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Abstract

A Boolean function f : {0, 1}d 7→ {0, 1} is unate if, along each coordinate, the function is
either nondecreasing or nonincreasing. In this note, we prove that any nonadaptive, one-sided
error unateness tester must make Ω( d

log d ) queries. This result improves upon the Ω( d
log2 d

) lower

bound for the same class of testers due to Chen et al. (STOC, 2017).

1 Introduction

We study the problem of deciding whether a Boolean function f : {0, 1}d 7→ {0, 1} is unate in the
property testing model [7, 5]. A function is unate if, for each dimension i ∈ [d], the function is
either nondecreasing along the ith coordinate or nonincreasing along the ith coordinate. A property
tester for unateness is a randomized algorithm that takes as input a proximity parameter ε ∈ (0, 1)
and has query access to a function f . If f is unate, it must accept with probability at least 2/3. If
f is ε-far from unate, it must reject with probability at least 2/3. A tester has one-sided error if it
always accepts unate functions. A tester is nonadaptive if it chooses all of its queries in advance;
it is adaptive otherwise.

The problem of testing unateness was introduced by Goldreich et al. [4]. Following a result
of Khot and Shinkar [6], Baleshzar et al. [1] settled the complexity of unateness testing for real-
valued functions. Unateness can be tested with O(dε ) queries adaptively and with O(d log dε ) queries
nonadaptively. For constant ε, these complexities are optimal.

On the other hand, for the Boolean range, the complexity is far from settled. Baleshzar et al. [2]
proved that Ω(

√
d) queries are necessary for nonadaptive, one-sided error testers. Chen et al. [3]

improved the lower bound for this class of testers to Ω( d
log2 d

). They also proved a lower bound of

Ω(
√
d

log2 d
) for adaptive, two-sided error unateness testers.

In this note, we use a construction similar to the one used by Chen et al. [3] to get an Ω( d
log d)

for nonadaptive, one-sided error unateness testers of Boolean functions over the hypercube. Our
analysis of the lower bound construction is simpler and gives a better dependence on d. There is
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still a gap of log2 d between the query complexity of the best known algorithm for this problem
(from [1]) and our lower bound.

2 The Lower Bound

In this section, we prove the following theorem.

Theorem 2.1. Any nonadaptive, one-sided error unateness tester for functions f : {0, 1}d 7→ {0, 1}
with the distance parameter ε ≤ 1

8 must make Ω( d
log d) queries.

Proof. We first define a hard distribution consisting of Boolean functions that are 1
8 -far from unate.

By Yao’s minimax principle [8], it is sufficient to give a distribution on functions for which every
deterministic tester fails with high probability. A deterministic nonadaptive tester is determined
by a set of query points Q ⊆ {0, 1}d. We prove that if |Q| ≤ d

30 log d , then the tester fails with
probability more than 2/3 over the hard distribution.

The hard distribution D is defined as follows: pick 3 dimensions a, b, c ∈ [d] uniformly at random
and define fa,b,c(x) = xa ·xb + (1−xa) ·xc. We call a, b, c the influential dimensions, since the value
of the function depends only on them. The coordinate xa determines if fa,b,c(x) should be set to
xb or xc. If xa = 1, then fa,b,c(x) = xb, otherwise, fa,b,c(x) = xc.

There are
(
d
3

)
functions in the support of D. The next claim states that all of them are far from

unate.

Claim 2.2. Every function fa,b,c in the support of D is 1
8 -far from unate.

Proof. Consider an edge (x, y) along the dimension a. We have xa = 0 and ya = 1, and xi = yi for
all i ∈ [d] \ {a}. By definition, fa,b,c(x) = xc and fa,b,c(y) = yb. If xb = yb = 1 and xc = yc = 0,
then fa,b,c is increasing along the edge (x, y). On the other hand, if xb = yb = 0 and xc = yc = 1,
then fa,b,c is decreasing along (x, y). Thus, with respect to fa,b,c, at least 2d−3 edges along the
dimension a are decreasing and at least 2d−3 edges along the dimension a are increasing. Hence,
at least 2d−3 function values of fa,b,c need to be changed to make it unate. Consequently, fa,b,c is
1
8 -far from unate.

Note that any one-sided error tester for unateness must accept if the query answers are consistent
with a unate function. Let f|Q denote the restriction of the function f to the points in Q. We say
that f|Q is extendable to a unate function if there exists a unate function g such that g|Q = f|Q.

For f ∼ D, we show that if |Q| ≤ d
30 log d , then, with high probability, f|Q is extendable to a unate

function. Consequently, the tester accepts with high probability.
Next, we define a conjunctive normal form (CNF) formula φ(f|Q). Intuitively, each pair (x, y) of

domain points on which f differs imposes a constraint on f (assuming that f is unate). Specifically,
at least one of the dimensions on which x and y differ must be consistent (i.e., nondecreasing or
nonincreasing) with the change of the function value between x and y. This constraint is formalized
in the definition of φ(f|Q) as follows. For each dimension i, we have a variable zi which is true if f
is nondecreasing along the dimension i, and false if it is nonincreasing along that dimension. For
each x, y ∈ Q such that f(x) = 1 and f(y) = 0, create a clause (think of x, y as sets where i ∈ x iff
xi = 1)

cx,y =
∨

i∈x\y

zi ∨
∨

i∈y\x

zi.
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Set φ(f|Q) =
∧

x,y∈Q:f(x)=1,f(y)=0 cx,y.

Observation 2.3. The restriction f|Q is a certificate for non-unateness iff φ(f|Q) is unsatisfiable.

Now we need to show that, with probability greater than 2/3 over f ∼ D, the CNF formula
φ(f|Q) is satisfiable. This follows from Claims 2.4 and 2.5.

The width of a clause is the number of literals in it; the width of a CNF formula is the minimum
width of a clause in it.

Claim 2.4. With probability at least 2/3 over f ∼ D, the width of φ(f|Q) is at least 3 log d.

Proof. Consider a graph G with vertex set Q, and an edge between x, y ∈ Q if |x∆y| ≤ 3 log d
(Here, x∆y is the symmetric difference between the sets x and y). Take an arbitrary spanning
forest F of G. Observe that for any edge (u, v) of G, we have u∆v ⊆

⋃
(x,y)∈F x∆y. Note that F

has at most d
30 log d edges. Let C =

⋃
(x,y)∈F x∆y, the set of dimensions captured by Q. We have

|C| ≤
∑

(x,y)∈F |x∆y| ≤ d
30 log d · 3 log d ≤ d

10 . Over the distribution D, the probability that at least
one of the influential dimensions, {a, b, c}, is in C is at most 3/10 which is less than 1/3. Hence,
with probability at least 2/3, no (u, v) ∈ G contributes a clause to φ(f|Q). Therefore, the width of
φ(f|Q) is at least 3 log d.

Claim 2.5. Any CNF that has width at least 3 log d and at most d2 clauses is satisfiable.

Proof. Apply the probabilistic method. A clause is not satisfied by a random assignment with
probability at most 1/d3. Hence, the expected number of unsatisfied clauses is at most d2

d3
< 1.

Thus, f|Q is a certificate for non-unateness with probability at most 1/3 when |Q| ≤ d
30 log d , which

completes the proof of Theorem 2.1.
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