous polynomials, where g = ∑` g`, h = ∑i hi and g`,hi are monomials of g,h
respectively. For j ∈ [0,dh], each hi can be factored uniquely into hi1 ,hi2 such that deg(hi1) = j
and deg(hi2) = dh− j. And g× j h is defined to be ∑i ∑` hi1g`hi2 .

Note that g×0 h and g×dh h are just the products g ·h and h ·g respectively.

2.2 The partial derivative matrix

Here we recall some definitions from [22] and [20]. Let Π denote a partition of [d] given by an ordered
pair (Y,Z), where Y ⊆ [d] and Z = [d] \Y . In what follows we only use ordered partitions of sets into
two parts. We say that such a Π is balanced if |Y |= |Z|= d/2.

Given a monomial m of degree d and a set W ⊆ [d], we use mW to denote the monomial of degree
|W | obtained by keeping only the variables in the locations indexed by W and dropping the others.

Definition 6 (Partial Derivative matrix). Let f ∈ F〈X〉 be a homogeneous polynomial of degree d. Given
a partition Π = (Y,Z) of [d], we define an N|Y |×N|Z| matrix M[f ,Π] with entries from F as follows: the
rows of M[f ,Π] are labelled by monomials from M|Y |(X) and the columns by elements of M|Z|(X). Let
m′ ∈M|Y |(X) and m′′ ∈M|Z|(X); the (m′,m′′)th entry of M[f ,Π] is the coefficient in the polynomial f
of the unique monomial m such that mY = m′ and mZ = m′′.

4

We will use the rank of the matrix M[f ,Π] — denoted rank(f ,Π) — as a measure of the complexity
of f . Note that since the rank of the matrix is at most the number of rows, we have for any f ∈ F〈X〉
rank(f ,Π)≤ N|Y |.

Definition 7 (Relative Rank). Let f ∈ F〈X〉 be a homogeneous polynomial of degree d. For any Y ⊆ [d],
we define the relative rank of f w.r.t. Π = (Y,Z) — denoted rel-rank(f ,Π) — to be

rel-rank(f ,Π) :=
rank(M[f ,Π])

N|Y |
.

Fix a partition Π = (Y,Z) of [d] and two homogeneous polynomials g,h of degrees dg and dh respec-
tively. Let f = g× j h for some j ∈ [0,dh]. This induces naturally defined partitions Πg of [dg] and Πh of
[dh] respectively in the following way. Let Ig = [j+1, j+dg] and Ih = [d]\ Ig. We define Πg = (Yg,Zg)
such that Yg = { j ∈ [dg] | Y contains the jth smallest element of Ig}; Πh = (Yh,Zh) is defined similarly
with respect to Ih. Let |Yg|, |Zg|, |Yh|, |Zh| be denoted d′g,d

′′
g ,d
′
h,d
′′
h respectively.

In the above setting, we have a simple description of the matrix M[f ,Π] in terms of M[g,Πg] and
M[h,Πh]. We use the observation that monomials of degree |Y | = d′g +d′h are in one-to-one correspon-
dence with pairs (m′g,m

′
h) of degrees d′g and d′h respectively (and similarly for monomials of degree |Z|).

The following appears in [20].

Lemma 8 (Tensor Lemma). Say f = g× j h as above. Then, M[f ,Π] = M[g,Πg]⊗M[h,Πh].

Corollary 9. Say f = g× j h as above. We have rank(f ,Π) = rank(g,Πg) · rank(h,Πh). In the special
case that one of Yg,Zg,Yh, or Zh is empty, the tensor product is an outer product of two vectors and hence
rank(f ,Π)≤ 1.

We associate any partition Π = (Y,Z) with the string in {−1,1}d that contains a −1 in exactly
the locations indexed by Y . Given partitions Π1,Π2 ∈ {−1,1}d , we now define ∆(Π1,Π2) to be the
Hamming distance between the two strings or equivalently as |Y1∆Y2| where Π1 = (Y1,Z1) and Π2 =
(Y2,Z2).

Proposition 10. Let f ∈ F〈X〉 be homogeneous of degree d and say Π ∈ {−1,1}d . Then, rank(f ,Π) =
rank(f ,−Π).

Proof. Follows from the fact that M[f ,−Π] is the transpose of M[f ,Π].

Lemma 11 (Distance lemma). Let f ∈ F〈X〉 be homogeneous of degree d and say Π1,Π2 ∈ {−1,1}d .
Then, rank(f ,Π2)≤ rank(f ,Π1) ·N∆(Π1,Π2).

Proof. See Appendix A.

2.3 Standard definitions related to non-commutative circuits

We consider noncommutative arithmetic circuits that compute polynomials over the ring F〈X〉. These
are arithmetic circuits where the children of each × gate are ordered and the polynomial computed by
a × gate is the product of the polynomials computed by its children, where the product is computed in
the given order. Further, unless mentioned otherwise, we allow both + and × gates to have unbounded
fan-in and the + gates to compute arbitrary linear combinations of its inputs (the input wires to the +
gate are labelled by the coefficients of the linear combination). A noncommutative formula is a circuit
where the underlying directed graph is a rooted tree. The size of an arithmetic circuit or formula will the
number of edges or wires in the circuit (which can be assumed to be at least the number of gates in the
circuit).

We always assume that the output gate of the circuit is a + gate (possibly of fan-in 1) and that input
gates feed into + gates. We also assume that + and × gates alternate on any path from the output gate

5

to an input gate (some of these gates can have fan-in 1). Any circuit can be converted to one of this form
with at most a constant blow-up in size.

Throughout, our circuits and formulas will be homogeneous in the following sense. Define the
formal degree of a gate in the circuit as follows: the formal degree of an input gate is 1, the formal
degree of a + gate is the maximum of the formal degrees of its children, and the formal degree of a ×
gate is the sum of the formal degrees of its children. We say that a circuit is homogeneous if each gate
computes a homogeneous polynomial and any gate computing a non-zero polynomial computes one of
degree equal to the formal degree of the gate. Note, in particular, that every input node is labelled by a
variable only (and not by constants from F).

Homogeneity is not a strong assumption on the circuit: it is a standard fact that any homogeneous
polynomial of degree d computed by a non-commutative circuit of size s can be computed by a homo-
geneous circuit of size O(sd2) [13].

We also consider homogeneous Algebraic Branching Programs (ABPs), defined by Nisan [22] in the
non-commutative context. We give here a slightly different definition that is equivalent up to polynomial
factors.

Assume that N = n2 ·d for positive n,d ∈ N and let IMMn,d(X) denote the following polynomial in
N variables (see, e.g. [23]). Assume X is partitioned into d sets of variables X1, . . . ,Xd of size n2 each
and let M1, . . . ,Md be n×n matrices such that the entries of Mi (i ∈ [d]) are distinct variables in Xi. Let
M = M1 ·M2 · · ·Md ; each entry of M is a homogeneous polynomial of degree d from F〈X〉. We define
the polynomial IMMn,d to be the sum of the diagonal entries of M.

A homogeneous ABP for a homogenous polynomial f ∈ F〈X〉 of degree d is a pair (n1,ρ) where
n1 ∈ N and ρ is a map from X ′ = {x′1, . . . ,x′n2

1d} to homogeneous linear functions from F〈X〉 such that
f can be obtained by substituting ρ(x′i) for each x′i in the polynomial IMMn1,d(X

′). The parameter n1 is
called the width of the ABP.

2.4 Non-commutative circuits with restricted parse trees

In this paper, we study restricted forms of non-commutative arithmetic circuits. The restrictions are
defined by the way the circuits are allowed to multiply variables to compute a monomial. To make this
precise we need the notion of a parse tree of a circuit, which has been considered in many previous
works [15, 1, 21, 19].

Fix a homogeneous non-commutative circuit C. A parse formula of C is a formula C′ obtained by
making copies of gates in C as follows:

• Corresponding to the output + gate of C, we add an output + gate to C′,

• For every + gate Φ′ added to C′ corresponding to a + gate Φ in C, we choose exactly one child
Ψ of Φ in C and add a copy Ψ′ to C′ as a child of Φ′. The constant along the wire from Ψ′ to Φ′

remains the same as in C.

• For every × gate Φ′ added to C′ corresponding to a × gate Φ in C and every wire from a child Ψ

to Φ in C, we make a copy of Ψ′ to C′ and make it a child of Φ.

Any such parse formula C′ computes a monomial (with a suitable coefficient) and the polynomial
computed by C is the sum of all monomials computed by parse formulas C′ of C. We define val(C′) to
be the monomial computed by C′.

A parse tree of C is a rooted, ordered tree obtained by taking a parse formula C′ of C, “short circuit-
ing” the + nodes (i.e. we remove the + nodes and connect the edges that were connected to it directly),
and deleting all labels of the nodes and the edges of the tree. See Figure 2 for an example. Note that in
a homogeneous circuit C, each such tree has exactly d leaves. We say that the tree T is the shape of the
parse formula C′.

6

+

x2 x3x1 x4

×x1 x4

× ×

+

23

7

x2 x3

×x1 x4

×

+ +

+

2

7

x1 x2 x3 x4

× ×

×

+ + + +

+

3 2

Figure 2: From left to right: a non-commutative arithmetic circuit; two parse formulas in the circuit; the
corresponding parse trees.(To simplify the picture, we have not depicted the edges that carry the constant
1. Also we have not introduced + gates between the two layers of × gates; the reader should assume
that the edges between the two layers carry + gates of fan-in 1.)

The process that converts the parse formula C′ to T associates each internal node of T with a multi-
plication gate of C′ and each leaf of T with an input gate of C′.

Let T be a parse tree of a homogeneous circuit C with d leaves. Given a node v ∈ V (T), we define
the deg(v) to be the number of leaves in the subtree rooted at v and pos(v) := (1+ the number of leaves
preceding v in an in-order traversal of T). The type of v is defined to be type(v) := (deg(v),pos(v)).
(The reason for this definition is that in any parse formula C′ of shape T , the monomial computed by the
multiplication gate or input gate corresponding to v in C′ computes a monomial of degree deg(v) which
sits at position pos(v) w.r.t. the monomial computed by the circuit C′.) We also use I (T) to denote the
set of internal nodes of T and L (T) to denote the set of leaves of T .

We use T (C) to denote the set of parse trees that can be obtained from parse formulas of C. We say
that a homogeneous non-commutative arithmetic circuit is a Unique Parse Tree circuit (or UPT circuit)
if |T (C)| = 1. More generally if |T (C)| ≤ k, we say that C is k-PT. Finally, if T (C) ⊆ T for some
family T of trees, we say that C is T -PT. Similarly, we also define UPT formulas, k-PT formulas and
T -PT formulas. If C be a UPT circuit with T (C) = {T}, we say that T is the shape of the circuit C.

We say that a UPT circuit C is in normal form if we can associate with each gate Φ of the circuit a
node v(Φ) ∈ V (T) such that the following holds: if Φ is an input gate, then v(Φ) is a leaf; if Φ is a ×
gate with children Ψ1, . . . ,Ψt (in that order), then the nodes v(Ψ1), . . . ,v(Ψt) are the children of v(Φ)
(in that order); and finally, if Φ is a + gate with children Ψ1, . . . ,Ψt (which are all× or input gates since
we assume that + and × gates are alternating along each input to output path), then v(Φ) = v(Ψ1) =
· · · = v(Ψt). (Intuitively, what this means is that in any unravelling of a parse formula containing a
(multiplication or input) gate Φ to get the parse tree T , the gate Φ always takes the position of node
v(Φ).)

We state below some simple structural facts about UPT circuits.

Proposition 12. 1. Let C be a UPT formula. Then C is in normal form.

2. For any UPT circuit C of size s and shape T , there is another UPT circuit C′ of size O(s2) and
shape T in normal form computing the same polynomial as C. Further, given C and T , such a C′

can be constructed in time poly(s).

Proof. See Appendix B.

Let C be either a UPT formula or a UPT circuit of shape T in normal form. We say that a + gate Φ

in C is a (v,+) gate if v(Φ) = v. Similarly, we refer to a × gate Φ in C as a (v,×) gate if v(Φ) = v. For

7

simplicity of notation, we also refer to an input gate Φ as a (v,×) gate if v(Φ) = v. Note that the output
gate is a (v0,+) gate where v0 is the root of T .

We now observe that any UPT formula or circuit in normal form can be converted to another (of a
possibly different shape) where each multiplication gate has fan-in at most 2.

Lemma 13. Let C be a normal form UPT circuit (resp. formula) of size s and shape T . Then there is a
tree T ′ and normal form UPT circuit (resp. formula) C′ of size O(s) and shape T ′ such that C′ computes
the same polynomial as C and every multiplication gate in C′ has fan-in at most 2. (This implies that
every internal node of T ′ also has fan-in at most 2.) Further, there is a deterministic polynomial-time
algorithm, which when given C, computes C′ as above.

Proof. See Appendix C.

Let C be a UPT circuit of shape T computing a homogeneous polynomial f of degree d. Given any
node u ∈V (T), we define partition Πu of [d] so that Πu = (Yu,Zu) where

Yu = {pos(v) | v a leaf and descendant of u}.

We will need the following lemma of Lagarde et al. [19].

Lemma 14 ([19]). Let C be a normal form UPT circuit of size s computing a homogeneous polynomial
f ∈ F〈X〉 of degree d. Assume that the fan-in of each multiplication gate is bounded by 2. Then, for any
u ∈V (T), rank(f ,Πu)≤ s, where Πu is as defined above.

2.5 A polynomial that is full rank w.r.t. all partitions

The following was shown in [20].

Theorem 15. For any even d and any positive N ∈ N, there is a q0(N,d) such that the following holds
over any field of size at least q0(N,d). There is an explicit homogeneous polynomial FN,d ∈ F〈X〉
of degree d such that for any balanced partition Π = (Y,Z) of [d], rank(f ,Π) = Nd/2 (equivalently,
rel-rank(f ,Π) = 1). Further, FN,d can be computed by an explicit homogeneous non-commutative arith-
metic circuit of size poly(N,d).

3 Lower bounds for k-PT circuits

In this section, we show that any k-PT circuit computing a polynomial of degree d where k is subexpo-
nential in d cannot compute the polynomial FN,d from Theorem 15. We will show that if both k and the
size of the circuit are subexponential in d, then there is a Π such that rel-rank(f ,Π)< 1.

Our proof is based on the following lemmas.

Lemma 16. Let C be a k-PT circuit (resp. formula) of size s with T (C) = {T1, . . . ,Tk} computing
f ∈ F〈X〉. Then there exist normal form UPT circuits (resp. formulas) C1, . . . ,Ck of size at most s2 each
such that T (Ci) = {Ti} and f = ∑

k
i=1 fi, where fi the polynomial computed by Ci.

Proof. See Appendix D.

Lemma 17. Let C be a UPT circuit in normal form over F〈X〉 of size s = Nc and f a homogeneous
polynomial of degree d computed by C. Let Π be a uniformly random partition of the variables of [d]
into two sets. Then for any parameter b ∈ N,

Pr
Π

[
rank(f ,Π)≥ Nd/2−b

]
≤ exp(−Ω(d/(b+ c)2)).

8

The above lemmas imply the following lower bound for homogeneous non-commutative circuits
with few parse trees. Note that when the field F is large enough, this proves a lower bound for FN,d from
Theorem 15.

Theorem 18. Assume that N ≥ 2 is any constant and d an even integer parameter that is growing. Let
F ∈ F〈X〉 be any polynomial such that for each balanced partition Π, rank(F,Π) = Nd/2. Then, for any

constant ε ∈ (0,1), any circuit that computes F and satisfies |T (C)|= k≤ 2d
1
3−ε

must have size at least

2d
1
3−

ε
2 .

Proof. Let C be any circuit of size s ≤ Nc for c = d1/3−ε/2 with |T (C)| = k ≤ 2d1/3−ε

and computing
f ∈ F〈X〉. We show that there is a balanced partition Π such that rank(f ,Π)< Nd/2. This will prove the
theorem.

To show this, we proceed as follows. Using Lemma 16, we can write f = ∑i∈[k] fi where each
fi ∈ F〈X〉 is computed by a normal form UPT circuit Ci of size at most s2 ≤ N2c.

Fix any i ∈ [k]. By Lemma 17, the number of partitions Π for which rank(fi,Π) ≥ N
d
2−c is at most

2d ·exp(−Ω(d/c2)). In particular, since the number of balanced partitions is
(d

d/2

)
= Θ(2d

√
d
), we see that

for a random balanced partition Π,

Pr
Π balanced

[
rank(fi,Π)≥ Nd/2−c

]
≤
√

d · exp(−Ω(d/c2))≤ exp(−d1/3).

Say fi is good for Π if rank(fi,Π)≥ Nd/2−c. By the above, we have

Pr
Π balanced

[∃i ∈ [k] s.t. fi good for Π]≤ k · exp(−d1/3)≤ 2d1/3−ε · exp(−d1/3)< 1.

In particular, there is a balanced Π such that no fi is good for Π. Fix such a balanced partition Π. By
the subadditivity of rank, we have

rank(f ,Π)≤ ∑
i∈[k]

rank(fi,Π)≤ k ·Nd/2−c ≤ 2d1/3−ε ·Nd/2−c

= Nd/2 · exp(O(d1/3−ε)−Ω(d1/3−ε/2))< Nd/2.

This proves the theorem.

3.1 Proof of Lemma 17

Notation. Recall from Section 2.2 that we identify each partition Π with an element of {−1,1}d .
Given partitions Π1,Π2 ∈ {−1,1}d we use 〈Π1,Π2〉 to denote their inner product: i.e., 〈Π1,Π2〉 :=
∑i∈[d] Π1(i)Π2(i). Note that the Hamming distance ∆(Π1,Π2) is

∆(Π1,Π2) =
d
2
− 1

2
〈Π1,Π2〉. (1)

Let T (C) = {T}. Recall that |L (T)| = d and by Lemma 13, we can assume that the fan-in of
each internal node of T is bounded by 2. For any u ∈ I (T) (recall I (T) is the set of internal nodes
of T), let L (u) denote the set of leaves of the subtree rooted at u. We identify each leaf ` ∈V (T) with
pos(`) ∈ [d]. For each u ∈ I (T), we can define the partition Πu from Section 2.4 by Πu(`) = −1 iff
` ∈L (u).

For γ > 0, define a partition Π to be γ-correlated to T if for each u∈I (T), we have
∣∣∑`∈L (u) Π(`)

∣∣≤
γ.

Lemma 17 immediately follows from Claims 19 and 20, stated below.

9

Claim 19. Let Π be any partition of [d] such that rank(f ,Π)≥ Nd/2−b. Then Π is O(b+ c)-correlated
to T .

Proof. We know from Lemma 14 and Proposition 10 that for each u∈I (T), rank(f ,Πu), rank(f ,−Πu)≤
Nc. If Π is a partition such that either ∆(Π,Πu) or ∆(Π,−Πu) is strictly smaller than d

2 − (b+ c) for
some u ∈I (T), then by Lemma 11 we would have rank(f ,Π)< Nd/2−b.

Thus, if rank(f ,Π) ≥ Nd/2−b, we must have min{∆(Π,Πu),∆(Π,−Πu)} ≥ d
2 − (b+ c) for each

u ∈I (T). By (1), this means that for each u ∈I (T), |〈Π,Πu〉| ≤ γ for some γ = O(b+ c).
Let v be the root of T . Note that Πv ∈ {−1,1}d is the vector with all its entries being −1. Hence,

we have for any u ∈I (T),∣∣∣∣∣ ∑
`∈L (u)

Π(`)

∣∣∣∣∣=
∣∣∣∣〈Π,
−(Πu +Πv)

2
〉
∣∣∣∣≤ 1

2
(|〈Π,Πu〉|+ |〈Π,Πv〉|)≤ O(γ).

This proves the claim.

Claim 20. Say Π ∈ {−1,1}d is chosen uniformly at random and γ ≤
√

d. Then

Pr
Π
[Π is γ-correlated to T]≤ exp(−Ω(

d
γ2)).

The following subclaim is useful for proving Claim 20.

Subclaim 21. Assume that r, t ∈ N such that rt ≤ d/4. Then we can find a sequence u1, . . . ,ur ∈I (T)
such that for each i ∈ [r] we have |L (ui)\

⋃i−1
j=1 L (u j)| ≥ t.

Proof. Consider the following ‘greedy’ procedure for choosing the ui. Order the nodes of I (T) in
topological order (recall that the edges of T are directed toward the root). We choose u1 to be the least
node in this order so that |L (u1)| ≥ t (such a node must exist since there are d ≥ t leaves in T). Further,
having chosen u1, . . . ,ui we choose ui+1 to be the least node greater than or equal to u1, . . . ,ui in the
topological order such that |L (ui+1)\

⋃i
j=1 L (u j)| ≥ t.

To argue that this process produces a sequence of size at least r, note that for each i≥ 0, |L (ui+1)\⋃i
j=1 L (u j)| ≤ 2t. This is because the fan-in of ui+1 in T is at most 2 and by assumption, for each child

u′ of ui+1, we have |L (u′)\
⋃i

j=1 L (u j)|< t. Thus for each i≥ 0, we have |
⋃i+1

j=1 L (u j)| ≤ 2t(i+1).
In particular, if i+1 < r, we have |

⋃i+1
j=1 L (u j)|< 2tr ≤ d/2. Thus, for v being the root of the tree,

we have |L (v)\
⋃i+1

j=1 L (u j)|> d/2≥ t. In particular, there is at least one node u of the tree such that
|L (u)\

⋃i+1
j=1 L (u j)| ≥ t. This allows us to extend the sequence further.

Proof of Claim 20. We apply Subclaim 21 with t =Θ(γ2) and r =Θ(d/γ2) to get a sequence u1, . . . ,ur ∈
I (T) such that for each i ∈ [r], we have |L (ui)\

⋃i−1
j=1 L (u j)| ≥ t.

By the definition of γ-correlation, we have

Pr
Π
[Π γ-correlated to T]≤ Pr

Π

[
∀i ∈ [r],

∣∣∣∣∣ ∑
`∈L (ui)

Π(`)

∣∣∣∣∣≤ γ

]

≤∏
i∈[r]

Pr
Π

[∣∣∣∣∣ ∑
`∈L (ui)

Π(`)

∣∣∣∣∣≤ γ

∣∣∣∣∣ {Π(`) | ` ∈
⋃
j<i

L (u j)}

]
(2)

Fix any i ∈ [r] and Π(`) for each ` ∈L<i :=
⋃

j<i L (u j). Note that the event |∑`∈L (ui) Π(`)| ≤ γ is
equivalent to ∑`∈L (ui)\L<i Π(`)∈ I for some interval I of length 2γ = O(

√
t). This is the probability that

the sum of at least t independent uniformly chosen {−1,1}-valued random variables lies in an interval
of length O(

√
t). By the Central Limit theorem, this can be bounded by 1−Ω(1).

By (2), we get PrΠ [Π γ-correlated to T]≤ exp{−Ω(r)}, which gives the statement of the claim.

10

4 Lower bounds for circuits with rotations of one parse tree

Given two parse trees T1 and T2 with the same number of leaves, we say that T1 is a rotation of T2,
denoted T1 ∼ T2, if T1 can be obtained from T2 by repeatedly reordering the children of various nodes in
T2. Clearly, ∼ is an equivalence relation. We use [[T]] to denote the equivalence class of tree T. We say
that a homogeneous circuit C is rotation UPT or rotUPT if there is a tree T such that T (C)⊆ [[T]]. The
tree T is said to be a template for C.

Our main result in this section is the following.

Theorem 22. Let C be a rotUPT circuit of size s computing a polynomial f ∈ F〈X〉 of degree d over n
variables, then there exists a partition Π = ΠC such that rel-rank(f ,Π) is at most poly(s) ·N−Ω(d).

In particular, we get the following corollary.

Corollary 23. Let N,d ∈ N be parameters with d even. Let |F| > q0(N,d) where q0(N,d) is as in
Theorem 15. Then, any rotUPT circuit for FN,d has size NΩ(d).

We will need a decomposition lemma for non-commutative circuits in the proof of Theorem 22. The
following is a variant of lemmas that are proved in [13, 20, 19].

Lemma 24 (A decomposition lemma for homogeneous circuits). Let C be any homogeneous arithmetic
circuit of size s computing f ∈ F〈X〉 of degree d. Assume that there is some d′ ∈ [d/2+1,d] such that
every parse formula C′ of C contains a gate computing a (homogeneous) polynomial of degree d′. Let
Φ1, . . . ,Φr (r ≤ s) be the set of × gates computing polynomials of degree d′ in C and let g1, . . . ,gr be
the polynomials they compute (respectively). Then, for homogeneous polynomials hi, j of degree d− d′

(i ∈ [r], j ∈ [0,d−d′]) we have

f =
r

∑
i=1

d−d′

∑
j=0

gi× j hi, j.

Proof. See Appendix E.

Proof of Theorem 22. Let C be rotUPT of size s computing a polynomial f of degree d over n variables,
and let T be a template for C. Let Πi = (Yi,Zi) for i ∈ [2] be two partitions of [d] with Y1 = [d/2] and
Y2 = [d/4+1,3d/4]. We will show that rel-rank(f ,Π)≤ poly(s) ·N−Ω(d) for some Π ∈ {Π1,Π2}.

We consider two cases: Case 1: there is a node of degree d0 ∈ [3
4 d, 11

12 d] in the template T . Note

that every rotation T ′ ∈ [[T]] also has a node of degree d0. Since every parse tree of C is a member of
[[T]], this implies that each parse formula C′ of C contains a gate of degree d0. Applying Lemma 24 with
d′ = d0, we see that there are k ≤ s homogeneous polynomials g1, . . . ,gk of degree d0 and k · (d− d0)
homogeneous polynomials h1,1, . . .h1,d−d0 ,h2,1, . . .hk,d−d0 of degree d−d0 such that:

f =
k

∑
i=1

d−d0

∑
j=0

gi× j hi, j (3)

We show that each term of the above decomposition has low relative rank w.r.t. the partition Π2 defined
above. Fix a term gi× j hi, j from the decomposition above. Let Π′j = (Y ′j ,Z

′
j) where Y ′j = [j+1, j+d0].

By Corollary 9, we see that rank(gi× j hi, j,Π
′
j) = 1.

A straightforward calculation shows that ∆(Π′j,Π2) = d0 − d
2 = d

2 −Ω(d) for all j. Hence, by
Lemma 11, we see that rank(gi× j hi, j,Π2) ≤ N(d/2)−Ω(d) and hence rel-rank(gi× j hi, j,Π2) ≤ N−Ω(d)

for each i, j.
Using (3) and the subadditivity of rank, we see that rel-rank(f ,Π2)≤ (sd) ·N−Ω(d) ≤ s2 ·N−Ω(d).

Case 2: there is no gate of degree d0 ∈ [3
4 d, 11

12 d] in the template T . In this case, we show that
rel-rank(f ,Π1) is small, where Π1 is as defined above.

11

Let v be the node in T such that deg(v)> 11
12 d and all its children have degree ≤ 11

12 d. Note that such
a v is uniquely defined (if there were another such node v′, it cannot be an ancestor or descendant of v;
hence, we see that the number of leaves in T is at least deg(v)+deg(v′) > d which is a contradiction).
Let d′0 = deg(v). Let v1, . . . ,vt be the children of v in T and assume that deg(vi) = d′i . Note that d′i <

3d
4

for each i.
As in the previous case, we see that every parse formula contains a gate of degree d′0 and hence

applying the lemma with d′ = d′0 we get

f =
`

∑
i=1

d−d′0

∑
j=0

g′i× j h′i, j (4)

where g′1, . . . ,g
′
` (` ≤ s) are the polynomials of degree d′0 computed by multiplication gates in C. We

show that for each i, j, rel-rank(g′i × j h′i, j,Π1) ≤ N−Ω(d). As in the previous case, this will imply
rel-rank(f ,Π)≤ s2 ·N−Ω(d).

Fix any i, j. We use g and h instead of g′i and h′i, j. We know that g is a polynomial computed
by some × gate Φ of degree d′0 in the circuit. Consider the + gates feeding into Φ. Since every
parse tree T ′ of C is a rotation of T , it must be the case that there are exactly t such + gates Ψ1, . . . ,Ψt

computing polynomials g̃1, . . . , g̃t such that g= g̃1 · · · g̃t . Assume that deg(g̃a) = d′′a for each a∈ [t]. Then
{d′′1 , . . . ,d′′t }= {d′1, . . . ,d′t} as multisets, where d′a = deg(va) as defined above; in particular, d′′a < 3

4 d for
each a.

Thus, g× j h= (g̃1 · · · g̃t)× j h. For any a∈ [t], we note that we can also write g× j h= (g̃1 · · · g̃a)× j ha

where ha := (g̃a+1 · · · g̃t)× j h. Let Π′′a = (Y ′′a ,Z
′′
a) be the partition of [d] such that Y ′′a = [j+1, j+d′′1 +

· · ·+ d′′a]. By Corollary 9, we know that rank(g× j h,Π′′a) = rank((g̃1 · · · g̃a)× j ha,Π
′′
a) ≤ 1 for each

a ∈ [t]. Therefore, by Lemma 11, to prove that rel-rank(g× j h,Π1) ≤ N−Ω(d), it suffices to show that
∆(Π′′a,Π1)≤ d

2 −Ω(d) for some a ∈ [t]. We do this now.
Consider the least b ∈ [t] so that d′′1 + d′′2 + · · ·+ d′′b ≥

1
20 d. Let δ = d′′1 + · · ·+ d′′b . Since each

d′′a < 3
4 d, we know that δ ∈ [1

20 d,d− 1
5 d]. Note that for partition Π′′b , we have ∆(Π′′b,Π1) = |Y ′′b ∆Y1|

where Y ′′b = [j+1, j+δ] and Y1 = [1
2 d]. We thus get

|Y ′′b ∆Y1|= j+ |d
2
− (j+δ)|= j+max{d

2
− (j+δ), j+δ − d

2
}

= max{d
2
−δ ,2 j+δ − d

2
}= d

2
−min{δ ,d− (2 j+δ)}.

Since δ ≥ 1
10 d and (2 j+δ)≤ 2 · 1

12 d+d− 1
5 d < d−Ω(d), we see that ∆(Π′′b,Π1) = |Y ′′b ∆Y1|= d

2−Ω(d).
This completes the proof.

Remark 25. We note that the proof of the theorem yields the stronger statement that f is low-rank w.r.t.
one of the two partitions Π1 and Π2. It is not hard to use this to prove a lower bound for an even simpler
polynomial than the polynomial FN,d (from Theorem 15).

5 Separation between Few PT formulas and ABPs

In this section, we prove several lower bounds for formulas (with some restrictions on the parse trees)
against IMMn,d , yelding separations with ABPs. More specifically, we prove in Section 5.2 a tight
superpolynomial lower bound on the size of any UPT formula that computes IMMn,d . In Section5.3,
we prove a superpolynomial lower bound for any formulas computing IMMn,d as long as the number of
distinct parse trees is significantly smaller than 2d (assuming d ≤ logn).

12

5.1 Notations and decomposition lemma for labelled UPT formulas

The main purpose of this section is to fix some notations that will be used in the whole section, and to
prove that any polynomial computed by a labelled UPT formula (defined below) admits a very specific
decomposition given by Lemma30.

We start with some notation. For I = {i1 < · · · < it} ⊆ [d], we define the set of I-monomials to be
the set of monomials of the form x1 · · ·xt where x j ∈ Xi j . Also, we define PI to be the set of those
polynomials P over the variables

⋃
j∈[t] Xi j that can be written as a linear combination of I-monomials.

We define IMMI to be Tr(Mi1 · · ·Mit). Note that IMMI ∈PI .
Given I as above and f ∈PI , we define MI(f) to be a n2d t

2 e×n2b t
2 c matrix whose rows and columns

are labelled by Iodd-monomials and Ieven-monomials respectively, where Iodd = {i1, i3, i5, . . .} and Ieven =
{i2, i4, i6, . . .}. The (m′,m′′)th entry of MI(f) is the coefficient in f of the I-monomial which is equal to m′

when restricted to its odd locations and m′′ when restricted to its even locations. Note that rank(MI(f))≤
n2b t

2 c. We define rel-rankI(f) = rank(MI(f))/n2b t
2 c.

We will need the following standard fact.

Fact 26. For any I ⊆ [d] of size t and any f ∈PI , we have rank(MI(f))≤ n2bt/2c. Also, for any I ⊆ [d],
rank(MI(IMMI)) = n2bt/2c and hence rel-rankI(IMMI) = 1.

Let T be a parse tree with t leaves and I = {i1 < i2 < · · ·< it}. The I-labelling of T is the function
lab : V (T)→ 2I \{ /0} defined as follows. For each u ∈L (T) (recall that L (T) is the set of leaves of T
and I (T) is the set of internal nodes of T), we define lab(u) to be {i j} if u is the jth leaf in the in-order
traversal of T . We will sometimes abuse notation and assume lab(u) = i j. For each v∈I (T), we define
lab(v) to be the set of labels of the leaves in the subtree rooted at v.

We say that a UPT formula F of shape T with t leaves is I-labelled if for each input gate Φ that is a
(u,×)-gate with u ∈L (T), the variable labelling the input gate from the set Xlab(u). The following is an
easy observation.

Lemma 27. If F is an I-labelled UPT formula with shape T , then it computes a polynomial from PI .
Further, for any F that is a UPT formula of size at most s computing polynomial f , there is an I-labelled
UPT formula F ′ of shape T and size at most s that computes the polynomial f ′ ∈PI that is obtained
from f by zeroing out the coefficients of all monomials that are not I-monomials.

Proof. Let F be an I-labelled UPT formula. If we take a I-labelled parse tree T , then it computes a
monomial which is the product of the leaves of T given by the in-order traversal of T (in that order):
by the definition of the labelling, this monomial is a I-monomial. Now, observe that every parse tree of
F is I-labelled, therefore F computes a polynomial which is a sum of I-monomials, so that computes a
polynomial in PI .
Let F be a UPT formula of shape T that computes a polynomial f and I be a labelling. We construct F ′

in the following way: we delete every leaf Φ that is a (u,×)-gate and not a variable in Xlab(u). By doing
this, F ′ is I-labelled. Moreover, the polynomial f ′ computed by F ′ is simply the polynomial f where
the monomials that are not I-monomials have been associated to a zero coefficient.

The main idea in the proofs, following Nisan and Wigderson [23], is to apply a restriction (defined
below) to the polynomial IMMn,d by choosing an I ⊆ [d] and setting each M j (j 6∈ I) to the identity
matrix. Under such a restriction, IMMn,d becomes the polynomial IMMI which, by Fact 26, has high
relative rank. On the other hand, the restriction will be choosen such that given a small formula (with
some restriction on the parse trees), there is a suitable choice of the restriction that makes its relative
rank quite small.

13

Let us now carry out the above strategy. First we define a restriction, which is formally just a subset
I ⊆ [d]. The set I defines a substitution ρI of the set of variables in X =

⋃
i∈[d] Xi as follows:

ρI(x) =

x if x ∈

⋃
i∈I Xi,

0 if x is an offdiagonal entry of M j for j 6∈ I,
1 if x is a diagonal entry of M j for j 6∈ I.

In other words, we substitute all the variables in
⋃

j 6∈I X j such that each M j (j 6∈ I) becomes the
identity matrix. All variables from the set

⋃
i∈I Xi are left as is.

Every polynomial P ∈ F〈X〉 is transformed in the natural way by such a substitution. We call this
new polynomial a restriction of P and denote it by P|I .

For any restriction I, let T |I denote the tree obtained by removing all nodes u ∈ V (T) such that
lab(u)∩ I = /0 (in particular only leaves with labels from I survive in T |I). The I-labelling of the tree T |I
is given by the labelling function labI where labI(u) = lab(u)∩ I.

We make the following simple observations.

Observation 28. 1. If P ∈P[d], then P|I ∈PI .

2. IMMn,d |I = IMMI .

Lemma 29. For any [d]-labelled UPT formula F of size s and shape T computing some f (note that
f ∈P[d] by Lemma 27), there is a UPT formula F |I of size at most s and shape T |I computing f |I .

Proof. (Sketch) Let F be as in the statement and I be any restriction. If we replace every variable in the
formula F by ρI(x), we obtain by definition a formula F ′ which computes f |I . F ′ is not a UPT formula
since the leaves which were labeled by j 6∈ I have been replaced by some constants – whereas leaves in
a UPT formula have to be variables. We now transform F ′ to a UPT formula F |I in the following way:
each addition gate Ψ in F ′ which was j-labelled in F for j 6∈ I computes a constant (say α) and is wired
to some multiplication gates Φ0, . . . ,Φl . We delete Ψ from F ′ and multiply by α each edge outgoing Φk
for any k. By doing this, the formula F ′ becomes a new formula F |I which is UPT with shape T |I , and
still computes f |I .

Let T be a parse tree and π = (vr, . . . ,v0) a path of length r in it8. We say that u is an off-path node
of π if there is an i < r such that u is a child of vi and u 6= vi+1. The set of off-path nodes of π is denoted
off(π).

Lemma 30. Let F be an I-labelled UPT formula of size s with shape T computing a polynomial f ∈PI ,
and let π = (vr, . . . ,v0) be a path in T . If we define u j to be the jth node of off(π)∪{vr} that appears in
the in-order traversal of T , then we can decompose f as:

f =
k

∑
i=1

t

∏
j=1

fi, j

where:

• k ≤ s

• t = |off(π)∪{vr}|

• fi, j ∈Plab(u j).

8Recall that our trees are oriented towards the root.

14

Proof. Let F be a I-labelled UPT formula as in the statement and π = (vr, . . . ,v0) be a path in T . Let
(u1, . . . ,ut) be the ordering of the set of nodes (off(π)∪{vr}) given by an in-order traversal of T . By
Proposition 12, F is in normal form.

We say that a path in the circuit F is of signature π if the +-gates along this path are successively a
(vr,+) gate, a (vr−1,+) gate, and so on until we get a (v0,+) gate. Let k be the number of paths in F
with signature π , and p1, p2, ..., pk be these paths. As F is a formula, the number of paths from a leaf to
the root is upper bounded by s. Therefore k ≤ s.

Each parse formula F ′ (which is a subformula of F) of F has shape T and further each +-gate in F ′

has fan-in 1; thus, each parse formula contains one and only one path of signature π . The set S of parse
formula of F is therefore naturally partitioned as S = S1∪ ·· ·∪Sk, where Si is the set of parse formulas
that contain the path pi. Recall that if F ′ is a parse formula of F , we denote by val(F ′) the monomial
(along with its coefficient) computed by it. We have:

f = ∑
F ′∈S

val(F ′) =
k

∑
i=1

∑
F ′∈Si

val(F ′)

From now, what remains to prove is that for each a ∈ [k], ∑
F ′∈Sa

val(F ′) is of the form
t

∏
j=1

fi, j with the

additional property that each fi, j is a polynomial in Plab(u j).

We fix a particular a ∈ [k]. The polynomial ∑
F ′∈Sa

val(F ′) is nothing else than the polynomial com-

puted by the I-labelled UPT formula G where for all j, each (v j,+) gate that is not present on the path
pa has been deleted (together with the entire subformula at that gate). Observe that for all m, the (vm,+)
gate in G is of in-degree and out-degree 1, except for the output gate, which is a (v0,+) gate of in-degree
1 and is of out-degree 0.

Let pa = Φr,Ψr−1,Φr−1,Ψr−2,Φr−2, . . . ,Φ1,Ψ1,Φ0, where Φ0 is the root and for each m, Φm is the
(vm,+)-gate and Ψm is the (vm,×)-gates in pa. By construction, the path pa is present in G. We prove
by induction that the following statement H(m) holds for each m≤ r,

H(m): If we denote by (w1, . . . ,wtm) the ordering of the set of nodes off((vr, . . . ,vm))∪{vr} given by an

in-order traversal of T , then the polynomial computed by Φm in G is of the form
tm
∏
j=1

g j where:

• tm = |off((vr, . . . ,vm))∪{vr}|

• g j ∈Plab(w j)

We now prove H(m) by downward induction on m. It is clearly true when m = r since tr = 1, as F is an
I-labelled UPT formula and hence the polynomial computed by Φr is an element of Plab(vr).

Assume the statement H(m+ 1) and let ∏ j∈[tm−1] h j be the decomposition of the polynomial com-
puted by the gate Φm−1 given by the induction hypothesis. The polynomial computed by Φm (a +-gate
of fan-in 1 in the formula G) is the product of the inputs of Ψm: assume that these inputs are (in left-to-
right order) Φ′1, . . . ,Φ

′
r with each Φ′` being a (w′′` ,+)-gate for some w′′` ∈V (T). Let P̀ be the polynomial

computed by Φ′` (` ∈ [r]). The gate Φm+1 is one among Φ′1, . . . ,Φ
′
r: let us say it is Φ′c. The polyno-

mial computed by Φm is equal to
r

∏
`=1

P̀ = (
c−1
∏
`=1

P̀).(
tm−1

∏
j=1

h j).(
r

∏
`=c+1

P̀) by the induction hypothesis. Each

P̀ is computed by a (w′′` ,+)-gate and is thus a polynomial in Plab(w′′`)
, and by induction, the h j are

polynomials in Plab(w′j), where w′1, . . . ,w
′
tm−1

is the ordering of off((vr, . . . ,vm+1))∪{vr} given by the
in-order traversal of T . But it is not hard to see that w′′1, . . . ,w

′′
c−1,w

′
1, . . . ,w

′
tm−1

,w′′c+1, . . . ,w
′′
tm is exactly

the ordering of off((vr, . . . ,vm))∪{vr} given by the in-order traversal of T , so that the induction holds,
and the lemma is proved.

15

5.2 Lower bound for a single UPT formula of ×-depth ∆

We define the ×-depth of a formula to be the maximum number of ×-gates that one can meet on a path
from the root to a leaf. Note that if a formula has alternating + and × gates on each path and has depth
∆′ and ×-depth ∆, then ∆′ ≥ ∆≥ d∆′

2 e. We will state our lower bounds bounds in terms of ×-depth.
Throughout this section, we assume that all the UPT formulas we consider don’t have any multipli-

cation gate of fan-in 1, or equivalently, the shape of any UPT formula we consider does not have any
internal node of fan-in 1. This assumption is w.l.o.g. as shown below.

Lemma 31. Given any UPT formula F of shape T and size s computing a polynomial f , there is another
UPT formula F ′ of shape T ′ and size at most s computing f where T ′ has no internal nodes of fan-in 1
(and consequently F ′ has no ×-gates of fan-in 1). Further, if all internal nodes of T have fan-in at most
k ∈ N, then the same holds for T ′.

Proof. The transformation process is the following: a multiplication gate of fan-in 1 does not change its
input and therefore can be deleted without changing the polynomial computed. Merging the two layers
of +-gates above and below the deleted gate ensures the formula still alternates between +-gate and
×-gate. The shape T ′ of the new formula is simply the shape T where the internal nodes of fan-in 1 have
been removed and replaced by an edge. Clearly, the new shape T ′ has the required property.

Before attacking the main theorem, we will need one more lemma.

Lemma 32. Let T be a tree with d leaves and depth ∆, such that all internal nodes are of in-degree
strictly greater than 1. Then there is a path π = (v`, . . . ,v0) in T such that |off(π)∪{v`}| ≥Ω(∆d1/∆).

Proof. See Appendix F.

Theorem 33. Let F be a UPT formula of ×-depth ∆, size s, computing IMMn,d ∈ F〈X〉. Then, s ≥
nΩ(∆d1/∆). In particular, any UPT formula for IMMn,d must have size nΩ(logd).

By our earlier observation relating the ×-depth with depth, we get the lower bound stated in the
introduction.

Proof. Let F be a UPT formula as in the statement. By Lemma 27, we assume w.l.o.g that the formula is
[d]-labelled and that the variables that appear in an input gate Φ of F , corresponding to a node v(Φ)∈ T ,
are all included in Xlab(v(Φ)) where lab is the [d]-labelling of T . By Lemma32, there is a path π =

(v`, . . . ,v0) in the shape T of F , such that |off(π)∪{v`}| ≥ Ω(∆d1/∆). Let us denote by t the size of
off(π)∪{v`}. We decompose IMMn,d along this path by Lemma 30, as:

IMMn,d(X1,X2, ...,Xd) =
k

∑
i=1

t

∏
j=1

fi, j

with k ≤ s. Each fi, j is a polynomial in Plab(u j) where (u1, . . . ,ut) is the ordering of off(π)∪{v`} given
by an in-order traversal of T .
We now apply a restriction to this equality given by the subset I choosen in the following way: for each
j, we select one element from lab(u j) — we call it p j — and add it to I. The set I is of size t. Under
this restriction, each fi, j becomes a homogeneous linear polynomial in the variables Xp j . We call these
homogeneous linear polynomials li, j. We thus get

IMMI =
k

∑
i=1

t

∏
j=1

li, j.

16

It is not hard to see that for each i, rank(MI(
t

∏
j=1

li, j)) ≤ 1. By Fact26 and subadditivity of the rank,

we get:
n2bt/2c ≤ k

Therefore, we get
s≥ k ≥ nΩ(∆t1/∆)

as wanted.

Remark 34. Notice that this lower bound is tight for every ×-depth ∆, since the standard divide and
conquer approach to computing IMMn,d gives in fact a UPT formula of size nO(∆d1/∆) and ×-depth ∆,
for any ∆≤ logd.

5.3 Separation between k-PT formulas and ABPs

In this section, we will prove a lower bound on the size of k-PT formulas computing IMMn,d as long
as k is significantly smaller than 2d . Recall that the total number of parse trees with d leaves is 2O(d)

(see for example [9]) and hence the results of this section intuitively imply that under any non-trivial
upper bound on the number of parse trees appearing in the formula, we can obtain a separation between
non-commutative formulas and ABPs.

The main theorem of this section is the following.

Theorem 35. Let n,d be growing parameters with d ≤ logn. Then, any k-PT formula F computing
IMMn,d has size at least n` where ` = Ω(lgd− lg lgk). In particular, if k = 2o(d), the size(F) ≥ nω(1)

and if k = 2d1−Ω(1)
, then size(F)≥ nΩ(logd).

Remark 36. We say a few words about the assumption d ≤ logn. The standard divide-and-conquer
approach for computing IMMn,d yields a (UPT) formula of size nO(logd). It would be quite surprising if
this standard algorithm were not optimal in terms of formula size.

Intuitively, improving on the standard divide-and-conquer algorithm gets harder as d gets smaller:
this is because any formula of size no(logd) for computing IMMn,d can be straightforwardly used to
recursively obtain formulas for IMMn,D of size no(logD) for any D > d. Thus, the case of smaller d,
which seems harder algorithmically, is natural first candidate for lower bounds.

Let T be a parse tree. We say that a node u ∈ V (T) is odd if the number of leaves in the subtree
rooted at u is odd. Given a path π , let odd(π) denote the set of odd off-path nodes in it.

Lemma 37. Let F be an I-labelled UPT formula of size s with shape T computing polynomial f . If T
has a path π = (vr, . . . ,v0) with |odd(π)| ≥ `, then rel-rankI(f)≤ s

n`−1 .

Proof. Let (u1, . . . ,ut) be the ordering of the set of nodes (off(π)∪{v0}) given by an in-order traversal

of T , and f =
k
∑

i=1

t
∏
j=1

fi, j be a decomposition given by Lemma30, where each fi, j is in Plab(u j). By

Fact 26, we know that rank(MI(fi, j))≤ n2b|lab(u j)|/2c. Hence, by the subadditivity of rank and Lemma8,

17

we have:

rank(MI(f))≤
k

∑
i=1

t

∏
j=1

rank(MI(fi, j))

≤
k

∑
i=1

t

∏
j=1

n2b
|lab(u j)|

2 c

≤
k

∑
i=1

n
2

t
∑
j=1
b
|lab(u j)|

2 c

≤
k

∑
i=1

n2(b |I|2 c−b
|odd(π)|

2 c)

As k ≤ s, this implies that rel-rankI(f)≤ s

n2b |odd(π)|
2 c
≤ s

n`−1 .

We now try to show that, given a small k-PT formula, there is a suitable choice of the restriction that
makes its relative rank quite small. To do this, we will use Lemma 37, which translates the statement to
a combinatorial statement about some trees. On the other hand, IMM remains high rank under arbitrary
restrictions by Fact 26. This will prove Theorem 35.

The main technical lemma in the proof of Theorem 35 is the following.

Lemma 38. Let T be any tree with d leaves such that every internal node has fan-in exactly 2. Assume
we choose I ⊆ [d] by adding each i ∈ [d] to I independently with probability 1/2. Then for any ` ∈ N

Pr
I
[T |I has no path π such that |odd(π)| ≥ `]≤ exp(−Ω(

d
28`)).

Assuming the above lemma, we can prove Theorem 35 as follows.

Proof of Theorem 35. We assume throughout that lgd− lg lgk is larger than a large enough constant (to
be chosen later), since otherwise the theorem is trivial. Let `= b 1

10(lgd− lg lgk)c, which is also assumed
to be large enough.

Assume that F is a k-PT formula of size s computing IMMn,d . If s≥ n`/4, then we are done.
Otherwise, we argue as follows. By Lemma 16, there exist UPT formulas F1, . . . ,Fk of size at most

s2 each such that

IMMn,d =
k

∑
i=1

fi

where fi is the polynomial computed by Fi. Let Ti denote the shape of Fi. By Lemma 13, we can assume
that each internal node of Ti has fan-in exactly 2.

By Lemma 27 and Lemma 31, for each Fi, there is a [d]-labelled UPT formula F ′i of shape Ti and
size at most s2 that computes the polynomial f ′i that is obtained from fi by removing moonomials that
are not [d]-monomials. Since IMMn,d ∈P[d], we see that

IMMn,d =
k

∑
i=1

f ′i . (5)

Now, choose a random restriction I by adding each j ∈ [d] to I independently with probability 1/2.
Consider the relative rank of the polynomials on both sides of (5) after the restriction. For the left hand
side, we know using Fact 26 that for any I,

rel-rankI(IMMn,d |I) = rel-rankI(IMMI) = 1. (6)

18

We now consider the right hand side of (5). By Lemma 29, for any choice of restriction I and i ∈ [k],
the restricted polynomial f ′i |I has a UPT formula F ′i |I of size at most s2 and shape Ti|I computing f ′i |I .
For each i ∈ [k], let Ei denote the event that Ti|I has no path π such that |odd(π)| ≥ `. By Lemma 38, we
know that the probability of Ei is at most exp(−Ω(d

22`)). Let E =
∨k

i=1 Ei. By a union bound we have

Pr [E]≤ k · exp
(
−Ω

(
d

22`

))
< 1 (7)

if (lgd− lg lgk) is large enough.
If I is such that the event E does not occur, then for this choice of I and any i ∈ [k], by Lemma 37,

rel-rankI(f ′i |I) ≤ s2

n`−1 ≤ 1
n(`/2)−1 , where the final inequality follows from our assumption that s < n`/4.

Now, since rel-rankI(·) is subadditive, we have

rel-rankI(∑
i∈[k]

f ′i)≤
k

n(`/2)−1 ≤
2d

n(`/2)−1 ≤
1

n(`/2)−2 <
1
n

where the final two inequalities follow from the fact that d ≤ lgn and the assumption that ` is greater
than some fixed constant. This contradicts (5) and (6) and hence concludes the proof of the theorem.

5.3.1 Proof of Lemma 38

We impose a natural partial order on the vertices in V (T) by saying that u� v for u,v ∈V (T). Given a
set of paths P = {π1, . . . ,πr} in the tree T , we say that P is independent if the sets off(πi) (i ∈ [r]) are
pairwise disjoint and moreover, the set off(P) :=

⋃
i off(πi) forms an antichain w.r.t. the partial order �

(informally, no node in off(P) is an ancestor of another).
We show the following claim.

Claim 39. Assume T is as in the statement of the lemma. Then for any ` ≥ 1, there is an independent
set P of paths in T of length ` such that |P|= Ω(d/22`).

Proof. Given a tree T as in Lemma 38, let us define T ′ to be the subtree of T which contains every
node of T that has height ` or more (here the height of a node u is the length of the longest path from a
leaf from L (u) to u). Though every internal node in T has degree two, T ′ may have internal nodes of
degree two as well as one. The leaves of T ′ are those internal nodes of T that have height exactly `.

The main idea is as follows: Suppose T ′ has ‘many’ leaves, then it is easy to find many independent
paths in T . This is because each leaf v of T ′ is a node in T with at least one path of length ` rooted at v.
Also, two leaves u,v of T ′ are nodes in T at height exactly `. This gives us as many independent paths
as the number of leaves in T ′. On the other hand, if T ′ does not have many leaves, then it also does not
have many degree two nodes. In this case, by throwing away all degree two nodes of T ′, we get many
components. Each component is a path and not all can be of length less than `. Subdividing the long
paths into paths of length ` then gives us the set of independent paths9. We now work out the details.

As every internal node of T has degree two, the number of nodes at height h, for any parameter
h ≥ 1, is at least half of the number of nodes at height h−1. Using this, we can inductively prove that
the number of leaves in T ′ and therefore |V (T ′)| is ≥ d

2` . We use s to denote d
2` .

Case I, the number of leaves in T ′ is ≥ s/100`: Each leaf v in T ′ has a subtree rooted at it in T , say
Tv. For each leaf v in T ′, Tv has at least one path of length ` from v to a leaf of T . Let us call this path
πv. As the leaves of T ′ are all the nodes at height `, for two leaves of T ′, say u 6= v, and for any vertex x

9Note that we only need the off-path nodes to form an antichain and not the nodes on the path itself.

19

in off(πv) and any vertex y in off(πu), neither x� y nor y� x. (If one of the conditions holds then it will
contradict that both u,v have height `.)

Case II, the number of leaves in T ′ is < s/100`: It is easy to see that the number of degree two nodes
in any tree is upper bounded by the number of leaves in the tree. Therefore, T ′ has at most s/100` degree
two nodes. Let F ′ be the forest obtained by deleting all degree two nodes of T ′. F ′ is a collection of
paths. As we deleted degree two nodes, the total number of components created in F ′ is at most twice
the number of degree two nodes, i.e at most s/50`.

We call a component small if it has at most ` nodes; large otherwise. The total number of nodes in
small components is at most (s/50`) · ` = s/50. We will not consider such components. We know that
|V (T ′)| = s. Therefore, we are left with at least s− s/50 ≥ s/2 nodes even if we discard all the small
components.

We only consider the large components. Let C be a component with r vertices, where r > `. It can
be broken down into b r

`+1c paths, each of length `. This will give us bs/2(`+ 1)c many paths in total.
As bs/2(`+1)c> d/22`, if we argue that all these paths are independent, we will be done.

It is not very hard to see why these paths are all pairwise independent. Suppose two paths π,π ′

belonged to the same large component, then consider a vertex x ∈ off(π) and y ∈ off(π ′). We observe
that neither x � y nor y � x. This is because a common ancestor of x,y is a vertex of either π or π ′.
Therefore, any such two paths are independent. Now say π,π ′ are two paths which come from two
different large components. Then for x ∈ off(π) and y ∈ off(π ′), the common ancestor of x,y is a degree
two node, which we deleted. Again, we can see that neither x� y nor y� x.

Given Claim 39, we proceed as follows. Applying Claim 39 with 4` in place of `, we obtain a set
P = {π1, . . . ,πr} of independent paths in T with r = Ω(d/28`). For each πi, let off(πi) = {ui,1, . . . ,ui,4`}.
Note that these off-path nodes all exist since each internal node of T is assumed to have fan-in 2.

We now consider the effect of the random restriction I, chosen as in the lemma statement, on the tree
T . For any i∈ [r] and j ∈ [4`], let Zi, j ∈ {0,1} be the random variable that is 1 if ui, j is present in T |I and
is an odd node, and 0 otherwise; equivalently, if lab is the [d]-labelling of T , then Zi, j = 1 iff the number
of leaves v such that lab(v) ∈ I is odd. Note that E[Zi, j] = (1/2) for each i ∈ [r] and j ∈ [4`]. Moreover,
since P is an independent set of paths, the sets of leaves in the subtrees of ui, j (for different i, j) are
pairwise disjoint and consequently, the random variables Zi, j (for various i, j) are mutually independent.
In particular, by a Chernoff bound applied to Z := ∑i∈[r], j∈[4`] Zi, j, we get

Pr [Z ≤ r`] = Pr
[

Z ≤ 1
2

E[Z]
]
≤ exp(−Ω(E[Z]))≤ exp(−Ω(r`))≤ exp(−Ω(

d
28`)).

Note that when Z is the total number of nodes in off(P) that end up as odd nodes in T |I . Hence, if Z > r`,
then the number of odd nodes per (surviving) path of P in T |I is at least r`/r = `. In particular, there
must be some path π in T |I such that |odd(π)| ≥ `. This concludes the proof of Lemma 38.

6 Deterministic PIT

6.1 PIT for UPT circuits

In this section, we give a deterministic PIT algorithm for UPT circuits. A previous algorithm for this
problem by Lagarde et al. [19], based on the ideas of Arvind et al. [3], only works over fields of char-
acteristic 0. Our algorithm, which is an adaptation of the algorithm of Raz and Shpilka [25], is field
independent. The algorithm is whitebox in the sense that it needs access to the circuit itself and not
simply an oracle that evaluates the polynomial computed by the circuit at chosen points.

20

Theorem 40. Let N,s ∈ N be parameters. There is a deterministic algorithm running in time poly(s)
which, on input a UPT circuit C of size at most s over N variables, checks if C computes the zero
polynomial or not.

Proof. Let C be the input UPT circuit. Let T be the unique parse tree of the circuit C (it is easy to
determine T from the circuit C by constructing an arbitrary parse formula of C and obtaining the parse
tree corresponding to it). By Proposition 12 and Lemma 13, we can assume without loss of generality
that C is in normal form and that T has fan-in bounded by 2.

For each node v ∈V (T), let rv denote the number of (v,×)-gates and tv the number of (v,+)-gates.
We also identify the (v,×)-gates with [rv] and (v,+)-gates with [tv] in an arbitrary way. For any v∈V (T)
and any monomial m ∈Mdeg(v)(X), let ξ v

m ∈ Frv be defined so that for any i ∈ [rv], the ith entry ξ v
m(i)

of the vector ξ v
m is the coefficient of the monomial m in the polynomial computed at the ith (v,×) gate.

Similarly, let χv
m ∈ Ftv be the coefficient vector of the monomial m at the (v,+)-gates.

The idea of the algorithm is to compute, for each v ∈ V (T), a set Bv,+ ⊆Mdeg(v)(X) of size at
most tv such that the set of vectors B̃v,+ = {χv

m | m ∈ Bv,+} is a linearly independent set of vectors that
generates all the vectors in C̃v,+ := {χv

m | m∈Mdeg(v)(X)} ⊆ Ftv . In particular, the polynomial computed
by the circuit C is non-zero iff for u being the root of T , there is a χ ∈ B̃u,+ such that the entry of χ

corresponding to the output gate of the circuit is non-zero.10

Thus, it suffices to compute the sets Bv,+ and B̃v,+ for each v ∈ V (T). In order to do so, it will also
help to compute Bv,× ⊆Mdeg(v)(X) and B̃v,× = {ξ v

m | m ∈ Bv,×} of size at most rv each so that the set of
vectors B̃v,× is a linearly independent set of vectors that generates all the vectors in C̃v,× := {ξ v

m | m ∈
Mdeg(v)(X)} ⊆ Frv .

The algorithm begins by choosing the sets Bv,× for each leaf node v ∈ V (T). This may be done
efficiently since deg(v) = 1 for each leaf node and hence the number of monomials m ∈Mdeg(v)(X) is
exactly |X |= N. By computing the coefficient vectors for each such monomial and performing Gaussian
elimination, we can find a suitable set Bv,× as required in time poly(N,s) = poly(s).

To compute these bases for nodes higher up in T we proceed inductively as follows. Sum gates.

We first describe how to construct Bv,+ and B̃v,+ given Bv,× and B̃v,×. Since each (v,+)-gate computes
a linear combination of the (v,×)-gates, we see that there is a matrix Mv ∈ Ftv×rv such that χv

m = Mvξ v
m

for every m ∈Mdeg(v)(X). In particular, given sets Bv,× and B̃v,× as above, the set {χv
m | m ∈ Bv,×} is

a spanning set for the set C̃v,+. By Gaussian elimination, we can choose a basis B̃v,+ ⊆ B̃v,× in time
poly(N, tv,rv) = poly(s) and choose Bv,+ to be the corresponding set of monomials. Multiplication

gates. Now let v ∈V (T) be an internal node with children u and w. We show how to compute Bv,× and
B̃v,× given Bu,+,Bw,+, B̃u,+ and B̃w,+.

Let r = rv and let Φi be the ith (v,×)-gate in C for each i ∈ [r]. Let Φ′i and Φ′′i be the left and
right children respectively of Φi; note that Φ′i is a (u,+)-gate and Φ′′i a (w,+)-gate. For monomials
m′ ∈Mdeg(u)(X) and m′′ ∈Mdeg(w)(X), let λ u

m′ and λ w
m′′ ∈ Fr denote the coefficient vectors of m′ and m′′

at the gates Φ′i (i ∈ [r]) and Φ′′i (i ∈ [r]) respectively.11 For any monomial m′, each entry of the vector
λ u

m′ is the coefficient of the monomial m′ at some (u,+)-gate and hence an entry of the vector χu
m′ . In

particular, λ u
m′ = Puχu

m′ for some linear projection Pu; a similar fact is true for the λ w
m′′ as well. Thus, the

vectors {λ u
m′ |m′ ∈Bu,+} span all the vectors in {λ u

m′ |m′ ∈Mdeg(u)(X)} and similarly, {λ w
m′′ |m

′′ ∈Bw,+}
spans all the vectors in {λ w

m′′ | m
′′ ∈Mdeg(w)(X)}.

Now, note that for any monomial m∈Mdeg(v)(X), there is a unique pair of monomials m′ ∈Mdeg(u)(X)
and m′′ ∈Mdeg(w)(X) such that m = m′m′′. Further, the coefficient of monomial m in the polynomial
computed at Φi is the product of the coefficients of m′ at Φ′i and m′′ at Φ′′i . In other words, we have
λ v

m = λ u
m′ ·λ w

m′′ , the pointwise product of the vectors λ u
m′ and λ w

m′′ . By linearity, it follows that the coef-
ficient vectors corresponding to the monomials in Bu,w := Bu,+ ·Bw,+ = {m′m′′ | m′ ∈ Bu,+,m′′ ∈ Bw,+}

10Recall that the output gate of the circuit C is always assumed to be a + gate, possibly of fan-in 1.
11Note that the gates Φ′i and Φ′j may coincide even if i 6= j. This does not matter for our argument.

21

span C̃v,×. Since |Bu,w| has size at most s2, both Bu,w and the corresponding coefficient vectors can be
computed in time poly(s). By Gaussian elimination, we can find in time poly(s) the sets Bv,× and B̃v,×
as required.

This completes the description of the algorithm and its analysis. From the analysis above, it is clear
that the algorithm runs in time poly(s). We have shown Theorem 40.

6.2 PIT for sum of UPT circuits

In this section we will give a deterministic polynomial time algorithm for the PIT problem for the sum
of k UPT circuits. Recently a deterministic algorithm was designed by Gurjar et al. [12] for polynomial
identity testing of sum of ROABPs. Our algorithm uses a similar idea for the PIT of sum of UPT circuits.
Our PIT algorithm is white box, i.e. it uses the structure of the underlying UPT circuits.

Theorem 41. Let N,s,k ∈ N be parameters. There is a deterministic algorithm running in time sO(2k)

which, on input k+1 UPT circuits C0,C1, . . . ,Ck (of possibly differing shapes) each of of size at most s
over N variables, checks if ∑

k
i=0Ci computes the zero polynomial or not.

Proof idea:
Say that circuit Ci has shape Ti for i ∈ [0,k] (it is easy to compute Ti given each Ci as observed in

Section 6.1). By Proposition 12 and Lemma 13, we can assume without loss of generality that each Ci

is in normal form and that Ti has fan-in bounded by 2.
Let Pi be the polynomial computed by the UPT circuit Ci for each 0 ≤ i ≤ k. Let P = −P0 and let

Q = ∑
k
i=1 Pi. Note that in this notation, checking whether ∑

k
i=0 Pi ≡ 0 or not is equivalent to checking

whether P≡ Q or not. We will present an algorithm to do this in four steps.

Step 1: We show how to build efficiently a small set of characterizing identities for the polynomial
P. We will ensure that this set of identities is of size poly(N,s,d) = poly(s).

Step 2: We will then check whether all the identities hold for the polynomial Q as well. This is
done by a call to the PIT algorithm for the sum of k UPT circuits. We will analyze the complexity
of this step and bound it by sO(2k).

Step 3: We will then show that if Q satisfies all the characterizing identities, and moreover P and
Q agree on a small set of coefficents, then the two polynomials are in fact identical.

Step 4: We will show that testing the equality of the above set of coefficients of P and Q can also
be performed in time poly(s).

We now give a more detailed outline of the above steps with the statements of many formal claims.
For the sake of exposition, we postpone the proofs of these intermediate claims to the end of this section.

Step 1: We now introduce some notation to formally define the characterizing identities for a polynomial
defined by a UPT circuit. Let I = [i, j] be an interval in [d], i.e. 1 ≤ i ≤ j ≤ d. If the interval is of size
1, i.e. I = [i, i] then we simply use i to denote it. Recall that M|I|(X) stands for all monomials of degree
exactly |I|. For any r, let F〈X〉r be the set of homogeneous polynomials of degree r.

For any interval I in [d] and any monomial m ∈M|I|(X), we define a map ∂I,m : F〈X〉d → F〈X〉d−|I|,
which is defined as follows:

∂I,m(P) = ∑
m1,m2:deg(m1)=i−1,deg(m2)=d− j

αm1,m,m2 ·m1 ·m2,

where αm1,m,m2 is the coefficient of the monomial m1 ·m ·m2 in P. Informally, ∂I,m is an operator,
which when applied to a polynomial P of degree d, retains only those monomials of P (along with their

22

coefficients) which have the monomial m at exactly the positions in the interval I, while substituting the
constant 1 for all the variables in positions indexed by I.

Let T be T0, the shape of the parse tree corresponding to P. For each v ∈V (T), we use Iv to denote
the interval [pos(v),pos(v)+deg(v)−1] where type(v) = (pos(v),deg(v)) is as defined in Section 2.4.

Starting from the leaves, we start building identities corresponding to each of the nodes in the tree
T . Formally, we show the following inductive claim.

Claim 42. There is an algorithm that runs in time poly(s) that, for every node v in T , computes a set
Bv ⊆Mdeg(v)(X) such that |Bv| ≤ s and also

• if v is a leaf node and Iv = i then, for each x ∈ X and for each m ∈ Bv, it computes coefficients cv
x,m

such that ∂i,x(P) = ∑m∈Bv cv
x,m ·∂i,m(P).

• if v is an internal node with children u,w, then for all m′ ∈ Bu,w := Bu ·Bw and for all m ∈ Bv, it
computes coefficients cv

m′,m such that ∂Iv,m′(P) = ∑m∈Bv cv
m′,m ·∂Iv,m(P).

The algorithm for the above is almost identical to the PIT algorithm in Section 6. Note that the size
of the output of the algorithm is poly(N,s,d) = poly(s).

We will prove this claim later.

Step 2: Let us assume that the above claim holds. Now if P = Q, then the same set of identities must
also hold for the polynomial Q. We now describe how one can check that Q satisfies these identities (the
algorithm can safely reject if some identity is not satisfied by Q). Suppose we have all the identities for
P along with the sets Bv for all nodes v in T and all the coefficients

(
cv

m′,m

)
m′∈Bu,w,m∈Bv

again for every

node v in T .
In general, we need to check identities of the following form when v is an internal node with children

u,w: ∂Iv,m̃(Q) = ∑m∈Bv cm̃,m · ∂Iv,m(Q) for each m̃ ∈ Bu,w. (A similar check has to be made when v is a
leaf node.)

Recall that Q = ∑
k
i=1 Pi. Therefore, we can rewrite the above identity as follows.

k

∑
i=1

∂Iv,m̃(Pi) = ∑
m∈Bv

cm̃,m ·
k

∑
i=1

∂Iv,m(Pi).

Rearranging this we get

k

∑
i=1

[
∑

m∈Bv

cm̃,m ·∂Iv,m(Pi)−∂Iv,m̃(Pi)

]
≡ 0. (8)

We first show that each of the k terms in the above sum has a small UPT circuit.

Claim 43. For each i ∈ [k], ∑m∈Bv cm̃,m ·∂Iv,m(Pi)−∂Iv,m̃(Pi) can be computed by a UPT circuit of size at
most O(s2). Further, these circuits can be constructed in time poly(k,s).

By the above claim, Equation 8 reduced to an identity testing question for the sum of at most k UPT
circuits, and hence can be solved recursively. Finally, when we get to the case that k = 1, we simply
appeal to our result from Section 6.1. Using Claim 43 (which we will prove later) and the algorithm from
Section 6.1 for a single UPT circuit, we see that this step can be performed in time (s2)O(2k−1) = sO(2k).

Step 3: Now suppose all the above checks succeed. That is, we have been able to ensure that the
following statements hold:

23

• For every leaf node v, x ∈ X ,m ∈ Bv and i such that Iv = i:

∂i,x(P) = ∑
m∈Bv

cv
x,m ·∂i,m(P) and ∂i,x(Q) = ∑

m∈Bv

cv
x,m ·∂i,m(Q). (9)

• For every internal node v with children u,w, for every m ∈ Bv and m′ ∈ Bu,w we have:

∂Iv,m′(P) = ∑
m∈Bv

cv
m′,m ·∂Iv,m(P) and ∂Iv,m′(Q) = ∑

m∈Bv

cv
m′,m ·∂Iv,m(Q) (10)

Claim 44. Equations 9, 10 imply that for any node v ∈V (T) and any m′ ∈M|Iv|(X) and m ∈ Bv, there
exist cv

m′,m ∈ F such that

∂Iv,m′(P) = ∑
m∈Bv

cv
m′,m ·∂Iv,m(P) and ∂Iv,m′(Q) = ∑

m∈Bv

cv
m′,m ·∂Iv,m(Q).

Note that (9) and (10) only give us a polynomially large set of common identities satisfied by P and
Q. The content of Claim 44 is that we can use these to infer an exponentially (since the size of M|I|(X)
is exponential) large set of common identitites for P and Q.

We will present the proof of Claim 44 later. For now let us assume this claim.
Now, let v0 be the root of T . We check that for each m ∈ Bv0 , ∂[d],m(P) = ∂[d],m(Q) (as described in

Step 4). Note that for any m of degree d, ∂[d],m(P) and ∂[d],m(Q) are simply coefficients of the monomial
m in P and Q respectively. Again, if any of these coefficients are not equal, we can safely reject.
However, if these checks succeed, using Claim 44, we can see that all the coefficients of polynomials P
and Q are equal and hence they are the same polynomial. In this case, we accept.

Step 4: As noted above, ∂[d],m(P) and ∂[d],m(Q) are simply coefficients of the monomial m in the poly-
nomials P and Q respectively. We use the following lemma proved in [5] to compute these coefficients.

Lemma 45 ([5]). Given access to a non-commutative circuit C of size s which is computing the polyno-
mial f of degree d and given a monomial m, the coefficient of m in f can be computed in time polynomial
in s,d.

This finishes the description of the four main steps. We now prove the claims used in these steps.

Proof sketch of Claim 42. We follow exactly the procedure in the PIT algorithm for UPT circuits in
Section 6.1 and compute sets Bv,+, B̃v,+,Bv,×, and B̃v,× exactly as in that algorithm. We will take our sets
Bv to be the sets Bv,× for each v ∈V (T). Clearly |Bv| ≤ s for each v.

To compute the coefficients cv
m′,m ∈ F, we proceed as follows. For any leaf node v∈V (T), y∈ X and

x ∈ Bv, we choose cv
y,x such that we have ξ v

y = ∑x∈Bv cv
y,xξ v

x .
For an internal node v ∈ V (T) with children u and w, and any m′ ∈ Bu ·Bw, we note that by the

definition of Bv,× in the proof of Theorem 40, each m′ ∈ Bu ·Bw, ξ v
m′ lies in Span(B̃v,×) and hence we can

find cv
m′,m such that ξ v

m′ = ∑m∈Bv cv
m′,mξ v

m.
This concludes the description of the algorithm. To show that this works as intended, it suffices to

prove the following claim.

Claim 46. Let v ∈V (T) and t := deg(v). For any m′ such that deg(m′) = t and for any set B⊆Mt(X),
if ξ v

m′ = ∑m∈B cv
m′,m ·ξ

v
m then ∂I,m′(P) = ∑m∈B cv

m′,m ·∂I,m(P).

Proof. Let v ∈ V (T) be such that type(v) = (t, p), where t is deg(v) and p is pos(v). Let Kv be the
number of nodes in C0 corresponding to v. For any polynomial computed by a UPT circuit, [19] proved
the following decomposition lemma, which we will recall and use below.

24

Lemma 47 (Proposition 1 [19]). Let P be a polynomial of degree d computed by a UPT circuit of size s
with a parse tree T . Let (t, p) be the type of a node v ∈V (T) and let Kv be the number of gates in C of
that type. Let f1, f2, . . . , fKv be the polynomials computed by these gates each of degree t. Then P can be
written as

P =
Kv

∑
j=1

f j×p h j,

where ∀ j,1≤ j ≤ Kv deg(h j) = d− t.

Using the above lemma our claim follows. Given below is the detailed proof of the claim.

∂I,m′(P) = ∂I,m′

(
Kv

∑
j=1

f j×p h j

)
(a)

= ∂I,m′

(
Kv

∑
j=1

ξ
v
m′(j) ·m′×p h j + ∑

m̃ 6=m′
ξ

v
m̃(j) · m̃×p h j

)

= ∂I,m′

(
Kv

∑
j=1

ξ
v
m′(j) ·m′×p h j

)
+∂I,m′

(
∑

m̃6=m′
ξ

v
m̃(j) · m̃×p h j

)

=
Kv

∑
j=1

ξ
v
m′(j) ·1×p h j +

���
���

���
���

��:0

∂I,m′

(
∑

m̃ 6=m′
ξ

v
m̃(j) · m̃×p h j

)

=
Kv

∑
j=1

∑
m∈B

cv
m′,m ·ξ

v
m(j)×p h j (b)

= ∑
m∈B

cv
m′,m

Kv

∑
j=1

ξ
v
m(j)×p h j

= ∑
m∈B

cv
m′,m ·∂I,m

(
Kv

∑
j=1

ξ
v
m(j) ·m×p h j

)

= ∑
m∈B

cv
m′,m ·

(
∂I,m

(
Kv

∑
j=1

ξ
v
m(j) ·m×p h j

)
+∂I,m

(
∑

m̃6=m
ξ

v
m̃(j) · m̃×p h j

))

= ∑
m∈B

cv
m′,m ·∂I,m

(
Kv

∑
j=1

ξ
v
m′(j) ·m×p h j + ∑

m̃ 6=m
ξ

v
m̃(j) · m̃×p h j

)
= ∑

m∈B
cv

m′,m ·∂I,m(P)

The identity (a) holds due to Lemma 47. The identity (b) follows due to our assumption in the statement
of the claim. The other identities follow due to the definition and/or by the linearity of ∂I,m.

Proof of Claim 43. We know that Pi has a UPT circuit Ci with shape Ti. Say we fix a monomial m and
an interval I = [i1, i2] such that deg(m) = |I|. Let T ′i be the tree obtained from Ti by deleting all nodes u
such that Iu ⊆ I. We claim that ∂I,m(Pi) is computed by a UPT circuit of size at most s and shape T ′i .

Consider any leaf node w ∈ V (Ti) such that pos(w) = i1 + `− 1 ∈ I. We consider each (w,×) gate
Φ of C (note that these are input gates) and replace the gate by 0 if the variable x labelling Φ is the `th
variable in m and 0 otherwise.

25

This gives us a non-commutative arithmetic circuit where some leaves are labelled by constants.
However, these constants are easily eliminated inductively as follows. For any × gate Φ′ which has a
child labelled by a constant α , we can remove the child and multiply the label of each wire leaving Φ′ by
α; for any + gate Φ′ which has a child labelled by a constant, it must be the case that all its children are
labelled by constants (this follows from the UPT restriction) and hence the + gate can now be labelled
by a constant as well. Continuing this way, all the gates with constant labels are eliminated.

It can be checked that the circuit thus obtained is a UPT circuit of size at most s and shape T ′i
computing ∂I,m(Pi). Returning to the statement of the claim, we have therefore shown that each of
∂Iv,m̃(Pi) and ∂Iv,m(Pi) can be computed by a UPT circuit of size s and shape T ′i .

Therefore, we can compute ∑m∈Bv cm̃,m ·∂Iv,m(Pi)−∂Iv,m̃(Pi) by a linear combination of the O(s) UPT
circuits computing ∂Iv,m(P) for m ∈ Bv∪{m̃}. Overall, this gives a UPT circuit of size O(s2). Since the
above proof is constructive, we can actually find this circuit in time poly(s).

Proof of Claim 44. We will prove this claim by induction on |Iv|.
The base case is |Iv|= 1 which follows directly from Equation 9.
Suppose |Iv|= t > 1. Then v is an internal node in T . Let u,w be its two children. This implies that

Iv = Iu∪ Iw. Let |Iu|= t1, |Iw|= t2. Note that t1, t2 < t.
We wish to prove that any m′ ∈M|Iv|(X), ∂Iv,m′(P)=∑m∈Bv cv

m′,m ·∂Iv,m(P) and ∂Iv,m′(Q)=∑m∈Bv cv
m′,m ·

∂Iv,m(Q) for a suitable choice of cv
m′,m. Note that this already follows for m′ ∈ Bu ·Bw from (10). So we

assume that m′ 6∈ Bu ·Bw.
Let m′ = m′1 ·m′2, where deg(m′1) = t1 and deg(m′2) = t2. Let R be either of P or Q.

∂Iv,m′(R) = ∂Iu∪Iw,m′1m′2
(R)

= ∂Iu,m′1
◦∂Iw,m′2

(R) (a)

= ∂Iu,m′1
◦

[
∑

m∈Bw

cw
m′2,m
·∂Iw,m(R)

]
(b)

= ∑
m∈Bw

cw
m′2,m
·∂Iu,m′1

◦∂Iw,m(R)

= ∑
m∈Bw

cw
m′2,m
·∂Iw−|Iu|,m ◦∂Iu,m′1

(R) (a)

= ∑
m∈Bw

cw
m′2,m ∑

m∈Bu

cu
m′1,m
·∂Iw−|Iu|,m ◦∂Iu,m(R) (b)

= ∑
m∈Bw,m∈Bu

cu
m′1,m
· cw

m′2,m
·∂Iu∪Iw,mm(R) (a)

= ∑
m·m∈Bu,w

cu
m′1,m
· cw

m′2,m
·∂Iv,mm(R)

= ∑
m∈Bv

(
∑
m,m

cu
m′1,m
· cw

m′2,m
· cv

mm,m

)
·∂Iv,m(R). (c)

The equalities marked by (a) follow due to Observation 48 given below. The equalities marked (b)
follow due to the induction hypothesis. Finally, the equality marked (c) follows due to Equation 10.

The above implies the inductive claim with cv
m′,m defined to be

(
∑m∈Bu,m∈Bw cu

m′1,m
· cw

m′2,m
· cv

mm,m

)
.

Since the choice of cv
m′,m is the same for both P and Q, we are done.

Observation 48. Let I, J be two contiguous intervals in [d] such that I precedes J, i.e. if I = [i1, i2] and
J = [j1, j2] then 1≤ i1, i2+1 = j1 and j2 ≤ d. Then ∂I∪J,m1m2 = ∂J−|I|,m2 ◦∂I,m1 = ∂I,m1 ◦∂J,m2 , where for
any two intervals I,J, J−|I| denotes the interval { j−|I| | j ∈ J}∩ [d].

26

References

[1] Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-commutative arithmetic circuits: Depth
reduction and size lower bounds. Theor. Comput. Sci., 209(1-2):47–86, 1998.

[2] Vikraman Arvind, Pushkar S. Joglekar, Partha Mukhopadhyay, and S Raja. Identity testing for +-
regular noncommutative arithmetic circuits. Electronic Colloquium on Computational Complexity
(ECCC), 23:193, 2016.

[3] Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan. Arithmetic circuits and the
hadamard product of polynomials. In IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2009, December 15-17, 2009, IIT Kanpur,
India, pages 25–36, 2009.

[4] Vikraman Arvind, Partha Mukhopadhyay, and S Raja. Randomized polynomial time identity test-
ing for noncommutative circuits. Electronic Colloquium on Computational Complexity (ECCC),
23:89, 2016.

[5] Vikraman Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan. New results on noncommu-
tative and commutative polynomial identity testing. Computational Complexity, 19(4):521–558,
2010.

[6] Vikraman Arvind and S. Raja. The complexity of two register and skew arithmetic computation.
Electronic Colloquium on Computational Complexity (ECCC), 21:28, 2014.

[7] Steve Chien, Lars Eilstrup Rasmussen, and Alistair Sinclair. Clifford algebras and approximating
the permanent. J. Comput. Syst. Sci., 67(2):263–290, 2003.

[8] Steve Chien and Alistair Sinclair. Algebras with polynomial identities and computing the determi-
nant. In 45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004,
Rome, Italy, Proceedings, pages 352–361, 2004.

[9] Kenneth Church and Ramesh Patil. Coping with syntactic ambiguity or how to put the block in the
box on the table. Comput. Linguist., 8(3-4):139–149, July 1982.

[10] Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower bounds for
depth-4 formulas computing iterated matrix multiplication. SIAM J. Comput., 44(5):1173–1201,
2015.

[11] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching the chasm
at depth four. J. ACM, 61(6):33:1–33:16, 2014.

[12] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic identity testing for
sum of read-once oblivious arithmetic branching programs. In 30th Conference on Computational
Complexity, CCC 2015, June 17-19, 2015, Portland, Oregon, USA, pages 323–346, 2015.

[13] Pavel Hrubeš, Avi Wigderson, and Amir Yehudayoff. Non-commutative circuits and the sum-of-
squares problem. Journal of the American Mathematical Society, 24(3):871–898, 2011.

[14] Laurent Hyafil. The power of commutativity. In FOCS, pages 171–174, 1977.

[15] Mark Jerrum and Marc Snir. Some exact complexity results for straight-line computations over
semirings. J. ACM, 29(3):874–897, 1982.

27

[16] Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An exponential lower bound
for homogeneous depth four arithmetic formulas. In 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 61–70,
2014.

[17] Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower bound for
regular arithmetic formulas. In Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pages 146–153, 2014.

[18] Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic circuits.
In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia,
PA, USA, October 18-21, 2014, pages 364–373, 2014.

[19] Guillaume Lagarde, Guillaume Malod, and Sylvain Perifel. Non-commutative computations:
lower bounds and polynomial identity testing. Electronic Colloquium on Computational Com-
plexity (ECCC), 23:94, 2016.

[20] Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower bounds for non-commutative
skew circuits. Theory of Computing, 12(1):1–38, 2016.

[21] Guillaume Malod and Natacha Portier. Characterizing valiant’s algebraic complexity classes. J.
Complexity, 24(1):16–38, 2008.

[22] Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In STOC,
pages 410–418, 1991.

[23] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Computational Complexity, 6(3):217–234, 1997.

[24] Ran Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size. J.
ACM, 56(2):8:1–8:17, 2009.

[25] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative models.
Computational Complexity, 14(1):1–19, 2005.

[26] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of characteristic zero.
Computational Complexity, 10(1):1–27, 2001.

[27] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

A Proof of Lemma 11

Lemma 11 (restated). Let f ∈ F〈X〉 be homogeneous of degree d and say Π1,Π2 are partitions of [d].
Then, rank(f ,Π2)≤ rank(f ,Π1) ·N∆(Π1,Π2).

Proof. We prove this by induction on ∆(Π1,Π2).
The base case of the induction is the case that ∆(Π1,Π2) = 0 i.e. Π1 =Π2. In this case, the statement

is trivial.
Now consider when ∆(Π1,Π2) = ∆≥ 1. We can find a partition Π such that ∆(Π1,Π) = ∆−1 and

∆(Π,Π2) = 1. By the induction hypothesis, we know that rank(f ,Π) ≤ rank(f ,Π1) ·N∆−1 and so it
suffices to show that rank(f ,Π2)≤ rank(f ,Π) ·N.

28

Assume that Π = (Y,Z) and Π2 = (Y2,Z2). We know that ∆(Π,Π2) = |Y ∆Y2|= 1. W.l.o.g. assume
that Y = Y2 \ i for some i ∈ [d] (the other case, when Y = Y2∪{i} is similar). Note that Z = Z2∪{i}.

Consider the matrix M2 := M[f ,Π2]. We divide M2 into N blocks as follows. For each x ∈ X , let Mx
2

be the submatrix where we only keep the rows corresponding to monomials of degree |Y2| that contain
the variable x in the location “corresponding” to i (i.e. in the jth position where j is the rank of i in Y2).
Clearly, we have rank(M2)≤ ∑x∈X rank(Mx

2).
On the other hand, we also see that each Mx

2 is a submatrix of M := M[f ,Π]: namely, the submatrix
obtained by only keeping the columns corresponding to those monomials that contain the variable x in
the location corresponding to i (as above but w.r.t. Z). Hence, rank(Mx

2)≤ rank(M) for each x.
Hence, we see that rank(M2)≤ ∑x∈X rank(Mx

2)≤ N · rank(M) and this completes the induction.

B Proof of Proposition 12

Proposition 12 (restated). 1. Let C be a UPT formula. Then C is in normal form.

2. For any UPT circuit C of size s and shape T , there is another UPT circuit C′ of size O(s2) and
shape T in normal form computing the same polynomial as C. Further, given C and T , such a C′

can be constructed in time poly(s).

Proof. • Proof of 1. Let C be a UPT formula with shape T . We want to prove that C is in normal
form; this is equivalent to proving that for any multiplication gate Φ∈C and for any parse formula
containing the gate Φ, the gate always takes the same position in T . Let D,D′ be any two parse
formulas containing Φ. D (resp. D′) is a formula, therefore there is a unique path p (resp. p′) from
the root to Φ in D (resp. D′). The crucial point is the following: as C is also a formula with D
and D′ as subformulas, these two paths must be equal. By definition, the position of Φ in T with
respect to D is characterized by (deg(Φ),pos(Φ)) where deg(Φ) is the degree of the monomial
computed at the gate Φ in D and pos(Φ) equals 1 + the sum of the degrees of the monomials
computed at the children of the multiplication gates along the path p which are on the left side of
the path. As the formula is UPT, the monomials computed in a gate are all of same degree for any
parse formulas containing the gate; moreover p = p′ so in both cases we consider the same gates
in the definition of (deg(Φ),pos(Φ)) in D or D′ so that the positions of Φ in T according to D or
D′ are equal.

• Proof of 2. We refer the reader to [19, Lemma 1]. It can be checked that the proof of this result
in [20] also yields the algorithmic conclusion.

C Proof of Lemma 13

Lemma 13 (restated). Let C be a normal form UPT circuit (resp. formula) of size s and shape T .
Then there is a tree T ′ and normal form UPT circuit (resp. formula) C′ of size O(s) and shape T ′ such
that C′ computes the same polynomial as C and every multiplication gate in C′ has fan-in at most 2.
(This implies that every internal node of T ′ also has fan-in at most 2.) Further, there is a deterministic
polynomial-time algorithm, which when given C computes C′.

Proof. We give the proof only for UPT circuits, since the transformation is the same in both cases. Let C
a UPT circuit as in the statement. For any ×-gate Φ with k > 2 children Ψ0, . . . ,Ψk−1, we replace Φ by
the following gadget of 2.(k−1)−1 gates Φ0, . . . ,Φ2.(k−2). For any i ∈ [0,k−3], Φ2i is a multiplication
gate with inputs Ψi and Φ2i+1 and Φ2i+1 is an addition gate with input Φ2(i+1). Finally, Φ2(k−1) is a
multiplication gate with inputs Ψk−2 and Ψk−1. The new circuit is still in alternating layer form, and is

29

clearly UPT because we apply the same process to any multiplication gate of fan-in strictly greater than
2. For any such gate, we add k−2 edges which is less than the fan-in of the previous multiplication gate.
Therefore, the number of edges in the final circuit increases by at most two times the number of edges
in the original circuit, so that the size of the circuit obtained by this process is O(s).

The shape T ′ of the new formula is simply the modified version of the shape T obtained by replacing
the internal nodes of fan-in k > 2 by right combs with k leaves.

This completes the construction of C′ from C. The construction can easily be seen to be imple-
mentable by a deterministic polynomial-time algorithm.

D Proof of Lemma 16

Lemma 16 (restated). Let C be a k-PT circuit (resp. formula) of size s with T (C) = {T1, . . . ,Tk}
computing f ∈ F〈X〉. Then there exist normal form UPT circuits (resp. formulas) C1, . . . ,Ck of size at
most s2 each such that T (Ci) = {Ti} and f = ∑

k
i=1 fi, where fi the polynomial computed by Ci.

Proof. Let C be as in the statement. We show how to construct k UPT circuits (resp. formulas) C1, . . . ,Ck
of size at most s2, of shapes T1, . . . ,Tk respectively, computing f1, . . . , fk respectively such that each fi is
equal to the sum of the monomials computed by all the parse formulas of C of shape Ti. Given this, the
polynomial f , which is equal to the sum of all monomials computed by all parse formulas of C, will be
equal to ∑

k
i=1 fi and the lemma will be proved.

Construction of Ci.

• The gates of Ci are denoted by pairs of the form (Φ,v). For each gate Φ ∈C and for each node
v ∈V (Ti) such that deg(v) = deg(Φ), we initially add a gate (Φ,v) to the circuit Ci.

• Edges:

– If Φ ∈ C is an addition gate with children Ψ1, . . . ,Ψt , then (Φ,v) is an addition gate in Ci

with children (Ψ1,v), . . . ,(Ψt ,v).

– If Φ ∈ C is a multiplication gate with children Ψ1, . . . ,Ψt (in this order), then (Φ,v) is a
multiplication gate with children (Ψ1,v1), . . . ,(Ψt ,vt), as long as the children of v in Ti are
exactly v1, . . . ,vt (in this order) with deg(v j) = deg(Ψ j) for each j. Otherwise, we label
(Ψ,v) with 0.

– If Φ is an input gate labelled by x ∈ X and v a leaf node, then the gate (Φ,v) is also an input
gate with the same label.

Notice that the size of Ci is upper bounded by s2. Further, any parse formula that does not contain
any of the nodes labelled 0 has shape Ti. Finally, if C is actually a formula, then C1, . . . ,Ck are formulas
as well.

We prove by induction (on any toplogical orderings of Ti and C) that for any v ∈ V (T) and Φ in C
such that deg(Φ) = deg(v), the gate (Φ,v) in Ci computes the sum of all parse formulas C′ of C starting
at Φ with the shape Ti[v], where Ti[v] is the subtree of i rooted at v. This will prove that the output gate
of Ci computes the sum of the monomials computed by all the parse formulas of C of shape Ti. This is
clearly true for the leaves.

Take now any (Φ,v) in Ci. We assume it is a multiplication gate (the other case is similar). Assume
that the children of Φ ∈C are Ψ1, . . . ,Ψt and that the children of v ∈ Ti are v1, . . . ,vr. If either r 6= t or
there is an a ∈ [t] such that deg(va) 6= deg(Ψa), then there are no parse formulas starting at Φ of shape
Ti[v] and hence the gate (Φ,v) which is labelled with 0 computes the correct polynomial. So we now
assume that r = t and deg(va) 6= deg(Ψa) for each a ∈ [t].

30

Let us denote by S′ the set of parse formulas C′ of C starting at Φ with a shape Ti[v], and S′1 (respec-
tively S′2, . . . ,S

′
t) the set of parse formulas starting at the gates Ψ1 (resp. Ψ2, . . . ,Ψt) with a shape Ti[v1]

(resp. Ti[v2], . . . ,Ti[vt]).
The set S′ is obtained by taking all possible combinations of parse formulas coming from S′1, . . . ,S

′
t .

In symbols

∑
C′∈S′

val(C′) =
t

∏
j=1

∑
C′′∈S′j

val(C′′)

If we denote by P(Ψ j,v j) each polynomial computed by a gate (Ψ j,v j) in Ci, we get by induction
hypothesis that

∑
C′∈S′

val(S) =
t

∏
j=1

P(Ψ j,v j)

and hence
∑

C′∈S′
val(S) = P(Φ,v)

as wanted.
Finally, note that some of the leaves of the circuit are labelled by the constant 0. To eliminate this,

we can repeatedly apply the following procedure. If Φ is labelled with 0 and feeds into a × gate Ψ, then
remove Φ and all wires feeding into Ψ, and relabel Ψ with 0. If Φ is labelled with 0 and feeds into a +
gate Ψ, then simply remove Φ and if Φ has no inputs left, then relabel it with 0. This process produces
a UPT circuit with shape Ti and size at most s2. Further, since each gate is already associate with a node
of T in a natural way, the circuit Ci is already in normal form.

E Proof of Lemma 24

Lemma 24 (restated). Let C be any homogeneous arithmetic circuit of size s computing f ∈ F〈X〉 of
degree d. Assume that there is some d′ > d/2 such that every parse formula C′ of C contains a gate
computing a (homogeneous) polynomial of degree d′. Let Φ1, . . . ,Φr (r ≤ s) be the set of × gates com-
puting polynomials of degree d′ in C and let g1, . . . ,gr be the polynomials they compute (respectively).
Then, we have

f =
r

∑
i=1

d−d′

∑
j=0

gi× j hi, j

for some homogeneous polynomials hi, j of degree d−d′ (i ∈ [r], j ∈ [0,d−d′]).

Proof. We will first simplify the circuit C so that each gate Φ appears in some parse formula of C.
If Φ appears in no parse formula of C, then we can remove it from the circuit without changing the
polynomial computed by the circuit.

We consider a topological ordering of the gates of the circuit C so that if the gate Φ computes a
polynomial of degree at most the degree of the gate Ψ, then Φ appears before Ψ in the ordering. This
can be done since C is a homogeneous circuit.

Let Ψ1, . . . ,Ψp (p ≤ s) be this topological ordering of the gates and let fk be the polynomial com-
puted at Ψk (k ∈ [p]). Let dk = deg(fk). We prove by induction on k ∈ [p] that if dk ≥ d′, then

fk =
r

∑
i=1

d−d′

∑
j=0

gi× j h(k)i, j . (11)

for some homogeneous polynomials h(k)i, j of degree d− d′ each. Note that this is vacuously true for k
such that deg(fk)< d′.

If the gate Ψk is a × gate of degree dk ≥ d′, then we have the following possibilities:

31

• dk = d′: In this case fk = gi for some i ∈ [r] and hence we can take h(k)i,0 = 1 and h(k)i′, j′ = 0 for all
other i′, j′ pairs.

• dk > d′: In this case fk = fk1 · · · fkt for some t and k1, . . . ,kt < k. We observe that one of dk1 , . . . ,dkt

must be at least d′.

To see this, assume that dka < d′ for each a ∈ [t] and consider any parse formula C′ containing
Ψk (such a formula must exist since otherwise Ψk would have been removed in the first simpli-
fication step). By our assumption on the circuit, C′ must also contain some gate Ψ′ computing a
polynomial of degree exactly d′. Note that Ψ′ does not lie in the subcircuit of C′ induced by the
gate Ψk since all the non-output gates of this subcircuit compute polynomials of degree < d′ and
the output gate computes a polynomial of degree > d′. Also, as dk > d′, Ψk does not appear in the
subcircuit of C′ induced by Ψ′. Consider the parse tree T obtained by unraveling the circuit C′. By
the observations above, Ψk gives rise to (at least) one node u in T of degree dk > d′ and Ψ′ gives
rise to a node v in T of degree d′. Thus, the degree of the root is at least deg(u)+deg(v)> 2d′> d,
which is a contradiction since in a homogeneous circuit all parse trees have exactly d leaves.

So we can assume that deg(fka) ≥ d′ for some a ∈ [t]. Applying the induction hypothesis to fka

we have

fka =
r

∑
i=1

d′

∑
j=0

gi× j h(ka)
i, j .

for suitable h(ka)
i, j of degree dka−d′ each. Thus, we have

f = fk1 · · · fkt =
r

∑
i=1

dka−d′

∑
j=0

f1 · · · fka−1 · (gi× j h(ka)
i, j) · fka+1 · · · fkt

=
r

∑
i=1

dka−d′

∑
j=0

gi× j+dk1+···+dka−1
(f1 · · · fka−1h(ka)

i, j fka+1 · · · fkt)

where for the final equality we have used the observation that (g× j h)× j′ h′ = g× j+ j′ (h× j′ h′)
for any homogeneous polynomials g,h,h′ and any relevant j, j′.

For any j ∈ [0,dka − d′], we have j′ := j + dk1 + · · ·+ dka−1 ∈ [dk1 + · · ·+ dka−1 ,dk− d′]. Hence,
setting h(k)i, j′ = f1 · · · fka−1h(ka)

i, j fka+1 · · · fkt for each j′ ∈∈ [dk1 + · · ·+ dka−1 ,dk − d′], and 0 for all
j′ < dk1 + · · ·+dka−1 , the above yields (11) in this case.

If the gate Ψk is a + gate of degree dk ≥ d′, then it is a linear combination of gates Ψk1 , . . . ,Ψkt of
degree dk each. By induction, for each a ∈ [t], we have

fka =
r

∑
i=1

d−d′

∑
j=0

gi× j h(ka)
i, j .

Say fk = ∑a αa fka where αa ∈ F. Then using the fact that × j is bilinear, we get

fk = ∑
a∈[t]

αa fka =
r

∑
i=1

d−d′

∑
j=0

∑
a

αagi× j h(ka)
i, j) =

r

∑
i=1

d−d′

∑
j=0

gi× j (∑
a

αah(ka)
i, j))

which is of the form required in (11). This completes the induction.

32

F Proof of Lemma 32

Lemma 32. Let T be a tree with d leaves and depth ∆, such that all internal nodes are of in-degree
strictly greater than 1. Then there is a path π = (v`, . . . ,v0) in T such that |off(π)∪{v`}| ≥Ω(∆d1/∆).

Proof. Let T be a tree as in the statement. We denote by wt(v) the fan-in of the node v. We will prove
the following equivalent conclusion: there is a path π = (v`, . . . ,v0) from a leaf to the root such that
1+ ∑

0≤i<`
(wt(vi)−1)≥Ω(∆d1/∆).

We consider two distinct cases:

• Case 1: ∆ > log(d). In this case, any path p = (v0, . . . ,v∆) of depth ∆ respects 1+ ∑
0≤i<∆

(wt(vi)−

1)≥ ∆+1 = Ω(∆d1/∆).

• Case 2: ∆ ≤ log(d). We consider the following greedy procedure to choose the path of internal
nodes: starting from the root, repeatedly choose a child such that the number of leaves in the
resulting subtree is maximized. Let p = v0, . . . ,v` be the sequence of nodes thus obtained. Note
that `≤ ∆≤ log(d).

We prove by induction on the tree T that the number of leaves of the tree is at most the product of
the fan-ins of v0, . . . ,v`−1 (this fact is true for any tree T and not just trees T such of depth at most
logd). If ` = 0, the entire tree consists of just the root: hence the number of leaves is 1 and the
(empty) product also evaluates to 1. Assume now that the root v0 has k children corresponding to
subtrees T1,T2, . . .Tk. We assume the number of leaves in the subtree Ti is ti. Assume the greedy
algorithm chooses v1 corresponding to the subtree rooted in Ti (thus, we must have ti ≥ t j for any

j ∈ [k]). By the induction hypothesis,
`

∏
i=1

wt(vi)≥ ti. Therefore

`−1

∏
i=0

wt(vi)≥ k · ti ≥
k

∑
i=1

t j = d

which concludes the induction.

By the inequality of arithmetic and geometric means:

∑
0≤i<l

wt(v)

`
≥ (∏

0≤i<`

wt(v))1/` ≥ d1/`.

So, we have
∑

0≤i<`

(wt(v)−1)≥ `(d1/`−1).

Notice that the right part of this inequality is a decreasing function of ` in the regime `≤ log(d),
so that:

∑
0≤i<`

(wt(v)−1)≥ ∆(d1/∆−1) = ∆d1/∆(1− 1
d1/∆

)≥ ∆d1/∆(1− 1
e1) = Ω(∆d1/∆).

33

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

