
Exponential Separation between Quantum and Classical Ordered

Binary Decision Diagrams, Reordering Method and Hierarchies∗

Kamil Khadiev

University of Latvia

Kazan Federal University

kamilhadi@gmail.com

Aliya Khadieva

University of Latvia

Kazan Federal University

aliya.khadi@gmail.com

Alexander Knop

UC San Diego

aaknop@gmail.com

November 15, 2017

Abstract

In this paper, we study quantum OBDD model, it is a restricted version of read-once quantum
branching programs, with respect to “width” complexity. It is known that the maximal gap between
deterministic and quantum complexities is exponential. But there are few examples of functions with
such a gap. We present a method (called “reordering”), which allows us to transform a Boolean function
f into a Boolean function f ′, such that if for f we have some gap between quantum and deterministic
OBDD complexities for the natural order over the variables of f , then for any order we have almost the
same gap for the function f ′. Using this transformation, we construct a total function REQ such that the
deterministic OBDD complexity of it is at least 2Ω(n/ logn), and the quantum OBDD complexity of it is
at most O(n2). It is the biggest known gap for explicit functions not representable by OBDDs of a linear
width. We also prove the quantum OBDD width hierarchy for complexity classes of Boolean functions.
Additionally, we show that shifted equality function can also give a good gap between quantum and
deterministic OBDD complexities.

Moreover, we prove the bounded error probabilistic OBDD width hierarchy for complexity classes of
Boolean functions. And using “reordering” method we extend a hierarchy for k-OBDD of polynomial
width, for k = o(n/ log3 n). We prove a similar hierarchy for bounded error probabilistic k-OBDDs of
polynomial, superpolynomial and subexponential width.

1 Introduction

Branching programs are a well-known computation model for discrete functions. This model has been shown
useful in a variety of domains, such as hardware verification, model checking, and other CAD applications [30].

One of the most important types of branching programs is oblivious read once branching programs, also
known as Ordered Binary Decision Diagrams, or OBDD [30]. This model is suitable for studying of data
streaming algorithms that are actively used in industry.

One of the most useful measures of complexity of OBDDs is “width”. This measure is an analog of number
of states in finite automaton and OBDDs can be seen as nonuniform finite automata (see for example [3]).
As for many other computation models, it is possible to consider quantum OBDDs, and during the last
decade they have been studied vividly [2, 4, 14,23,26,27].

In 2005 Ablayev, Gainutdinova, Karpinski, Moore, and Pollett [5] have proven that for any total Boolean
function f the gap between the width of the minimal quantum OBDD representing f and the width of the
minimal deterministic OBDD representing f is at most exponential (however, this is not true for partial
functions [1, 6, 12]). They have also shown that this bound could be reached for MODp,n function, that

∗The extended abstract of this work was presented on International Computer Science Symposium in Russia, CSR 2017,
Kazan, Russia, June 8 – 12, 2017 [18]

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 176 (2017)



takes the value 1 on an input iff number of 1s modulo p in this input is equal to 0; i.e. they have presented
a quantum OBDD of width O(log p) for MODp,n (another quantum OBDD of the same width has been
presented in [8]) and proven that any deterministic OBDD representing MODp,n has the width at least p.
However, a lower bound for width of a deterministic OBDD that represents MODp,n is tight, and it was
unknown if it is possible to construct a function with an exponential gap but an exponential lower bound for
the size of a deterministic OBDD representing this function. It was shown that Boolean function PERMn did
not have a deterministic OBDD representation of width less than 2

√
n/2/(

√
n/2)3/2 [21]. In 2005 Sauerhoff

and Sieling [28] presented a quantum OBDD of width O(n2 log n) representing PERMn and three years later
Ablayev, Khasianov, and Vasiliev [7] improved this lower bound and presented a quantum OBDD for this
function of width O(n log n). But as in the previous case, this separation does not give us a truly exponential
lower bound for deterministic OBDDs.

Nevertheless, if we fix an order of variables in the OBDD, it is possible to prove the desired statement.
For example, it is known that equality function, or EQ, does not have an OBDD representation of the size
less than 2n for some order and it has a quantum OBDD of width O(n) for any order [7]. Unfortunately, for
some orders, the equality function has a small deterministic OBDDs.

Proving lower bounds for different orders is one of the main difficulties of proving lower bounds on width
of OBDDs. In the paper, we present a new technique that allows us to prove such lower bounds. Using
the technique, we construct a Boolean Function g from a Boolean function f such that if any deterministic
OBDD representing f with the natural order over the variables has width at least d(n), then any deterministic
OBDD representing g has width at least d(O(n/ log n)) for any order over the variables and if there is
a quantum OBDD of width w(n) for f , then there is a quantum OBDD of width O(w( n

logn ) · n
logn ) for the

function g. It means that if we have a function with some gap between quantum OBDD complexity and
deterministic OBDD complexity for some order, then we can transform this function into a function with
almost the same gap but for all the orders. We call this transformation “reordering”. The idea which is used
in the construction of the transformation is similar to the idea of a transformation from [16,20].

We prove five groups of results using the transformation. At first, we consider the result of the transfor-
mation applied to the equality function (we call the new function reordered equality or REQq). We prove

that REQq does not have a deterministic OBDD representation of width less than 2Ω( n
log n ) and there is

a bounded error quantum OBDD of width O( n2

log2 n
). As a result, we get a more significant gap between

width of quantum OBDDs and width of deterministic OBDDs than this gap for the PERMn function, we
prove such a gap for all the orders in contrast with a gap for EQn, and we prove a better lower bound for
deterministic OBDDs than the lower bound for the MODp,n function.

Additionally, we considered shifted equality function (SEQn). We prove that SEQn does not have a
deterministic OBDD representation of the width less than 2Ω(n) and there is a bounded error quantum
OBDD with width O(n2). Note that the lower bound for the width of the minimal OBDD representing
SEQn is better than for REQq but the upper bound for the width of the minimal QOBDD representation is
much better.

Using properties of MODp,n, REQq, and mixed weighted sum function (MWS) introduced by [25], we
prove the width hierarchy for classes of Boolean functions computed by bounded error quantum OBDDs.
We prove three hierarchy theorems:

1. the first of them and the tightest works for width up to log n;

2. the second of them is slightly worse than the previous one, but it works for width up to n;

3. and finally the third one with the widest gap works for width up to 2O(n).

Similar hierarchy theorems are already known for deterministic OBDDs [6], nondeterministic OBDDs [1],
and k-OBDDs [2,16,17]. Additionally, we present similar hierarchy theorems for bounded error probabilistic
OBDDs in the paper.

The fourth group of results is an extension of hierarchies by number of tests for deterministic and bounded
error probabilistic k-OBDDs of polynomial size. There are two known results of this type:

2



• The first is a hierarchy theorem for k-OBDDs that was proven by Bollig, Sauerhoff, Sieling, and
Wegener [11]. They have shown that P-(k − 1)-OBDD ( P-k-OBDD for k = o(

√
n log3/2 n);

• The second one was proven in [19] it states that P-k-OBDD ( P-(k · r)-OBDD for k = o(n/ log2 n)
and r = ω(log n).

We partially improve both of these results, proving that P-k-OBDD ( P-2k-OBDD for k = o(n/ log3 n).
Our result improves the first one because it holds for bigger k, and the second one, because of a smaller gap
between classes. The proof of our hierarchy theorem is based on properties of the Boolean function called
reordered pointer jumping, which is “reordering” of pointer jumping function defined in [11,24].

Additionally, we partially improve a similar result of Hromkovich and Sauerhoff [13] for a more general
model, for probabilistic oblivious k-BP. They have proven such a hierarchy for k ≤ log n

3 . We show
similar hierarchy for polynomial size bounded error probabilistic k-OBDDs with error at most 1/3 for k =
o(n1/3/ log n).

Structure of the paper

Section 2 contains descriptions of models, classes, and other necessary definitions. Discussion about the
reordering method and applications for quantum OBDDs is located in Section 3. Section 4 contains an
analysis of properties of a function that guarantee existence of a small commutative OBDD representation of
this function. In Section 5 we explore the gap between quantum and deterministic OBDD complexities. The
width hierarchies for quantum and probabilistic OBDDs are proved in Section 6. Finally, Section 7 contains
applications of the reordering method and hierarchy results for deterministic and probabilistic k-OBDDs.

2 Preliminaries

Ordered binary decision diagrams, or OBDDs, is a well-known way to represent Boolean functions. This
model is a restricted version of Branching Program [30]. A branching program over a set X = {x1, . . . , xn}
of n Boolean variables is a directed acyclic graph P with one source node s. Each inner node v of P is
labeled by a variable xi ∈ X, each edge of P is labeled by a Boolean value, for each node v labeled by a
variable xi, v has outgoing edges labeled by 0 or 1, and each sink of this graph is labeled by a Boolean value.
A branching program P called deterministic iff for each inner node there are exactly two outgoing edges
labeled by 0 and 1, respectively.

We say that a branching program P accepts σ ∈ {0, 1}n iff there a exists a path, called accepting path,
from the source to a sink labeled by 1, such that in the all nodes labeled by a variable xi this path goes
along an edge labeled by σ(i). A branching program P represents a Boolean function f : {0, 1}n → {0, 1}
if for each σ ∈ {0, 1}n f(σ) = 1 holds iff P accepts σ. The size of a branching program P is a number of
nodes in the graph.

A branching program is leveled if the nodes can be partitioned into levels V1, . . . , Vℓ, and Vℓ+1 such that
all the sinks belong to Vℓ+1, V1 = {s}, and nodes in each level Vj with j ≤ ℓ have outgoing edges only to
nodes in the next level Vj+1. The width w(P ) of a leveled branching program P is the maximum of the
number of nodes in levels of P , i.e. w(P ) = max

1≤j≤ℓ+1
|Vj |. A leveled branching program is called oblivious if

all the inner nodes of each level are labeled by the same variable.
A branching program is called a read -k branching program if each variable is tested on each path only

k times. A deterministic oblivious leveled read once branching program is also called the ordered binary
decision diagram. Note that OBDD reads variables on all the paths in the same order π. For a fixed order π
we call an OBDD that reads in this order a π-OBDD. Let us also denote the natural order over the variables
{x1, . . . , xn} as id = (1, . . . , n). A Branching program is called k-OBDD if it is a read-k oblivious branching
program that consists of k layers, such that each layer is a π-OBDD, possibly with many sources, for some
order π.

Let trP : {1, . . . , n} × {1, . . . , w(P )} × {0, 1} → {1, . . . , w(P )} be a transition function of an OBDD P .
An OBDD is called commutative iff for any order π′ we can construct an OBDD P ′ by only reordering of the

3



transition function and P ′ still computes the same function. More formally, we call a π-OBDD commutative
iff for any order π′ a π′-OBDD P ′, defined by a transition function trP ′(i, s, b) = trP (π

−1(π′(i)), s, b), repre-
sents the same function as P . Additionally, we call a k-OBDD commutative if each layer is a commutative
OBDD.

Nondeterministic OBDD or NOBDD is a nondeterministic oblivious leveled read once branching program.
Now let us define probabilistic OBDD or POBDD. POBDD over a setX = {x1, . . . , xn} is a nondetermenistic
OBDD with a special mode of acceptance. We say that POBDD is a bounded error representation of a
Boolean function f : {0, 1}n → {0, 1} iff for every σ ∈ {0, 1}n the following recursion procedure returns f(σ)
with probability at least 2

3 :

1. Initially it starts from the source of the POBDD;

2. If the current node is a sink, then it returns the value of its label;

3. Let the current node be labeled by xi if there are no outgoing edges with label σ(i) from the current
node, then it returns 0;

4. Otherwise, it chooses randomly an edge labeled by σ(i) from the current node to a node u, consider u
as the current node, and it goes to the step 2.

Let us define quantum OBDDs or QOBDDs [4, 5]. For a given n > 0, a QOBDD P of a width w, is a
4-tuple P = (T, q0,Accept, π), where

• T =
{

(G0
i , G

1
i )
}n

i=1
is a sequence of pairs of (left) unitary matrices representing the transitions applying

on the i-th step, where choice of G0
i or G1

i is determined by the corresponding input bit;

• Accept ⊆ {1, . . . , w} is a set of accepting states;

• π is a permutation of {1, . . . , n} defining the order over the input variables.

For any given input σ ∈ {0, 1}n, the computation of P on σ can be traced by a vector from w-dimensional
Hilbert space over the field of complex numbers. The initial one is |ψ〉0 = |q0〉. On each step j, we test
the input bit xπ(j) and then the corresponding unitary operator is applied: |ψ〉j = G

xπ(j)

j (|ψ〉j−1), where
|ψ〉j−1 and |ψ〉j represent the state of the system after the (j − 1)-th and j-th steps, respectively. At the
end of the computation, the program P measures qubits. The accepting probability of P on an input σ
is

∑

i∈Accept

v2i , where (v1, . . . , vw) = |ψ〉n. We say that a function f : {0, 1}n → {0, 1} has a bounded error

QOBDD representation iff for any σ ∈ {0, 1}n holds

• if f(σ) = 1, then the accepting probability of P is at least 2
3 and

• if f(σ) = 0, then the accepting probability of P is at most 1
3 .

Similarly to commutative deterministic OBDDs we may define commutative QOBDDs. QOBDD P is
called commutative iff for any permutation π′ we can construct equivalent QOBDD P ′ by only reordering
matrices G. Formally, it means that for any order π′, P ′ = (T ′, q0,Accept, π) is a bounded error represen-

tation of the same function as P where T ′ =
{

G0
π−1(π′(i)), G

1
π−1(π′(i))

}

. We call a k-QOBDD commutative

if each layer of this diagram is a commutative QOBDD.

3 Reordering Method

As it was mentioned before, one of the biggest issues in proving lower bounds on the OBDD complexity of
a function is proving these lower bounds for different orders. In this section we suggest a method, called
“reordering”, which allows us to construct a transformation of a Boolean function f : {0, 1}q → {0, 1} into
a partial function reorderingf : {0, 1}n → {0, 1}, such that

4



• n = q⌈log q⌉ 1;

• If any π-OBDD representation of f has width at least d(q), then any OBDD representation of
reorderingf has width at least d(q);

• If there is a bounded error commutative QOBDD representation of f of width e(q), then there is a
bounded error QOBDD representation of reorderingf of width e(q) · q.

For this transformation we construct a function reorderingf , such that for any permutation π ∈ Sq there
is a substitution ρ such that f(xπ(1), . . . , xπ(q)) = reorderingf |ρ(x1, . . . , xq). In order to do it we consider

reorderingf (z1,1, . . . , z1,l, . . . , zq,1, . . . , zq,l, y1, . . . , yq) = f(ybin(z1,1,...,z1,l)+1, . . . , ybin(zq,1,...,zq,l)+1),

where l = ⌈log q⌉ and bin (a1, . . . , al) is a natural number with binary representation a1 . . . al.
The function reorderingf is defined on an input (z1,1, . . . , z1,l, . . . , zq,1, . . . , zq,l, y1, . . . , yq) iff
{bin (z1,1, . . . , z1,l) + 1, . . . , bin (zq,1, . . . , zq,l) + 1} = {1, . . . , q}.

Similarly, we define

xor-reorderingf (z1,1, . . . , z1,l, . . . , zq,1, . . . , zq,l, y1, . . . , yq) =

f



y
bin

(

1
⊕

i=1

zi,1,...,
1
⊕

i=1

zi,l

)

+1
, . . . , y

bin

(

q
⊕

i=1

zq,1,...,
q
⊕

i=1

zq,l

)

+1



 .

Theorem 3.1. Let k be an integer, θ be a permutation of {1, . . . , q}. If f : {0, 1}q → {0, 1} is a Boolean
function such that any θ-k-OBDD representation of f(x1, . . . , xq) has width at least d, then any k-OBDD
representation of reorderingf (z1,1, . . . , zq,l, y1, . . . , yq) (xor-reorderingf (z1,1, . . . , zq,l, y1, . . . , yq)) has width at
least d.

Proof. Proofs for reorderingf and xor-reorderingf are almost the same. Here we present only the proof for
reorderingf .

Let us assume that there is a π-k-OBDD representation P of reorderingf of width d′ < d. Let ρ
be a substitution to the variables z1,1, . . . , z1,l, . . . , zq,1, . . . , zq,l, such that the variables yπ(1), . . . , yπ(q) has

addresses θ(1), . . . , θ(q), respectively. Formally it means, that bin
(

ρ(zπ(i),1), . . . , ρ(zπ(i),l)
)

= θ(i).
It is easy to see that if we consider P ′ equal to P |ρ with all the variables yπ(i) replaced by xθ(i). P

′ is a
θ-k-OBDD of width at most d′ < d. This is a contradiction with the fact that any θ-k-OBDD that represents
f(x1, . . . , xq) has width at least d.

Theorem 3.2. Let f : {0, 1}q → {0, 1} be a Boolean function and k be a positive integer. If there is
a commutative k-OBDD (bounded error commutative k-POBDD or commutative k-NOBDD) representa-
tion of f of width d, then there are k-OBDD (bounded error k-POBDD or k-NOBDD) representations of
xor-reorderingf and reorderingf of width d · q.

Proof. Let P be a commutative deterministic k-OBDD of width d representing a Boolean function f . We
construct a deterministic k-OBDDs P1 and P2 of width q · d representing reorderingf and xor-reorderingf ,
respectively. P1 and P2 read variables in the following order: z1,1, . . . , z1,l, y1, . . . , zq,1, . . . , zq,l, yq; both

of them have q · d nodes on each level, each of them corresponds to a pair (i, j), where i ∈ {0, 1}l and
s ∈ {1, . . . , d}, and both of them have q stages. Let us describe computation on the stage i.

reordering: At the beginning of the stage P1 is in the state (λ, s) for some s. While reading zi,1, . . . ,
zi,l the decision diagram stores a read part in the first component of the state and after we have
read all these bits, we reached the node (a, s), and if the transition function of P is such that s′ =
trP (π

−1(bin (a) + 1), s, yi), then we go to the node (1, s′).

1We use log to denote logarithms base 2.

5



In the case when all bin (σ(zi,1), . . . , σ(zi,l)) are different numbers from {1, . . . , q} the diagram P1 just
emulates the work of Pπ which is constructed from P by permutation of the transition function of P
with respect to the order

π = (bin (σ(z1,1), . . . , σ(z1,l)) + 1, . . . , bin (σ(zq,1), . . . , σ(zq,l)) + 1) .

By the definition of the commutative k-OBDD the diagram Pπ computes the same function as P .
Therefore, P1 returns the same result. And by the definition of the functions reorderingf , P1 computes
reorderingf .

xor-reordering: At the beginning of the stage P2 is in the state (b, s) for some s. While reading zi,1, . . . ,
zi,l the decision diagram stores xor of a read part and b in the first component of the state and after
we have read all these bits, we reached the node (a, s), and if the transition function of P is such that
s′ = trP (π

−1(bin (a) + 1), s, yi), then we go to the node (a, s′).

In the case when all bin

(

1
⊕

i=1

σ(zi,1), . . . ,
1
⊕

i=1

σ(zi,l)

)

+ 1 are different numbers from {1, . . . , q} the

diagram P2 just emulates the work of Pπ which is constructed from P by permutation of the transition
function of P with respect to the order

π =

(

bin

(

1
⊕

i=1

σ(zi,1), . . . ,

1
⊕

i=1

σ(zi,l)

)

+ 1, . . . , bin

(

q
⊕

i=1

σ(zi,1), . . . ,

q
⊕

i=1

σ(zi,l)

)

+ 1

)

.

By the definition of commutative k-OBDD the diagram Pπ computes the same function as P . Therefore,
P2 returns the same result. And by the definition of the functions xor-reorderingf , P1 computes
xor-reorderingf .

All other cases have the same proofs.

Theorem 3.3. If there is a bounded error commutative QOBDD representation of a Boolean function
f : {0, 1}q → {0, 1} of width w, then there is a bounded error QOBDD representation of a partial Boolean
function xor-reorderingf of width w · q.

Proof. Note that if there is a bounded error commutative QOBDD representation of f of width w, then there
is a bounded error π-QOBDD representation P of f of the same width. For the description of a computation
in P we use a quantum register |ψ〉 = |ψ1ψ2 . . . ψt〉 where t = ⌈logw⌉.

Let us consider xor-reorderingf . We construct a bounded error QOBDD representation P ′ of
xor-reorderingf with the following order: z1,1, . . . , z1,l, y1, . . . , zq,1, . . . , zq,l, yq. This program uses
a quantum register of ⌈logw⌉ + ⌈log q⌉ qubits, i.e. having w · q states. Let us denote this register as
|φ〉 = |φ1φ2 . . . φlψ1ψ2 . . . ψt〉.

The part of the register |ψ〉 consisting of |ψ1ψ2 . . . ψt〉 qubits (we call it as a computing part) is modified
when P ′ reads a value bit. Additional qubits |φ1φ2 . . . φp〉 (we call this part an address part) is used to
determine address of the value bit.

Program P ′ consists of q stages, i-th stage corresponds to its own block zi,1, . . . , zi,l, yi. Informally, when
P ′ processes the block, it stores address in the address part by applying the parity function to address of
the current block. After that, the program applies the modification on the computation part, with respect
to the value bit.

Let us describe i-th stage, for i ∈ {1, . . . , q}. In the first ⌈log q⌉ levels of the stage the program computes
address bin (zi,1, . . . , zi,l), it reads bits one by one, and for a bit zi,j it applies a unitary operator U

zi,j
j on

the address part of the register |φ〉, where Uzi,j
j = I ⊗ I ⊗ . . . ⊗ I ⊗ Ayi

j ⊗ I . . . ⊗ I, A0 = I, A1 = NOT, I
and NOT are 2× 2 matrices such that I is a diagonal 1-matrix and NOT is an anti-diagonal 1-matrix. And
we do not modify the computation part.

6



Note that after all these operations the address part of the register is equal to zi,1, . . . , zi,l. On the last
level we read yi and transform the register |φ〉 by an unitary (w ·q×w ·q)-matrix Dyi defined in the following
way:

D0 =











G0
1 0 · · · 0
0 G0

2 · · · 0
...

...
. . .

...
0 0 · · · G0

q











and D1 =











G1
1 0 · · · 0
0 G1

2 · · · 0
...

...
. . .

...
0 0 · · · G1

q











,

where
{

(G0
i , G

1
i )
}q

i=1
are unitary matrices transforming a quantum system in P .

It is easy to see, that width of P ′ equals w · q. Let us prove that P ′ represents xor-reorderingf with
bounded error. Let us consider an input σ ∈ {0, 1}n and let

π =

(

bin

(

1
⊕

i=1

σ(zi,1), . . . ,
1
⊕

i=1

σ(zi,l)

)

+ 1, . . . , bin

(

q
⊕

i=1

σ(zi,1), . . . ,

q
⊕

i=1

σ(zi,l)

)

+ 1

)

be an order over the value variables induced by σ. Since P is a commutative bounded error QOBDD
representation of f , we can reorder unitary operators

{

(G0
i , G

1
i )
}q

i=1
according to the order π and get a

bounded error π-QOBDD Pπ representation of f as well. It is easy to see that P ′ emulates exactly the
computation of Pπ. Therefore P ′ on σ gives us the same result as Pπ on corresponding value bits. Hence,
by the definition of xor-reorderingf we prove that P ′ represents xor-reorderingf with bounded error.

Corollary 3.1. For any positive k, if there is a commutative bounded error k-QOBDD of width e representing
a Boolean function f : {0, 1}q → {0, 1}, then there is a bounded error k-QOBDD of width e · q representing
a partial Boolean function xor-reorderingf .

The proof of this corollary is exactly the same as the proof of Theorem 3.3.

Corollary 3.2. Let f : {0, 1}q → {0, 1} be a Boolean function, k be a positive integer, and π be an order
over x1, . . . , xq such that

• any π-k-OBDD representation of f has width at least d and

• there is a commutative k-OBDD (k-NOBDD) representation of f of width e.

Then there is a total Boolean function g : {0, 1}n → {0, 1} (n = q(⌈log q⌉+ 1)), such that

• g is an extension of the partial function reorderingf ,

• there is a k-OBDD (k-NOBDD) representation of g of the width e · q, and

• any k-OBDD representation of g has width at least d.

Proof. By Theorems 3.3 and 3.1 any k-OBDD representation of reorderingf has width at least d and there
is a k-OBDD representation P of reorderingf of width e · q. Let g be a total Boolean function such that
g(σ) = reorderingf (σ) if reorderingf is defined on σ, otherwise let us define g(σ) as P (σ).

Let us note that any k-OBDD representation of g also represents reorderingf ; as a result, has width at
least d. Additionally, let us note that P represents f .

4 Commutative OBDDs

In this section we discuss a criterion of existence of a small commutative OBDD (bounded error QOBDD).
We say that a function f : {0, 1}n → {0, 1} has a Sw,q,⊙ representation if there is a sequence of integers
{Ci}ni=1, such that

f(x1, . . . , xn) = q

(

n
⊙

i=1

Cixi mod w

)

,

7



where ⊙ is some commutative operation over the set {0, . . . , w − 1} and q : {0, . . . , w − 1} → {0, 1}.
Let us show that if a function f has a Sw,q,⊙(X) representation, then there is a commutative OBDD of

width w representing f .

Theorem 4.1. Let f be a Boolean function, such that f has a Sw,q,⊙ representation for some w, q, and ⊙.
Then there is a commutative OBDD of width w representing f .

Proof. Let us construct such an OBDD with an order x1, . . . , xn. We create a vertex on level j for each
possible value of

⊙j−1
i=1 Cixi mod w. Then for each node corresponding to z ∈ {0, . . . , w − 1} from j-th layer

there are 1-edge leads to z⊙Cj mod w and 0-edge leads to z⊙0. We use q as a function that marks accepting
nodes on the last layer.

By the definition of Sw,q,⊙ and the OBDD this OBDD represents f(x1, . . . , xn), and, due to the commu-
tativity of ⊙, this OBDD is commutative.

Note that any characteristic polynomial, discussed in [9], has a Sw,q,⊙ representation for appropriate w,
⊙, and q.

Let us present the definition of these polynomials. We call a polynomial G(x1, . . . , xn) over the ring Zw

a characteristic polynomial of a Boolean function f(x1, . . . , xn) if for all σ ∈ {0, 1}n, G(σ) = 0 holds iff
f(σ) = 1.

Ablayev and Vasilev [9] proved, using the fingerprint technique, the following result.

Lemma 4.1 ( [9]). If a Boolean function f has a linear characteristic polynomial over Zw, then the function
can be represented by a bounded error quantum OBDD of width O(logw).

It is easy to see that by a linear characteristic polynomial we can construct Sw,q,+(X) representation,
where q converts 0 to 1 and other values to 0. Let us denote such a function q as q0.

Note that in the contrast with Theorem 4.1, the quantum fingerprint technique gives us a commutative
QOBDD of a logarithmic width. Unifying these techniques we can prove the following theorem.

Theorem 4.2. If a Boolean function f has a Sw,q0,+ representation for some w, then there is a commutative
bounded error QOBDD representation of f of width O(logw).

Proof. Let a Boolean function f has a Sw,q0,+ representation for some w. It means that it has a linear
characteristic polynomial over Zw. Then by Lemma 4.1 one may construct a bounded error quantum OBDD
of width O(logw) representing f .

5 Exponential Gap between Quantum and Classical OBDDs

As we discussed in the introduction, it is known that the maximal gap between quantum and deterministic
OBDD complexities of Boolean functions is exponential.

Lemma 5.1 ( [5]). If there is a bounded error QOBDD representation of a Boolean function f of width w,
then there is an OBDD representation of f of the width 2w.

But all the examples that achieve an exponential gap have sublinear width of a bounded error quantum
OBDD representation. Known examples with a bigger width do not achieve this gap. We present results for
two functions, based on equality function, that achieve almost exponential gap.

5.1 Application of Reordering Method

Let us apply the reordering method to equality function (EQn : {0, 1}2n → {0, 1}) where
EQn(x1, . . . , xn, y1, . . . , yn) = 1, iff x1 = y1, . . . , xn = yn.

In the paper [7] was proven that there is a commutative QOBDD of width O(n) representing EQn with
bounded error. Hence, a partial function xor-reorderingEQq

is representable with bounded error by a QOBDD

of width O(q2), due to Theorem 3.3.

8



It is well-known that any id-OBDD representation of EQn has width at least 2n. As a result, by Theo-
rem 3.1 any OBDD representation of xor-reorderingEQq

has width at least 2q.

Theorem 5.1. There is a bounded error quantum OBDD representation of a partial Boolean function

xor-reorderingEQq
: {0, 1}n → {0, 1} of width O

(

n2

log2 n

)

; any deterministic OBDD representation of

xor-reorderingEQq
has width at least 2Ω(

n
log n ).

Let us define reordered equality function (REQq : {0, 1}n → {0, 1} where n = 2q(⌈log 2q⌉+ 1)). This is a
total version of xor-reorderingEQq

. Let us consider

u(z1,1, . . . , z2q,l, y1, . . . , y2q) =
∑

i:bin(zi,1,...,zi,l)≤q

2bin(zi,1,...,zi,l)yi mod 2q

and
v(z1,1, . . . , z2q,l, y1, . . . , y2q) =

∑

i:bin(zi,1,...,zi,l)>q

2bin(zi,1,...,zi,l)−qyi mod 2q.

We define REQq(z1,1, . . . , z2q,l, y1, . . . , y2q) = 1 iff u(z1,1, . . . , z2q,l, y1, . . . , y2q) = v(z1,1, . . . , z2q,l, y1, . . . , y2q).
Note that it is possible to prove the following lemma.

Lemma 5.2. Any OBDD representation of REQq has width at least 2
n

2⌈log n+1⌉ .

Proof. Note that REQq is an extension of xor-reorderingEQq
. Thus any OBDD representation of REQq also

represents xor-reorderingEQq
. Hence, by Theorem 3.1 any OBDD representation of REQq has width at least

2q ≥ 2
n

2⌈log n+1⌉ .

Theorem 5.2. There is a bounded error quantum OBDD representation of REQq of width O
(

n2
)

.

Proof. Let us interpret Lemma 4.1 in other words. If computing of a Boolean function is equivalent to
checking the equality of g(y1, . . . , y2q) = c1y1 + · · · + c2qy2q and 0, then we can construct a commutative
QOBDD with one side error using the quantum finger printing technique.

By the definition, REQq(z1,1, . . . , z2q,l, y1, . . . , y2q) = 1 iff

∑

i:bin(zi,1,...,zi,l)≤q

2bin(zi,1,...,zi,l)yi −
∑

i:bin(zi,1,...,zi,l)>q

2bin(zi,1,...,zi,l)−qyi ≡ 0 (mod 2)q.

Then we can choose the required coefficient using additional address qubits as in the reordering method
and get QOBDD representing REQ with bounded error.

5.2 Shifted Equality

In order to get another separation between quantum and classical OBDD complexities let us consider shifted
equality function (SEQn : {0, 1}2n+l → {0, 1} where l = ⌈log n⌉), the function introduced by JaJa, Prasanna,
and Simon [15]. The function is defined in the following manner: SEQn(x1, . . . , xn, y1, . . . , ym, s1, . . . , sl) = 1
iff for all i ∈ {1, . . . , n},

xi = y(i+bin(s1,...,sl)) (mod n).

Using a lower bound for the best communication complexity of this function [15] and the well-known
connection between OBDD and communication complexities we have the following property.

Lemma 5.3 (see for example [22]). Any OBDD representation of SEQn has the size at least 2Ω(n).

We can also construct a bounded error quantum OBDD representation of SEQn of a small width.

Lemma 5.4. There is a bounded error quantum OBDD representation for SEQn of width O(n2).

9



Proof. Let us construct a QOBDD P that reads an input in the following order: s, then x, and then y;
also P uses a quantum register consisting of two parts: the first part |φ〉 is for storing the value of the shift
(bin (s1, . . . , sl)) and the second one |ψ〉 is called a computational part. The size of |φ〉 is ⌈log n⌉ qubits and
the size of |ψ〉 is log n+ C, for some constant C.

On the first ⌈log n⌉ levels, the program stores input bits into |φ〉 using a storing procedure similar to
procedure from the proof of Theorem 3.3.

Then we apply the fingerprint algorithm from [8,10], but use unitary matrices for y with shift depending
on the state of |φ〉.

After reading the last variable we measure |ψ〉 and get the answer.
The width of the program is 2⌈logn⌉+logn+C = O(n2).

It is interesting to compare this separation and the separation obtained in the previous subsection. In
this result the lower bound for OBDD width is 2Ω(n) but in the previous one it is 2Ω( n

log n ). On the other
hand, the upper bound for the width of QOBDD is also larger.

6 Hierarchy for Probabilistic and Quantum OBDDs

In this section we consider classesBPOBDDd andBQOBDDd of Boolean functions that can be represented
by bounded error probabilistic and quantum OBDDs of width O(d), respectively. We prove hierarchies with
respect to d for these classes.

6.1 Hierarchy for Probabilistic OBDDs.

Before we start proving the hierarchy let us consider a Boolean function WSn, or weighted sum function
introduced by Savickỳ and Žák [29].

Let n > 0 be an integer and let p(n) be the smallest prime greater than n. Let us define functions

sn : {0, 1}n → {0, 1} and WSn : {0, 1}n → {0, 1}, such that sn(x1, . . . , xn) =

(

n
∑

i=1

i · xi
)

mod p(n) and

WSn(x1, . . . , xn) = xsn(x1,...,xn). For the function WSn it is known that any bounded error probabilistic

OBDD representing WSn has width at least 2Ω(n).
Let us modify the Boolean function WSn using padding. We will denote this modified function as WSbn.

Let n > 0 and b > 0 be integers, such that b ≤ n
3 and p(b) be the smallest prime greater than b. We denote

by WSbn : {0, 1}n → {0, 1} a function such that WSbn(x1, . . . , xn) = xsb(x1,...,xn). Using techniques similar to
techniques from the paper [29] we can prove the following.

Lemma 6.1. For any b(n) = ω(1), any bounded error probabilistic OBDD that represents WSbn has width
at least 2Ω(b) and there is a bounded error probabilistic OBDD of width 2b representing WSbn.

Let us prove the hierarchy theorem for BPOBDDd classes using these properties of the Boolean function
WSbn.

Theorem 6.1. If d and δ are functions such that d(n) = o(2n), d(n) = ω(1), and δ(n) = ω(1), then
BPOBDDd1/δ ( BPOBDDd.

Proof. It is easy to see that BPOBDDd1/δ ⊆ BPOBDDd. Let us prove the inequality of these classes.
Due to Lemma 6.1, the Boolean function WSlog d

n ∈ BPOBDDd. However, any bounded error probabilistic
OBDD representing WSlog d

n has width 2Ω(log d) that is greater than d1/δ since d = ω(1). Therefore, WSlog d
n 6∈

BPOBDDd1/δ .

10



6.2 Hierarchy for Quantum OBDDs.

In this subsection we consider similar modifications of three well-known functions: REQn, MODp,n, and
MSWn (defined in [26]). The function MSWn may be defined in the following way: MSWn(x1, . . . , xn) =
xz ⊕xr+n/2, where z = sn/2(x1, . . . , xn/2) and r = sn/2(xn/2+1, . . . , xn), if r = z and MSWn(x1, . . . , xn) = 0
otherwise.

Let {fn : {0, 1}n → {0, 1}}n∈N
be a family of Boolean functions and b : N → N be a function such

that b(n) ≤ n. We denote by
{

f bn : {0, 1}n → {0, 1}
}

n∈N
the family of Boolean functions such that

f bn(x1, . . . , xn) = fb(n)(x1, . . . , xb(n)).

Remark 6.1. If for any OBDD (bounded error POBDD or QOBDD) representation of fn has width at least
w(n), then OBDD (bounded error POBDD or QOBDD) representation of f bn has width at least w(b(n)).
Moreover, if there is an OBDD (bounded error POBDD or QOBDD) representation of fn of width d(n),
then there is an OBDD (bounded error POBDD or QOBDD) representation of f bn of width d(b(n)).

In order to use this remark we need the following two lemmas.

Lemma 6.2 ( [26]). Any bounded error quantum OBDD representation of MSWn has width at least 2Ω(n)

and there is a bounded error quantum OBDD of width 2n representing MSWn.

Lemma 6.3 ( [5, 8]). Any bounded error quantum OBDD representation of MODp,n (for p ≤ n) has width
at least ⌊log p⌋ and there is a bounded error quantum OBDD of width O(log p) representing MODp,n.

Now we are ready to prove the main theorem of this section.

Theorem 6.2. Let d : N → N and δ : N → N be functions such that d(n) = ω(1) and δ(n) = ω(1).

• If d(n) ≤ log n for all n, then BQOBDD d
δ
( BQOBDDd;

• If d(n) ≤ n for all n, then BQOBDD d
log2 d

( BQOBDDd2 ;

• If d(n) ≤ 2n for all n, then BQOBDDd1/δ ( BQOBDDd.

Proof. It is easy to see that for any d′ ≤ d, BQOBDDd′ ⊆ BQOBDDd. Let us prove the inequalities.
Due to Lemma 6.3, the Boolean function MOD2d,n ∈ BQOBDDd. However, width of any bounded error

quantum OBDD representing MOD2d,n is at least O(d). Therefore MOD2d,n 6∈ BQOBDDd/δ.

Due to Theorem 5.2, the Boolean function REQd
n ∈ BQOBDDd2 . On the contrary by Theorem 5.2

and Remark 6.1 width of any bounded error quantum OBDD representing REQd
n is at least

⌊

d
⌈log d+1⌉

⌋

.

Therefore, REQd
n 6∈ BQOBDD d

log2 d
.

Due to Lemma 6.2, the Boolean function MSWlog d
n ∈ BQOBDDd. However, width of any bounded error

quantum OBDD representing MSWlog d
n is at least 2Ω(log d). Therefore, MSWlog d

n 6∈ BQOBDDd1/δ .

7 Extension of Hierarchies for Deterministic and Probabilistic

k-OBDDs

This section shows the separation between k-OBDDs and 2k-OBDDs using the reordering method and a
lower bound for a complexity of pointer jumping function also denoted as PJ [11,24]

At first, let us present a version of the pointer jumping function which works with integer numbers. Let VA
and VB be two disjoint sets of vertices with |VA| = |VB | = m and V = VA∪VB . Let FA =

{

fA : VA → VB
}

,

FB =
{

fB : VB → VA
}

and f = (fA, fB) : V → V defined by the following rule:

• if v ∈ VA, then f(v) = fA(v) and

• if v ∈ VB , then f(v) = fB(v).

11



For each k ≥ 0 we define f (k)(v) such that f (0)(v) = v and f (k+1)(v) = f(f (k)(v)). Let v0 ∈ VA, The function
we are interested in is gk,m : FA × FB → V such that gk,m(fA, fB) = f (k)(v0).

The Boolean function PJt,n : {0, 1}n → {0, 1} is a Boolean version of gk,m where we encode fA as a
binary string using m logm bits and fB as well. The result of the function is the parity of bits of the binary
representation for the resulted vertex.

We apply the reordering method to the PJk,m function and call the total version of it, obtained from
Corollary 3.2, as RPJk,m.

Note that to prove an upper bound for RPJ2k−1,m it is necessary to construct a commutative 2k-OBDD
for PJ2k−1,m. In order to prove a lower bound for RPJ2k−1,m it is necessary to prove a lower bound for
PJ2k−1,m.

For proving the lover bound we need notion of communication complexity. Let f : {0, 1}m × {0, 1}n →
{0, 1} be a Boolean function. We have two players called Alice and Bob, who have to compute f(x, y). The
function f is known by both of them. However, Alice knows only bits of x and Bob knows only bits of y.
They have a two-sided communication channel. On each round of their communication one of them send a
string and Alice and Bob are trying to minimize two parameters: total number of sent bits and number of
rounds. For the formal definition see for example [22].

Additionally, we say that the k-round communication complexity with Bob sending first of a function
f(x1, . . . , xn, y1, . . . , ym) equals to c iff the minimal number of sent bits of k-round communication protocols
with Bob sending first is equal to c. We denote this complexity as CB,k(f) if this protocol is deterministic
and CB,k

ǫ (f) for probabilistic one with bounded error ǫ.

Lemma 7.1 ( [24]). CB,k(PJk,m) = Ω(m− k logm) for any k.

Lemma 7.2 ( [24]). CB,k
1/3 (PJk,m) = Ω(m

k2 − k logm) for any k.

Note that there is a well-know connection between communication complexity and OBDD complexity.

Lemma 7.3 (see for example [19]). Let f(x1, . . . , xn, y1, . . . , ym) be a Boolean function, π be an order over
the variables x1, . . . , xn, y1, . . . , ym such that yi precedes xj for any i ∈ {1, . . . , n}, and j ∈ {1, . . . ,m}.

If there is a π-k-OBDD representing f of width w, then there is a (2k−1)-round communication protocol
for f of cost logw and Bob sending first.

The next corollary follows from the previous three lemmas.

Corollary 7.1. For any positive integer k and order π, such that the variables encoding fA precedes the
variables encoding fB,

• width of any k-π-POBDD representing PJ2k−1,m with bounded error is at least 2Ω( m
k2 −k logm) and

• width of any k-π-OBDD representing PJ2k−1,m is at least 2Ω(m−k logm).

Lemma 7.4. There is a commutative 2k-OBDD representing PJ2k−1,m of width O(km2).

Proof. First of all, let us note that if a function f : {0, 1}n → T1 has a k′-OBDD and for all t ∈ T1, a function
gt : {0, 1}n → T2 has a commutative OBDD, then a function h : {0, 1}n → T2 such that h(x) = gf(x)(x) has
a commutative (k′ + 1)-OBDD.

Secondly, note that for any v there is a commutative OBDD representing f(v) due to the fact that f(v)
has a Sm,id,+ representation and Theorem 4.1 .

Corollary 7.2. There is a 2k-OBDD representing RPJ2k−1,m of width O(km3).

Using this results we can extend the hierarchy for following classes: P-k-OBDD,
BPPβ-k-OBDD, SUPERPOLY-OBDD, BSUPERPOLYβ-k-OBDD, SUBEXPα-k-OBDD, and
BSUBEXPα,β-k-OBDD. These are classes of Boolean functions computed by the following models:

• P-k-OBDD and BPPβ-k-OBDD are for polynomial width k-OBDD, the first one is for deterministic
case and the second one is for bounded error probabilistic k-OBDD with error at least β.

12



• SUPERPOLY-k-OBDD and BSUPERPOLYβ-k-OBDD are similar classes for superpolynomial
width models.

• SUBEXPα-k-OBDD and BSUBEXPα,β-k-OBDD are similar classes for width at most 2O(nα), for
0 < α < 1.

Theorem 7.1. 1. P-k-OBDD ( P-2k-OBDD, for k = o(n/ log3 n).

2. BPP1/3-k-OBDD ( BPP1/3-2k-OBDD, for k = o(n1/3/ log n).

3. SUPERPOLY-k-OBDD ( SUPERPOLY-2k-OBDD, for k = o(n1−δ), δ > 0.

4. BSUPERPOLY1/3-k-OBDD ( BSUPERPOLY1/3-2k-OBDD, for k = o(n1/3−δ) and δ > 0.

5. SUBEXPα-k-OBDD ( SUBEXPα-2k-OBDD, for k = o(n1−δ), 1 > δ > α+ ε, and ε > 0.

6. BSUBEXPα,1/3-k-OBDD ( BSUBEXPα,1/3-2k-OBDD, for k = o(n1/3−δ/3), 1/3 > δ > α+ ε, and
ε > 0.

Proof. Proofs of all statements are the same, hence, here we present only proof of the first one.
Let us consider RPJ2k−1,n. Every k-OBDD representing the function has width at least

2Ω(n/(k logn)−log(n/ logn)) ≥ 2Ω(n/(n log−3 n logn)−log(n/ logn)) = 2Ω(log2 n) = nΩ(logn),

due to Lemma 7.4. Therefore, it has more than polynomial width. Hence, RPJ2k−1,n 6∈ P-k-OBDD and
RPJ2k−1,n ∈ P-2k-OBDD, due to Lemma 7.4.

Acknowledgements.

Partially supported by ERC Advanced Grant MQC. The work is performed according to the Russian Gov-
ernment Program of Competitive Growth of Kazan Federal University. We thank Alexander Vasiliev and
Aida Gainutdinova from Kazan Federal University and Andris Ambainis from University of Latvia for their
helpful comments and discussions.

References

[1] F. Ablayev, A. Gainutdinova, K. Khadiev, and A. Yakaryılmaz. Very narrow quantum OBDDs and
width hierarchies for classical OBDDs. Lobachevskii Journal of Mathematics, 37(6):670–682, 2016.

[2] Farid Ablayev, Andris Ambainis, Kamil Khadiev, and Aliya Khadieva. Lower bounds and hierarchies
for quantum memoryless communication protocols and quantum ordered binary decision diagrams with
repeated test. LNCS, SOFSEM 2018: Theory and Practice of Computer Science, 2018. arXiv preprint
arXiv:1703.05015.

[3] Farid Ablayev and Aida Gainutdinova. Complexity of quantum uniform and nonuniform automata.
In Clelia de Felice and Antonio Restivo, editors, Developments in Language Theory, 9th International
Conference, DLT 2005, Palermo, Italy, July 4-8, 2005, Proceedings, volume 3572 of Lecture Notes in
Computer Science, pages 78–87. Springer, 2005.

[4] Farid Ablayev, Aida Gainutdinova, and Marek Karpinski. On Computational Power of Quantum
Branching Programs. In Rusins Freivalds, editor, Fundamentals of Computation Theory, 13th Interna-
tional Symposium, FCT 2001, Riga, Latvia, August 22-24, 2001, Proceedings, volume 2138 of Lecture
Notes in Computer Science, pages 59–70. Springer, 2001.

13



[5] Farid Ablayev, Aida Gainutdinova, Marek Karpinski, Cristopher Moore, and Chris Pollett. On the
computational power of probabilistic and quantum branching program. Inf. Comput., 203(2):145–162,
2005.

[6] Farid Ablayev, Aida Gainutdinova, Kamil Khadiev, and Abuzer Yakaryilmaz. Very narrow quantum
OBDDs and width hierarchies for classical OBDDs. In Helmut Jürgensen, Juhani Karhumäki, and
Alexander Okhotin, editors, Descriptional Complexity of Formal Systems - 16th International Work-
shop, DCFS 2014, Turku, Finland, August 5-8, 2014. Proceedings, volume 8614 of Lecture Notes in
Computer Science, pages 53–64. Springer, 2014.

[7] Farid Ablayev, Airat Khasianov, and Alexander Vasiliev. On complexity of quantum branching programs
computing equality-like boolean functions. ECCC, 2010.

[8] Farid Ablayev and Alexander Vasiliev. On the computation of boolean functions by quantum branching
programs via fingerprinting. Electronic Colloquium on Computational Complexity (ECCC), 15(059),
2008.

[9] Farid M Ablayev and Alexander Vasiliev. Algorithms for quantum branching programs based on fin-
gerprinting. Int. J. Software and Informatics, 7(4):485–500, 2013.

[10] Farid Mansurovich Ablayev and AV Vasilyev. On quantum realisation of boolean functions by the
fingerprinting technique. Discrete Mathematics and Applications, 19(6):555–572, 2009.

[11] Beate Bollig, Martin Sauerhoff, Detlef Sieling, and Ingo Wegener. Hierarchy theorems for kOBDDs and
kIBDDs. Theoretical Computer Science, 205(1):45–60, 1998.

[12] A. F. Gainutdinova. Comparative complexity of quantum and classical OBDDs for total and partial
functions. Russian Mathematics, 59(11):26–35, 2015.

[13] Juraj Hromkovič and Martin Sauerhoff. The power of nondeterminism and randomness for oblivious
branching programs. Theory of Computing Systems, 36(2):159–182, 2003.

[14] Rishat Ibrahimov, Kamil Khadiev, Krǐsjānis Prūsis, and Abuzer Yakaryılmaz. Zero-error affine, unitary,
and probabilistic OBDDs. arXiv preprint arXiv:1703.07184, 2017.

[15] Joseph JáJá, Viktor K. Prasanna, and Janos Simon. Information transfer under different sets of proto-
cols. SIAM J. Comput., 13(4):840–849, 1984.

[16] K. Khadiev. Width hierarchy for k-OBDD of small width. Lobachevskii Journal of Mathematics, 36(2),
2015.

[17] Kamil Khadiev and Rishat Ibrahimov. Width hierarchies for quantum and classical ordered binary
decision diagrams with repeated test. In Proceedings of the Fourth Russian Finnish Symposium on
Discrete Mathematics, number 26 in TUCS Lecture Notes. Turku Centre for Computer Science, 2017.

[18] Kamil Khadiev and Aliya Khadieva. Reordering method and hierarchies for quantum and classical
ordered binary decision diagrams. In Computer Science – Theory and Applications: 12th International
Computer Science Symposium in Russia, CSR 2017, Kazan, Russia, June 8-12, 2017, Proceedings,
pages 162–175, Cham, 2017. Springer International Publishing.

[19] Khadiev Khadiev. On the hierarchies for Deterministic, nondeterministic and probabilistic ordered
read-k-times branching programs. Lobachevskii Journal of Mathematics, 37(6):682–703, 2016.

[20] Jan Kraj́ıcek. An exponential lower bound for a constraint propagation proof system based on ordered
binary decision diagrams. J. Symb. Log., 73(1):227–237, 2008.

[21] Matthias Krause, Christoph Meinel, and Stephan Waack. Separating the eraser turing machine classes
le, nle, co-nle and pe. Theoretical Computer Science, 86(2):267–275, 1991.

14



[22] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press, 1997.

[23] Masaki Nakanishi, Kiyoharu Hamaguchi, and Toshinobu Kashiwabara. Ordered quantum branching
programs are more powerful than ordered probabilistic branching programs under a bounded-width
restriction. In COCOON, volume 1858 of LNCS, pages 467–476. Springer, 2000.

[24] Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. SIAM Journal on
Computing, 22(1):211–219, 1993.

[25] Martin Sauerhoff. Quantum vs. classical read-once branching programs. arXiv preprint quant-
ph/0504198, 2005.

[26] Martin Sauerhoff. Quantum vs. classical read-once branching programs. In Matthias Krause, Pavel
Pudlák, Rüdiger Reischuk, and Dieter van Melkebeek, editors, Complexity of Boolean Functions, number
06111 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2006. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[27] Martin Sauerhoff and Detlef Sieling. Quantum branching programs and space-bounded nonuniform
quantum complexity. Theoretical Computer Science, 334(1-3):177–225, 2005.

[28] Martin Sauerhoff and Detlef Sieling. Quantum branching programs and space-bounded nonuniform
quantum complexity. Theoretical Computer Science, 334(1):177–225, 2005.

[29] Petr Savickỳ and S Žák. A read-once lower bound and a (1,+ k)-hierarchy for branching programs.
Theoretical Computer Science, 238(1):347–362, 2000.

[30] Ingo Wegener. Branching Programs and Binary Decision Diagrams: Theory and Applications. SIAM,
2000.

15

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


