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Abstract

We give a structure theorem for Boolean functions on the biased hypercube which are ϵ-close to
degree d in L2, showing that they are close to sparse juntas. Our structure theorem implies that such
functions are O(ϵCd + p)-close to constant functions. We pinpoint the exact value of the constant Cd.

1 Introduction

Let f : {0, 1}n → {0, 1} be a Boolean function on the hypercube, where {0, 1}n is endowed with the uniform
measure. If f has degree 1 then it is a dictator, and if it has degree d then it is a junta [NS94]. Friedgut,
Kalai and Naor [FKN02] showed that if f is ϵ-close to degree 1 (that is, ∥f>1∥2 ≤ ϵ) then f is O(ϵ)-close to
a dictator (that is, Pr[f ̸= g] = O(ϵ) for some dictator g). Kindler and Safra [KS02, Kin03] (see also [KK20])
showed that if f is ϵ-close to degree d then f is O(ϵ)-close to a 2O(d)-junta.

Kindler and Safra proved their result in the more general setting of the biased hypercube, which is {0, 1}n
endowed with the biased measure µp. They showed that if f is a Boolean function on the p-biased hypercube
which is ϵ-close to degree d then f is O(ϵ+ ϵ5/4/p4d)-close to an O(1/p4d)-junta, assuming p ≤ 1/2. When p
is constant, this gives the same statement as before, but when p is small, the result is no longer tight.

The biased hypercube in the small p regime is interesting for at least two reasons. First, it is the regime
which is most relevant for understanding threshold phenomena in the Erdős–Rényi random graph model
G(n, p). Second, it is a good model for other domains with sparse inputs, such as the symmetric group and
the Grassmann scheme, the latter of which was recently used to prove the 2-to-2 games conjecture [KMS23].

In this paper, we extend the FKN and Kindler–Safra theorems to functions on the biased hypercube,
proving a statement which does not deteriorate as p gets small. For every d, ϵ and p ≤ 1/2 we find an explicit
set of Boolean functions Fd,ϵ,p such that

(a) If f : ({0, 1}n, µp) → {0, 1} is ϵ-close to degree d then f is O(ϵ)-close to a function in Fd,ϵ,p.

(b) Every function in Fd,ϵ,p is O(ϵ)-close to degree d with respect to µp.

Let us demonstrate what we mean by explicit using the case d = 1, which appears in earlier work of
Filmus [Fil16]. Filmus showed that we can take

F1,ϵ,p =

{∨
i∈S

yi,¬
∨
i∈S

yi : |S| ≤ max(1, C
√
ϵ/p)

}
,

for some constant C, where (y1, . . . , yn) ∈ {0, 1}n is the input point.
The functions in F1,ϵ,p are O(

√
ϵ)-close to dictators and so O(

√
ϵ+ p)-close to constants, and the same

holds for every Boolean function which is ϵ-close to degree 1. This shows that if we consider Boolean functions
which are ϵ-close to degree 1 up to an error of magnitude

√
ϵ, then all we see is dictators. If we look closer,

narrowing the magnitude of the error to ϵ, then a more nuanced picture emerges. We will be interested in
both points of view. We state our results formally in Section 1.1.
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The proof of Kindler and Safra deteriorates with p due to the use of hypercontractivity. In contrast, our
proof works by reduction to the unbiased setting, and so does not suffer from this deterioration. In more
detail, we express the biased hypercube as a weighted average of unbiased hypercubes of smaller dimension:

({0, 1}n, µp) ≈ ({0, 1}S, µ1/2), where S ∼ µ2p.

We apply the unbiased Kindler–Safra theorem on each unbiased hypercube {0, 1}S , and combine the results
using an agreement theorem. We describe our methods in more detail in Section 1.2.

1.1 Main results

Here is the generalization of the result of Filmus [Fil16] to arbitrary d. The statement uses various terms
which we explain after it. The statement is heavily inspired by the FKN theorem for functions on the
symmetric group due to Filmus [Fil21].

Theorem 1.1 (Main). Suppose that f : ({0, 1}n, µp) → {0, 1} is ϵ-close to degree d, where p ≤ 1/2. Then
f is O(ϵ)-close to round(g, {0, 1}), where g is a degree d polynomial satisfying the following properties, for
some constant C depending only on d:

(i) If y ∈ {0, 1}n has weight at most d then g(y) ∈ {0, 1}.

(ii) For every T and e, the monomial support of g contains at most C/pe sets U ⊇ T of size |T |+ e.

(iii) For all e, the number of inputs y ∈ {0, 1}n of weight e such that g(y) /∈ {0, 1} but g(z) ∈ {0, 1} for all
z < y is at most Cϵ/pe.

Conversely, if g is a degree d polynomial satisfying these properties then round(g, {0, 1}) is O(ϵ)-close to
degree d.

Rather than specifying the list Fd,ϵ,p directly, we instead specify a list Gd,ϵ,p of degree d functions. The
functions in Fd,ϵ,p are obtained by rounding the functions in Gd,ϵ,p to Boolean. The corresponding list for
d = 1 is

G1,ϵ,p =

{∑
i∈S

yi, 1−
∑
i∈S

yi : |S| ≤ max(1, C
√
ϵ/p)

}
.

A degree d polynomial g is in Gd,ϵ,p if it satisfies the three properties listed in the theorem. To explain
these properties, let us introduce the monomial expansion of g, which is its unique expansion as a linear
combination of monomials yS =

∏
i∈S yi. We denote the coefficient of yS by g̃(S); these are the monomial

coefficients of g.
The monomial expansion differs from the more usual Fourier expansion, in which instead of the monomials

yS we have the Fourier characters ωS =
∏

i∈S
yi−p√
p(1−p)

. Using the monomial expansion guarantees that

the functions in Gd,ϵ,p have the same form regardless of p (cf.
∑

i∈S yi to
∑

i∈S
√
p(1− p) yi−p√

p(1−p)
+ p|S|).

Concretely, the monomial coefficients appearing in the functions in Gd,ϵ,p depend only on d, a property which
fails for the Fourier expansion.

Item i states that g(y) ∈ {0, 1} whenever y has (Hamming) weight at most d. Equivalently, if |S| ≤ d
then ∑

T⊆S

g̃(T ) ∈ {0, 1}.

This implies that the monomial coefficients of g are quantized. As an example, when d = 1, the constant
coefficient is either 0 or 1; in the former case, all other coefficients are 0 or 1; and in the latter case, all other
coefficients are 0 or −1.

Item ii concerns the monomial support of g, which is the set

supp(g) = {S ⊆ [n] : g̃(S) ̸= 0}.
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Choosing T = ∅, the property states that the expected number of monomials in supp(g) which evaluate to 1
under a random input is O(1). Considering other T , the same holds even under the condition yT = 1. For
these reasons, we call a polynomial satisfying this property a sparse junta.

This item fails for the Fourier expansion. For example, the Fourier support of the function
∑C/p2

i=1 y2i−1y2i
contains 2C/p2 singletons rather than just O(1/p).

Item iii concerns minimal non-Boolean inputs. An input y ∈ {0, 1}n is a minimal non-Boolean input of
g if g(y) /∈ {0, 1} but g(z) ∈ {0, 1} for all inputs z strictly below y, that is, obtained from y by switching
one or more 1s to 0s. Equivalently, if y = 1S then the restriction g|S obtained by zeroing out all coordinates
outside of S is Boolean except for the input 1S . Due to the second property, every minimal non-Boolean
input occurring in g has weight at least d+ 1.

We can think of a minimal non-Boolean input as a forbidden configuration, which we can describe by
specifying the function g|S . When d = 1, there are two minimal non-Boolean inputs, corresponding to the
functions

y1 + y2 and 1− y1 − y2.

Accordingly, if g̃(∅) = 0 and | supp(g)| = m then
(
m
2

)
= O(ϵ/p2), which implies that either m ≤ 1 or

m = O(
√
ϵ/p).

We list all minimal non-Boolean inputs for d = 2 in Section 2.2, where we also show that there is a finite
number of them for every d.

Monotone version

When the function f is monotone, we can guarantee that the function g is monotone as well.

Theorem 1.2. Suppose that f : ({0, 1}n, µp) → {0, 1} is a monotone function which is ϵ-close to degree d,
where p ≤ 1/2. Then f is O(ϵ)-close to a monotone width d DNF g, where g satisfies the following properties,
for some constant C depending only on g:

(i) For every T and e, the DNF g contains at most C/pe minterms of U ⊇ T of size |U |+ e.

(ii) For all e, the number of sets S of size e such that deg(g|S) > d but deg(g|T ) ≤ d for all T ⊊ S is at
most Cϵ/pe.

Conversely, if g is a monotone width d DNF satisfying these properties then it is O(ϵ)-close to degree d.

When d = 1, the unique forbidden configuration (corresponding to Item ii) is y1∨y2. We list all forbidden
configurations for d = 2 in Section 2.2, where we also show that there is a finite number of them for every d.

Junta approximation

The FKN theorem of Filmus [Fil16] implies that if f : ({0, 1}n, µp) → {0, 1} is ϵ-close to degree 1 then it
is O(

√
ϵ)-close to a dictator and O(

√
ϵ + p)-close to a constant. Theorem 1.1 implies a similar result for

arbitrary d, where
√
ϵ is replaced by an appropriate power of ϵ.

Theorem 1.3 (Junta approximation). Suppose that f : ({0, 1}n, µp) → {0, 1} is ϵ-close to degree d, where
p ≤ 1/2. There are parameters m,µ, depending only on d, such that:

(a) f is O(ϵ1/µ)-close to a Boolean degree d function.

(b) f is O(ϵ1/m + p)-close to a Boolean constant function.

When d = 1, the optimal value of both m and µ is 2, which is tight when f is obtained by rounding the
following function to Boolean:

g = y1 + · · ·+ y√ϵ/p.
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We can generalize this construction to arbitrary d. Let P be a degree d polynomial such that P (0), . . . , P (m−
1) ∈ {0, 1} and P (0) ̸= P (1) (von zur Gathen and Roche [GR97] studied such non-constant polynomials
without the restriction P (0) ̸= P (1)), and take the degree d polynomial

g = P (y1 + · · ·+ yϵ1/m/p).

The input to P behaves roughly like a Poisson random variable with expectation λ = ϵ1/m, and so
Pr[g /∈ {0, 1}] = O(λm) = O(ϵ). This implies that round(g, {0, 1}) is O(ϵ)-close to degree d.

Since P (1) ̸= P (0), a similar calculation shows that Pr[g = P (0)] ≈ 1−Θ(λ) and Pr[g = P (1)] ≈ Θ(λ),
and so g is Θ(λ)-far from all constant functions.

Using a Ramsey-theoretic argument, we show that this kind of construction is best possible for m.

Theorem 1.4. Given d, the optimal value of m in Theorem 1.1 is the maximum m such that there exists a
degree d polynomial P satisfying P (0), . . . , P (m− 1) ∈ {0, 1} and P (0) ̸= P (1).

As an example, when d = 2 we get m = 4, corresponding to the polynomial P (z) = z(3−z)
2 .

It is an intriguing open question to find the optimal value of µ. Another interesting exponent is the best ν
such that f is O(ϵ1/ν)-close to some Boolean junta or to some degree d junta (both exponents are the same).

1.2 Proof sketch

We prove Theorem 1.1 by reduction to the Kindler–Safra theorem, in the following form.

Theorem 1.5 (Kindler–Safra). If f : ({0, 1}n, µ1/2) → {0, 1} is ϵ-close to degree d then there is a Boolean
degree d function g which is O(ϵ)-close to f .

(While Kindler and Safra did not state their theorem in this way, this formulation easily follows from their
result.)

Suppose we are given a function f : ({0, 1}n, µp) → {0, 1} which is ϵ-close to degree d. We look at
restrictions f |S obtained by zeroing out the coordinates outside of S. If S ∼ µ2p then on average, f |S is close
to degree d with respect to the uniform measure on {0, 1}S :

E
S∼µ2p

[
E

µ1/2

[(f |S − f≤d|S)2]
]
= E

µp

[(f − f≤d)2] ≤ ϵ.

Indeed, if S ∼ µ2p and y ∼ µ1/2({0, 1}S) then the marginal distribution of y is µp.
Applying the Kindler–Safra theorem for every f |S , we obtain a Boolean degree d function gS such that

E
S∼µ2p

[
E

µ1/2

[(f |S − gS)
2]

]
= O(ϵ). (1)

We would like to construct the function g by pasting together the various functions gS , and for that we
need to know that the gS agree with each other, on average. This sort of pasting is achieved using agreement
theorems, and in this case we use the following theorem, with K being the maximal size of the monomial
support of a Boolean degree d function, q = 2p, and c =

√
1/2.

Theorem 1.6 (Junta agreement theorem). Fix the following parameters: integer K (junta size), q ∈ (0, 1)
(bias), c ∈ (0, 1) (fractional intersection size).

For each S ⊆ [n], let gS be a degree d polynomial whose monomial support contains at most K monomials.
Suppose that the following agreement condition holds:

Pr
T∼µcq

T1,T2∼µr

[gT∪T1
|T ̸= gT∪T2

|T ] ≤ ϵ, where r =
(1− c)q

1− cq
.

(The value of r is chosen so that the marginal distribution of S1 := T ∪ T1 and S2 := T ∪ T2 is µq.)
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Then there exists a degree d polynomial g such that

Pr
S∼µq

[g|S ̸= gS ] = OK,c(ϵ).

(The error bound depends on K and c but is independent of q.)
Moreover, for each A, the monomial coefficient g̃(A) is chosen by majority decoding: it maximizes

Pr
S∼µ2p

S⊇A

[g̃S(A) = g̃(A)].

The junta agreement theorem follows from the more general agreement theorem in our earlier work [DFH17],
which does not require a bound on the size of the monomial support. However, since the proof of the junta
agreement theorem is much easier than the proof of the general agreement theorem, we include it in this
paper.

In order to apply Theorem 1.6, we need to show that the condition in the theorem holds. Since
fS1

|T = fS2
|T , Equation (1) implies that

E
S1,S2

[(gS1 |T − gS2 |T )2] = O(ϵ).

Since gS1
, gS2

are both juntas, either gS1
|T = gS2

|T or Pr[gS1
|T ̸= gS2

|T ] = Ω(1), and this implies the
agreement condition of Theorem 1.6.

Applying Theorem 1.6, we obtain a function g such that

Pr
S∼µp

[g|S ̸= gS ] = O(ϵ).

A short argument now shows that Pr[f ̸= g] = O(ϵ).
Since g is obtained by majority decoding and each gS is a junta, we can show that g is a sparse junta,

proving Item ii. This allows us to show that Eµp [(f − g)2] = O(ϵ), a step which we highlight below.
Next, let us show why Item iii holds. Let 1S be a minimal non-Boolean input of g. Since g is a sparse

junta, the probability that yS = 1 and yT = 0 for all other minimal non-Boolean inputs 1T is Ω(p|S|). These
events are disjoint, and so

Pr[f ̸= g] ≥ Pr[g /∈ {0, 1}] ≥
∑
S

Ω(p|S|),

where the sum goes over all minimal non-Boolean inputs of g. This implies Item i.
Finally, let us address Item i. The original function g doesn’t necessarily satisfy it. However, an argument

along the lines of the preceding paragraph shows that the number of offending inputs is small, allowing us to
slightly perturb g so that it satisfies Item i.

From L0 to L2 using the reverse union bound In the proof of Theorem 1.1, we deduce the L2 guarantee
Eµp [(f − g)2] = O(ϵ) from the L0 guarantee Pr[f ̸= g] = O(ϵ) using the fact that g is a sparse junta. The
argument uses a technical tool, the reverse union bound, which we would like to highlight here.

Since Pr[f ̸= g] = O(ϵ) and f is Boolean, it follows that Pr[g /∈ {0, 1}] = O(ϵ), and so Pr[g(g − 1) ̸= 0] =
O(ϵ). We will deduce that Eµp

[g2(g − 1)2] = O(ϵ), which implies Eµp
[(f − g)2] = O(ϵ) via a short argument.

Since g is a sparse junta whose monomial coefficients are quantized, the same holds for h = g(g − 1), and
also for h2. We will show that Pr[h ̸= 0] = O(ϵ) implies that Eµp

[h2] = O(ϵ).
Since the monomial coefficients of h2 are quantized, it suffices to show that the monomial support of h2 is

sparse, in the sense that it contains O(ϵ/pe) sets of size e for all e ≤ 2d. Since h is a sparse junta, in order to
show that the monomial support of h2 is sparse, it suffices to show that the monomial support of h itself is
sparse.

The union bound shows that
Pr[h ̸= 0] ≤

∑
S∈supp(h)

p|S|.
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If the inequality were in the other direction then it would follow that the monomial support of h is sparse,
since Pr[h ≠ 0] = O(ϵ). In general, we cannot reverse the inequality (consider for example h =

∑n
i=1 yi,

where the left-hand side tends to 1 while the right-hand side tends to infinity for constant p). However, when
h is a sparse junta, the reverse union bound states that we can indeed reverse the direction of the inequality:

Pr[h ̸= 0] = Ω

 ∑
S∈supp(h)

p|S|

 .

The proof of the reverse union bound is not difficult. It uses the Harris–FKG inequality.

Differences from conference version

This paper originates in an extended abstract [DFH19], which covers both the material eventually published
in [DFH17] and part of the material in the present work. The full version of [DFH19] is available on arXiv
(1711.09428) and ECCC (TR17-180).

The full version of [DFH19] contains weaker versions of Theorems 1.1 and 1.2, which describe only some
properties of the approximating function g, and in particular do not constitute a full characterization of all
Boolean functions which are close to degree d. The current versions of these theorems are inspired by [Fil21].
In addition, Theorem 1.4 is completely new. It is inspired by [Fil23].

In contrast, the main theorems in the full version of [DFH19] apply in the more general A-valued setting,
which we describe briefly in Section 7, as well as in the setting of the slice. We omit these generalizations
in this version to make it more concise, and since these generalizations only require a few new ideas, the
most interesting of which is that whereas the monomial expansion of functions on the slice is not unique, the
sparse monomial expansion of a junta is unique.

Paper organization

We start with various preliminaries in Section 2. We formally define sparse juntas and describe some of their
properties in Section 3. We prove Theorem 1.6, the junta agreement theorem, in Section 4. We prove the
main structure theorem, Theorem 1.1, in Section 5, and its monotone version, Theorem 1.2, in Section 6. We
prove the junta approximation theorem, Theorems 1.3 and 1.4, in Section 7.
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2 Preliminaries

We make constant use of the inequality (a+ b)2 ≤ 2a2 + 2b2.
We sometimes use the notation [n] = {1, . . . , n}.
We use 1S for the characteristic vector of the set S or for the indicator of the event S. We also use the

notation [S] for the latter to improve legibility.
The weight of y ∈ {0, 1}n is the number of coordinates equal to 1.
A function on {0, 1}n is an M -junta if it depends on at most M coordinates.

Monotone functions If x, y ∈ {0, 1}n then x ≤ y if xi ≤ yi for all i ∈ [n]. We write x < y if x ≤ y and
x ̸= y.

A function f : {0, 1}n → R is monotone if f(x) ≤ f(y) whenever x ≤ y.
If f : {0, 1}n → {0, 1} is monotone then a minterm of f is an input x such that f(x) = 1 and f(y) = 0 for

all y < x. The set of minterms of f constitutes its minterm support.
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A monotone function f : {0, 1}n → {0, 1} is a width d monotone DNF if all its minterms have weight at
most d.

Biased measure For n ∈ N and p ∈ {0, 1}, the measure µp on {0, 1}n is given by

µp(y1, . . . , yn) = p
∑

i yi(1− p)
∑

i(1−yi).

Equivalently, if we identify an element in {0, 1}n with the corresponding subset, then a subset S ∼ µp is
sampled by including each element independently with probability p.

When the domain {0, 1}n is not clear from context, we write it explicitly, for example µp({0, 1}S) or
µp(S).

Given a function f : {0, 1}n → R, we often think of the domain as endowed with the measure µp for some
p. In this case, we write f : ({0, 1}n, µp) → R. If we then write E[f ] or Pr[f ∈ {0, 1}], then the underlying
measure is µp.

Closeness Our basic notion of closeness is L2. Two functions f, g are ϵ-close with respect to µp if
Eµp [(f − g)2] ≤ ϵ. If µp is clear from context then we omit its mention.

Monomial expansion Every function f : {0, 1}n → R has a unique representation as a multilinear
polynomial:

f(y1, . . . , yn) =
∑
S⊆[n]

f̃(S)yS , where yS =
∏
i∈S

yi,

where y1, . . . , yn ∈ {0, 1}. We call this representation the monomial expansion. We stress that it differs from
the Fourier expansion.

The functions yS are called monomials, and the coefficients f̃(S) are called monomial coefficients. The
monomial support of f is

supp(f) = {S ⊆ [n] : g̃(S) ̸= 0}.

The degree of f , denoted deg f , is the maximal size of a set in supp(f) (if supp(f) = ∅ then deg f = 0).
This notion of degree coincides with the Fourier-theoretic notion of degree.

Low degree functions A function f : {0, 1}n → R has degree d if deg f ≤ d. A function is ϵ-close to degree
d (with respect to µp) if Eµp [(f − g)2] ≤ ϵ for some degree d function g. Equivalently, Eµp [(f − f≤d)2] =
Eµp

[(f>d)2] ≤ ϵ, where f≤d, f>d are obtained from the p-biased Fourier expansion of f by retaining all levels
up to d and all levels beyond d, respectively.

Function restriction We denote the restriction of y ∈ {0, 1}n to the coordinates in a subset S ⊆ [n] by
y|S ∈ {0, 1}S .

Given a function f : {0, 1}n → R and a subset S ⊆ [n], the restriction f |S : {0, 1}S → R is obtained by
substituting zero for all coordinates outside of S:

f |S(y) =
∑
T⊆S

f̃(T )yT .

Function substitution Given a function f : {0, 1}n → R and a subset S ⊆ [n], the substitution

f |yS←1 : {0, 1}S → R is obtained by substituting yi = 1 for all i ∈ S:

f |yS←1 =
∑
T

f̃(T )yT\S .

If S = {i} then we use the notation f |yi←1.
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Boolean functions A function is Boolean if it is {0, 1}-valued. If f, g are Boolean then they are ϵ-close iff
Pr[f ̸= g] ≤ ϵ. In other words, for Boolean functions the L2 and L0 notions of distance coincide.

If f : {0, 1}n → R then round(f, {0, 1}) is the Boolean function obtained by rounding each f(y) to the
nearest value among {0, 1}. The original function f is ϵ-close to Boolean if

E[dist(f, {0, 1})2] ≤ ϵ,

where dist(f, {0, 1}) = min(|f − 0|, |f − 1|). Equivalently, E[(f − round(f, {0, 1}))2] ≤ ϵ.

2.1 Unbiased structure theorems

Nisan–Szegedy Nisan and Szegedy [NS94] proved the following theorem.

Theorem 2.1 (Nisan–Szegedy). Every Boolean degree d function on {0, 1}n is an Md-junta, where Md =
d2d−1.

The number of coordinates in the junta was improved to O(2d) in [CHS20, Wel22].

Kindler–Safra In unpublished work, Kindler and Safra [KS02, Kin03] proved the following result, which
we state in its formulation due to Keller and Klein [KK20].

Theorem 2.2 (Kindler–Safra). There exists a universal constant c > 0 such that the following holds for all
d ∈ N.

If f : ({0, 1}n, µ1/2) → {0, 1} is ϵ-close to degree d, where ϵ < cd, then f is 2ϵ-close to a Boolean degree d
function.

This formulation follows by combining Theorem 1.4 and Proposition 5.6 in [KK20]. (Keller and Klein
also prove a stronger version in which the closeness is improved to the optimal expression, ϵ+ Õ(ϵ2).)

For our purposes, we need a version of the Kindler–Safra theorem which holds for all ϵ.

Theorem 2.3. There exists a universal constant C > 0 such that the following holds for all d ∈ N.
If f : ({0, 1}n, µ1/2) → {0, 1} is ϵ-close to degree d then f is Cdϵ-close to a Boolean degree d function.

Proof. We take C = max(1/c, 2), where c is the constant in Theorem 2.2.
Suppose that f : ({0, 1}n, µ1/2) → {0, 1} is ϵ-close to degree d. If ϵ < cd then the result follows directly

from Theorem 2.2. Otherwise, Cdϵ ≥ 1, and so f is Cdϵ-close to the constant zero function.

Monotone Kindler–Safra When the function f is monotone, we can guarantee that the approximating
function in Theorem 2.3 is monotone as well.

We start with an auxiliary lemma.

Lemma 2.4. Suppose that f : ({0, 1}n, µ1/2) → R is a monotone function and g : ({0, 1}n, µ1/2) → R is an
M -junta.

Either g is monotone or Pr[f ̸= g] ≥ 2−M .

Proof. Suppose without loss of generality that g depends on the first M coordinates. We separate accordingly
the inputs to f and g into two parts: a point in {0, 1}M , and a point in {0, 1}n−M .

If g is not monotone then g(x, 0) > g(y, 0) for some x < y. For each z ∈ {0, 1}n−M we have g(x, z) > g(y, z)
while f(x, z) ≤ f(y, z), and so either f(x, z) ̸= g(x, z) or f(y, z) ̸= g(y, z). Since there are 2n−M choices for z,

Pr[f ̸= g] ≥ 2n−M

2n
= 2−M .

We can now prove a monotone version of the Kindler–Safra theorem.
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Theorem 2.5. For every d ∈ N there is a constant Kd > 0 such that the following holds.
If f : ({0, 1}n, µ1/2) → {0, 1} is monotone and ϵ-close to degree d then f is Kdϵ-close to a monotone

Boolean degree d function.

Proof. Suppose that f : ({0, 1}n, µ1/2) → {0, 1} is monotone and ϵ-close to degree d. Applying Theorem 2.3,

f is Cdϵ-close to a Boolean degree d function g.
If g is monotone then we are done. Otherwise, Theorem 2.1 shows that g is an Md-junta, and so Lemma 2.4

shows that Cdϵ ≥ 2−Md . Consequently ϵ ≥ 2−Md/Cd, and so f is Cd2Mdϵ-close to the zero function.

Curiously, the proof of the biased version of Theorem 2.5 only uses Lemma 2.4.

2.2 Forbidden configurations

Our work involves three different types of forbidden configurations. These are configurations of coefficients
which cannot occur in Boolean functions, but do arise in our context — but only sparingly. For example, the
biased FKN theorem [Fil16] involves functions of the form f =

∑
i ciyi. If f is Boolean then we cannot have

ci = cj = 1, but if f is ϵ-close to Boolean then there could be up to O(ϵ/p2) copies of this configuration.

Minimal non-Boolean inputs Let f : {0, 1}n → R. An input x is a minimal non-Boolean input of f if
f(x) /∈ {0, 1} but f(y) ∈ {0, 1} for all y < x.

Suppose that f has degree 1, say

f = c0 +

n∑
i=1

ciyi.

If c0 /∈ {0, 1} then 0 is the only minimal non-Boolean input. Otherwise, suppose without loss of generality
that c0 = 0. If ci /∈ {0, 1} then 1{i} is a minimal non-Boolean input. If ci = cj = 1 then 1{i,j} is a minimal
non-Boolean input. There are no other types of minimal non-Boolean inputs.

In addition, if x is a minimal non-Boolean input then this is due to some non-zero monomial coefficients:
if 1{i} is a minimal non-Boolean input then ci ̸= 0, and if 1{i,j} is a minimal non-Boolean input of f then
ci, cj ̸= 0. In both cases, the minimal non-Boolean input x = 1S is such that S is the union of sets in supp(f):
{i} in the former case, and {i}, {j} in the latter case.

The following lemma shows that a similar picture holds for all d.

Lemma 2.6. For every d there is a constant Ld such that every minimal non-Boolean input of a degree d
function f : {0, 1}n → R has weight at most Ld.

Furthermore, if 1S is a minimal non-Boolean input of f then S can be written as the union of at most Ld

sets in supp(f).

Proof. According to Theorem 2.1, every Boolean degree d function is an Md-junta. We will show that we can
take Ld = Md + d.

Suppose that 1S is a minimal non-Boolean input of f . By minimality, f |S depends on all coordinates,
and so S is a union of all sets in supp(f |S). We can clearly write it as a union of at most |S| such sets, say
B1, . . . , B|S|.

If |S| ≤ Md then we are done. Otherwise, let m be the minimal index such that |B1 ∪ · · · ∪Bm| > Md.
By minimality, f |B1∪···∪Bm−1 is Boolean, and so |B1 ∪ · · · ∪Bm−1| ≤ Md according to Theorem 2.1. Since
f |B1∪···∪Bm

depends on all inputs and |B1 ∪ · · · ∪Bm| > Md, Theorem 2.1 shows that it is not Boolean, and
so B1 ∪ · · · ∪Bm = S. Therefore

|S| ≤ |B1 ∪ · · · ∪Bm−1|+ |Bm| ≤ Md + d.

Looking ahead, we will be interested in minimal non-Boolean inputs of degree d functions whose weight
is larger than d. If 1S is a minimal non-Boolean input of f then f |S is a function which is Boolean except
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for the input 1S . Listing such minimal non-Boolean functions is a convenient way to describe all minimal
non-Boolean inputs. For example, when d = 1, the minimal non-Boolean functions are

y1 + y2, 1− y1 − y2.

In general, the minimal non-Boolean inputs come in pairs f, 1− f , and it suffices to list those which satisfy
f(0) = 0.

Here are the minimal non-Boolean functions satisfying f(0) = 0 for d = 2:

y1(y2 + y3)

y1y2 + y1y3 + y2y3

y1(1− y2 − y3)

y1 + y2y3

(y1 + y2)(1− y3)− 2y1y2

y1(1− y3) + y2 − 2y1y2

(y1 + y2)(1− y3)− y1y2

y1 + y2 + y3 − 2y1y2 − 2y1y3 − 2y2y3

y1 + y2 + y3 − 2y1y2 − 2y1y3 − y2y3

y1 + y2 + y3 − 2y1y2 − y1y3 − y2y3

y1y2 + y3y4

y1(1− y3) + y2(1− y4)− y1y2

y1 + y2 + y3 − y1y2 − y1y3 − y2y3 − y1y4

y1 + y2 + y3 + y4 − y1y2 − y1y3 − y1y4 − y2y3 − y2y4 − y3y4

Minimal non-monotone inputs Let f : {0, 1}n → {0, 1}. An input x is minimal non-monotone if
f(x) < f(y) for some y < x, and f(y) ≤ f(z) whenever y ≤ z < x.

Theorem 2.1 implies that each such input has weight at most Md.

Lemma 2.7. Every minimal non-monotone input of a degree d function f : {0, 1}n → {0, 1} has weight at
most Md, where Md is the constant from Theorem 2.1.

Furthermore, if 1S is a minimal non-monotone input of f then S can be written as the union of at most
Md sets in supp(f).

Proof. By minimality, if 1S is a minimal non-monotone input of f then f |S depends on all inputs, and so
|S| ≤ Md by Theorem 2.1. Moreover, S is the union of all sets in supp(f |S), and so it is the union of at most
|S| sets in supp(f).

We extend the definition on minimal non-monotone inputs to non-Boolean functions as follows. If
f : {0, 1}n → R then an input x = 1S is minimal non-monotone Boolean if f |S is Boolean and x is a minimal
non-monotone input of f |S .

Lemma 2.7 holds also for minimal non-monotone Boolean inputs of a degree d function g : {0, 1}n → R,
since if 1S is a minimal non-monotone Boolean input of g then it is also a minimal non-monotone input of
the Boolean function g|S .

As in the case of minimal non-Boolean inputs, we will be interested in minimal non-monotone inputs
of degree d functions whose weight is larger than d, which we can describe using minimal non-monotone
functions. When d = 1, there are no minimal non-monotone functions. When d = 2, the unique minimal
non-monotone function is

y1 + y2 + y3 − y1y2 − y1y3 − y2y3.
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Minimal high-degree inputs Let f : {0, 1}n → {0, 1}, and let d be a parameter. An input 1S is minimal
high-degree if deg(f |S) > d but deg(f |T ) ≤ d for all T ⊊ S.

Lemma 2.8. Every minimal high-degree input of a monotone width d DNF f : {0, 1}n → {0, 1} has weight
at most Ld, where Ld is the constant from Lemma 2.6.

Furthermore, if 1S is a minimal high-degree input of f then S can be written as the union of at most Ld

minterms of f .

Proof. By minimality, if 1S is a minimal high-degree input of f then f |S depends on all coordinates, and so
S is the union of at most |S| minterms in supp(f |S), say B1, . . . , Bm.

If |S| ≤ Md then we are done. Otherwise, let m be the minimal index such that |B1 ∪ · · · ∪Bm| > Md.
By minimality, deg(f |B1∪···∪Bm−1

) ≤ d, and so |B1 ∪ · · · ∪Bm−1| ≤ Md by Theorem 2.1. Since f |B1∪···∪Bm

depends on all inputs and |B1 ∪ · · · ∪Bm| > Md, Theorem 2.1 shows that it cannot have degree d, and so
B1 ∪ · · · ∪Bm = S. Therefore |S| ≤ Md + d.

As in the case of minimal non-Boolean inputs and minimal non-monotone inputs, we can describe minimal
high-degree inputs as minimal high-degree monotone DNFs. When d = 1, the unique minimal high-degree
monotone DNF is y1 ∨ y2, and when d = 2, the minimal high-degree monotone DNFs are

y1 ∧ (y2 ∨ y3)

(y1 ∧ y2) ∨ (y1 ∧ y3) ∨ (y2 ∧ y3)

y1 ∨ (y2 ∧ y3)

y1 ∨ y2 ∨ y3

(y1 ∧ y2) ∨ (y3 ∧ y4)

3 Sparsity

The approximating function g in Theorem 1.1 has sparse monomial support, and its monotone counterpart in
Theorem 1.2 has sparse minterm support. This crucial property drives much of the proofs of these theorems.

Here is the notion of sparsity that comes up in both theorems.

Definition 3.1 (Sparse). A set system over a set V is a collection of subsets of V .
A set system F is (d,C, ϵ)-sparse, where d ≥ 0 is an integer, ϵ ≥ 0, and C ≥ 1, if the following three

properties hold:

(i) All sets in F have size at most d.

(ii) For all T ⊆ [n] and integer e ≥ 0, the set system F contains at most Ce sets U ⊇ T of size |U |+ e.

(iii) For all integer e ≥ 0, the set system F contains at most Ceϵ sets U of size e.

A set system is (d,C)-sparse if it is (d,C, 1)-sparse; this corresponds to omitting the final property.

Definition 3.2 (Sparse junta). A function f : {0, 1}n → R is a (d,C)-sparse junta if supp(f) is (d,C)-sparse.
A monotone function f : {0, 1}n → {0, 1} is a (d,C)-sparse DNF if its minterm support is (d,C)-sparse.

We describe some elementary properties of sparse set systems in Section 3.1. Sparse set systems satisfy
a crucial property we call the reverse union bound, which we explain in Section 3.2. Finally, we discuss
quantized sparse juntas, which are sparse juntas in which the monomial coefficients belong to a fixed finite set.
We show in Section 3.3 that if a quantized sparse junta f is L− 0-close to Boolean (that is, Pr[f /∈ {0, 1}] ≤ ϵ)
then it is also L2-close to Boolean (that is, E[dist(f, {0, 1})2] = O(ϵ)).
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3.1 Elementary properties

We discuss the effect of three natural operations on the sparsity of set systems: union, sum and substitution.
The union of two set systems is their set-theoretic union, and it corresponds to the sum of functions:

supp(f + g) ⊆ supp(f) ∪ supp(g),

where the inclusion is tight generically.

Definition 3.3 (Sum of set systems). If F ,G are set systems then their sum is

F ⊔ G = {A ∪B : A ∈ F , B ∈ G}.

The k′th iterated sum of a set system F is the sum of k copies of F :

F⊔k = {A1 ∪ · · · ∪Ak : A1, . . . , Ak ∈ F}.

Since A1, . . . , Ak are not necessarily distinct, F⊔k includes F⊔ℓ for all non-zero ℓ < k.

The sum of two set systems corresponds to the product of functions:

supp(fg) ⊆ supp(f) ⊔ supp(g),

where the inclusion is tight generically.

Definition 3.4 (Contraction). If F is a set system over V and S ⊆ V then

F|S←1 = {T \ S : T ∈ F}.

Contraction corresponds to substituting the value of variables:

supp(f |yS←1) ⊆ supp(f)|S←1,

and the inclusion is tight generically.
Union, sum and contraction all preserve sparsity, after adapting the parameters.

Lemma 3.5. Let F ,G be (d,C)-sparse set systems.

(a) F ∪ G is (d, 2C)-sparse.

(b) F ⊔ G is (2d,Od(C))-sparse.

(c) F⊔k are (kd,Ok,d(C))-sparse.

(d) F|J←1 is (d,Od,|J|(C))-sparse.

Proof. Every set system satisfies the definition of (d,C)-sparse for e = 0, and so it suffices to prove it for
e ≥ 1.

Item a. Let F ,G be (d,C)-sparse set systems. Given R and e ≥ 1, there are at most Ce sets in each of
F ,G of size |R|+ e which contain R. Therefore there are at most 2Ce ≤ (2C)e sets in F ∪ G of size |R|+ e
which contain R.
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Item b. Let F ,G be (d,C)-sparse set systems. Given R and e, we need to bound the number of sets
S = A ∪B such that A ∈ F , B ∈ G, A ∪B ⊇ R, and |A ∪B| = |R|+ e. We can assume that |R| ≤ d.

We will show that for every a, ar, ab ≤ |R| there are at most 4dCe pairs (A,B) such that:

(i) A ∈ F , B ∈ G, A ∪B ⊇ R, |A ∪B| = |R|+ e.

(ii) |A| = a, |A ∩R| = ar, and |A ∩B| = ab.

Since there are at most (d+ 1)3 many options for a, ar, ab, this will complete the proof.

There are
(|R|
ar

)
≤ 2d choices for A ∩R such that |A ∩R| = ar. Since F is (d,C)-sparse, there are at most

Ca−ar sets A ∈ F extending A ∩R of size a. There are
(|A|
ab

)
≤ 2a ≤ 2d choices for A ∩B.

Notice that B needs to contain both A∩B and R\A, two sets which are disjoint. Also, since |A∪B| = |R|+e,
we have |B| = |A ∪B|+ |A ∩B| − |A| = |R|+ e+ ab − a. Since G is (d,C)-sparse, the number of sets B ∈ G
of size b extending (A ∩B) ∪ (R \A) is at most C(|R|+e+ab−a)−ab−(|R|−ar) = Ce−a+ar .

Altogether, given a, ar, ab, the number of pairs A,B satisfying the properties listed above is bounded by

2d︸︷︷︸
A∩R

· Ca−ar︸ ︷︷ ︸
A given A∩R

· 2d︸︷︷︸
A∩B given A

· Ce−a+ar︸ ︷︷ ︸
B given A∩R,A∩B

= 4dCe,

as required.

Item c. This item follows from Items a and b by induction on k.

Item d. Let F be a (d,C)-sparse set system, and let J be a set. Given R and e, we need to bound the
number of sets T ∈ F such that T \ J ⊇ R and |T \ J | = |R|+ e. We can assume that R is disjoint from J .

We will bound the number of such sets T given I = T ∩ J . Any such set T contains both I and R, and
|T | = |T \ J |+ |T ∩ J | = |R|+ e+ |I|. Since F is (d,C)-sparse, there are at most C(|R|+e+|I|)−(|I|+|R|) = Ce

sets T ∈ F containing I ∪R and of size |R|+ e+ |I|. We conclude that the number of sets T ∈ F such that
T \ J ⊇ R and |T \ J | = |R|+ e is at most∑

I⊆J

Ce ≤ 2|J|Ce ≤ 2dCe ≤ (2dC)e.

Lemma 3.6. Let F ,G be (d,C, ϵ)-sparse.

(a) F ∪ G is (d, 2C, ϵ)-sparse.

(b) F ⊔ G is (2d,Od(C), ϵ)-sparse. For this it suffices that G be (d,C)-sparse.

(c) F⊔k are (kd,Ok,d, ϵ)-sparse.

Proof.

Item a. Let F ,G be (d,C, ϵ)-sparse set systems. Lemma 3.5 shows that F ∪ G is (d, 2C)-sparse. Given
e ≥ 1, there are at most Ceϵ sets of size e in each of F ,G. Therefore there are at most 2Ceϵ ≤ (2C)eϵ sets of
size e in F ∪ G.

The case e = 0 requires special treatment. If ϵ < 1 then F ,G do not contain ∅, and so F ∪ G also doesn’t
contain ∅. If ϵ ≥ 1 then clearly F ∪ G contains at most ϵ sets of size 0.
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Item b. Let F be a (d,C, ϵ)-sparse set system and let G be a (d,C)-sparse set system. Lemma 3.5 shows
that F ⊔ G is (d,Od(C))-sparse.

Given e, we need to bound the number of sets S = A ∪B of size e, where A ∈ F and B ∈ G. For this, we
show that for each a, ab ≤ d, there are at most 2dCeϵ sets A ∪B of size e such that A ∈ F , B ∈ G, |A| = a,
and |A ∩B| = ab.

Indeed, there are at most Caϵ sets A ∈ F of size a. Given A, there are at most
(|A|
ab

)
≤ 2d choices for

A ∩B. Since |A ∪B| = e, we have |B| = |A ∪B|+ |A ∩B| − |A| = e+ ab − a. Therefore given A ∩B, there
are at most Ce−a sets B ∈ G including A ∩B such that |A ∪B| = e. Altogether, given a, ab, the number of
pairs A,B satisfying the properties listed above is bounded by

Caϵ︸︷︷︸
A

· 2d︸︷︷︸
A∩B given A

· Ce−a︸ ︷︷ ︸
B given A∩B

= 2dCeϵ,

as claimed.
Since there are at most (d+ 1)2 many options for a, ab, this shows that the number of sets S ∈ F ⊔ G of

size e ≥ 1 is at most (d+ 1)22dCeϵ ≤ ((d+ 1)22dC)eϵ, completing the proof except for the case e = 0.
In order to handle the case e = 0, we again consider whether ϵ < 1 or not. If ϵ < 1 then ∅ /∈ F and so

∅ /∈ F ⊔ G. If ϵ ≥ 1 then F ⊔ G trivially contains at most ϵ sets of size 0.

Item c. This item follows from Items a and b by induction on k.

3.2 Reverse union bound

Let F be a set system. The union bound shows that

Pr
Y∼µp

[Y ⊇ S for some S ∈ F ] ≤
∑
S∈F

p|S|.

In general, the union bound is not tight. For example, suppose that F = {{1}, . . . , {n}}. As n → ∞, the
left-hand side tends to 1 while the right-hand side tends to infinity. More generally, if F = {[m] ∪ {m +
1}, . . . , [m] ∪ {n}} then the left-hand side tends to pm while the right-hand side tends to infinity.

In this section, we show that the union bound is tight up to a constant factor provided that F is sparse.

Lemma 3.7 (Reverse union bound). Let p ≤ 1/2, let G be a (d,C/p)-sparse set system, and let F ⊆ G.
For S ∈ F , let ES denote the event that yS = 1 and yR = 0 for all R ∈ G such that R ̸⊆ S.
Let E denote the union of the events ES for all S ∈ F . Then

Pr[E ] = Θd,C

(∑
S∈F

p|S|

)
.

Proof. Let M consist of the inclusion-minimal sets in F . Since M is an antichain, the events ES for S ∈ M
are disjoint, and so

Pr[E ] = Pr

[ ⋃
S∈M

ES

]
=
∑
S∈M

Pr[ES ] ≤
∑
S∈M

p|S|.

For every S ∈ M,

Pr[ES ] = p|S| Pr[yT = 0 for all ∅ ≠ T ∈ F|S←1]
(∗)
≥

∏
∅̸=T∈F|S←1

Pr[yT = 0],

where (∗) follows from the Harris–FKG inequality since the events yT = 0 are anti-monotone. Lemma 3.5
shows that F|S←1 is (d,K/p)-sparse, where K depends only on d,C. Therefore

Pr[ES ] ≥ p|S|
d∏

e=1

(1− pe)K
e/pe

≥ p|S|
d∏

e=1

(1− 2−e)(2K)e = Ωd,C(p
|S|),
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since (1− x)1/x is decreasing in [0, 1]. Therefore

Pr[E ] ≥ Ωd,C

(∑
S∈M

p|S|

)
.

So far, we have shown that

Pr[E ] = Θd,C

(∑
S∈M

p|S|

)
.

In order to complete the proof, we will show that

∑
S∈F

p|S| = Θd,C

(∑
S∈M

p|S|

)
.

Since M ⊆ F , clearly ∑
S∈F

p|S| ≥
∑
S∈M

p|S|.

In the other direction, if T ∈ F then T ⊇ S for some S ∈ M, and so

∑
T∈F

p|T | ≤
∑
S∈M

d∑
e=|S|

∑
T∈F

T⊇S,|T |=e

pe ≤
∑
S∈M

d∑
e=|S|

(C/p)e−|S|pe ≤
∑
S∈M

(d+ 1)Cdp|S| = Θd,C

(∑
S∈M

p|S|

)
.

When F = G, we recover the statement that the union bound is tight up to a constant factor for sparse
set systems. Indeed, if E happens then in particular Y ⊇ S for some S ∈ F , and so the Lemma shows that

Pr
Y∼µp

[Y ⊇ S for some S ∈ F ] ≥ Pr[E ] = Ωd,C

(∑
S∈F

p|S|

)
.

3.3 Quantized sparse juntas

The sparse juntas that we consider later on will arise from applying the junta agreement theorem, Theorem 1.6.
Such functions are quantized in the following sense.

Definition 3.8 (Quantized functions). A function f : {0, 1}n → R is B-quantized, where B is a finite set, if
all monomial coefficients of f belong to B.

Quantization is preserved under basic operations.

Lemma 3.9. Let f, g : {0, 1}n → R be B-quantized functions of degree d, where B is a finite set.

(a) For any c ∈ R, the function cf is cB-quantized, where cB = {cb : b ∈ B}.

(b) The function f + g is (B +B)-quantized, where B +B = {b1 + b2 : b1, b2 ∈ B}.

(c) The function fg is C-quantized, where C is a finite set depending only on d,B.

Proof. Items a and b are clear. For Item c, we use the formula

f̃g(U) =
∑

S∪T=U

f̃(S)g̃(T ),

which shows that f̃g(U) is the sum of 3|U | ≤ 32d products of two elements from B.
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The junta agreement theorem will result in a quantized sparse junta g which is close to Boolean in
an L0 sense: Pr[g /∈ {0, 1}] = O(ϵ). In this section, we show how to conclude closeness in an L2 sense:
Pr[dist(g, {0, 1})2] = O(ϵ).

We start with a similar result which compares the L0 and L2 norms.

Lemma 3.10. If f : ({0, 1}n, µp) → R is a B-quantized (d,C/p)-sparse junta, where p ≤ 1/2, then

Pr[f ̸= 0] = Θd,C,B(E[f2]).

Proof. If f ̸= 0 then clearly yS = 1 for some S ∈ supp(f), and so the union bound shows that

Pr[f ̸= 0] ≤
∑

S∈supp(f)

p|S|.

We can get a matching lower bound using Lemma 3.7. Let F be all inclusion-minimal sets in supp(f), and
let G = supp(f). If the event ES in the Lemma happens for some S ∈ F then f = f̃(S) ̸= 0, and so

Pr[f ̸= 0] ≥ Pr[E ] = Ωd,C

(∑
S∈F

p|S|

)
.

The calculation at the very end of the proof of Lemma 3.7 shows that

∑
S∈supp(f)

p|S| = Od,C

(∑
S∈F

p|S|

)
,

and we conclude that

Pr[f ̸= 0] ≥ Pr[E ] = Ωd,C

 ∑
S∈supp(f)

p|S|

 . (2)

Similarly,

E[f2] ≥ min
b∈B
b ̸=0

b2 Pr[E ] = Ωd,C,B

 ∑
S∈supp(f)

p|S|

 = Ωd,C,B(Pr[f ̸= 0]).

Equation (2) implies that supp(f) is (d,C/p, ϵ)-sparse, where ϵ = Od,C(Pr[f ̸= 0]). Lemma 3.6 shows
that supp(f2) ⊆ supp(f)⊔2 is (2d,K/p, ϵ)-sparse, where K = Od,C(1), and Lemma 3.9 shows that f2 is
D-quantized for some finite B′ depending only on d,B. Therefore

E[f2] ≤ max
b∈B′

b2
2d∑
e=0

(K/p)eϵ = Od,C,B(Pr[f ̸= 0]).

Using this, we derive the main result of this section.

Lemma 3.11. If f : ({0, 1}n, µp) → R is a B-quantized (d,C/p)-sparse junta, where p ≤ 1/2, then

Pr[f /∈ {0, 1}] = Θd,C,B(E[dist(f, {0, 1})2]).

Proof. Let g = f(f − 1). Since supp(g) ⊆ supp(f)⊔2, Lemmas 3.5 and 3.9 show that g is a B′-quantized
(d,K/p)-sparse junta, where B′,K depend on d,C,B. Therefore Lemma 3.10 implies that

Pr[f /∈ {0, 1}] = Pr[g ̸= 0] = Θd,C,B(E[g2]).

We show that E[dist(f, {0, 1})2] = Od,C,B(Pr[f /∈ {0, 1}]) by relating E[dist(f, {0, 1})2] to E[g2]. Consider
any input y. If round(f, {0, 1}) = a then |y − (1− a)| ≥ 1/2 and so (f(y)− (1− a))2 ≥ 1/4. Consequently,

dist(f(y), {0, 1})2 = (f(y)− a)2 ≤ 4(f(y)− a)2(f(y)− (1− a))2 = 4g(y)2.
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It follows that
E[dist(f, {0, 1})2] ≤ 4E[g2] = Od,C,B(Pr[f /∈ {0, 1}]).

The proof of the other direction, Pr[f /∈ {0, 1}] = Od,C,B(E[dist(f, {0, 1})2]), uses the notion of minimal
non-Boolean input, defined in Section 2.2. If f(y) /∈ {0, 1} then y ≥ 1S for some minimal non-Boolean input
1S of f , implying that yS = 1. Denoting the set of minimal non-Boolean inputs of f by F , this shows that

Pr[f /∈ {0, 1}] ≤
∑
1S∈F

Pr[yS = 1] =
∑
1S∈F

p|S|.

We would like to bound the right-hand side using Lemma 3.7, but it is not necessarily the case that
F ⊆ supp(f). However, Lemma 2.6 shows that F ⊆ supp(f)⊔Ld . Lemma 3.9 shows that supp(f)⊔Ld is
(d,K ′/p)-sparse, where K ′ depends on d,C. Therefore Lemma 3.7, applied with F and G = supp(f)⊔Ld ,
shows that

Pr[f /∈ {0, 1}] ≤
∑
1S∈F

p|S| = Θd,C(Pr[E ]),

where E is the event that yS = 1 for some S ∈ F , and yR = 0 for all R ∈ supp(f)⊔Ld such that R ⊆ S. If the
event E happens then f(y) = f(1S) /∈ {0, 1}. Moreover, since |S| ≤ Ld by Lemma 2.6 and f is B-quantized,
dist(f(y), {0, 1})2 = Ωd,B(1). Therefore

Pr[f /∈ {0, 1}] = Od,C,B(E[dist(f, {0, 1})2]).

4 Junta agreement theorem

We prove our main structure theorems, Theorems 1.1 and 1.2, by reduction to the Kindler–Safra theorem
on ({0, 1}n, µ1/2). As we explain in Section 1.2, this involves applying the Kindler–Safra theorem to f |S for
S ∼ µ2p, obtaining approximating juntas gS , and pasting the juntas together to a global function g.

In order to show that the juntas gS can be pasted together, we need to assume that they agree with each
other, in the sense that

Pr
(S1,S2,T )∼ν

[gS1
|T ̸= gS2

|T ] ≤ ϵ

for an appropriate distribution ν supported on triplets (S1, S2, T ) such that S1, S2 ⊇ T .
Since we are interested in the behavior of gS for S ∼ µ2p, we need the marginals of S1 and S2 to be µ2p.

Moreover, we want S1 and S2 to be independent given T . This naturally leads to the product distribution
µq,r (where q = 2p and r ≤ q), which is defined as follows:

1. T includes each i ∈ [n] with probability r.

2. For ℓ ∈ {1, 2}, Sℓ includes each i ∈ T with probability 1, and each i /∈ T with probability q−r
1−r .

It is easy to check that the marginal distributions of S1, S2, T are µq, µq, µr, respectively.
We can now state the junta agreement theorem, which is a formal statement of Theorem 1.6.

Theorem 4.1 (Junta agreement theorem). Fix an integer K and c ∈ (0, 1). The following holds for all
q ∈ (0, 1).

Suppose that for each S ⊆ [n] we are given a degree d function gS : {0, 1}n → {0, 1} whose monomial
support contains at most K monomials (the junta assumption). Assume that the functions gS satisfy the
following agreement condition:

Pr
(S1,S2,T )∼µq,cq

[gS1 |T ̸= gS2 |T ] ≤ ϵ.

Define a degree d function g : {0, 1}n → {0, 1} as follows: for each |A| ≤ d, let g̃(A) be any value a
maximizing

Pr
S∼µq

S⊇A

[g̃S(A) = a].
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The function g is a (d,OK,c(1/q))-sparse junta satisfying

Pr
S∼µq

[g|S ̸= gS ] = OK,c(ϵ).

In the statement of the Theorem and below, we use the convention that in Pr and E, we take the
distribution on the first line of the subscript conditioned on the constraints in the following lines. For example,
in the second display, S is chosen by including all elements in A with probability 1 and all elements outside
of A with probability q.

Our previous work [DFH17] proves a stronger version of Theorem 4.1, which does not require the gS to
be juntas but has the same conclusion (without the guarantee that g is a sparse junta, which follows from the
gS being juntas). The proof of this stronger version is somewhat non-intuitive, using the notion of good and
excellent sets which is borrowed from [IKW12]. It turns out that the proof simplifies dramatically when the
gS are juntas, and this is the proof that we present here.

The proof of Theorem 4.1 relies on the following expansion lemma.

Lemma 4.2. Assume the setup of Theorem 4.1. There exists a constant Tc, depending only on c, such that
for every |A| ≤ d,

Pr
S1,S2∼µq

S1,S2⊇A

[g̃S1
(A) ̸= g̃S2

(A)] ≤ Tc Pr
(S1,S2,T )∼µq,cq

T⊇A

[g̃S1
(A) ̸= g̃S2

(A)].

We first derive Theorem 4.1 assuming Lemma 4.2, and then prove Lemma 4.2 using elementary Fourier
analysis.

Proof of Theorem 4.1.

Agreement Our first goal is to show that Pr[g|S ̸= gS ] = OK,c(ϵ). We start by applying the union bound
to relate the probability to disagreement on a particular monomial coefficient:

Pr
S∼µq

[g|S ̸= gS ] ≤
∑
|A|≤d

Pr
S∼µq

[S ⊇ A and g̃(A) ̸= g̃S(A)] =
∑
|A|≤d

q|A| Pr
S∼µq

S⊇A

[g̃(A) ̸= g̃S(A)].

We chose g̃(A) as a value a minimizing Pr[g̃S(A) ̸= a | S ⊇ A], and so

Pr
S∼µq

[g|S ̸= gS ] ≤
∑
|A|≤d

q|A| Pr
S1,S2∼µq

S⊇A

[g̃S1(A) ̸= g̃S2(A)].

We can relate this to the agreement condition using Lemma 4.2:

Pr
S∼µq

[g|S ̸= gS ] ≤ Tc

∑
|A|≤d

q|A| Pr
(S1,S2,T )∼µq,cq

T⊇A

[g̃S1
(A) ̸= g̃S2

(A)]

= Tc

∑
|A|≤d

c−|A| Pr
(S1,S2,T )∼µq,cq

[T ⊇ A and g̃S1
(A) ̸= g̃S2

(A)].

In order to use the junta assumption, we move the sum over A inside:

Pr
S∼µq

[g|S ̸= gS ] ≤ Tcc
−d E

(S1,S2,T )∼µq,cq

[disagreements(gS1
|T , gS2

|T )],

where disagreements counts the number of different monomial coefficients. The junta assumption implies
that there are at most 2K disagreements, and so

Pr
S∼µq

[g|S ̸= gS ] ≤ Tcc
−d2K Pr

(S1,S2,T )∼µq,cq

[gS1
|T ̸= gS2

|T ] = OK,c(ϵ).
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Sparse junta It remains to show that g is a (d,OK,c(1/q))-sparse junta. The main observation is that if
g̃(A) ̸= 0 then

Pr
S∼µq

S⊇A

[g̃S(A) = 0] ≤ Pr
S∼µq

S⊇A

[g̃S(A) = g̃(A)] ≤ Pr
S∼µq

S⊇A

[g̃S(A) ̸= 0],

implying that

Pr
S∼µq

S⊇A

[g̃S(A) ̸= 0] ≥ 1

2
,

and so

Pr
S∼µq

[S ⊇ A and g̃S(A) ̸= 0] ≥ 1

2
q|A|.

Given |R| ≤ d, we deduce that∑
A∈supp(g)

A⊇R

1

2
q|A| ≤

∑
A∈supp(g)

A⊇R

Pr
S∼µq

[S ⊇ A and g̃S(A) ̸= 0] ≤ E
S∼µq

[| supp(gS)| · 1S⊇R] ≤ q|R|K.

We conclude that the number of sets A ∈ supp(g) containing R of size |R|+ e is at most 2Kq−e ≤ (2K/q)e,
as needed.

4.1 Proof of Lemma 4.2

It remains to prove Lemma 4.2. We first observe that we can sample S1, S2 on the left by sampling

S′1, S
′
2 ∼ µq({0, 1}A) and then taking Sb = S′b ∪ A. We can similarly sample S1, S2, T on the right via

(S′1, S
′
2, T

′) ∼ µq,cq({0, 1}A). Henceforth we will omit the domain {0, 1}A in such expressions to avoid clutter.

For every σ ∈ R we define the indicator function hσ : {0, 1}A → {0, 1} by

hσ(S
′) = [g̃S′∪A(A) = σ].

We can rephrase Lemma 4.2 in these terms as follows:∑
σ

E
S′1,S

′
2∼µq

[hσ(S1)(1− hσ(S2))] ≤ Tc

∑
σ

E
(S′1,S

′
2,T )∼µq,cq

[hσ(S1)(1− hσ(S2))].

Lemma 4.2 thus reduces to the following statement.

Lemma 4.3. Let h : {0, 1}n′ → {0, 1} be an indicator function. There exists a constant Tc, depending only
on c, such that

E
S′1,S

′
2∼µq

[h(S′1)(1− h(S′2))] ≤ Tc E
(S′1,S

′
2,T )∼µq,cq

[h(S′1)(1− h(S′2))].

At this point, we invoke Fourier analysis on ({0, 1}n′ , µq). The Fourier basis for this domain is given by
the functions

ωS(y) =
∏
i∈S

ω(y), where ω(y) =
y − q√
q(1− q)

.

This basis is orthonormal with respect to µq, and the corresponding Fourier expansion of h is

h(y) =
∑
U

ĥ(U)ωS(y),

where ĥ(∅) = E[h]. Since h is Boolean, we furthermore have

E[h] = E[h2] =
∑
U

ĥ(U)2.
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This allows us to express the left-hand side of Lemma 4.3 as

E
S′1,S

′
2∼µq

[h(S′1)(1− h(S′2))] = E[h]− E[h]2 =
∑
U ̸=∅

ĥ(U)2.

In order to express the right-hand side in a similar form, we need to compute

ρc = E
(s1,s2,t)∼µq,cq

[ω(s1)ω(s2)].

Given the value of ρc, the expectation on the right-hand side of Lemma 4.3 is

E
(S′1,S

′
2,T )∼µq,cq

[h(S′1)(1− h(S′2))] =
∑
U

ĥ(U)2 −
∑
U

ρ|U |c ĥ(U)2 ≥ (1− ρc)
∑
U ̸=∅

ĥ(U)2.

Therefore Lemma 4.3 holds as long as Tc ≥ 1/(1− ρc).
In order to complete the proof of Lemma 4.3, we compute ρc. If (s1, s2, t) ∼ µq,cq then Pr[s1 = 1] =

Pr[s2 = 1] = q and

Pr[s1 = s2 = 1] = cq + (1− cq)
(q − cq)2

(1− cq)2
=

q2 − 2cq2 + cq

1− cq
.

Therefore

ρc = E
(s1,s2,t)∼µq,cq

[
(s1 − q)(s2 − q)

q(1− q)

]
=

1

q(1− q)

[
q2 − 2cq2 + cq

1− cq
− q2

]
=

cq(1− q)

(1− cq)q
≤ c,

implying that we can take Tc = 1/(1− c).

5 Structure theorem

In this section we prove our main structure theorem, Theorem 1.1, which we reformulate using terminology
defined in Section 2.

Theorem 5.1. Suppose that f : ({0, 1}n, µp) → {0, 1} is ϵ-close to degree d, where p ≤ 1/2. Then Pr[f ̸=
g] = O(ϵ) and E[(f − g)2] = O(ϵ) for some function g : ({0, 1}n, µp) → R satisfying the following properties:

(i) If y ∈ {0, 1}n has weight at most d then g(y) ∈ {0, 1}.

(ii) g is a (d,Od(1/p))-sparse junta.

(iii) For every e, the number of minimal non-Boolean inputs of g of weight e is Od(ϵ/p
e).

Conversely, if g satisfies these properties, then it is Od(ϵ)-close to Boolean.

Corollary 5.2. Let f be as in the theorem. Then f is Od(ϵ)-close to round(g, {0, 1}), where g is the function
in the theorem.

Conversely, if g satisfies the conditions in the theorem, then round(g, {0, 1}) is Od(ϵ)-close to degree d.

Proof of Corollary 5.2. Let f be as in the theorem. Then

Pr[f ̸= round(g, {0, 1})] ≤ Pr[f ̸= g] = O(ϵ).

Conversely, suppose that g satisfies the conditions in the theorem. Then g has degree d and

E[(round(g, {0, 1})− g)2] = Od(ϵ)

since g is Od(ϵ)-close to Boolean.
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Henceforth, all big O constants will depend on d, and we do not mention this explicitly.
Most of the effort will be concentrated on proving the direct part of the theorem, which we will do in two

steps:

1. We first construct a sparse junta h which is O(ϵ)-close to f .

2. We then modify h to a sparse junta g which satisfies the first two properties in the theorem, and show
that it satisfies the third property as well.

We then prove the easier converse part of the theorem.

5.1 Step 1: Agreement

Since f is ϵ-close to degree d, there is a degree d function f≤d such that Eµp [(f − f≤d)2] ≤ ϵ.
For S ⊆ [n], define

ϵS = E
µ1/2

[(f |S − f≤d|S)2],

where µ1/2 refers to the distribution µ1/2({0, 1}S); below we usually omit the domain. Since sampling S ∼ µ2p

and y ∼ µ1/2({0, 1}S) is the same as sampling y ∼ µp,

E
S∼µ2p

[ϵS ] = E
µp

[(f − f≤d)2] ≤ ϵ.

Applying the Kindler–Safra theorem (Theorem 2.3), there exist Boolean degree d functions gS such that
Eµ1/2

[(f |S − gS)
2] = O(ϵS), and so

E
S∼µ2p

[
E

µ1/2

[(f |S − gS)
2]

]
= O

(
E

S∼µ2p

[ϵS ]

)
= O(ϵ).

We would like to paste the functions gS to a global function h using the junta agreement theorem
(Theorem 4.1), which we will apply with K = Md (the value from Theorem 2.1), c =

√
1/2, and q = 2p.

Theorem 2.1 shows that each gS is a K-junta. In order to apply the junta agreement theorem, we need to
verify the agreement condition:

Pr
(S1,S2,T )∼µ2p,

√
2p

[gS1
|T ̸= gS2

|T ] = O(ϵ).

To see this, first notice that since gS1 and gS2 are both K-juntas, if gS1 |T ≠ gS2 |T then Prµ√
1/2

[gS1 |T ̸=

gS2
|T ] ≥

√
1/2

2K
= 2−K . Since gS1

and gS2
are Boolean, this shows that

Pr
(S1,S2,T )∼µ2p,

√
2p

[gS1 |T ̸= gS2 |T ] ≤ 2K E
(S1,S2,T )∼µ2p,

√
2p

[
E

µ√
1/2

[(gS1 |T − gS2 |T )2]

]
.

Applying the inequality (gS1 |T − gS2 |T )2 ≤ 2(gS1 |T − f |T )2 + 2(gS2 |T − f |T )2, we obtain

Pr
(S1,S2,T )∼µ2p,

√
2p

[gS1
|T ̸= gS2

|T ] ≤ 2K+1 E
(S1,S2,T )∼µ2p,

√
2p

[
E

µ√
1/2

[(gS1
|T − f |T )2]

]
.

We can choose (S1, T ) in the following way: choose S1 ∼ µ2p, and choose T ∼ µ√
1/2

(S1). If we then choose

y ∼ µ√
1/2

(T ) then y ∼ µ1/2(S1). This shows that

Pr
(S1,S2,T )∼µ2p,

√
2p

[gS1 |T ̸= gS2 |T ] ≤ 2K+1 E
S∼µ2p

[
E

µ1/2

[(gS − f |S)2]
]
= O(ϵ),
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and so the agreement condition is satisfied.
Applying the junta agreement theorem, we obtain a (d,O(1/p))-sparse junta h such that

Pr
S∼µ2p

[h|S ̸= gS ] = O(ϵ).

Furthermore, each monomial coefficient of h is a monomial coefficient of some Boolean K-junta. Since there
are finitely many Boolean K-juntas, h is B-quantized for some finite set B depending only on d.1

To conclude this step of the proof, we need to show that Eµp
[(f − h)2] = O(ϵ). We first show that

Prµp
[f ̸= h] = O(ϵ). Indeed,

Pr
µp

[f ̸= h] = E
S∼µ2p

[
Pr
µ1/2

[f |S ̸= h|S ]
]
≤ E

S∼µ2p

[
Pr
µ1/2

[f |S ̸= gS ] + [gS ̸= h|S ]
]
= O(ϵ).

(The term [gS ̸= g|S ] is an indicator.)
In order to convert this L0 guarantee to an L2 guarantee, we use Lemma 3.11, which implies that

E
µp

[dist(h, {0, 1})2] = O(Pr
µp

[h /∈ {0, 1}]) = O(Pr
µp

[h ̸= f ]) = O(ϵ).

This implies that

E
µp

[(f − h)2] ≤ 2 E
µp

[(f − round(h, {0, 1}))2] + 2 E
µp

[(round(h, {0, 1})− h)2] = 2Pr
µp

[f ̸= h] +O(ϵ) = O(ϵ).

Concluding, in this step we have constructed a function h satisfying the following properties:

(i) h is a (d,C/p)-sparse junta.

(ii) h is B-quantized.

(iii) Pr[h ̸= f ] = O(ϵ).

(iv) E[(h− f)2] = O(ϵ).

In the final two properties, the underlying distribution is µp, which we assume henceforth.

5.2 Step 2: Fixing coefficients

In this step we modify h to a function g which satisfies all properties listed in Theorem 5.1. We do this by
constructing a sequence of functions h = h−1, h0, . . . , hd = g, where he satisfies the following properties:

(i) he is a (d,Ce/p)-sparse junta, where Ce depends only on d, e.

(ii) he is Be-quantized for some finite Be depending only on d, e.

(iii) Pr[he ̸= f ] = Od,e(ϵ).

(iv) E[(he − f)2] = Od,e(ϵ).

(v) he(y) ∈ {0, 1} if y has weight at most e.

The function h clearly satisfies the properties for e = −1. We now show how to construct he from he−1
for e ∈ {0, . . . , d}.

Given he−1, let F consist of all minimal non-Boolean inputs of he−1 of weight e. We define he by modifying
h̃e(S) for each 1S ∈ F so that he(1S) = 0:

h̃e(S) = −
∑
T⊊S

h̃e−1(T ).

All other monomial coefficients stay the same.

1In fact, we can take B = {a/2d−1 : a ∈ {−2d−1, . . . , 2d−1}}.
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Item i. Lemma 2.6 shows that F ⊆ supp(he−1)
⊔Ld . Lemma 3.5 shows that G = supp(he−1)

⊔Ld is
(Ldd,C

′
e/p)-sparse, for some constant C ′e. Since supp(he) ⊆ supp(he−1) ∪ F , Lemma 3.5 shows that he is a

(d,Ce/p)-sparse junta, for some constant Ce.

Item ii. Each modified monomial coefficient is the negated sum of 2e − 1 monomial coefficients of he−1,
and so he is Be-quantized for some finite set Be.

Item iii. If he(y) ̸= he−1(y) then yS = 1 for some S ∈ F , and so

Pr[he ̸= he−1] ≤
∑
S∈F

p|S|.

In order to bound this, we apply the reverse union bound (Lemma 3.7), concluding that

Pr[he ̸= he−1] = O(Pr[E ]),

where E is the event that for some S ∈ F , it holds that yS = 1 and yR = 0 for all R ∈ G such that R ̸⊆ S. If
E happens then he−1(y) = he−1(1S) /∈ {0, 1}, and so

Pr[he ̸= he−1] = O(Pr[he−1 /∈ {0, 1}]) = O(Pr[he−1 ̸= f ]) = O(ϵ).

Therefore
Pr[he ̸= f ] ≤ Pr[he ̸= he−1] + Pr[he−1 ̸= f ] = O(ϵ).

Item iv. Lemmas 3.5 and 3.9 show that he − he−1 is a B+
e -quantized (d,O(1/p))-sparse junta, for some

finite set B+
e . Therefore Lemma 3.10, applied with f = he − he−1, shows that

E[(he−1 − he)
2] = O(Pr[he−1 ̸= he]) = O(ϵ).

Consequently
E[(he − f)2] ≤ 2E[(he − he−1)

2] + 2E[(he−1 − f)2] = O(ϵ).

Item v. Since we only modified monomial coefficients of size e, clearly he(y) ∈ {0, 1} for y of weight less
than e. By construction, he(y) ∈ {0, 1} for y of weight exactly e.

Concluding the proof

Taking g = hd, the function g satisfies all properties stated in Theorem 5.1, except for Item iii, which states
that the number of minimal non-Boolean inputs of g of weight e is O(ϵ/pe).

Let F consist of all minimal non-Boolean inputs of g. Lemma 2.6 shows that F ⊆ G = supp(g)⊔Ld .
Applying Lemma 3.5 and the reverse union bound just as above, we conclude that∑

S∈F
p|S| = O(Pr[g /∈ {0, 1}]) = O(Pr[g ̸= f ]) = O(ϵ).

Therefore F contains at most O(ϵ/pe) inputs of weight e.

5.3 Converse part

We conclude the proof of Theorem 5.1 by proving the converse direction. Suppose that g satisfies the three
properties in the statement of the theorem:

(i) g(y) ∈ {0, 1} whenever y ∈ {0, 1}n has weight at most d.
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(ii) g is a (d,O(1/p))-sparse junta.

(iii) g has O(ϵ/pe) minimal non-Boolean inputs of weight e, for every e.

We need to show that g is O(ϵ)-close to Boolean.
We start by showing that the monomial coefficients of g are quantized. Theorem 2.1 implies that Boolean

degree d functions are B-quantized for some finite B depending only on d. If |A| ≤ d then g|A is a Boolean
degree d function by Item i, and so g̃(A) ∈ B. In other words, g is also B-quantized.

If g(y) /∈ {0, 1} then y ≥ z for some minimal non-Boolean input z. If z has weight e then the probability
that y ≥ z is pe. Lemma 2.6 shows that z has weight at most Ld, and so

Pr[g /∈ {0, 1}] ≤
∑
e≤Ld

pe ·O(ϵ/pe) = O(ϵ).

Lemma 3.11 concludes that g is O(ϵ)-close to Boolean.

6 Monotone structure theorems

In this section we prove Theorem 1.2. We start by proving a monotone version of Theorem 5.1, which is
interesting in its own right, and then deduce Theorem 1.2 from it.

6.1 Monotone version of Theorem 5.1

We start by proving a monotone version of Theorem 5.1.

Theorem 6.1. Suppose that f : ({0, 1}n, µp) → {0, 1} is monotone and ϵ-close to degree d, where p ≤ 1/2.
Then f is O(ϵ)-close to a function g : ({0, 1}n, µp) → R satisfying the following properties:

(i) If |S| ≤ d then g|S is monotone and Boolean.

(ii) g is a (d,Od(1/p))-sparse junta.

(iii) For every e, the number of minimal non-Boolean inputs of g of weight e is Od(ϵ/p
e).

(iv) For every e, the number of minimal non-monotone Boolean inputs of g of weight e is Od(ϵ/p
e).

Conversely, if g satisfies these properties then it is Od(ϵ)-close to some monotone Boolean function.

Corollary 6.2. Let f be as in theorem. Then f is Od(ϵ)-close to round(g, {0, 1}), where g is the function in
the theorem.

Conversely, if g satisfies the conditions in the theorem, then round(g, {0, 1}) is Od(ϵ)-close to a monotone
Boolean function which is Od(ϵ)-close to degree d.

Proof of Corollary 6.2. The first statement follows as in the proof of Corollary 5.2. Now suppose that g
satisfies the conditions in the theorem. According to the theorem, E[(g − f)2] = Od(ϵ) for some monotone
Boolean function f . Since g has degree d, f is Od(ϵ)-close to degree d.

The proof of the direct part of Theorem 6.1 closely resembles the proof of the direct part of Theorem 5.1,
while the proof of the converse part is a little bit more tricky. For both proofs, we suppress the dependence
of big O constants on d.
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Direct part

Suppose that f : ({0, 1}n, µp) → {0, 1} is monotone and ϵ-close to degree d. The argument in Section 5.1
applies, constructing a function h which satisfies the properties stated there (we repeat them below as part
of the proof). We now run an argument in the style of Section 5.2, constructing a sequence of functions
h = h−1, h0, . . . , hd = g, where he satisfies the following properties:

(i) he is a (d,Ce/p)-sparse junta, where Ce depends only on d, e.

(ii) he is Be-quantized for some finite Be depending only on d, e.

(iii) Pr[he ̸= f ] = Od,e(ϵ).

(iv) E[(he − f)2] = Od,e(ϵ).

(v) he|S is a monotone Boolean function if |S| ≤ e.

The function h constructed in Section 5.1 satisfies these properties for e = −1. We now show how to
construct he from he−1 for e ∈ {0, . . . , d}, using a modification of the construction in Section 5.2.

Given he−1, let Fb consist of all minimal non-Boolean inputs of he−1 of weight e, let Fm consist of all
minimal non-monotone Boolean inputs of he−1 of weight e, and let F = Fb ∪Fm. We define he by modifying
h̃e(S) for each 1S ∈ F so that he(1S) = 1. All other monomial coefficients stay the same.

Item i follows just as in Section 5.2, using Lemma 2.7 in addition to Lemma 2.6. We need to take
G = supp(f)⊔max(Ld,Md). Item ii follows as in Section 5.2.

Item iii requires a new argument. If he(y) ̸= he−1(y) then yS = 1 for some S ∈ F , and so

Pr[he ̸= he−1] ≤
∑
S∈Fb

p|S| +
∑

S∈Fm

p|S|.

The argument in Section 5.2 shows that the first term on the right is O(ϵ). In order to bound the second
term, we apply the reverse union bound (Lemma 3.7) with p := 2p, concluding that∑

S∈Fm

p|S| ≤
∑

S∈Fm

(2p)|S| = O(Pr
µ2p

[E ]),

where E is the event that for some S ∈ F , it holds that yS = 1 and yR = 0 for all R ∈ supp(G) such that
R ̸⊆ S.

If E happens for some S, an event we denote by ES , then he−1|S is a non-monotone Boolean function of
degree d, which is an Md-junta by Theorem 2.1. Therefore Lemma 2.4 implies that Prµ1/2

[he−1|S ̸= f |S ] ≥
2−Md . Thus

Pr
µp

[he−1 ̸= f ] = Pr
S∼µ2p

y∼µ1/2(S)

[h(y) ̸= f(y)] ≥ 2−Md Pr
µ2p

[E ].

Since the left-hand side is O(ϵ), we conclude that∑
S∈Fm

p|S| = O(Pr
µ2p

[E ]) = O(ϵ).

This shows that Pr[he ̸= he−1] = O(ϵ), and so Pr[he ̸= f ] ≤ Pr[he ̸= he−1] + Pr[he−1 ̸= f ] = O(ϵ).
Item iv follows from Item iii as in Section 5.2. Item v follows by construction.

Concluding the proof Taking g = hd, the function g satisfies all properties stated in Theorem 6.1 except
for Items iii and iv.

Item iii follows as in Section 5.2. In order to prove Item iv, let Fm denote all minimal non-monotone
Boolean inputs of g. The proof of Item iii above shows that∑

S∈Fm

p|S| = O(ϵ),

from which Item iv of the theorem immediately follows.
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Converse part

We conclude the proof of Theorem 6.1 by proving the converse direction. Suppose that g satisfies the
properties in the statement of the theorem:

(i) g(y) ∈ {0, 1} whenever y ∈ {0, 1}n has weight at most d.

(ii) g is a (d,O(1/p))-sparse junta.

(iii) g has O(ϵ/pe) minimal non-Boolean inputs of weight e, for all e.

(iv) g has O(ϵ/pe) minimal non-monotone Boolean inputs of weight e, for all e.

We need to show that g is O(ϵ)-close to some monotone Boolean function f .
Theorem 5.1 shows that g is O(ϵ)-close to the Boolean function G = round(g, {0, 1}). However, G is not

necessarily monotone. Accordingly, we define

f(y) = max
z≤y

G(z),

which is monotone by construction. It remains to show that g is O(ϵ)-close to f . We will show that G is
O(ϵ)-close to f . This would imply that

E[(g − f)2] ≤ 2E[(g −G)2] + 2E[(G− f)2] = O(ϵ) + 2Pr[G ̸= f ] = O(ϵ).

If y = 1S ∈ {0, 1}n is such that no z ≤ y is a minimal non-Boolean input or a minimal non-monotone
Boolean input of g then G|S = g|S and g|S is monotone, implying that f(y) = G(y). Therefore if f(y) ̸= G(y)
then y ≥ z for some input z = 1T which is either a minimal non-Boolean input of g or a minimal non-monotone
Boolean input of g. Since y ≥ z with probability p|T |, if we let F consist of all minimal non-Boolean and
minimal non-monotone Boolean inputs of g then

Pr[G ̸= f ] ≤
∑
1T∈F

p|T | ≤
∑

e≤max(Ld,Md)

pe ·O(ϵ/pe) = O(ϵ),

using Lemmas 2.6 and 2.7 to bound the size of an input in F . This concludes the proof.

6.2 Approximation by monotone DNF

We now deduce Theorem 1.2, which we rephrase as follows.

Theorem 6.3. Suppose that f : ({0, 1}n, µp) → {0, 1} is monotone and ϵ-close to degree d, where p ≤ 1/2.
Then f is O(ϵ)-close to a monotone DNF F which satisfies the following properties:

(i) F is a (d,Od(1/p))-sparse DNF.

(ii) For every e, the number of minimal high-degree inputs of F of weight e is Od(ϵ/p
e).

Conversely, if F is a monotone DNF satisfying these properties then it is Od(ϵ)-close to degree d.

We derive Theorem 6.3 from Theorem 6.1. In the proof, we suppress the dependence of the big O constants
on d.
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Direct part

Suppose that f : ({0, 1}n, µp) → {0, 1} is monotone and ϵ-close to degree d. Applying the direct part of
Theorem 6.1, we obtain a function g satisfying the stated properties which is O(ϵ)-close to f . Applying the
converse part of Theorem 6.1, we obtain a monotone Boolean function F which is O(ϵ)-close to g, and so
O(ϵ)-close to f .

We first show that all minterms of F have weight at most d, using the way that F is constructed in the
proof of the converse part of Theorem 6.1. Recall that G(y) = round(g(y), {0, 1}). Suppose that 1S is an
input of weight larger than d such that F (z) = 0 for all z < 1S , and so G(z) = 0 for all z < 1S . If z = 1T has
weight at most d then g|T = G|T = 0, and so g̃(A) = 0 for all A ⊆ T . It follows that g̃(A) = 0 for all A ⊆ S,
and so G(z) = 0 for all z ≤ 1S , implying that F (1S) = 0. Thus 1S cannot be a minterm of F .

Thus F is a monotone width d DNF, whose minterms are all y of weight at most d such that g(y) = 1 and
g(z) = 0 for all z < y. If y = 1S is such a minterm then g|S = yS , and so g̃(S) = 1. Therefore the minterm
support of F is contained in the monomial support of g. Since g is (d,O(1/p))-sparse, it follows that F is
also (d,O(1/p))-sparse, proving Item i.

It remains to prove Item ii. We first show that F |S = g|S if and only if F |S has degree d. If F |S = g|S
then F |S has degree d. Conversely, suppose that F |S has degree d. Since g|A is Boolean and monotone
whenever |A| ≤ d, we see that F |A = g|A and so f̃(A) = g̃A for all A ⊆ S of size at most d. Since F |S has
degree d, this means that F |S = g|S .

We conclude that if y is a minimal high-degree input of F then it is a minimal input such that F (y) ̸= g(y).
In particular, g|T = F |T is Boolean and monotone for all 1T < y. Since F (y) ̸= g(y), either g(y) ̸= G(y) or
g(y) = G(y) ̸= F (y). If g(y) ̸= G(y) then g(y) /∈ {0, 1}, and so y is a minimal non-Boolean input of g. If
g(y) = G(y) ̸= F (y) then y is a minimal non-monotone Boolean input of g. Item ii now follows from Items iii
and iv of Theorem 6.1.

Converse part

Let F be a monotone DNF satisfying the properties listed in Theorem 6.3. Define

g =
∑
|A|≤d

F̃ (A)yA.

Observe that g|S = F |S if and only if F |S has degree d. In particular, if g(y) ̸= F (y) then y ≥ z for some
minimal high-degree input z of g. Denoting by H the set of all minimal high-degree inputs of g, this implies
that

Pr[g ̸= F ] ≤
∑

1T∈H
p|T | ≤

∑
e≤Ld

pe ·O(ϵ/pe) = O(ϵ),

using Lemma 2.8 to bound the weight of a minimal high-degree input.
In order to upgrade this to an L2 bound, we appeal to Lemma 3.11. First, we need to show that g is a

quantized sparse junta.
Since every monomial coefficient of g is a monomial coefficient of some (monotone) Boolean function on d

coordinates, g is B-quantized for some finite B.
In order to show that g is a sparse junta, let M be the set of minterms of F , and observe that

F =
∑
e

(−1)e
∑

S1,...,Se∈M
yS1∪···∪Se .

In particular, supp(g) ⊆ supp(F )⊔d, where supp(F ) is the monomial support of F . Since F is a (d,O(1/p))-
sparse DNF, Lemma 3.5 implies that g is a (d,O(1/p))-sparse junta.

Applying Lemma 3.11, we see that

E[dist(g, {0, 1})2] = O(Pr[g /∈ {0, 1}]) = O(Pr[g ̸= F ]) = O(ϵ).

Therefore

E[(g − F )2] ≤ 2E[(g − round(g, {0, 1})2] + 2E[(round(g, {0, 1})− F )2] ≤ O(ϵ) + 2Pr[g ̸= F ] = O(ϵ).
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7 Junta approximation

In this section we prove Theorems 1.3 and 1.4. Before restating them, we formally define the parameter
appearing in them.

Definition 7.1. Given d ∈ N, the parameter md is the maximum m such that there exists a degree d
polynomial P satisfying P (0), . . . , P (m− 1) ∈ {0, 1} and P (0) ̸= P (1).

It might not be clear from the definition that md < ∞. In fact, md ≤ 2d. To see this, suppose that P is
a degree d polynomial P such that P (0), . . . , P (m− 1) ∈ {0, 1} and P (0) ̸= P (1). Since P (0) ̸= P (1), the
polynomial P is not constant, and so there can be at most d values x such that P (x) = 0 and at most d
values y such that P (y) = 1. Consequently m ≤ 2d.

We can now restate the two theorems from the introduction, as a single theorem.

Theorem 7.2. Suppose that f : ({0, 1}n, µp) → {0, 1} is ϵ-close to degree d, where p ≤ 1/2. Then for some
constant µd depending only on d,

(a) f is Od(ϵ
1/md + p)-close to a constant Boolean function.

(b) f is Od(ϵ
1/µd)-close to a Boolean degree d function.

Furthermore, the first item becomes false if we replace md by any smaller constant (for any value of the
constant hidden in the big O).

In the rest of this section, we suppress the dependence of big O constants on d.

The constant µd. We do not know the optimal value of µd, and in particular, whether it equals md. If
we consider A-valued functions instead of Boolean functions, a setting we define below, then it is easy to
construct examples in which md,A ̸= µd,A, where md,A, µd,A are the corresponding parameters in the A-valued
setting.

Let A ⊆ R be a finite set. If f(x) ∈ A for all x in the domain of A then we say that f is A-valued. A
{0, 1}-valued function is thus the same as a Boolean function. Everything in this paper generalizes to the
A-valued setting, once we generalize the Kindler–Safra theorem to the A-valued setting (this can be done
in a black-box way, as shown in the full version of [DFH19], available on arXiv (1711.09428) and ECCC
(TR17-180)).

When d = 1, it is not hard to check that m1,A is the size of the largest arithmetic progression in A.
Therefore if a, b, c are linearly independent over Q then the alphabet

A = {0, a, b, c, a+ b, a+ c, b+ c}

satisfies m1,A = 2. Now consider the function

f = ay1 + by2 + cy3.

By construction, f is Θ(p3)-close to A, and so F = round(f,A) is Θ(p3)-close to degree 1. All A-valued
degree 1 functions depend on at most two coordinates, and so are Ω(p)-far from f . This shows that µd,A ≥ 3.

7.1 Converse part

The converse part of Theorem 7.2 is easy to prove, and serves to motivate the statement.

Proof of converse part. Let P be a degree d polynomial such that P (0), . . . , P (md − 1) ∈ {0, 1} and P (0) ̸=
P (1). For any p ≤ 1/2 and ϵ ≤ 1, define

fp,ϵ = P (y1 + · · ·+ yN ), where N = ϵ1/md/p.
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We assume that N is an integer, and in particular, ϵ1/md ≥ p.
If fewer than md of y1, . . . , yN evaluate to 1 then fp,ϵ ∈ {0, 1}, and so

Pr[fp,ϵ /∈ {0, 1}] ≤ Nmdpmd = ϵ.

In order to upgrade this to an L2 bound, we use Lemma 3.11. Since y1 + · · ·+ yN is a (1, 1/p)-sparse
junta, Lemma 3.5 shows that fp,ϵ is a (d,O(1/p))-sparse junta. In order to show that fp,ϵ is quantized, notice
that we can find coefficients ce such that

P (n) =
∑
e≤d

ce

(
n

e

)
,

and so
fp,ϵ =

∑
e≤d

ce
∑

S⊆[N ]
|S|=e

yS ,

showing that fp,ϵ is {c0, . . . , cd}-quantized. Therefore Lemma 3.11 shows that fp,ϵ is O(ϵ)-close to Boolean.
We can now show that Item a cannot be improved. Notice that

Pr[fp,ϵ = P (0)] ≥ (1− p)N ≥ 4−ϵ
1/md

= Ω(1),

using the fact that (1− p)1/p is monotone decreasing. Similarly,

Pr[fp,ϵ = P (1)] ≥ Np(1− p)N−1 = Ω(ϵ1/md).

It follows that for any constant c,

E[(fp,ϵ − c)2] ≥ 1

4
Pr[fp,ϵ ̸= round(c, {0, 1})] = Ω(ϵ1/md).

Choosing a sequence of p, ϵ with ϵ → 0 and p ≤ ϵ1/md , this shows that the constant md cannot be improved
in Item a.

7.2 Direct part

Let f : ({0, 1}n, µp) → {0, 1} be ϵ-close to degree d, where p ≤ 1/2. Applying Theorem 5.1, we obtain a
function g : ({0, 1}n, µp) → R which is O(ϵ)-close to f and satisfies the following properties:

(i) g is a (d,O(1/p))-sparse junta.

(ii) g(y) ∈ {0, 1} whenever y as weight at most d, and consequently g is B-quantized for some finite set B
depending only on d.

(iii) The number of minimal non-Boolean inputs of g of weight e is O(ϵ/pe), for all e.

Item ii implies that g̃(∅) = g(0) ∈ {0, 1}. We assume without loss of generality that g(0) = 0: otherwise,
replace f , g, and the approximating function h by their “negations” 1− f, 1− g, 1− h.

Let M consist of all inclusion-minimal sets in supp(g), and let Me = {S ∈ M : |S| = e}. The main part
of the proof is the following Ramsey-theoretic lemma.

Lemma 7.3. For every e ≤ d, either (i) |Me| = O(1) or (ii) there exists a degree d polynomial P such that
P (0) = g(0), P (1) ̸= P (0), and for every m ≤ md such that m ≥ 1, there are s ≤ em and a collection F of
Ω(|Me|m) sets such that each S ∈ F satisfies the following:

(a) S has size s.
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(b) S is the union of m sets in Me.

(c) g(1S) = P (m).

Let us see how this lemma implies the theorem. We start with the following corollary.

Corollary 7.4. For every e ≤ d,
|Me| = O(1 + ϵ1/md/pe).

Proof. Let e ≤ d, and apply Lemma 7.3. If Case (i) holds then we are done, so suppose that Case (ii) holds,
for some P .

By the definition of md, there exists m ≤ md such that P (m) /∈ {0, 1}. Let s,F be as promised by the
Lemma for m. We would like to deduce a lower bound on Pr[g /∈ {0, 1}] from the lower bound on |F|, and
for this we apply the reverse union bound, Lemma 3.7.

Lemma 7.3 guarantees that F ⊆ supp(g)⊔m. Lemma 3.5 shows that G = supp(g)⊔m is (md,O(1/p))-sparse,
and so the reverse union bound shows that

Pr[E ] = Ω(|F|ps) = Ω(|F|pem),

where E is the event that yS = 1 for some S ∈ F and yR = 0 for all R ∈ G such that R ̸⊆ S. If E happens
then g(y) = g(1S) = P (m) /∈ {0, 1}, and so

Pr[E ] ≤ Pr[g /∈ {0, 1}] ≤ Pr[g ̸= f ] = O(ϵ).

Consequently |F| = O(ϵ/pem). Since |F| = Ω(|Me|m), we conclude that |Me| = O(ϵ1/m/pe) = O(ϵ1/md/pe).

We can now finish the proof of Item a of Theorem 7.2.

Proof of Item a. If g(y) ̸= 0 then yS = 1 for some S ∈ M. Therefore Corollary 7.4 shows that

Pr[g ̸= 0] ≤
d∑

e=1

pe|Me| =
d∑

e=1

O(pe + ϵ1/md) = O(p+ ϵ1/md),

and so Pr[f ̸= 0] ≤ Pr[f ̸= g] + Pr[g ̸= 0] = O(ϵ1/md + p).
Since g is a (d,O(1/p))-sparse junta, Lemma 3.10 implies that E[(g − 0)2] = O(ϵ1/md + p), and so

E[(f − 0)2] ≤ 2E[(f − g)2] + 2E[(g − 0)2] = O(ϵ1/md + p).

The proof of Item b will proceed by bounding | suppe(g)|, where suppe(g) consists of all sets in supp(g) of
size e.

Lemma 7.5. There is a constant Nd, depending only on d, such that for every e ≤ d,

| suppe(g)| = O(1 + ϵ1/Nd/pe).

Proof. Theorem 2.1 shows that any degree d function depending on more than Md coordinates cannot be
Boolean. The union of Nd =

(
Md

≤d
)
+ 1 distinct sets from suppe(g) cannot have size at most Md, and so if

A1, . . . , AN ∈ supp(g) are distinct then g|A1∪···∪AN
cannot be Boolean.

If | suppe(g)| < Nd then we are done, so suppose that | suppe(g)| ≥ Nd. Then there are Ω(| suppe(g)|Nd)
subsets of suppe(g) of size Nd. Let F consist of all unions of Nd distinct sets from suppe(g). Any such

has size at most eNd and so can be written as a union of Nd sets in at most 2eN
2
d ways. Consequently,

|F| = Ω(| suppe(g)|Nd).
By construction, F ⊆ G = suppe(g)

⊔Nd . Since g is a (d,O(1/p))-sparse junta, Lemma 3.5 shows that G is
(eNd, O(1/p))-sparse. Applying the reverse union bound (Lemma 3.7) with p := 2p, this shows that

Pr
µ2p

[E ] ≥ |F|(2p)eNd ,
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where E is the event that for some S ∈ F we have yS = 1 and yR = 0 for all R ∈ G such that R ̸⊆ S. Suppose
that this event happens for S. Denoting y = 1T , we have g|T = g|S , and so g|T is not Boolean. Furthermore,
since g|T depends on |S| ≤ eNd coordinates, we have Prµ1/2

[g /∈ {0, 1}] ≥ 2−eNd . This shows that

Pr
µp

[g /∈ {0, 1}] ≥ Ω(|F|peN ) = Ω(| suppe(g)|NpeN ).

Since Pr[g /∈ {0, 1}] ≤ Pr[g ̸= f ] = O(ϵ), we conclude that

| suppe(g)| = O(ϵ1/Nd/p).

We can now prove Item b of Theorem 7.2.

Proof of Item b. Lemma 7.5 shows that for some constant Kd depending only on d, we have | suppe(g)| ≤
Kd(1 + ϵ1/Nd/pe). Write

g =
∑

e : ϵ1/Nd≤pe

g=e

︸ ︷︷ ︸
gJ

+
∑

e : ϵ1/Nd>pe

g=e

︸ ︷︷ ︸
h

,

where g=e is obtained from the monomial expansion of g by retaining only monomials of degree e.
By construction, | suppe(g)| ≤ 2Kd for all e in the first sum, and so gJ is an Rd-junta, where Rd =

2(d+ 1)Kd. Similarly, | suppe(g)| ≤ 2Kdϵ
1/Nd/pe for all e in the first sum, and so

Pr[g ̸= gJ ] = Pr[h ̸= 0] ≤
∑

e : ϵ1/Nd>pe

pe ·O(ϵ1/Nd/pe) = O(ϵ1/Nd).

It follows that Pr[f ̸= gJ ] ≤ Pr[f ̸= g] + Pr[g ̸= gJ ] = O(ϵ1/Nd).
If gJ is Boolean then we are done, assuming µd ≥ Nd. Otherwise, since gJ is an Rd-junta, Pr[gJ ̸= f ] ≥

Pr[gJ /∈ {0, 1}] ≥ pRd . Since Pr[gJ ̸= f ] = O(ϵ1/Nd), we conclude that p = O(ϵ1/RdNd). Applying Item a, this
shows that f is O(ϵ1/µd)-close to the constant zero function, where µd = max(md, RdNd).

7.3 Proof of Lemma 7.3

In order to complete the proof of Theorem 7.2, we prove Lemma 7.3.
If A1, . . . , Am ∈ Me then we can write g(A1 ∪ · · · ∪Am) as the sum of all monomial coefficients supported

by A1 ∪ · · · ∪Am. Taking as an example the case m = 2, this corresponds to taking e1 elements B1 from A1

and e2 elements B2 from A2, where e1 + e2 ≤ d, and summing over all g̃(B1 ∪B2) obtained in this way. If A1

and A2 are not disjoint then we might be summing the same monomial coefficient several times, and so we
would like A1, A2, and more generally A1, . . . , Am, to be disjoint for “many” tuples A1, . . . , Am. However,
this need not be the case: for example, it might be that all A ∈ Me contain some element a. In the first step
of the proof, we extract such a “core” inductively.

Lemma 7.6. Let e,m be parameters. Let S be a collection of sets of size e. There exist constants
Ce,m, pe,m > 0 such that the following holds.

Either (i) |S| ≤ Ce,m, or (ii) there is a set I such that with probability at least pe,m, if we choose
A1, . . . , Am ∈ S at random then A1, . . . , Am ⊇ I and A1 \ I, . . . , Am \ I are disjoint.

Proof. The proof is by induction on e. If e = 0 then case (i) clearly holds for Ce,m = 1, so assume that e ≥ 1.
Suppose first that if we choose A1, . . . , Am ∈ S at random, the probability that A1, . . . , Am are disjoint is

at least 1/2. If this happens then case (ii) holds for I = ∅ assuming pe,m ≤ 1/2.
Suppose next that if we choose A1, . . . , Am ∈ S at random, the probability that A1, . . . , Am are not all

disjoint is at least 1/2. If we now choose i, j ∈ [m] such that i ̸= j then Ai ∩Aj /∈ ∅ with probability at least
1/
(
m
2

)
.
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We can find a fixed choice i = I for which the above holds. Thus if we choose A ∈ S at random, A∩AI ̸= ∅
with probability at least 1/2

(
m
2

)
. Consequently, one of the elements a ∈ A is contained in a qe,m = 1/2e

(
m
2

)
fraction of the sets in S.

Let T consist of A \ {a} for all A ∈ S containing a, and apply the induction hypothesis. Thus either (i’)
|T | ≤ Ce−1,m, or (ii’) there exists J such that if we choose A1 \ {a}, . . . , Am \ {a} at random from T then
with probability at least pe−1,m, all of these sets contain J , and are disjoint otherwise.

If case (i’) holds then |S| ≤ |T |/qe,m ≤ Ce−1,m/qe,m, and so case (i) holds for Ce,m = Ce−1,m/qe,m. If
case (ii’) holds then case (ii) holds for I = J ∪ {a} and pe,m = min(1/2, qme,mpe−1,m).

Let R be a constant to be chosen later, and apply Lemma 7.6 with e, m = R, and S = Me. If |Me| ≤ Ce,R

then case (i) holds, so suppose that there exists I such that if we choose A1, . . . , AR ∈ Me at random then
with probability at least pe,R, all of A1, . . . , AR contain I, and A1 \ I, . . . , AR \ I are disjoint. If |I| = e then
the probability that all of A1, . . . , AR contain I is 1/|Me|R, and so |Me| ≤ (1/pe,R)

1/R, and again case (i)
holds. We will show that if |I| < e then case (ii) holds. In this case, since I is strictly contained in some
element of Me, the definition of Me shows that g(1I) = 0.

Suppose that A1, . . . , AR satisfy the constraints above, and let A′1, . . . , A
′
m be any m ≥ 1 distinct elements

chosen from A1, . . . , AR. Then

g(A′1 ∪ · · · ∪A′m) =

d∑
ℓ=0

∑
1≤i1<···<iℓ≤m

∑
J⊆I

Bi1⊆A
′
i1
\I,...,Biℓ

⊆A′iℓ\I
Bi1

,...,Biℓ
̸=∅

|Bi1
|+···+|Biℓ

|+|J|≤d

g̃(Bi1 ∪ · · · ∪Biℓ ∪ J).

This suggests coloring all tuples of up to d elements with the value of the inner sum. Each such sum is
the sum of O(1) monomial coefficients of g, which is B-quantized, and therefore there are Cd colors, for some
constant Cd depending only for d. The hypergraph Ramsey theorem now implies that for an appropriate
value of R depending only on d, there is a subset A′ ⊆ {A1, . . . , AR} of size md such that all tuples of ℓ ≤ d
elements from A′ have the same color γℓ(A1, . . . , AR).

Let γ0, . . . , γℓ be a random choice of colors. If we choose A1, . . . , AR ∈ Me at random, then with
probability at least pe,R, all of them contain I, and A1 \I, . . . , AR \I are disjoint. If this happens, then choose

A′ ⊆ {A1, . . . , AR} of size md at random. With probability at least 1/
(

R
md

)
, there are γ′1, . . . , γ

′
ℓ such that all

tuples of ℓ ≤ d elements from A′ have color γ′ℓ. Furthermore, γ′ℓ = γℓ for all ℓ with probability 1/Cd+1
d .

Therefore there is a choice of γ0, . . . , γℓ such that if we choose A1, . . . , Amd
∈ Me at random then with

probability at least pe,R/
(

R
md

)
Cd+1

d , all tuples of ℓ ≤ d elements from A′ = {A1, . . . , Amd
} have color γℓ. In

particular, for all m ≤ md such that m ≥ 1,

g(A1 ∪ · · · ∪Am) =
∑
ℓ≤d

(
m

ℓ

)
γℓ.

We call such A1, . . . , Am good. The number of good tuples is thus Ω(|Me|m).
Define the polynomial P by

P (µ) =

d∑
ℓ=0

(
µ

ℓ

)
γℓ.

This is a polynomial of degree d such that P (0) = g(1I) = 0 and P (1) = g(1A1
) ̸= 0, since A1 ∈ Me. The

union A1 ∪ · · · ∪Am has size s = |I|+m(e− |I|) ≤ em.
Let F be the collection of all sets of the form A1 ∪ · · · ∪ Am for good A1, . . . , Am. For any S ∈ F , if

A1 ∪ · · · ∪Am = S then each Ai is a subset of S, and so at most 2sm ≤ 2em
2

good tuples correspond to the
same S. Since there are Ω(|Me|m) good tuples, it follows that |F| = Ω(|Me|m).
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