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Abstract

Let f : {0, 1}n → {0, 1} be a Boolean function. The certificate complexity C(f) is a
complexity measure that is quadratically tight for the zero-error randomized query complexity
R0(f): C(f) ≤ R0(f) ≤ C(f)2. In this paper we study a new complexity measure that we
call expectational certificate complexity EC(f), which is also a quadratically tight bound on
R0(f): EC(f) ≤ R0(f) = O(EC(f)2). We prove that EC(f) ≤ C(f) ≤ EC(f)2 and show that
there is a quadratic separation between the two, thus EC(f) gives a tighter upper bound for
R0(f). The measure is also related to the fractional certificate complexity FC(f) as follows:
FC(f) ≤ EC(f) = O(FC(f)3/2). This also connects to an open question by Aaronson whether
FC(f) is a quadratically tight bound for R0(f), as EC(f) is in fact a relaxation of FC(f).

In the second part of the work, we upper bound the distributed query complexity Dµε (f)
for product distributions µ by the square of the query corruption bound (corrε(f)) which
improves upon a result of Harsha, Jain and Radhakrishnan [2015]. A similar statement for
communication complexity is open.

1 Introduction

The query model is arguably the simplest model for computation of Boolean functions. Its
simplicity is convenient for showing lower bounds for the amount of time required to accomplish
a computational task. In this model, an algorithm computing a function f : {0, 1}n → {0, 1} on
n bits is given query access to the input x ∈ {0, 1}n. The algorithm can query different bits of x,
possibly in an adaptive fashion, and finally produces an output. The complexity of the algorithm is
the number of queries made; in particular, the algorithm does not incur additional cost for any
computation other than the queries.

Unlike the more general models of computation (e.g. Boolean circuits, Turing machines), it is
often possible to completely determine the query complexity of explicit functions using existing
tools and techniques. The study of query algorithms can thus be a natural first step towards
understanding the computational power and limitations of more general and complex models. Query
complexity has seen a long line of research by computational complexity theorists. We refer the
reader to the survey by Buhrman and de Wolf [BdW02] for a comprehensive introduction to this
line of work.

To understand query algorithms, researchers have defined many complexity measures of Boolean
functions and investigated their relationship to query complexity, and to one another. For a
summary of the current state of knowledge about these measures, see [ABDK16]. In this work,
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we focus on characterizing the bounded-error query complexity R(f) and the zero-error query
complexity R0(f).

The following measures are known to lower bound R0(f): block sensitivity bs(f), fractional
certificate complexity FC(f) (also known as fractional block sensitivity fbs(f), [Tal13]), and certificate
complexity C(f). They are related as follows:

bs(f) ≤ fbs(f) = FC(f) ≤ C(f).

It is known that R0(f) ≤ D(f) ≤ C(f)2, and the Tribes function (an And of
√
n Ors on

√
n bits)

demonstrates that this relation is tight [JK10]. It is also known that R0(f) = O(bs(f)3) = O(FC(f)3)
[Nis89, BBC+01]. A quadratic separation between R0(f) and FC(f) is also achieved by Tribes.
Aaronson posed a question whether R0(f) = O(FC2(f)) holds [Aar08] (stated in terms of the
randomized certificate complexity RC(f), which later has been shown to be equivalent to FC(f)

[GSS16]). A positive answer to this question would imply that R0(f) = O(d̃eg(f)4) = O(Q(f)4)

[ABDK16], where d̃eg(·) and Q(·) stand for approximate polynomial degree and quantum query
complexity respectively.

One approach to showing R0(f) ≤ FC(f)2 is to consider the natural generalization of the
proof D(f) ≤ C(f)2 to the randomized case; the analysis of this algorithm, however, has met
some unresolved obstacles [KT16]. We define a new complexity measure expectational certificate
complexity EC(f) that is specifically designed to avert these problems and is of a similar form to
FC(f). We show that EC gives a quadratically tight bound for R0:

Theorem 1. For all total Boolean functions f ,

EC(f) ≤ R0(f) ≤ O(EC(f)2).

In fact, FC(f) is a relaxation of EC(f), and we show that FC(f) ≤ EC(f) ≤ C(f). Moreover, we
show that EC(f) lies closer to FC(f) than C(f) does: FC(f) ≤ EC(f) ≤ FC(f)3/2. While we don’t
know whether EC(f) is a lower bound on R(f), the last property gives EC(f)2/3 ≤ R(f).

As mentioned earlier, C(f)2 bounds R0(f) from above. But for specific functions, EC(f)2 can
be an asymptotically tighter upper bound than C(f)2. We demonstrate that by showing that
the same example that provides a quadratic separation between C(f) and FC(f) [GSS16] also
gives C(f) = Ω(EC(f)2). This is the widest separation possible between EC(f) and C(f), because
C(f) ≤ R0(f) = O(EC(f)2).

In the second part of the paper, we upper bound the distributional query complexity for product
distributions in terms of the minimum product query corruption bound and the block sensitivity
(see Definition 9 and Section 2).

Theorem 2. Let ε ∈ [0, 1/2) and µ a product distribution over the inputs. Then

Dµ4ε(f) = O(corr×min,ε(f) · bs(f)).

We contrast Theorem 2 with the past work by Harsha, Jain and Radhakrishnan [HJR15], who
showed that for product distributions, the distributional query complexity is bounded above by
the square of the smooth corruption bound corresponding to inverse polynomial error. Theorem 2
improves upon their result, firstly by upper bounding the distributional complexity by minimum
query corruption bound, which is an asymptotically smaller measure than the smooth corruption
bound, and secondly by losing a constant factor in the error as opposed to a polynomial worsening
in their work. Theorem 17, a consequence of Theorem 2, shows that for product distribution over
the inputs, the distributional query complexity is asymptotically bounded above by the square of
the query corruption bound. Thus Theorem 17 resolves a question that was open after the work of
Harsha et. al. The analogous question in communication complexity is still open.

Theorem 2 also bounds distributional query complexity in terms of the partition bound prt(·) of
Jain and Klauck [JK10]. The following theorem follows from Theorems 2 and 16.

Theorem 3. If ε ∈
[
0, 18
]

then Dµ8ε(f) = O(prtε(f)2 · log(1/ε)).

Jain and Klauck showed that prt(f) is a powerful lower bound on R(f). In the same work, prt(f)
was used to give a tight Ω(n) lower bound on R(f) for the Tribes function on n bits. The authors
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proved that prt(f) is asymptotically larger than FC(f). This implies that R(f) = O(prt(f)3), since
R(f) = O(bs(f)3). While a quadratic separation between R(f) and prt(f) is known [AKK16], it is
open whether R(f) = O(prt(f)2). Theorem 4 proves a distributional version of this quadratic relation,
for the special case in which the input is sampled from a product distribution. We remark here that
Jain, Harsha and Radhakrishnan proved in their work that Dµ1/3(f) = O(prt1/3(f)2 ·(log prt1/3(f))2);

Theorem 4 achieves polylogarithmic improvement over this bound. We note here that an analogous
statement for an arbitrary distribution together with the Minimax Principle (see Fact 4) will imply
that R(f) = O(prt(f)2).

The paper is organized as follows. In Section 2, we give the definitions for some of the complexity
measures. In Section 3, we define the expectational certificate complexity and prove the results
concerning this measure, starting with Theorem 1. In Section 4, we define the minimum query
corruption bound and prove Theorems 2 and 3. In Section 5, we list some open problems concerning
our measures.

2 Preliminaries

In this section we recall the definitions of some known complexity measures. For detailed introduction
on the query model, see the survey [BdW02]. For the rest of this paper, f is any total Boolean
function on n bits, f : {0, 1}n → {0, 1}.

Definition 1 (Randomized Query Complexity). Let A be a randomized algorithm that as an
input takes x ∈ {0, 1}n and returns a Boolean value A(x, r), where r is any random string used
by A. With one query A can ask the value of any input variable xi, for i ∈ [n]. The complexity
C(A, x, r) of A on x is the number of queries the algorithm performs under randomness r, given x.
The worst-case complexity of A is C(A) = maxr,x∈{0,1}n C(A, x, r).

The zero-error randomized query complexity R0(f) is defined as minAmaxx Er[C(A, x, r)], where
A is any randomized algorithm such that for all x ∈ {0, 1}n, we have Prr[A(x, r) = f(x)] = 1.

The one-sided error randomized query complexity R0
ε(f) is defined as minA C(A), where A is

any randomized algorithm such that for every x such that f(x) = 0, we have Prr[A(x, r) = 1] ≤ ε,
and for all x such that f(x) = 1, we have Prr[A(x, r) = 1] = 1. Similarly we define R1

ε(f).
The two-sided error randomized query complexity Rε(f) is defined as minA C(A), where A is

any randomized algorithm such that for every x ∈ {0, 1}n, we have Prr[A(x, r) 6= f(x)] ≤ ε. We
denote R1/3(f) simply by R(f).

Definition 2 (Distributional Query Complexity). Let µ be a probability distribution over {0, 1}n,
and ε ∈ [0, 1/2). The distributional query complexity Dµε (f) is the minimum number of queries
made in the worst case (over inputs) by a deterministic query algorithm A for which Prx∼µ[A(x) =
f(x)] ≥ 1− ε.

The Minimax Principle relates the randomized query complexity and distributional query
complexity measures of Boolean functions.

Fact 4 (Minimax Principle). For any Boolean function f,Rε(f) = maxµ D
µ
ε (f).

Definition 3 (Product Distribution). A probability distribution µ over {0, 1}n is a product
distribution if there exist n functions µ1, . . . , µn : {0, 1} → [0, 1] such that µi(0) + µi(1) = 1 for all i
and for all x ∈ {0, 1}n,

µ(x) =
∏
i∈[n]

µi(xi).

Definition 4 (Certificate Complexity). An assignment is a map A : {1, . . . , n} → {0, 1, ∗}. All
inputs consistent with A form a subcube {x ∈ {0, 1}n | ∀i ∈ [n] : xi = A(i) or A(i) = ∗}. The
length or size of an assignment, denoted by |A|, is defined to be the co-dimension of the subcube it
corresponds to. Let QA := {j : A(j) 6= ∗} be the set of variables fixed by A.

For b ∈ {0, 1}, a b-certificate for f is an assignment A such that x ∈ A ⇒ f(x) = b. The
certificate complexity C(f, x) of f on x is the size of the shortest f(x)-certificate that is consistent
with x. The certificate complexity of f is defined as C(f) = maxx∈{0,1}n C(f, x). The b-certificate

complexity of f is defined as Cb(f) = maxx:f−1(b) C(f, x).
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Definition 5 (Sensitivity and Block Sensitivity). For x ∈ {0, 1}n and S ⊆ [n], let xS be x flipped
on locations in S. The sensitivity s(f, x) of f on x is the number of different i ∈ [n] such that
f(x) 6= f(x{i}). The sensitivity of f is defined as s(f) = maxx∈{0,1}n s(f, x).

The block sensitivity bs(f, x) of f on x is the maximum number k of disjoint subsets B1, . . . , Bk ⊆
[n] such that f(x) 6= f(xBi) for each i ∈ [k]. The block sensitivity of f is defined as bs(f) =
maxx∈{0,1}n bs(f, x).

Definition 6 (Fractional Certificate Complexity). The fractional certificate complexity FC(f, x) of
f on x ∈ {0, 1}n is defined as the optimal value of the following linear program:

minimize
∑
i∈[n]

vx(i) subject to ∀y s.t. f(x) 6= f(y) :
∑

i:xi 6=yi

vx(i) ≥ 1.

Here vx ∈ Rn and vx(i) ≥ 0 for each x ∈ {0, 1}n and i ∈ [n]. The fractional certificate complexity
of f is defined as FC(f) = maxx∈{0,1}n FC(f, x).

Definition 7 (Fractional Block Sensitivity). Let B = {B | f(x) 6= f(xB)} be the set of sensitive
blocks of x. The fractional block sensitivity fbs(f, x) of f on x is defined as the optimal value of the
following linear program:

maximize
∑
B∈B

ux(y) subject to ∀i ∈ [n] :
∑
B∈B
i∈B

ux(B) ≤ 1.

Here ux ∈ R|B| and ux(B) ≤ 1 for each x ∈ {0, 1}n and B ∈ B. The fractional block sensitivity of
f is defined as fbs(f) = maxx∈{0,1}n fbs(f, x).

The linear programs FC(f, x) and fbs(f, x) are duals of each other, hence their optimal solutions
are equal and FC(f) = fbs(f) [GSS16].

3 Expectational Certificate Complexity

In this section, we give the results for the expectational certificate complexity. The measure
is motivated by the well-known D(f) ≤ C0(f)C1(f) deterministic query algorithm which was
independently discovered several times [BI87, HH87, Tar90]. In each iteration, the algorithm
queries the set of variables fixed by some consistent 1-certificate. Either the query answers agree
with the fixed values of the 1-certificate, in which case the input must evaluate to 1, or the algorithm
makes progress as the 0-certificate complexity of all 0-inputs still consistent with the query answers
is decreased by at least 1. The latter property is due to the crucial fact that the set of fixed values
of any 0-certificate and 1-certificate must intersect.

In hopes of proving R(f) ≤ FC0(f)FC1(f), a straightforward generalization to a randomized
algorithm would be to pick a consistent 1-input x and query each variable independently with
probability vx(i), where vx is a fractional certificate for x. To show that such an algorithm makes
progress, one needs a property analogous to the fact that 0-certificates and 1-certificates overlap.
Kulkarni and Tal give a similar intersection property for the fractional certificates:

Lemma 5 ([KT16], Lemma 6.2). Let f : {0, 1}n → {0, 1} be a total Boolean function and
{vx}x∈{0,1}n be an optimal solution for the FC(f) linear program. Then for any two inputs
x, y ∈ {0, 1}n such that f(x) 6= f(y), we have∑

i:xi 6=yi

min{vx(i), vy(i)} ≥ 1.

However, it is not clear whether the algorithm makes progress in terms of reducing the fractional
certificates of the 0-inputs. We get around this problem by replacing min{vx(i), vy(i)} with the
product vx(i)vy(i) and putting that the sum of these terms over i where xi 6= yi is at least 1 as a
constraint:
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Definition 8 (Expectational Certificate Complexity). The expectational certificate complexity
EC(f) of f is defined as the optimal value of the following program:

minimize max
x

n∑
i=1

wx(i) s.t.
∑

i:xi 6=yi

wx(i)wy(i) ≥ 1 for all x, y s.t. f(x) 6= f(y),

0 ≤ wx(i) ≤ 1 for all x ∈ {0, 1}n, i ∈ [n].

We use the term “expectational” because the described algorithm on expectation queries at least
weight 1 in total from input y, when querying the variables with probabilities being the weights of x.
While the informally described algorithm shows a quadratic upper bound on the worst-case expected
complexity, in the next section we show a slight modification that directly makes a quadratic
number of queries in the worst case.

3.1 Quadratic Upper Bound on Randomized Query Complexity

In this section we prove Theorem 1 (restated below).

Theorem 1.
EC(f) ≤ R0(f) ≤ O(EC(f)2).

Proof. The first inequality follows from Lemma 10 and C(f) ≤ R0(f).
To prove the second inequality, we give randomized query algorithms for f with 1-sided error ε.

Claim 6. For any b ∈ {0, 1}, we have Rbε(f) ≤ dEC(f)2/εe.

The second inequality of Theorem 1 follows from Claim 6 by standard arguments of ZPP =
RP ∩ coRP.

Proof of Claim 6. We prove the claim for b = 0. The case b = 1 is similar.
Let {wx}x∈{0,1}n be an optimal solution to the EC(f) program. We say that an input y is

consistent with the queries made by A on x if yi = xi for all queries i ∈ [n] that have been made.
Also define a probability distribution µy(i) = wy(i)/

∑
i∈[n] wy(i) for each input y ∈ {0, 1}n.

Algorithm 1: The randomized query algorithm A.

Input: x ∈ {0, 1}n

1. Repeat dEC(f)2/εe many times:

(a) Pick the lexicographically first consistent 1-input y. If there is no such y, return 0.

(b) Sample a position i from µy and query xi.

(c) If the queried values form a c-certificate, return c.

2. Return 1.

The complexity bound is clear as A always performs at most dEC(f)2/εe queries.
For correctness, note that the algorithm outputs 1 on all 1-inputs. Thus assume x is a 0-input

from here on in the analysis. Then we have to prove that A outputs 0 with probability at least 1− ε.
This amounts to showing that the function reduces to a constant 0 function and the algorithm
terminates within dEC(f)2/εe iterations with probability at least 1− ε. (For notational convenience,
in what follows we will drop the ceilings and assume EC(f)2/ε is an integer.)

Define a random variable Tk as

Tk =


1

EC(f) , if A has terminated before the k-th iteration,

wx(i), if at the k-th iteration A has queried xi for the first time,

0, if xi has been queried before the k-th iteration.

Let T =
∑EC(f)2/ε
k=1 Tk. As

∑
i∈[n] wx(i) ≤ EC(f) by definition, T > EC(f) implies that A has

terminated before point 2. Then it has returned 0, and the answer is correct. Let p = Pr[T > EC(f)].
We will prove that p ≥ 1− ε, in which case we would be done.

We continue by showing an upper and a lower bound on E[T ].
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• The maximum possible value of T is at most

T ≤
∑
i∈[n]

wx(i) +
EC(f)2

ε
· 1

EC(f)
≤
(

1 +
1

ε

)
EC(f).

Therefore,

E[T ] ≤ p ·
(

1 +
1

ε

)
EC(f) + (1− p) · EC(f) ≤

(
1 +

p

ε

)
EC(f).

• Let Ek be the event that A has terminated before the k-th iteration. In case A performs the
k-th iteration, let y be consistent 1-input chosen and the random variable ik be the position
that A queries.

E[Tk] = Pr[Ek] · 1

EC(f)
+ Pr[Ek] · E[wx(ik) | Ek]

≥ Pr[Ek] · 1

EC(f)
+ Pr[Ek] ·

∑
i:xi 6=yi

wx(i)µy(i)

= Pr[Ek] · 1

EC(f)
+ Pr[Ek] ·

∑
i:xi 6=yi

wx(i)wy(i)/
∑
i∈[n]

wy(i)

≥ Pr[Ek] · 1

EC(f)
+ Pr[Ek] · 1

EC(f)

=
1

EC(f)
,

The first inequality here follows from the fact that any i such that xi 6= yi has not been
queried yet, because x and y are both consistent with the queries made so far. Thus, the
inequality holds regardless of the randomness chosen by A. The second inequality follows from
the expectational certificate properties

∑
i:xi 6=yi wx(i)wy(i) ≥ 1 and

∑
i∈[n] wy(i) ≤ EC(f).

By the linearity of expectation, we have that

E[T ] =

EC(f)2/ε∑
k=1

E[Tk] ≥ EC(f)/ε.

Combining the two bounds together, we get EC(f)
ε ≤

(
1 + p

ε

)
EC(f). Thus, p ≥ 1− ε.

3.2 Relation with the Fractional Certificate Complexity

Lemma 7. FC(f) ≤ EC(f).

Proof. We show that a feasible solution {wx}x for EC(f) is also feasible for FC(f). Since 0 ≤
wx(i) ≤ 1 for any x, i, ∑

i:xi 6=yi

wx(i) ≥
∑

i:xi 6=yi

wx(i)wy(i) ≥ 1,

and we are done.

Lemma 8. EC(f) = O(FC(f)
√

s(f)).

Proof. Let {vx}x be an optimal solution to the fractional certificate linear program for f . We first
modify each vx to a new feasible solution v′x by eliminating the entries vx(i) that are very small,
and boosting the large entries by a constant factor. Namely, let

v′x(i) =

{
min

{
3
2vx(i), 1

}
, if vx(i) ≥ 1

3s(f) ,

0, otherwise.
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We first claim that {v′x}x is still a feasible solution. Fix any x ∈ {0, 1}n, and let B be a minimal
sensitive block for x. As vx is part of a feasible solution, we have

1 ≤
∑
i∈B

vx(i) =
∑
i∈B,

vx(i)<1/3s(f)

vx(i) +
∑
i∈B,

vx(i)≥1/3s(f)

vx(i) ≤ 1

3
+

∑
i∈B,

vx(i)≥1/3s(f)

vx(i).

The second line follows because |B| ≤ s(f), as B is a minimal sensitive block and therefore every
index in B is sensitive. Rearranging the last inequality, we have

∑
i∈B

vx(i)≥1/3s(f)
vx(i) ≥ 2

3 , and

therefore,
∑
i∈B v

′
x(i) ≥ 1.

Next, wx(i) :=
√
v′x(i) is a feasible solution to the expectational certificate program, as∑

i:xi 6=yi

wx(i)wy(i) =
∑

i:xi 6=yi

√
v′x(i)v′y(i) ≥

∑
i:xi 6=yi

min{v′x(i), v′y(i)} ≥ 1.

The second inequality holds by Lemma 5.
Now that we have shown that {wx}x forms a feasible solution to the expectation certificate

program, it remains to bound its objective value:∑
i∈[n]

wx(i) =
∑
i∈[n]

√
v′x(i) =

∑
i:v′x(i)6=0

v′x(i)√
v′x(i)

≤
√

3s(f)
∑
i∈[n]

v′x(i) ≤
√

3s(f)
3

2
FC(f),

where the first inequality follows from v′x(i) ≥ vx(i) ≥ 1/3s(f) for v′x(i) 6= 0.

Since s(f) ≤ FC(f) and FC(f) ≤ R(f), we immediately get

Corollary 9. EC(f) = O(FC(f)3/2) = O(R(f)3/2).

3.3 Relation with the Certificate Complexity

Lemma 10. EC(f) ≤ C(f).

Proof. We construct a feasible solution {wx}x for EC(f) from C(f). Let Ax be the shortest certificate
for x. Assign wx(i) = 1 iff i ∈ Ax, otherwise let wx(i) = 0. Let x, y be any two inputs such
that f(x) 6= f(y). There is a position i where Ax(i) 6= Ay(i), otherwise there would be an input
consistent with both Ax and Ay, which would give a contradiction. Therefore, wx(i)wy(i) ≥ 1. The
value of this solution is maxx

∑
i∈[n] wx(i) = maxx C(f, x) = C(f).

As FC(f) ≤ EC(f) ≤ C(f) ≤ FC(f)2, there can be at most quadratic separation between EC(f)
and C(f). We show that this is achieved by the example of Gilmer et. al. that separates FC(f) and
C(f) quadratically:

Theorem 11 ([GSS16], Theorem 32). For every n ∈ N sufficiently large, there is a function

f : {0, 1}n2 → {0, 1} such that FC(f) = O(n) and C(f) = Ω(n2).

Their construction for f is as follows. First a function g : {0, 1}n → {0, 1} is exhibited such that

FC0(g) = Θ(1), C0(g) = Θ(n) and FC1(g) = C1(f) = n. The function f : {0, 1}n2 → {0, 1} is defined
as a composition Or(g(x(1)), . . . , g(x(n))). This gives FC(f) = max{nFC0(g),FC1(g)} = Θ(n) and
C(f) ≥ nC0(g) = Θ(n2) (both properties follow by Proposition 31 in their paper).

Let us construct a feasible solution w for EC(f). For any x = x(1) . . . x(n) such that f(x) = 1, let
j be the first index such that g(x(j)) = 1. Let S ⊆ [n2] be the set of positions that correspond to xj .

Let wx(i) = 1 for each position i in S, and wx(i) = 0 for all other positions. Then
∑n2

i=1 wx(i) = n.

On the other hand, let {vx}x∈{0,1}n be an optimal solution to FC(f). For any x ∈ {0, 1}n2

such

that f(x) = 0, let wx(i) = vx(i) for all i ∈ [n2]. Then
∑n2

i=1 wx(i) = FC(f, x) = O(n).
Now, for any two inputs x, y such that f(x) = 1 and f(y) = 0, let j be the smallest index such

that g(x(j)) = 1, then we have g(y(j)) = 0. By construction,∑
i:xi 6=yi

wx(i)wy(i) =
∑

i:xi 6=yi

wy(i) ≥ 1.

Hence {wx}x is a feasible solution to the expectational certificate and EC(f) = n.
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4 Minimum Query Corruption Bound and Partition Bound

In this section we prove Theorem 2. We first consider the query corruption bound and minimum
query corruption bound.

Definition 9 (Query Corruption Bound and Minimum Query Corruption Bound for product
distributions). Let ε ∈ [0, 1/2) and µ : {0, 1}n → [0, 1] be a probability distribution over the inputs.
For a b ∈ {0, 1}, let an assignment A be an ε-error b-certificate under µ, if

Pr
x∼µ

[f(x) 6= b |x ∈ A] ≤ ε.

Define the query corruption bound for b, distribution µ and error ε as

corrb,µε (f) = min{|A| | A is an ε-error b-certificate under µ}.

The query corruption bound of f is defined as corrε(f) = maxµ maxb corr
b,µ
ε (f), where µ ranges over

all distributions on {0, 1}n. The minimum query corruption bound of f for product distributions
is defined as corr×min,ε(f) = maxµ minb corr

b,µ
ε (f), where µ ranges over all product distributions on

{0, 1}n.

We now proceed to the proof of Theorem 2 (restated below).

Theorem 2. Let ε ∈ [0, 1/2) and µ a product distribution over the inputs. Then

Dµ4ε(f) = O(corr×min,ε(f) · bs(f)).

In the proof we will have restrictions of probability distributions. Let η be a probability
distribution over {0, 1}n, x ∈ {0, 1}n be a n-bit string, and Q ⊆ {1, . . . , n} be a set of indices. The
restriction of x to the indices of Q, (xj : j ∈ Q), will be denoted by xQ. Then the distribution η |xQ

is the distribution obtained by conditioning η on the event that the bits in the locations in Q agree
with x. Formally, for each y ∈ {0, 1}n

ηxQ
(y) =

{
η(y)∑

z:∀i∈Q,zi=xi
η(z) if ∀i ∈ Q, yi = xi,

0 otherwise.

Proof of Theorem 2. We present a deterministic query algorithm, and analyse its performance for
inputs sampled according to µ. Examine the following algorithm:

Algorithm 2: The deterministic query algorithm B.

Input: x ∈ {0, 1}n

1. Set t0, t1 ← 0, i← 1, η(1) ← µ.

2. Repeat:

(a) Pick a shortest ε-error certificate A under η.

(b) Query all the variables in QA that are still unknown.

(c) Let A be an ε-error b-certificate for some b ∈ {0, 1}. Set tb ← tb + 1.

(d) If the results of the queries are consistent with A, return b.

(e) If tb = 2bs(f), return b.

(f) η(i+1) ← η(i) |xQA
.

(g) i← i+ 1.

For each i = 2, . . . , 4bs(f), define T (i) to be the event that B completes at least i− 1 iterations
and define T (1) to be the true event. Let i be arbitrary, and assume that T (i) occurs. Then A(i)

denotes the ε-error certificate (under η(i)) picked in the i-th iteration in step 2a. Let b(i) ∈ {0, 1}
be the value approximately certified by A(i) under η(i). Let E(i) ⊆ A(i) denote the set of inputs
y ∈ A(i) such that f(y) 6= b(i). Recall from Section 2 QA(i) is the set of variables set by A(i). For
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each assignment s ∈ {0, 1}QA(i) to the variables fixed by A(i) and subset U ⊆ A(i), let U ⊕ s denote
the shift of U by the vector s. Formally (‘⊕’ stands for bitwise exlusive or),

U ⊕ s := {y ∈ {0, 1}n : ∀j ∈ QA(i) , yj = A
(i)
j ⊕ sj and ∃z ∈ U such that ∀j /∈ QA(i) , yj = zj}.

For i ≥ 2, define L(i) to be the set of variables queried in first i− 1 iterations and define L(1) := ∅.
Note that η(i) = µ |xL(i) , and η(i) is a product distribution.

Define all the above random variables to be ⊥ if T (i) does not take place. Now define

X(i) =

{
1 if T (i) occurs and x ∈

⋃
s∈{0,1}Q(i) E(i) ⊕ s,

0 otherwise.

First we bound the number of queries made by B. Since B terminates when either t0 = 2bs(f)
or t1 = 2bs(f), it performs at most 4bs(f) − 1 many iterations. On the other hand since η(i) is
a product distribution for each i, therefore |A(i)| ≤ corr×min,ε(f). Therefore, the algorithm makes

O(corr×min,ε(f) · bs(f)) many queries.
Now we prove that it errs on at most 4ε fraction of the inputs according to µ.

Claim 12. For every i and s ∈ {0, 1}QA ,Pr[x ∈ E(i) ⊕ s | T (i), x ∈ A(i) ⊕ s] ≤ ε.

Proof. Condition on the events T (i), x ∈ A(i) ⊕ s. Furthermore, condition on xL(i) . Notice that
under this conditioning, the distribution of the input x is η(i) = µ |xL(i) .

If T (i) occurs, A(i) is an ε-error b(i)-certificate under η(i). So Prx∼η(i) [x ∈ E(i) | T (i), x ∈
A(i)] ≤ ε. Since η(i) is a product distribution as observed before, we have that for each s ∈
{0, 1}QA(i) ,Prx∼η(i) [x ∈ E(i) ⊕ s | T (i), x ∈ A(i) ⊕ s] = Prx∼η(i) [x ∈ E(i) | T (i), x ∈ A(i)] ≤ ε. The
claim follows.

In particular, Claim 12 implies that for all i = 1, . . . , 4bs(f),

Pr[X(i) = 1] ≤ ε. (1)

Since B runs for at most 4bs(f)− 1 < 4bs(f) steps, by Equation (1), linearity of expectation and
Markov’s inequality we have that

Pr[|{i | X(i) = 1}| ≥ bs(f)] ≤ 4ε. (2)

For i such that T (i) occurs, define S(i) := {j ∈ QA(i) | xj 6= A(i)(j)}. The following claim will play
a central role in our analysis.

Claim 13. Let i1 < i2. For each i ∈ {i1, i2}, let T (i) happen and X(i) = 0. Then f(xS
(i)

) =
b(i), S(i1) ∩ S(i2) = ∅. In particular, if b(i1) = b(i2) and f(x) = 1 − b(i1) then S(i1) and S(i2) are
disjoint sensitive blocks for x.

Proof. Clearly, xS
(i) ∈ A(i). Also, since X(i) = 0, x /∈ E(i) + s for any s. Thus xS

(i)

/∈ E(i). Hence

f(xS
(i)

) = b(i). To see that S(i1) ∩ S(i2) = ∅, let j ∈ S(i1). It is easy to see that i2 > i1 implies
that the distribution η(i2) at step i2 is supported only on inputs consistent with xQ

A(i1)
. Hence, if

j ∈ QA(i2) , then xj = A(i2)(j) which implies that j /∈ S(i2).

For the rest of the proof, condition on the event that B terminates at iteration i. We will bound
the probability that B errs.

First, condition on the event that B terminates in step 2d. Then the probability that it errs is
Pr[x ∈ E(i) | T (i), x ∈ A(i)] ≤ ε (by Claim 12 invoked with s = 0QA(i) ).

Next, condition on the event that B terminates at step 2e, and t0 = 2bs(f) (the case t1 = 2bs(f)
is symmetrical). By Equation (2), |{i | X(i) = 1}| ≥ bs(f) with probability at most 4ε. Condition
on |{i | X(i) = 1}| < bs(f). Then B outputs 0. We claim that f(x) = 0 with probability 1. Towards
a contradiction, assume that f(x) = 1. As t0 = 2bs(f) and |{i | X(i) = 1}| < bs(f), then in at least
2bs(f)− (bs(f)− 1) = bs(f) + 1 iterations j ≤ i, b(j) = 0 and X(j) = 0. By Claim 13, the blocks
S(j) for those j iterations are sensitive for x and are disjoint. Since any input can have at most
bs(f) sensitive blocks, we have the desired contradiction.

Thus the probability that B errs is at most max{ε, 4ε} = 4ε.
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Now we prove Theorem 3. Below we reproduce the definition of the partition bound by Jain
and Klauck [JK10]. Here ε is an error parameter between 0 and 1, A stands for subcubes, or
equivalently, partial assignments, z stands for a bit, i.e., a 0 or a 1, and x stands for an input to f
from {0, 1}n.

Definition 10 (Partition Bound). The ε-partition bound bound of f , denoted prtε(f), is given by
the logarithm of the optimal value of the following linear program1:

minimize
∑
z,A

wz,A · 2|A| subject to ∀x :
∑
A3x

wf(x),A ≥ 1− ε,

∀x :
∑
z,A3x

wz,A = 1,

∀z,A : wz,A ≥ 0.

Jain and Klauck showed that the partition bound bounds randomized query-complexity from
below. They also showed that randomized query complexity is bounded above by the third power
of the partition bound.

Theorem 14 ([JK10], Theorem 3).

1. Rε(f) ≥ 1
2prtε(f).

2. R1/3(f) ≤ D(f) = O(prt1/3(f)3).

The best known separation between D(f) and prt(f) is quadratic [AKK16]. Theorem 3 proves
that this is tight for product distributions. As stated in Section 1, Theorem 3 improves upon the
result of Jain et al. by a polylogarithmic factor.

Jain and Klauck showed that the partition bound is bounded below by the block sensitivity.

Theorem 15 ([JK10], Theorem 3). For any error parameter ε ∈ [0, 1/2),

prtε/4(f) ≥ ε · bs(f) + log ε− 2.

We show that the minimum query corruption bound lower bounds the partition bound (see
Appendix A for the proof). Our proof closely follows the proof that the corruption bound is
asymptotically bounded above by square of the partition bound shown in [JK10].

Lemma 16. For any error parameter ε ∈ [0, 1/2),

corr×min,2ε(f) ≤ prtε(f) · log(1/ε).

Theorem 3 now follows, combining Theorems 2, 15 and Lemma 16 together.
We conclude by showing that the query corruption bound is a quadratic upper bound on the

distributional query complexity.

Theorem 17. Let ε ∈ [0, 1/2) and µ a product distribution over the inputs. Then

Dµ4ε(f) = O
(
corrε(f)2

)
.

The result follows by combining Theorem 2 with the following lemma (see Appendix B for the
proof).

Lemma 18. For any ε ∈ [0, 1), fbs(f) ≤ corrε(f).

5 Open Problems

Expectational vs. Fractional Certificate. What is the largest separation between the two
measures? Is the upper bound EC(f) ≤ FC(f)3/2 tight? Any smaller upper bound would improve
the R(f) ≤ FC(f)3 upper bound. Our attempts in finding a function where EC(f) is asymptotically
larger than FC(f) so far have been unsuccessful. As evident by the proof of the quadratic separation
between EC(f) and C(f), such an example would need to have FCz(f) = o(Cz(f)) for both z ∈ {0, 1}.
Examples of separations between FC(f) and C(f) given in [Aar08] and [GSS16] do not satisfy these
properties.

1Jain and Klauck in their paper defined prtε(f) to be the value of the linear program, instead of the logarithm of
the value of the program.
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Corruption and Partition Bounds. Can the proof of Theorem 2 be extended to non-product
distributions? The definition of the corruption bound is in some sense a relaxation of the certificate
compexity. Can the argument of D(f) ≤ C(f)2 be extended to the randomized setting in terms of
the corruption bound?
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A Proof of Lemma 16

Proof. Let c = prtε(f). Abusing notation, let {wz,A}z,A be a primal feasible point which minimizes
the objective. Thus

∑
z,A wz,A · 2|A| = 2c. We immediately have that,

2c ≥
∑

z,A:|A|>c log(1/ε)

wz,A · 2|A| ≥
2c

ε

∑
z,A:|A|>c log(1/ε)

wz,A.

implying, ∑
z,A:|A|>c log(1/ε)

wz,A ≤ ε. (3)

Let µ be any product probability distribution on {0, 1}n (in fact, the proof works for any distribution
µ). Without loss of generality, assume that, Prx∼µ[f(x) = 1] ≥ Prx∼µ[f(x) = 0]. We shall show
that corr1,µε (f) = O(c). That will prove the theorem.

If Prx∼µ[f(x) = 0] = 0 then {0, 1}n is a 0-error 1-certificate of co-dimension 0, and we are done.
From now on, we will assume that Prx∼µ[f(x) = 0] > 0.

Equation (3) and the two primal constraints imply that for each x ∈ {0, 1}n,∑
A3x,|A|≤c log(1/ε)

wf(x),A ≥ 1− 2ε; (4)

∑
A3x,|A|≤c log(1/ε)

w1−f(x),A ≤ 2ε. (5)

Multiplying Equations (4) and (5) by µx, adding the former over f−1(1) and the later over f−1(0),
and re-arranging the order of summations we have,∑

A:|A|≤c log(1/ε)

∑
x∈A,f(x)=1

µ(x) · w1,A ≥ (1− 2ε) ·
∑

x∈f−1(1)

µ(x); (6)

∑
A:|A|≤c log(1/ε)

∑
x∈A,f(x)=0

µ(x) · w1,A ≤ 2ε ·
∑

x∈f−1(0)

µ(x). (7)

Dividing Equation (6) by Equation (7) (note that
∑
x∈f−1(0) µx 6= 0 by our assumption about µ),

we have that,∑
A:|A|≤c log(1/ε) w1,A ·

(∑
x∈A,f(x)=1 µ(x)

)
∑
A:|A|≤c log(1/ε) w1,A ·

(∑
x∈A,f(x)=0 µ(x)

) ≥ 1− 2ε

2ε
·
∑
x∈f−1(1) µ(x)∑
x∈f−1(0) µ(x)

≥ 1− 2ε

2ε
.

The last inequality above holds because of our assumption about µ. This implies that there exists
a subcube A with co-dimension |A| ≤ c log(1/ε) such that,∑

x∈A,f(x)=1 µ(x)∑
x∈A,f(x)=0 µ(x)

≥ 1− 2ε

2ε
.

Thus,
Pr
x∼µ

[f(x) = 1 | x ∈ A] ≥ 1− 2ε.

In other words, A is a 2ε-error 1-certificate under µ. We have,

corrµmin,2ε(f) ≤ corr1,µ2ε (f) ≤ |A| ≤ prtε(f) · log(1/ε).

B Proof of Lemma 18

Proof. Let x be such that fbs(f, x) = fbs(f), and let b = f(x). We construct a distribution µ such
that corrb,µε (f) ≥ fbs(f).
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Suppose that x has k sensitive blocks B1, . . . , Bk. Let u1, . . . , uk be the corresponding solution
to the fbs(f, x) linear program. Let c ∈ (0, 1 − ε) be a constant and define µ(x) = c and
µ(xBi) = (1− c) ui∑k

i=1 ui
= (1− c) ui

fbs(f) . Clearly, µ is a probability distribution on {0, 1}n.

Let A be an ε-error b-certificate according to µ and recall that QA is the set of variables fixed
by A. Any input xBi is inconsistent with A iff Bi ∩QA 6= ∅, thus∑

i:Bi∩QA 6=∅
µ(xBi) = Pr

y∼µ
[f(y) 6= b, y /∈ A] .

We also have
Pry∼µ [f(y) = b, y ∈ A]

Pry∼µ [f(y) = b, y ∈ A] + Pry∼µ [f(y) 6= b, y ∈ A]
≥ 1− ε

by definition of A. Since Pry∼µ [f(y) = b, y ∈ A] = c, this implies

Pr
y∼µ

[f(y) 6= b, y ∈ A] ≤ c · ε

1− ε
.

Then we get

Pr
y∼µ

[f(y) 6= b, y /∈ A] = Pr
y∼µ

[f(y) 6= b]− Pr
y∼µ

[f(y) 6= b, y ∈ A] ≥ (1− c)− c · ε

1− ε
= 1− c · 1

1− ε
.

On the other hand, since
∑
i:j∈Bi

ui ≤ 1 for each j ∈ [n], we have

∑
i:Bi∩QA 6=∅

µ(xBi) ≤
∑
j∈QA

∑
i:j∈Bi

µ(xBi) =
∑
j∈QA

∑
i:j∈Bi

(1− c) ui
fbs(f)

≤ (1− c) |A|
fbs(f)

.

Therefore,
corrε(f)

fbs(f)
≥ corrb,µε (f)

fbs(f)
≥ |A|

fbs(f)
≥ 1− ε− c

(1− ε)(1− c)
=

1− ε− c
1− ε− c+ εc

.

Since the above relation is true for every c, we have,

corrε(f)

fbs(f)
≥ lim
c→0

1− ε− c
1− ε− c+ εc

= 1.

Thus we have corrε(f) ≥ fbs(f).
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