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Abstract

We introduce a generalization of the standard framework for studying the difficulty of two-
prover games. Specifically, we study the model where Alice and Bob are allowed to communicate
(with information constraints) — in contrast to the usual two-prover game where they are not
allowed to communicate after receiving their respective input. We study the trade-off between
the information cost of the protocol and the achieved value of the game after the protocol. In
particular, we show the connection of this trade-off and the amortized behavior of the game
(i.e. repeated value of the game). We show that if one can win the game with at least (1− ε)-
probability by communicating at most ε bits of information, then one can win n copies with
probability at least 2−O(εn). This gives an intuitive explanation why Raz’s counter-example to
strong parallel repetition [Raz08] (the odd cycle game) is a counter-example to strong parallel
repetition — one can win the odd-cycle game on a cycle of length m by communicating O(m−2)-
bits where m is the number of vertices.

Conversely, for projection games, we show that if one can win n copies with probability larger
than (1− ε)n, then one can win one copy with at least (1−O(ε))-probability by communicating
O(ε) bits of information. By showing the equivalence between information value and amortized
value, we give an alternative direction for further works in studying amortized behavior of the
two-prover games.

The main technical tool is the “Chi-Squared Lemma” which bounds the information cost
of the protocol in terms of Chi-Squared distance, instead of usual divergence. This avoids the
square loss from using Pinsker’s Inequality.
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1 Introduction

A two-prover one-round game G on a bipartite graph with (U, V,E) with distribution D on E is
defined as a following process. Referee picks (u, v) ∈ E according to D, then sends u to Alice and
v to Bob. Then Alice gives an assignment to u and Bob to v from alphabet Σ. Referee checks if
they are “valid” assignment for the edge (u, v). In this setting, we are interested in what the best
response strategy is for Alice and Bob. In particular, we want to find f : U → Σ which denotes
Alice’s strategy and g : V → Σ which denotes Bob’s strategy that maximize the fraction of satisfied
edges. In particular, we want to compute the strategy that achieves the value of the game which is
defined as

val(G) := max
f,g

Pr
(u,v)∼D

[
π(u,v)(f(u), g(v)) = 1

]
,

that is the probability of satisfying a randomly chosen edge according to the best response strategy
where π(u,v) is the verification function by the referee for the edge (u, v).

In the above setup, it is crucial that Alice’s assignment only depends on the input u and Bob’s
assignment only depends on the input v. In other words, Alice and Bob are assumed to be in
separate rooms, leaking zero bits of information about their respective input. Having introduced
the amount of information communicated between Alice and Bob into the picture, we could then
reformulate the value of the game as:

Given a game G, Alice and Bob communicate zero bits of information. Then what is
the best chance of winning the game?

Then it is natural to extend to following question: “If Alice and Bob are allowed to communicate
limited information, what is the value of the game?” In particular, we could explicitly ask the
following question.

If Alice and Bob are allowed to communicate ε bits of information, then what is the
value of the game? (in terms of ε)

First, note that this is a well-defined quantity in a sense that there is a following explicitly
bounded curve. Observe that if |U | = |V | = n, and they are allowed to communicate O(log n)-bits,
the value of the game becomes 1 (if all the edges indeed have at least one satisfying assignment,
which can be assumed without loss of generality) due to the following naive strategy. Alice simply
sends the hash of her input to Bob, which requires at most log n-bits to do so and vice-versa.
Since Alice and Bob both know (u, v), they can simply pick a satisfying assignment (using shared
randomness) for (u, v) then answer accordingly. We can further tighten the upper bound (for the
amount of information) if we know the structure of the graph. In particular, if the graph were
d-regular, given O(log d)-bits, the value of the game again becomes 1, since the entropy (of Alice’s
input given Bob’s input and vice-versa) is at most log d. (We will show this explicitly)

We would like to further investigate the trade-off between the information vs. the value of the
game. In particular, we initiate the study of information value of the game, that is how much
information is necessary to win the game with say probability > 1 − δ in terms of δ, which we
define more explicitly in Section 2.

Note that this notion can classify “how intrinsically hard” a given two-prover one-round game
is. In particular, one could view a game as being “hard” if the value of the game is “resistant” to
added information, easy otherwise, providing a better spectrum for analyzing the intrinsic hardness
of the game – which is indeed related to the amortized value of the game.
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1.1 Our Contribution

We connect the information value of the game with the amortized value of the game – i.e. the value
of the repeated game. We note that previous parallel repetition literature can be “translated” as
Alice and Bob sharing a common hint provided by the referee. Then we can “remove” the referee
from the picture and instead let Alice and Bob sample a common hint. This translation is what
we call the “Chi-squared lemma,” which is the main technical contribution of this paper.

Lemma 1.1 (Chi-squared lemma). Suppose Alice has access to P and Bob has access to Q which
are probability distributions over the universe U . Suppose further that there exists a common dis-
tribution R such that D(R||P ) < ε and D(R||Q) < ε. Then there exists a protocol Π that outputs
a sample from the distribution P̃ with information cost γε with D(R||P̃ ) < O(ε) for some constant
γ > 0.

where “information cost” refers to the amount of information revealed to each other as in [BR11].
We also remark that the idea of referring to Chi-Squared distance to bound information cost

was also used in proving sharp round complexity of pointer chasing problem [Yeh16], avoiding
square-loss in the parameter due to the application of Pinsker’s inequality.

Via this lemma, we can “translate” previous parallel repetition literature (in particular [BG15])
as a blackbox to obtain following main theorem.

Theorem 1.2 (informal). If val(Gn) ≥ (1− ε)n = 2−Θ(εn) and G is a projection game, that is for
any valid pair of assignments, Bob’s assignment is a projection of Alice’s assignment, then one can
win G with probability 1−O(ε) by communicating O(ε)-bits of information.

To show the converse, we need to show that a low-information protocol can be translated to
a zero-communication protocol with insignificant loss in success probability. We use results from
correlated sampling (in particular we use a lemma from [BG15]) which yields the converse to the
main theorem.

Theorem 1.3 (informal). If one can win G with probability 1 − ε by communicating ε-bits of
information, then val(Gn) ≥ 2−O(εn).

We also remark that Theorem 1.3 does not assume that G is a projection game.

1.2 Proof Overview

Proof of Theorem 1.3 It suffices to show that a low-information cost protocol can be translated
to a zero-communication protocol with success parameter depending on the information cost. In
particular, we want to show that an O(I) information cost protocol can be simulated by two non-
communicating parties with 2−O(I) success probability. For our purpose I = nε, since information
cost tensorizes with many copies. Note that if Alice and Bob managed to sample a correct transcript
together, the transcript is correct with (1 − ε)O(n) probability since each coordinates are chosen
independently. We show that the zero-communication sampling lemma from [BG15] indeed gives
the range of parameters that we need.

Proof of Theorem 1.2 In [BG15], one could view the “common hint” (which actually comes
from the multiple copies of the game) as given by the referee to Alice and Bob via sampling some
random coordinates with their answers then sending them to Alice and Bob. However, this does
not fit in our framework since the referee samples the hint, not Alice and Bob. Using the Chi-
squared lemma, we allow Alice and Bob to jointly sample such a hint with O(ε) information cost.
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[BG15] shows that one can win a single copy with probability 1 − O(ε) after running the joint
sampling protocol (under some distribution D′ which is O(ε)-away in terms of divergence from the
real distribution). We further show that having a strategy for such D′ suffices to win the original
game with probability 1−O(ε) as well.

Chi-squared lemma Suppose Alice has access to P1 and Bob has access to P2 with a guarantee
that there exists some common distribution R such that D(R||P1), D(R||P2) < ε. In such a setting,
if Alice samples from P1 and tries to transmit the sample to Bob, the naive information cost would
be D(P1||P2). This could be unbounded however due to the case where P1 contains an element in
the support that is not in the support of P2. i.e. D(P1||P2) = ∞. To rule out such scenario, we
give Bob an ability to reject. Instead of receiving the full description or index of the sample, Bob
receives a stream of hash values and rejects the stream when he “cannot understand” or in other
words expects the divergence from the sample to be high. Via this rejection, Bob will not be “too
surprised” about Alice’s sample. But the main problem with the above simple rejection protocol is
that it allows Alice to learn too much about P2 from Bob’s response. For instance, if Bob rejects a
sample, then Alice learns that this sample occurs “infrequently” in P2. In order to “confuse” Alice
and prevent her from learning too much about P2, Bob rejects a valid stream with some constant
probability. This suffices to confuse Alice and learn only O(ε)-information about P2.

2 Preliminaries

2.1 Information Theory

In this section, we provide background on information theory that will be used to prove main
results. We remark that throughout the paper, log is of base 2 and ln is of base e. For further
references, we refer the reader to [CT91].

Definition 2.1 (Entropy). The entropy of a random variable A, denoted by H(A) is defined as∑
a∈Supp(A)

Pr[A = a] log
1

Pr[A = a]

Intuitively, this quantifies how much uncertainty we have about variable A. With the definition
of entropy, we can further define the relation between various variables. For conditional entropy
we have H(A|B) := H(AB) − H(B). Then we are ready to define the relation between different
random variables.

Definition 2.2 (Mutual Information). The mutual information between two random variable A
and B, denoted by I(A;B) is defined as

I(A;B) := H(A)−H(A|B) = H(B)−H(B|A).

The conditional mutual information between A and B given C, denoted by I(A;B|C), is defined as

I(A;B|C) := H(A|C)−H(A|BC) = H(B|C)−H(B|AC).

This gives a measure of how much information does B reveal about A and vice-versa. (when one
knows C) Mutual Information is further related to the following distance measure, which will be
used throughout the proof.
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Definition 2.3 (Kullback-Leiber Divergence). Given two probability distributions µ1 and µ2 on the
same sample space Ω such that (∀ω ∈ Ω)(µ2(ω) = 0⇒ µ1(ω) = 0), the Kullback-Leibler Divergence
or KL-Divergence in short between µ1 and µ2 is defined as (also known as relative entropy)

D(µ1||µ2) =
∑
ω∈Ω

µ1(ω) log
µ1(ω)

µ2(ω)
.

In particular, the following equality holds between KL-divergence and mutual information.

Fact 2.4. For random variables A,B and C we have

I(A;B|C) = Eb,c [D(Abc||Ac)] .

where Abc is the distribution of random variable A conditioned on B = b, C = c and similarly for
Ac.

With the definitions in place, we provide useful properties that will be used in the proof. For
mutual information, following facts hold.

Fact 2.5 (Chain-rule). If I(B;D|C) = 0, then I(A;B|C) ≤ I(A;B|C,D).

Fact 2.6 (Super-Additivity of Mutual Information). Let C1, C2, D,B be random variables such
that for every fixing of D, C1 and C2 are independent. Then

I(C1;B|D) + I(C2;B|D) ≤ I(C1C2;B|D).

For KL-divergence, we use following properties.

Fact 2.7. Let P and Q be distributions over a universe U . Suppose V ⊆ U is such that P (V) = 1.
Then Q(V) ≥ 2−D(P ||Q).

Note that Fact 2.7 immediately implies non-negativity of KL-divergence between any two distribu-
tions. For KL-divergence under conditioning, the following property holds.

Fact 2.8 (Additivity of KL-Divergence). Consider two distributions P (x, y) and Q(x, y). Then

D(P (x, y)||Q(x, y)) = D(P (x)||Q(x)) + Ex∼PD(P (y|x)||Q(y|x))

2.2 Previous Work

In this section, we elaborate previous results on parallel repetition and how the state-of-the-art
proof technique for parallel repetition is related to the amount of information necessary for Alice
and Bob to win the game with probability greater than (1− ε).

Recall that r-times parallel repetition of a two-prover game G denoted as Gr is defined as: the
referee first samples r-tuple of edges i.e. ~x = (x1, . . . xr) ∈ U r and ~y = (y1, . . . , yr) ∈ V r with
(xi, yi) ∈ E for all i ∈ [r]; Alice and Bob give assignments to all r-coordinates say f : U r →
Σr for Alice and g : V r → Σr for Bob; then the referee checks all r-coordinates i.e. return∧
i∈[r] πxi,yi(fi(~x), gi(~y)).

The first parallel repetition theorem (with exponential decay in value) was proved by Raz
[Raz98]:

Theorem 2.9 ([Raz98]). Let G be a game with val(G) = 1− ε and let s be the size of the alphabet
(|Σ|) of the game. Then val(Gn) ≤ (1− ε32/2)Ω(n/ log(s)).
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This was improved (and simplified) by Holenstein [Hol07]:

Theorem 2.10 ([Hol07]). Let G be a game with val(G) = 1 − ε and let log(s) be the answer size
of the game. Then val(Gn) ≤ (1− ε3/2)Ω(n/ log(s)).

For projection games, log(s) no longer appears in the exponent. In particular, [Rao08] showed
improved bound for projection games.

Theorem 2.11 ([Rao08]). Let G be a projection game with val(G) = 1 − ε. Then val(Gn) ≤
(1− ε2/2)Ω(n).

There is an initiation of work from [BHH+08], [Ste10] where they study (though not explicitly
stated) a quantity val+(G) for unique game G which is an analytic relaxation of val(G) that ten-
sorizes exactly, that is val+(G1 ⊗ G2) = val+(G1) · val+(G2) and captures the amortized value of
the game. The analysis of val+ then resulted in analytic proof of parallel repetition for projection
games. [DS14], [TWZ14]. In particular, [DS14] extended [Rao08] to low-value regime using val+.

Theorem 2.12 ([DS14]). Let G be a projection game with val(G) = β. Then val(Gn) ≤ (4β)n/4.

There has been more work on parallel repetition for various special settings: [BRR+09] [RR12]
[TWZ14] In particular, there also has been a series of works around parallel repetition of games with
entanglement [CSUU08, KV11, DSV14, JPY14, CS14]. A recent breakthrough in [Yue16] settled a
longstanding open problem on whether the value of “any” games with entanglement actually decays
to zero as the number of repetition goes to infinity (at a polynomial rate). It would be interesting
to see how our framework relates to games with entanglement.

Throughout this paper, we will use the machinery in the latest parallel repetition proof by
[BG15] where they handled the low-value regime. It should be noted that the same proof works in
the high-value regime as well, giving an alternate proof for [Hol07], [Rao08] and [DS14].

Theorem 2.13 ([BG15]). Let G be a game with val(G) = δ. Then val(Gn) ≤ δΩ(n log(1/δ)/ log(s)).
Further if G is a projection game with val(G) = 1− ε, then val(Gn) ≤ (1− ε2)Ω(n).

The main proof technique used to prove parallel repetition in [BG15] follows the following
general roadmap. First one assumes that the value of the repeated game is higher than the desired
bound, and focuses on the event where Alice and Bob win the whole copy. Conditioned on winning,
one sets up R, the common hint between Alice and Bob, as a subset of question and answer pairs
from other coordinates which can be individually sampled by Alice and Bob (approximately), which
is the main technical innovation of [BG15]. Conditioned on successfully sampling R, Alice and Bob’s
strategy becomes a “too good to be true” strategy for some coordinate, contradicting the original
assumption on the value of the game. For the purpose of having a “hint” between Alice and Bob, we
mainly focus on sampling R, avoiding technical issues of constructing R correctly via using [BG15]
as a blackbox. One could view the framework in [BG15] as following explicit model in Protocol
1. Protocol 1 is indeed not a protocol between Alice and Bob, since the referee samples the hint.
Converting this to a protocol between Alice and Bob is our main technical contribution.

For the sake of completeness, we describe how the common hint R is constructed below.

Precise construction of R in [BG15] They explicitly construct a “combinatorial” hint RS,G,H,I
in a following manner which we restate for completeness. Let n be the number of repetitions, that
is the number of coordinates for the game. Then let S,G,H be random subsets of [n] distributed as
follows: Let sh and sg be random numbers from {3n/4 + 1, . . . , n}. Let σ : [n]→ [n] be a uniformly
random permutation. Set H = σ([sh]), G = σ({n − sg + 1, . . . , n}). Let I be a uniformly random
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1. Referee picks a random edge (x, y) ∈ E as a challenge. Referee then samples r from Rxy then
transmits r to Alice and Bob

2. Alice, depending on r and x provides an assignment a. Bob analogously answers b depending
on r and y.

3. Referee accepts if a and b forms a satisfying assignment for (x, y).

Protocol 1: Non-Protocol Hint

element of G ∩ H. Let l be a random number from [T ], where T < n/2 is a parameter. Let S
be a uniformly random subset of G ∩H\{I} of size l. Then define RS,G,H,I to denote the random
variable XG\{I}YH\{I}ASBS where s, g, h, i denote instantiations of the random variables S,G,H, I
respectively with AS denoted Alice’s assignment on S-coordinates and respectively for BS . Then
Alice can be thought of getting X[n] and RS,G,H,I , while Bob gets Y[n] and RS,G,H,I where the input
(x, y) is set to (XI , YI).

2.3 Definitions

Recall that the Information Cost of a protocol is defined as I(Π;X|Y ) + I(Π;Y |X) where Π is
the transcript of the protocol, X and Y are inputs for Alice and Bob respectively. Information
Complexity of computing f is then defined as infimum over Π that computes f . Inspired by
the definitions from information complexity literature, we define information value of the game as
following.

Definition 2.14. The information value of the game G = (X,Y,E) with distribution D over E
is

IVε
D(G) := inf

Π
[I(Π;X|Y ) + I(Π;Y |X)]

where the infimum is taken over the set of transcripts Π between Alice and Bob which wins G with
probability at least (1− ε) with ε < 1/2. X and Y represents Alice and Bob’s input respectively.

We remark that if D is not specified, we assume the distribution to be the uniform distribution
over the challenges/edges.

As a straightforward exercise, note that I(Π;X|Y ) ≤ H(X|Y ) ≤ H(X) ≤ log n where n is
the number of vertices in the graph, similarly for I(Π;Y |X). Thus for any game G and ε ≥ 0,
IVε
D(G) ≤ O(log n). Thereby, this quantity is strictly bounded. Better bound holds for d-regular

graphs since H(X|Y ) ≤ log d for regular graphs, similarly for H(Y |X). Any better bounds however,
requires lower bound on H(X|Π, Y ).

3 Main Result

First we state the main technical lemma (Chi-Squared lemma) used in proving the main theorem.

Lemma 3.1 (Chi-Squared lemma). Suppose Alice has access to a distribution P and Bob has access
to a distribution Q over U . Suppose further that there exists a common distribution R such that
D(R||P ) < ε and D(R||Q) < ε. If ε < 1/50, then there exists a protocol Π that outputs a sample
from P̃ with information cost γε with D(R||P̃ ) < O(ε) for some constant γ > 0.

6



Due to space constraints, we append the full proof in Section A. To see why this lemma is in-
teresting, note that the naive information cost is D(P ||Q) which could be infinite in some cases.
Technically speaking, the triangle inequality does not hold for divergence. Applying Pinsker’s In-
equality to have triangle inequality (in total variation distance) leads to a square loss, resulting
in information cost O(

√
ε), instead of O(ε). We suspect that there are more applications to this

technical lemma. The lemma leads to the following theorem.

Theorem 3.2. Let ε < 1/2. If val(Gn) ≥ (1−ε)n = 2−Ω(εn) and G is a projection game, then there
exists constants α1, α2 > 0 such that IVα1ε(G) < α2ε.

The main intuition of the proof of Theorem 3.2 is to use the common hint used for dependency
breaking step of the parallel repetition, which are answers and questions in the other coordinates,
as hints between Alice and Bob. However, the hints are not exactly adequate for our application,
since they are sampled by the referee. We use Lemma 3.1 to convert it to a low information cost
protocol.

We also show that the converse of Theorem 3.2.

Theorem 3.3. If IVε(G) < ε and ε < 1/2, then val(Gn) ≥ 2−Ω(εn) = (1− ε)Ω(n) with n > 1/ε.

The main intuition to Theorem 3.3 is converting a low information cost protocol (for our application
O(nε)) to a zero-communication protocol as seen in [KLL+12]. However, the main theorem from
[KLL+12] does not suffice for our application. Instead, we use a lemma from [BG15].

As a corollary, we get a complete description of projection games that obey strong parallel
repetition in terms of information value of the game.

Corollary 3.4. If IVε(G) > ε, then val(Gn) < (1 − ε)O(n) and vice versa where G is a projection
game.

Applying previous parallel repetition result, we indeed get a non-trivial lower bound on the infor-
mation value of any projection game via [DS14] and [Rao08].

Corollary 3.5. For any projection game G with val(G) ≤ 1− ε, IVO(ε2)(G) > Ω(ε2).

3.1 Proof of Theorem 3.2

In this section, we prove Theorem 3.2 via Chi-squared Lemma (Lemma 3.1). Recall that Rs,g,h,i
defined in Section 2.2 is a set of challenges and answers on a random set of coordinates. Set T = n/4
as the parameter for Rs,g,h,i. Then we get the following key lemma from [BG15].

Lemma 3.6 (Lemma 5.6 of [BG15]). Suppose 2−20 ≥ Pr[W ] ≥ (1− ε)n. Then there exists a fixing
of s, g, h, i such that:

1. Ex,y∼µD
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Xi=x,W

)
≤ O(ε).

2. Ex,y∼µD
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Yi=y,W

)
≤ O(ε).

3. D (µ||PXiYi) ≤ O(ε).

4. Ex,y∼µEr∼Rs,g,h,i|Xi=x,Yi=y,W

D
(
PAi,Bi|Xi=x,Yi=y,Rs,g,h,i=r,W ||PAi|Xi=x,Rs,g,h,i=r,W ⊗ PBi|Yi=y,Rs,g,h,i=r

)
≤ O(ε).
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where µ denotes the distribution PXi,Yi|W and PX stands for the probability distribution of random
variable X.

We omit the proof

Remark 3.7. The last property does not suffice for our application, since we do not get r ∼
Rs,g,h,i|Xi = x, Yi = y,W but a distribution that is O(ε)-away from it in divergence at the end
of the protocol given by the Chi-squared lemma which we denote as R̃s,g,h,i|Xi = x, Yi = y,W .
However, we remark that the same proof in [BG15] indeed gives the property that we want. That is

Ex,y∼PXi,Yi|W
Er∼R̃s,g,h,i|Xi=x,Yi=y,W

D
(
PAi,Bi|Xi=x,Yi=y,Rs,g,h,i=r,W ||PAi|Xi=x,Rs,g,h,i=r,W ⊗ PBi|Yi=y,Rs,g,h,i=r

)
≤ O(ε). (1)

In particular, note that the distribution of s, g, h, i and the permutation remain the same since Alice
and Bob can agree (via public randomness prior to running the protocol) on them prior to sampling
the actual question and answer sets (by Alice) This suffices for the proof in [BG15], specifically
Lemma 5.2 and Lemma 5.5.

We also need the following lemma to translate a strategy on Xi, Yi|W to a strategy on actual
distribution Xi, Yi. Due to space constraints, we attach the proof in Section B.

Lemma 3.8. Suppose G with µ as the distribution over the edges achieves val(G) = 1 − ε. Then
consider µ̃ such that D(µ||µ̃) < ε. Then G with µ̃ as distribution over the edges has value > 1−O(ε).

Now we have all the necessary lemmas to prove Theorem 3.2.

Proof of Theorem 3.2. First we construct a low information protocol that wins G with probability
1−O(ε) under µ.

We write PRs,g,h,i|Xi=x,Yi=y,W in the above as Rx,y and PRs,g,h,i|Xi=x,W , PRs,g,h,i|Yi=y,W respec-
tively as Px, Qy. Consider S ⊂ E that satisfies all

• D (Rx,y||Px) ≤ 1
10γ .

• D (Rx,y||Qy) ≤ 1
10γ .

where γ is the constant from the Chi-Squared Lemma. Then note that µ(S) > 1−O(γε) = 1−O(ε)
by Markov’s inequality. Focus pairs in S. Now applying the protocol given by the Chi-Squared
Lemma to pairs in S, we obtain a protocol that samples r ∼ R̃s,g,h,i|Xi = x, Yi = y,W with
information cost at most

Ex,y∼SXi,Yi|W
[D (Rx,y||Px) +D (Rx,y||Qy)] < O(ε)

where SXi,Yi|W is the distribution over the edges further conditioned on S.
Since S contributes 1−O(ε)-fraction, (1) implies

Ex,y∼SXi,Yi|W
EPR̃s,g,h,i,Xi=x,Yi=y|W

D
(
PAi,Bi|Xi=x,Yi=y,Rs,g,h,i=r,W ||PAi|Xi=x,Rs,g,h,i=r,W ⊗ PBi|Yi=y,Rs,g,h,i=r

)
≤ O(ε) (2)

At the end of the protocol, Alice and Bob obtain same r ∼ R̃s,g,h,i|Xi = x, Yi = y,W . We
now construct an explicit answering strategy for Alice and Bob dependent on r when they get
edges distributed according to SXi,Yi|W . Ideally Alice and Bob would like to answer according
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to PAi,Bi|Xi=x,Yi=y,R̃s,g,h,i=r,W
. This would indeed succeed with probability 1. In other words, if

we define Gx,y = {(a, b)|V (x, y, a, b) = 1}, PAi,Bi|Xi=x,Yi=y,R̃s,g,h,i=r,W
(Gx,y) = 1 for all (x, y) ∈ S.

However, this is not a valid strategy. There is correlation between Ai and Bi, while for any valid
strategy they should be independent given respective input.

Instead, they answer according to PAi|Xi=x,R̃s,g,h,i=r,W
⊗ PBi|Yi=y,R̃s,g,h,i=r

. Now, we analyze

PAi|Xi=x,R̃s,g,h,i=r,W
⊗ PBi|Yi=y,R̃s,g,h,i=r

(Gx,y) i.e. the value of such strategy. Applying Fact 2.7,

PAi|Xi=x,R̃s,g,h,i=r,W
⊗ PBi|Yi=y,R̃s,g,h,i=r

(Gx,y)

≥ 2
−D

(
PAi,Bi|Xi=x,Yi=y,Rs,g,h,i=r,W ||PAi|Xi=x,Rs,g,h,i=r,W⊗PBi|Yi=y,Rs,g,h,i=r

)

By the convexity of 2−x along with (2), we get the desired bound

Ex,y∼SXi,Yi|W

[
PAi|Xi=x,R̃s,g,h,i=r,W

⊗ PBi|Yi=y,R̃s,g,h,i=r
(Gx,y)

]
≥ 2−O(ε) = 1−O(ε)

Since S contributes 1 − O(ε)-fraction on µ, this strategy wins with 1 − O(ε) probability when
the edges are distributed according to µ = PXi,Yi|W as well. Finally, applying Lemma 3.8 to this
strategy with D

(
PXiYi|W ||PXiYi

)
≤ O(ε), we get the desired claim. �

3.2 Proof of Theorem 3.3

In this section, we give a formal proof of Theorem 3.3. This involves converting a protocol (be-
tween Alice and Bob) with O(nε)-information cost to a zero-communication protocol with success
probability 2−O(nε). We start by stating the following lemma.

Lemma 3.9. Suppose Alice has access to distribution P and Bob has access to distribution Q over
the universe U . They wish to jointly sample from R where D(R||P ) < δ and D(R||Q) < δ. If
δ > 1, then there exists a zero-communication protocol such that

1. There exists an event E such that Pr[E] > 2−Ω(δ) and Pr[πa = πb|E] = 1, where πa and πb
refers to the final output of Alice and Bob respectively. Furthermore, E only depends on the
public randomness.

2. Given E, consider the set of outputs of π, denoted as S. Then S ⊆ Supp(R)

Claim 3.10. Let W be a subset of universe U . Let A and B be a distribution and AW be a
distribution of A conditioned on picking an element from W . Then if A(W ) > Ω(D(A||B)), then

D(AW ||B) < log(1/A(W )) +
D(A||B)

A(W )
+O

(
1−A(W )

A(W )

)
where A(W ) corresponds to the probability of picking an element from W under A.

Proof of Lemma 3.9 and Claim 3.10 are appended in Section B. Now, we are ready to prove the
main lemma of this section which implies Theorem 3.3.

Lemma 3.11. If IVε(G) < ε, then there exists a zero-communication protocol that achieves
val(Gn) > 2−Ω(εn) where n > 1/ε.
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Proof. Note that under this model, Alice’s strategy and Bob’s strategy are dependent on the
transcript πx,y as well, instead of just their input in zero-communication model. We denote Πx,y

as the distribution over the transcript that Alice and Bob will have when they are given input
x and y respectively. Now Alice and Bob will try to imitate each other by simulating the other
party in zero-communication setting. Let Πx,Πy denote the simulated transcript with input x and
y respectively. More precisely, Πx := Ey∼µ|xΠx,y and Πy := Ex∼µ|yΠx,y. Further, we introduce the

notation ΠW
x,y := Πx,y|W , the distribution of Πx,y conditioned on referee accepting what Alice and

Bob returns as their answer at the end of the protocol.
Note that from our assumption on the information cost of the protocol, we get the following

E(xi,yi)∼µ [D(Πxiyi ||Πxi)] = E(xi,yi)∼µ

[
EΠxiyi

[
log

PrΠxiyi
[π]

PrΠxi
[π]

]]
< ε. (3)

The same inequality holds for Bob’s side (D(Πxiyi ||Πyi)) as well. First we define “good” edges.
We say π is a good transcript if the referee accepts what Alice and Bob return after following the
transcript π. 1 Then edge (xi, yi) is good if it satisfies both

• Axiyi(W ) := Prπ∼Πxiyi
[π is a good transcript] > 1/2 (i.e. most sampled transcripts are good);

• D(Πxiyi ||Πxi) < 1/2.

We argue that most of the edges are good. Due to our assumption on the value of the game that
is,

val(G) = E(xi,yi)∼µ [Axiyi(W )] > 1− ε,

at most 2ε-fraction of (xi, yi)’s does not satisfy the first condition. Also due to our divergence
condition that is,

E(xi,yi)∼µ [D(Πxiyi ||Πxi)] < ε

at most 2ε-fraction of the edges violate the second condition. Thus all but at most 4ε-fraction of
the edges are good. Then we can write

Exiyi∼µ̃ [D(Πxiyi ||Πxi)] < O(ε) (4)

where µ̃ corresponds to µ conditioned on picking an edge that is good. Also note that without loss of
generality, in such regime, one can assume that 1−Axiyi(W ) > Ω(D(Πxiyi ||Πxi)) for all the edges.
For edges that do not satisfy such condition, i.e. 1 − Axiyi(W ) < O(D(Πxiyi ||Πxi)), the referee
can randomly reject with probability O(D(Πxiyi ||Πxi)) to satisfy 1−Axiyi(W ) > Ω(D(Πxiyi ||Πxi)).
Indeed it will add up the rejection probability, but by at most D(Πxiyi ||Πxi) which indeed is good
enough for application in our regime, since it is in expectation at most O(ε). If (xi, yi) is indeed a
good edge, applying Claim 3.10,

D(ΠW
xiyi ||Πxi) < log(1/Axiyi(W )) +

D(Πxiyi ||Πxi)

Axiyi(W )
+O

(
1−Axiyi(W )

Axiyi(W )

)
< log(1/Axiyi(W )) + 2D(Πxiyi ||Πxi) +O

(
1−Axiyi(W )

Axiyi(W )

)
1π does not necessarily depend just on the input. It can depend on private randomness as well. But this is not

crucial to the proof as we argue on sampling the transcript conditioned on the edges.
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where the second inequality holds since Axiyi(W ) > 1/2, D(Πxiyi ||Πxi) < 1, and our assumption
that 1−Axiyi(W ) > Ω(D(Πxiyi ||Πxi)) for all edges. Then

Eµ̃[D(ΠW
xiyi ||Πxi)] < Eµ̃[log(1/Axiyi(W ))] + 2Eµ̃[D(Πxiyi ||Πxi)] + Eµ̃

[
O

(
1−Axiyi(W )

Axiyi(W )

)]
< O(ε) +O(ε) +O(ε) < O(ε)

where the second inequality holds by Jensen’s inequality on log and since ε is small enough.
Now consider taking n-copies of the game. In particular, we focus on (~x, ~y) ∼ µ̃⊗n, that is all

edges are “good” edges. Then observe that

E(~x,~y)∼µ̃⊗n

D(
⊗
i∈[n]

ΠW
xiyi ||

⊗
i∈[n]

Πxi)

 = E(~x,~y)∼µ̃⊗n

∑
i∈[n]

D(ΠW
xiyi ||Πxi)

 < O(nε)

For a randomly picked (~x, ~y) ∼ µ̃⊗n, the divergence in consideration is indeed low with high
probability by Markov. That is

Pr
(~x,~y)

∑
i∈[n]

D(ΠW
xiyi ||Πxi) > αnε

 ≤ O(1/α) (5)

Similarly, we get

Pr
(~x,~y)

∑
i∈[n]

D(ΠW
xiyi ||Πyi) > αnε

 ≤ O(1/α) (6)

Now, we consider the particular set of vectors (~x, ~y) that satisfy

• ∀i ∈ [n], (xi, yi) is a “good” edge.

• D(ΠW
~x,~y||Π~x) =

∑
i∈[n]D(ΠW

xiyi ||Πxi) ≤ Knε and D(ΠW
~x,~y||Π~y) =

∑
i∈[n]D(ΠW

xiyi ||Πyi) ≤ Knε

which we denote as “good” vectors.
If (~x, ~y) ∼ U⊗n, since (xi, yi) is good with probability at least (1− 2ε), all the coordinates are

good with at least (1− 2ε)n probability. If all the coordinates are good, by (5) and (6) and picking
appropriately large K, Ω(1)-fraction of such edges satisfy the second condition as well. In total,
2−Ω(εn)-fraction of edges satisfies both conditions, since we assume n > 1/ε.

Now we apply Lemma 3.9 to “good” vectors to complete the proof. In particular, Lemma 3.9
gives a zero-communication sampling protocol for transcript where Alice and Bob gets a matching
transcript from Supp(ΠW

~x,~y) with probability at least 2−O(εn). Thus for 2−O(εn)-fraction of the

edges, we get a zero-communication strategy that wins with probability at least 2−O(εn), thus
val(Gn) > 2−O(εn).
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A Proof of Chi-Squared Lemma (Lemma 3.1)

In this section, we prove the main technical component towards proving Theorem 3.2. Define
P,Q ⊂ U × [0, 1] as set of points with a < P (x) and a < Q(x) respectively. k · P as a set of points
with a < k · P (x) and similarly for Q.

First, we modify low information protocol for equality as in [Bra12] to low information protocol
for transmitting a dart di = (ui, pi) from Alice to Bob by transmitting the index i. This protocol will
be used for Alice and Bob to jointly sample an element from u ∈ U while revealing low information
if joint sampling fails.

1. Alice and Bob share a collection of hash functions pr : [6|U|]→ {0, 1} via public randomness
with the following property : if i 6= j, then Pr[pr(i) = pr(j)] = 1/2.

2. Alice transmits pr(i) to Bob.

3. If no dart in 2Q matches (p1(i), . . . , pr(i)), Bob halts the protocol and rejects di. Otherwise
increment r and repeat.

Protocol 2: Sub-Protocol for transmitting a single dart (ui, pi)

Note that if di ∈ 2Q, indeed the protocol runs for O(log |U|) rounds, exchanging O(log |U|) bits.
If di /∈ 2Q, we show that the expected number of rounds and therefore the information cost is O(1).

Proposition A.1. If di /∈ 2Q, the information cost for Protocol 2 is O(1).

Proof. Let T denote the number of darts in 2Q. And let R denote the randomness over the hash
functions. Observe that the protocol runs as long as (p1(i), . . . pr(i)) matches one of these darts.
And for each dart, the probability of matching until r-th round is exactly 2−r. Therefore, we can
bound the information cost as

T · ER

[∑
r

pr log
1

pr

]
≤ T ·

∑
r

r

2r
= O(T )

Now note that E[T ] = O(1). Over uniform distribution on U × [0, 1], if one picks 6|U| darts, there
are 12 darts in 2Q in expectation which completes the proof.

Now we are ready to describe the full protocol with an information cost possibly lower than the
divergence.

A.1 Bounded Case

Lemma A.2. If there exists some “common distribution” R such that D(R||P ) < ε and D(R||Q) <
ε and P (u) < 8Q(u) for all u ∈ U then D(P ||Q) < O(ε).

Proof. We prove by showing ∑
u∈U

(P (u)−Q(u))2

Q(u)
< O(ε)

since as in [BM15],

1

2 ln 2

∑
u∈U

(P (u)−Q(u))2

max{P (u), Q(u)}
≤ D(P ||Q) ≤ 1

ln 2

∑
u∈U

(P (u)−Q(u))2

Q(u)
.
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1. Alice and Bob share “darts” via public randomness di = (ui, pi) ∈ U × [0, 1] distributed
uniformly at random with i ∈ [6|U|].

2. Consider di = (ui, pi) such that P (ui) > pi.

3. Alice lists di’s and pick each di with probability (1− pi/P (ui))
2, and tries to send the index

of each dart via Protocol 2.

4. Bob tosses a coin. If head, Bob enters a “normal” mode, where Bob rejects once there is no
consistent sample left. Otherwise, Bob enters a “difficult mode” where Bob rejects even when
there is only one sample left.

5. If multiple samples remain, Bob picks a random dart sent by Alice that survived, and sends
it to Alice.

Protocol 3: Low Information Sampling without paying full divergence

for any distribution P and Q.
Now, our assumption on D(R||P ) implies that

ε > D(R||P ) ≥ 1

2 ln 2

∑
u∈U

(P (u)−R(u))2

max{R(u), P (u)}
.

For D(R||Q) term, we analogously get∑
u∈U

(Q(u)−R(u))2

max{Q(u), R(u)}
= O(ε).

Note that our assumption on P (u) < 8Q(u) gives

1

max{R(u), 8Q(u)}
<

1

max{R(u), P (u)}
.

Also note that
(a− b)2 ≤ 2(a− c)2 + 2(b− c)2.

Directly combining gives

O(ε) >
∑
u∈U

2(P (u)−R(u))2

max{R(u), 8Q(u)}
+

2(Q(u)−R(u))2

max{R(u), Q(u)}

≥
∑
u∈U

2(P (u)−R(u))2 + 2(Q(u)−R(u))2

max{R(u), 8Q(u)}
≥
∑
u∈U

(P (u)−Q(u))2

max{R(u), 8Q(u)}
.

Now we divide into two cases, where R(u) ≤ 8Q(u) and R(u) > 8Q(u), and show that for each of

these cases (P (u)−Q(u))2/Q(u) is either upper bounded byO
(

(P (u)−Q(u))2

max{R(u),8Q(u)}

)
orO

(
(Q(u)−R(u))2

max{Q(u),R(u)}

)
.

If R(u) ≤ 8Q(u), indeed we have the term as

(P (u)−Q(u))2

8Q(u)

thereby upper bounding (P (u)−Q(u))2/Q(u) upto some constant factor.
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If R(u) > 8Q(u), first note that for any u ∈ U , by our assumption P (u) < 8Q(u),

(P (u)−Q(u))2

Q(u)
≤ max{P (u)2, Q(u)2}

Q(u)
≤ 82Q(u) (7)

Since we have further condition R(u) > 8Q(u), we get

(Q(u)−R(u))2 ≥ R(u)2

82

So the term is of the form
(Q(u)−R(u))2

R(u)
≥ R(u)

82
>
Q(u)

8
(8)

Thus combining (7) and (8), we again get

(P (u)−Q(u))2

Q(u)
≤ 83(R(u)−Q(u))2

R(u)
=

83(Q(u)−R(u))2

max{Q(u), R(u)}

Combining these two cases, we get∑
u∈U

(P (u)−Q(u))2

Q(u)
=

∑
u:R(u)>8Q(u)

(P (u)−Q(u))2

Q(u)
+

∑
u:R(u)≤8Q(u)

(P (u)−Q(u))2

Q(u)

≤ O

 ∑
u:R(u)>8Q(u)

(Q(u)−R(u))2

max{Q(u), R(u)}

+O

 ∑
u:R(u)≤8Q(u)

(P (u)−Q(u))2

max{R(u), 8Q(u)}


≤ O(ε) +O(ε) = O(ε)

where the last inequality follows from upper bounds on the cases R(u) ≤ 8Q(u) and R(u) >
8Q(u).

A.2 General Case

We start by proving necessary claims for the full proof.

Claim A.3. If D(R||P ) < ε and D(R||Q) < ε then∑
u∈U

(P (u)−Q(u))2

max{P (u), Q(u)}
=

∑
u:P (u)<Q(u)

(P (u)−Q(u))2

Q(u)
+

∑
u:P (u)>Q(u)

(P (u)−Q(u))2

P (u)
< O(ε)

Proof. Note that our assumption on D(R||P ) and D(R||Q) gives∑
u∈U

(P (u)−R(u))2

max{P (u), R(u)}
= O(ε) (9)

∑
u∈U

(R(u)−Q(u))2

max{Q(u), R(u)}
= O(ε) (10)

We prove by separately showing ∑
u:P (u)<Q(u)

(P (u)−Q(u))2

Q(u)
= O(ε) (11)
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∑
u:P (u)>Q(u)

(P (u)−Q(u))2

P (u)
= O(ε) (12)

First, consider the terms with P (u) < Q(u). For such terms, indeed

(R(u)−Q(u))2

max{Q(u), R(u)}
≤ (R(u)−Q(u))2

max{P (u), R(u)}
.

Thus our assumption on D(R||P ) and D(R||Q) (in particular (9) and (10)) implies

∑
u:P (u)<Q(u)

(P (u)−Q(u))2

max{Q(u), R(u)}
= O(ε). (13)

Now we show that (13) implies (11). We break u’s to two cases: (i) R(u) < 2Q(u) and (ii) R(u) ≥
2Q(u). For (i), if R(u) < Q(u), the terms in consideration are equivalent. If Q(u) < R(u) < 2Q(u),
then

(P (u)−Q(u))2

Q(u)
<

2(P (u)−Q(u))2

R(u)
(14)

For (ii), via our assumption P (u) < Q(u), we have

(P (u)−Q(u))2

Q(u)
≤ Q(u)2

Q(u)
= Q(u) (15)

while via R(u) ≥ 2Q(u), we get

(Q(u)−R(u))2

R(u)
≥ R(u)

4
>
Q(u)

2
(16)

Combining (15) and (16), for u’s with P (u) < Q(u) and R(u) ≥ 2Q(u) we have

(P (u)−Q(u))2

Q(u)
≤ 2(Q(u)−R(u))2

R(u)
(17)

Therefore with (14) and (17) for terms P (u) > Q(u),

∑
u:P (u)<Q(u)

(P (u)−Q(u))2

Q(u)
=

∑
u:P (u)<Q(u),
R(u)<2Q(u)

(P (u)−Q(u))2

Q(u)
+

∑
u:P (u)<Q(u),
R(u)≥2Q(u)

(P (u)−Q(u))2

Q(u)

≤
∑

u:P (u)<Q(u),
R(u)<2Q(u)

2(P (u)−Q(u))2

R(u)
+

∑
u:P (u)<Q(u),
R(u)≥2Q(u)

2(Q(u)−R(u))2

R(u)
= O(ε)

since we assumed P (u) < Q(u), we have

∑
u:P (u)<Q(u)

(P (u)−Q(u))2

max{P (u), Q(u)}
=

∑
u:P (u)<Q(u)

(P (u)−Q(u))2

Q(u)
= O(ε). (18)

An analogous analysis for the terms with P (u) > Q(u) by breaking into two cases where R(u) <
2P (u) and R(u) > 2P (u) shows that (18) implies (12), which proves our claim.
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Claim A.4. If D(R||P ) < ε and D(R||Q) < ε then the probability of Alice transmitting a dart
dS = (uS , aS) under Protocol 2 with aS > 2Q(uS) is O(ε).

Proof. First, we calculate the closed form for the probability of Alice transmitting dart d = (u, a)
with a > 2Q(u). Suppose Alice transmits a dart conditioned on uS = u. If P (u) < 2Q(u), then the
probability of sending dart with a > 2Q(u) is indeed 0, since the distribution P is only supported
on darts with a < P (u). Now if P (u) > 2Q(u) then

Pr [pS > 2Q(u)|uS = u] =

∫ P (u)
2Q(u) (P (u)− a)2 da∫ P (u)
0 (P (u)− a)2 da

=
(P (u)− 2Q(u))3

P (u)3

Define function over U as

F (u) :=

{
(P (u)−Q(u))3

P (u)3
if P (u) > 2Q(u)

0 otherwise

Then we have that

Pr [pS > 2Q(u)] =
∑

u:P (u)>2Q(u)

Pr [pS > 2Q(u)|uS = u] · Pr [uS = u]

=
∑

u:P (u)>2Q(u)

(P (u)− 2Q(u))3

P (u)3
· P (u) ≤ Eu∼P [F (u)] = ‖F‖1

where last inequality holds by P (u) > 2Q(u). Since F (u) ≤ 1 for all u,

‖F‖1 ≤ ‖F‖2/32/3 = Eu∼P
[
F (u)2/3

]
We then bound Eu∼P

[
F (u)2/3

]
=
∑

u:P (u)>2Q(u)
(P (u)−Q(u))2

P (u) . Note that the divergence bound
indeed gives us ∑

u∈U

(P (u)−R(u))2

max{P (u), R(u)}
< O(ε)

∑
u∈U

(Q(u)−R(u))2

max{P (u), R(u)}
<
∑
u∈U

(Q(u)−R(u))2

max{Q(u), R(u)}
< O(ε)

since P (u) > Q(u) by assumption. This gives us

∑
u:P (u)>2Q(u)

(P (u)−Q(u))2

max{P (u), R(u)}
< O(ε)

Now we relate (P (u)−Q(u))2/max{P (u), R(u)} and (P (u)−Q(u))2/P (u)

• For terms R(u) ≤ P (u), indeed both terms are equal. If P (u) < R(u) ≤ 2P (u), then note
that they are just off by constant factor, that is

2(P (u)−Q(u))2

R(u)
>

(P (u)−Q(u))2

P (u)
(19)

18



• For terms R(u) > 2P (u), note that the terms that we consider have P (u) > 2Q(u) > Q(u).

(P (u)−Q(u))2

P (u)
≤ P (u)2

P (u)
≤ P (u) (20)

Now since we have R(u) > 2P (u), we get

(P (u)−R(u))2 ≥ R(u)2

4

So the term of interest is of the form

(P (u)−R(u))2

R(u)
≥ R(u)

4
>
P (u)

2
(21)

Combining (20) and (21) we get

(P (u)−Q(u))2

P (u)
<

2(P (u)−R(u))2

R(u)
(22)

Combining (19) and (22) we get

Eu∼P
[
F (u)2/3

]
=

∑
u:P (u)>2Q(u)

(P (u)−Q(u))2

P (u)
≤

∑
u:P (u)>2Q(u)

2(P (u)−R(u))2

R(u)
= O(ε) (23)

Then we have ‖F‖1 ≤ O(ε), proving the desired claim.

We introduce the following technical fact about KL-divergence.

Fact A.5. Suppose X is a random variable in [0, 1]. Then if D(P ||Q) < ε and EQ[X] = ε with
ε < 1/8, then EP [X] < 4ε.

Proof. We prove by contradiction. Assume without loss of generality that X ∈ {0, 1}. Let p =
PrP [X = 1] and q = PrQ[X = 1]. Note that we want to show that p < 4q. If p < q, then we are
done. Suppose p > q. Then note that

ε > p log
p

q
+ (1− p) log

1− p
1− q

is increasing in p and decreasing in q. If p > 4q, then

4q log 4 + (1− 4q) log
1− 4q

1− q
= 8q + (1− 4q) log

(
1− 3q

1− q

)
≥ 8q − 6q

1− q
> q

where last inequality assumes that q < 1/8. This is indeed a contradiction since q = ε.

Claim A.6. Let P̃ denote the distribution induced by Bob’s rejection, that is the probability of uS
over the accepted darts dS = (uS , aS). Then D(P̃ ||Q) < O(ε)

Proof. It suffices to show that

• D(R||P̃ ) < O(ε),
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• ∀u ∈ U , P̃ (u) < 8Q(u).

since then by Lemma A.2, D(R||P̃ ) < O(ε) and D(R||Q) < O(ε) implies the desired bound.
First, we calculate the closed form for P̃ . If P (u) < 2Q(u), Bob will not reject any dart sent by

Alice unless Bob is in “hard” mode. Therefore, calculating moment for all possible darts, we get∫ P (u)

0

(
1− a

P (u)

)2

da =
P (u)

3

If P (u) > 2Q(u), note that Bob will reject darts dS = (uS , pS) with pS > 2Q(u). So only darts
with pS < 2Q(u) are valid. For such u’s we get.∫ 2Q(u)

0

(
1− a

P (u)

)2

da = 2Q(u)

(
1− 2Q(u)

P (u)
+

4Q(u)2

3P (u)2

)
=
P (u)

3
− (P (u)− 2Q(u))3

3P (u)2

Normalizing to make P̃ a valid distribution, we get the following:

P̃ (u) =

{
P (u)
3K if P (u) < 2Q(u)
1
K

(
P (u)

3 − (P (u)−2Q(u))3

3P (u)2

)
otherwise

where K is the normalization factor introduced to make P̃ a valid probability distribution, that is

K :=
∑

u:P (u)<2Q(u)

P (u)

3
+

∑
u:P (u)>2Q(u)

(
P (u)

3
− (P (u)− 2Q(u))3

3P (u)2

)

Note that if it is indeed the case P (u) < 2Q(u) for all u ∈ U , then K = 1/3, therefore P̃ = P . We
first show upper and lower bound for K. For upper bound,∑

u:P (u)<2Q(u)

P (u)

3
+

∑
u:P (u)>2Q(u)

(
P (u)

3
− (P (u)− 2Q(u))3

3P (u)2

)

≤
∑

u:P (u)<2Q(u)

P (u)

3
+

∑
u:P (u)>2Q(u)

P (u)

3
=

1

3

For lower bound, we relate∑
u:P (u)<2Q(u)

P (u)

3
+

∑
u:P (u)>2Q(u)

(
P (u)

3
− (P (u)− 2Q(u))3

3P (u)2

)

≥ 1

3
−

∑
u:P (u)>2Q(u)

(P (u)− 2Q(u))3

3P (u)2
≥ 1

3
−O(ε)

where the last bound holds by (23). By choosing ε < 1/50, we have K ≥ 1/4. If P (u) < 2Q(u),
P̃ (u) < 2P (u) < 4Q(u). If P (u) > 2Q(u), P̃ (u) < 8Q(u).

Now, it remains to show that D(R||P̃ ) < O(ε).

D(R||P̃ ) =
∑
u∈U

R(u) log
R(u)

P̃ (u)
=

∑
u:P (u)<2Q(u)

R(u) log
R(u)

P̃ (u)
+

∑
u:P (u)>2Q(u)

R(u) log
R(u)

P̃ (u)

=
∑

u:P (u)<2Q(u)

R(u) log
3K ·R(u)

P (u)
+

∑
u:P (u)>2Q(u)

R(u) log
3K ·R(u)

P (u)
(

1− (P (u)−2Q(u))3

P (u)3

)
20



≤
∑
u∈U

R(u) log
R(u)

P (u)
+
∑
u∈U

R(u) log 3K +
∑

u:P (u)>2Q(u)

R(u) log
1

1− (P (u)−2Q(u))3

P (u)3

≤ D(R||P ) +
∑

u:P (u)>2Q(u)

R(u) log
1

1− (P (u)−2Q(u))3

P (u)3

= D(R||P ) +
∑

u:P (u)>2Q(u)

log
1(

1− (P (u)−2Q(u))3

P (u)3

)R(u)

≤ ε+O

 ∑
u:P (u)>2Q(u)

R(u)
(P (u)− 2Q(u))3

P (u)3


where the first inequality holds since K ≤ 1/3, and the last inequality holds from the assumption
on D(R||P ) and the fact that (1− αβ)1/α = 1−O(β) for 0 < α < 1 and 0 ≤ β < 1, then the fact

that R(u) (P (u)−2Q(u))3

P (u)3
< 1/2 and log 1

1−x ≤ 2x for x < 1/2.

It remains to bound
∑

u:P (u)>2Q(u)R(u) (P (u)−2Q(u))3

P (u)3
. Combining Fact A.5 with (23) and

D(R||P ) ≤ ε, the desired bound follows.

Now we are ready to bound the total information cost of Protocol 3.

Lemma A.7. Protocol 3 gives O(ε) information cost.

Proof. We bound I(Π;X|Y ) and I(Π;Y |X) separately.

What Bob learns Applying Fact 2.6, we get

I(Π;X|Y ) = I(S;X|Y ) ≤
∑
Si∈S

I(Si;X|Y )

where S corresponds to the set of darts selected by Alice.
Then for each Si define random variable E where

E(dSi) :=

{
0 if pSi < 2Q(uSi)

1 otherwise

Note that I(Si;E|Y ) = 0 since Si and Y indeed determines the value of E. Now using Fact 2.5,
we can bound I(Si;X|Y ).

I(Si;X|Y ) ≤ I(Si;X|Y E) = Pr[E = 0] · I(Si;X|Y,E = 0)︸ ︷︷ ︸
(a)

+ Pr[E = 1] · I(Si;X|Y,E = 1)︸ ︷︷ ︸
(b)

We bound (a) and (b) separately.

Case (b) : E = 1 Via Proposition A.1, expected amount of information revealed is indeed O(1),
and by Claim A.4, Pr[E = 1] < O(ε).
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Case (a) : E = 0 Bob will indeed accept all hash values corresponding to Si. The information
cost incurred by Si can be decomposed as one coming from U part and [0, 1] part in the following
manner,

I(Si;X|Y,E = 0) = E
[
D(SXYi ||SYi )

]
= D(SXYi (u)||SYi (u)) + Eu

[
D(SXYi (a|u)||SYi (a|u))

]
where the second equality holds by Fact 2.8. Now distribution SXYi would be indeed the distribution
of indices that Bob sends, conditioned on being E = 0. Therefore, the marginals over U would be
exactly P̃ . Similarly for SYi , marginals over U would be Q. Now consider the distribution of the
darts conditioned on u.

P (a|u) =

{
3

P (u)3
(P (u)− a)2 if P (u) < 2Q(u)

1
K1P (u)2

(P (u)− a)2 otherwise

where K1 is the normalization factor introduced by setting E = 0, that is

K1 =

∫ 2Q(u)

0

3

P (u)3
(P (u)− a)2 da

= 1−
∫ P (u)

2Q(u)

3

P (u)3
(P (u)− a)2 da = 1− (P (u)− 2Q(u))3

P (u)3

Now we show that, for all u ∈ U , there exists a prior for Bob (Q(a|u)) such thatD(P (a|u)||Q(a|u)) =
O
(∑

u∈U (P (u)−Q(u))2/P (u)
)

Define Z(a) as the random variable, defined as

Z(a) =

{
1 if a ∈ [Q(u), P (u)]

0 otherwise

Note that Z(a) = 0 for all a iff P (u) < Q(u).

Case 1 : P (u) < Q(u). Note that the information cost of learning Z(a) is 0 since H(Z) = 0. If
Z(a) = 0, Bob sets prior as

Q(a|u) :=
3(Q(u)− a)

Q(u)3

Then we can bound D(P (a|u)||Q(a|u)) in terms of δ := Q(u)−P (u). First we assume that 2P (u) <
Q(u). Then note that δ > P (u). We show that the information cost is bounded asymptotically by

((P (u)−Q(u))2

P (u)Q(u)
.

Then we can write the divergence as

D(P (a|u)||Q(a|u)) =

∫ P (u)

0

3(P (u)− a)2

P (u)3
log

(P (u)− a)2Q(u)3

(Q(u)− a)2P (u)3
da

≤ 1

P (u)

∫ P (u)

0
9

(
1− a

P (u)

)2

log
Q(u)

P (u)
da ≤ 1

P (u)
log

Q(u)

P (u)

∫ P (u)

0
9da ≤ 9δ

P (u)
log

Q(u)

P (u)
(24)

where last bound holds since δ > P (u) by our assumption. Note that for δ ∈ (0, Q(u)] and α > 0,

α log
Q(u)

P (u)
= − log

(
1− δ

Q(u)

)α
≤ O

(
αδ

Q(u)

)
(25)
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Plugging (25) into (24), we get

D(P (a|u)||Q(a|u)) ≤ O
(

δ2

P (u)Q(u)

)
= O

(
((P (u)−Q(u))2

P (u)Q(u)

)
Now assume P (u) < Q(u) < 2P (u), then we decompose the divergence as following.

D(P (a|u)||Q(a|u)) =

∫ P (u)

0

3(P (u)− a)2

P (u)3
log

(P (u)− a)2Q(u)3

(Q(u)− a)2P (u)3
da

=

∫ P (u)

P (u)−δ

3(P (u)− a)2

P (u)3
log

(P (u)− a)2Q(u)3

(Q(u)− a)2P (u)3
da (26)

+

∫ P (u)−δ

0

3(P (u)− a)2

P (u)3
log

(P (u)− a)2Q(u)3

(Q(u)− a)2P (u)3
da (27)

First we bound (26) similarly to the case where Q(u) > 2P (u).∫ P (u)

P (u)−δ

3(P (u)− a)2

P (u)3
log

(P (u)− a)2Q(u)3

(Q(u)− a)2P (u)3
da

≤ 1

P (u)

∫ P (u)

P (u)−δ
9

(
1− a

P (u)

)2

log
Q(u)

P (u)
da = O

(
δ2

P (u)Q(u)

)
(28)

where the inequality holds from P (u) < Q(u) and (25). Next, we bound (27).

(27) =
1

P (u)3

∫ P (u)−δ

0
3(P (u)− a)2 log

(P (u)− a)2(P (u) + δ)3

(P (u) + δ − a)2P (u)3
da

=
1

P (u)3

∫ P (u)−δ

0
3(P (u)− a)2

[
−2 log

(
1 +

δ

P (u)− a

)
+ 3 log

(
1 +

δ

P (u)

)]
da

Note that Taylor expansion gives the following bounds:

−2 log

(
1 +

δ

P (u)− a

)
≤ − 2δ

P (u)− a
+O

(
δ2

(P (u)− a)2

)
3 log

(
1 +

δ

P (u)

)
≤ 3δ

P (u)
+O

(
δ3

P (u)3

)
Now plugging in the bounds and just considering the first order terms,

1

P (u)3

∫ P (u)−δ

0

[
−6δ(P (u)− a) +

9δ(P (u)− a)2

P (u)

]
da

=
3δ(P (u)− a)2

P (u)3
− 3δ(P (u)− a)3

P (u)4

∣∣∣∣P (u)−δ

0

=
3δ3

P (u)3
− 3δ4

P (u)4

In case of the second order terms,

O

(
1

P (u)3

∫ P (u)−δ

0
3δ2da

)
+O

(
1

P (u)3

∫ P (u)−δ

0

3δ3(P (u)− a)2

P (u)3
da

)

= O

(
δ2

P (u)2

)
+O

(
δ3

P (u)3
− δ6

P (u)6

)
Combining both bounds and using our assumption Q(u) < 2P (u),

(27) ≤ O
(

δ2

P (u)2

)
= O

(
δ2

P (u)Q(u)

)
= O

(
(P (u)−Q(u))2

P (u)Q(u)

)
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Case 2 : Q(u) < P (u) < 2Q(u). Consider the random variable Z where Z(a) = 0 if a < Q(u),
Z(a) = 1 otherwise. Note that the information cost of learning Z is bounded by H(Z).

Pr[Z = 1] =

∫ Q(u)

P (u)

3

P (u)3
(P (u)− a)2da =

(P (u)−Q(u))3

P (u)3

Set p := (P (u)−Q(u))
P (u) . Then, the information cost of learning the the value of Z can be bounded by

H(Z) = H
(
p3
)

= O
(
p3 log p

)
< O(p2) = O

(
(P (u)−Q(u))2

P (u)2

)
where the inequality holds via Q(u) < P (u). Now we separate prior conditioned on Z(a) = 1 and
Z(a) = 0. Now conditioned on Z(a) = 0, Bob sets prior as

Q(a|u) :=
3(Q(u)− a)

Q(u)3
.

Then, note that P (a|u, Z = 0) is indeed P (a|u)
Pr[Z=0] with a ∈ [0, Q(u)]. We can explicitly write the

divergence as

D(P (a|u, Z = 0)||Q(a|u)) =
1

P (u)3 Pr[Z = 0]

∫ Q(u)

0
3(P (u)− a)2 log

1

Pr[Z = 0]
da (29)

+
1

P (u)3 Pr[Z = 0]

∫ Q(u)

0
3(P (u)− a)2

[
−2 log

(
1 +

δ

P (u)− a

)
+ 3 log

(
1 +

δ

P (u)

)]
da (30)

First bounding (29)∫ Q(u)

0
3(P (u)− a)2 log

1

Pr[Z = 0]
da =

(
P (u)3 − (P (u)−Q(u))3

)
log

(
1

1− p3

)
≤ O

(
p3P (u)3

(
1− p3

))
≤ O(p3P (u)3)

since p < 1/2 by assumption. Then bounding (30)∫ Q(u)

0
3(P (u)− a)2

[
−2 log

(
1 +

δ

P (u)− a

)
+ 3 log

(
1 +

δ

P (u)

)]
da

≤ 3δ(P (u)− a)2 − 3δ(P (u)− a)3

P (u)
+O

(
δ2a
)
−O

(
δ3(P (u)− a)3

P (u)3

)∣∣∣∣Q(u)

0

= 3δ(P (u)−Q(u))2 − 3δP (u)2 −
3δ
(
(P (u)−Q(u))3 − P (u)3

)
P (u)

+O(δ2Q(u)) +O

(
δ3 +

δ6

P (u)3

)
≤ 3δ3 + 3

δ4

P (u)
+O(δ2P (u)) +O

(
δ3 +

δ6

P (u)3

)
Then combining the bounds for (29) and (30), we get

Pr[Z = 0] ·D(P (a|u, Z = 0)||Q(a|u)) ≤ 1

P (u)3
O
(
p3P (u)3

)
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+
1

P (u)3

[
3δ3 + 3

δ4

P (u)
+O(δ2P (u)) +O

(
δ3 +

δ6

P (u)3

)]
= O

(
(P (u)−Q(u))2

P (u)2

)
where the inequality holds by P (u) > Q(u) and the dominating term.

If Z(a) = 1, Bob sets prior as

Q(a|u) :=
1

Q(u)

for a ∈ [Q(u), 2Q(u)].

D(P (a|u, Z = 1)||Q(a|u)) =
1

P (u)3 Pr[Z = 1]

∫ P (u)

Q(u)
3(P (u)− a)2 log

3Q(u)(P (u)− a)2

P (u)3
da

Now we bound the value of the integral :∫ P (u)

Q(u)
3(P (u)− a)2 log

3Q(u)(P (u)− a)2

P (u)3
da ≤

∫ P (u)

Q(u)
3(P (u)− a)2 log

3(P (u)− a)2

P (u)2
da

= log 3

∫ P (u)

Q(u)
3(P (u)− a)2da+

∫ P (u)

Q(u)
3(P (u)− a)2 log

(P (u)− a)2

P (u)2
da︸ ︷︷ ︸

≤0

≤ O((P (u)−Q(u))3)

where the bound holds from Q(u) < P (u). Then indeed we get the desired bound:

Pr[Z = 1] ·D(P (a|u, Z = 1)||Q(a|u)) =
1

P (u)3
·O((P (u)−Q(u))3)

≤ O
(

(P (u)−Q(u))2

P (u)2

)
Case 3 : 2Q(u) < P (u). Similar to the case where Q(u) < P (u) < 2Q(u). But note that for
such u, P (a|u) is chopped for a > 2Q(u). Recall that we have a normalization factor for the mass
of darts that lies between 0 and 2Q(u), K1. Since Q(u) < 2Q(u) < P (u), we can bound K1 as
following

K1 = 1− (P (u)− 2Q(u))3

P (u)3
≥ 1− (P (u)−Q(u))3

P (u)3
= 1− p3. (31)

We make analogous argument to Case 2, but with extra K1 factor in P (a|u). In particular, it
suffices to bound

1

P (u)3K1

∫ Q(u)

0
3(P (u)− a)2 log

1

K1
da (32)

which is the extra term introduced from Z = 0 case and

1

P (u)3K1

∫ P (u)

Q(u)
3(P (u)− a)2 log

1

K1
da (33)

which is an analogous term from Z = 1 case. We bound the sum of (32) and (33).

(32) + (33) =
1

P (u)3K1

∫ P (u)

0
3(P (u)− a)2 log

1

K1
da =

1

K1
log

1

K1

≤ 1

1− p3
log

1

1− p3
=

1

(1− p3)2
(1− p3) log

1

1− p3
≤ O(H(p3)) ≤ O(p2)
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So for all u ∈ U with P (u) > Q(u) the information cost is bounded by (P (u)−Q(u))2

P (u)2
, while for

P (u) < Q(u), the information cost is bounded by (P (u)−Q(u))2

P (u)Q(u) Now we bound the total cost, which
is ∑

u:P (u)<Q(u)

P̃ (u) · (P (u)−Q(u))2

P (u)Q(u)
+

∑
u:P (u)>Q(u)

P̃ (u) · (P (u)−Q(u))2

P (u)2

Now recall that if P (u) > 2Q(u), we can bound P̃ (u) as

P̃ (u) =
2Q(u)

K

(
1− 2Q(u)

P (u)
+

4Q(u)2

3P (u)2

)
≤ 2Q(u)

K
<
P (u)

K

while for P (u) < 2Q(u), P̃ (u) = P (u)
3K Since K = Θ(1), we bound the total information cost as

O

(∑
u

(P (u)−Q(u))2

max{P (u), Q(u)}

)
< O(ε)

where the inequality is from Claim A.3.

What Alice learns Alice learns about Bob’s distribution from Bob’s rejection. We show that
information gained is at most O(ε). Let S̃ be the indices of darts that were rejected by Bob. Then
again by Fact 2.6,

I(Π;Y |X,S) = I(S̃;Y |X,S) ≤
∑
S̃i∈S̃

I(S̃i;Y |X,S)

Now we analyze I(S̃i;Y |X,S), that is the expected information from each rejected dart. Note that
if S̃i /∈ 2Q, it is automatically rejected by Alice, and if S̃i ∈ 2Q, the protocol rejects S̃i when Bob
is in “hard” mode and S̃i is the only dart that is in 2Q. That is S̃i ∈ 2Q is rejected with some
constant probability p0, while S̃i /∈ 2Q is rejected with probability 1.

We set Alice’s prior for rejected dart as

P (u, a) =
3

P (u)2
(P (u)− a)2

while Bob’s distribution for rejected dart

Q(u, a) =

{
3

NP (u)2
(P (u)− a)2 if a < 2Q(u)

3
Np0P (u)2

(P (u)− a)2 otherwise

where N is the normalization factor introduced to ensure that Q is indeed a valid distribution.
First we give a bound for N . N can be asymptotically written in closed form as

N =
∑

u:P (u)<2Q(u)

∫ P (u)

0

3

P (u)2
(P (u)− a)2 da

+
∑

u:P (u)>2Q(u)

∫ 2Q(u)

0

3

P (u)2
(P (u)− a)2 da+

∫ P (u)

2Q(u)

3

p0P (u)2
(P (u)− a)2 da

=
∑

u:P (u)<2Q(u)

P (u) +
∑

u:P (u)>2Q(u)

P (u)− (P (u)− 2Q(u))3

P (u)2
+

(P (u)− 2Q(u))3

p0P (u)2
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= 1−
∑

u:P (u)>2Q(u)

1− p0

p0

(P (u)− 2Q(u))3

P (u)2

Recall that
∑

u:P (u)>2Q(u)
(P (u)−2Q(u))3

P (u)2
< O(ε). We show that p0 = Θ(1), which then implies

1−O(ε) ≤ N ≤ 1. p0 can be written as

p0 =
1

2

∞∑
k=1

Pr[k]εk−1

where Pr[k] is the probability of Alice sending k darts and ε factor comes from Claim A.4 i.e. the
probability of sending dart not in 2Q. Now Pr[k] is

Pr[k] =

(
6|U|
k

)
·
(

1− 1

3|U|

)6|U|−k ( 1

3|U|

)k
.

For upper bound,

p0 ≤
1

2

( ∞∑
k=1

Pr[k]

)
·

( ∞∑
k=1

εk−1

)
≤ 1

2(1−O(ε))
= O(1)

For lower bound, just consider the first term. Then

p0 ≥
(

1− 1

3|U|

)6|U|−1

≥
(

1− 1

3|U|

)6|U|
≥ e−2

Explicitly calculating the divergence between Q and P :

D(Q||P ) =
∑

u:P (u)<2Q(u)

∫ P (u)

0
Q(u, a) log

Q(u, a)

P (u, a)
da

︸ ︷︷ ︸
(a)

+
∑

u:P (u)>2Q(u)

∫ P (u)

0
Q(u, a) log

Q(u, a)

P (u, a)
da

︸ ︷︷ ︸
(b)

(a) is then ∑
u:P (u)<2Q(u)

P (u)

N
log

1

N
≤ O(ε)

due to our lower bound in N . (b) is then∑
u:P (u)>2Q(u)

∫ 2Q(u)

0
Q(u, a) log

Q(u, a)

P (u, a)
da+

∫ P (u)

2Q(u)
Q(u, a) log

Q(u, a)

P (u, a)
da

=
∑

u:P (u)>2Q(u)

log

(
1

N

)∫ 2Q(u)

0
Q(u, a) da+ log

(
1

Np0

)∫ P (u)

2Q(u)
Q(u, a) da

while the first term is ∫ 2Q(u)

0
Q(u, a) da =

1

N

(
P (u)− (P (u)− 2Q(u))3

P (u)2

)
and the second term is ∫ P (u)

2Q(u)
Q(u, a) da =

1

Np0

(P (u)− 2Q(u))3

P (u)2

Plugging these in, we get the desired bound of O(ε).
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B Omitted Proof from Section 3

Proof of Lemma 3.8. Consider the set of edges S that are satisfied under µ. Denote µ conditioned
on being inside S as ν. We show that D(ν||µ̃) < O(ε), which indeed implies µ̃(S) < 1 − O(ε) by
Fact 2.7. But indeed Claim 3.10 implies D(ν||µ̃) < O(ε).

�

Proof of Lemma 3.9. The proof follows from Lemma 4.5 of [BG15]. To argue that the
second condition is indeed met, recall that the protocol in [BG15] is the following: Let A :=

• Using shared randomness, get uniformly random samples from Π× [0, 1], which we denote by
{(πi, qi)}∞i=0.

• Alice outputs the first πa that satisfies qa <
P (πa)
δ .

• Bob outputs the first πb that satisfies qb <
Q(πb)
δ .

Protocol 4: Protocol for sampling a transcript (π, q)

{(π, q)|q < P (π)/δ}, B := {(π, q)|q < Q(π)/δ} and C := {(π, q)|q < R(π)}. We define event E as
first dart in A ∪ B being inside A ∩ B ∩ C. Note that Lemma 4.5. of [BG15] exactly gives that
Pr[E] ≥ 2−Ω(δ), therefore the first condition must hold. Furthermore, S is indeed included in
Supp(R) since for such event it must be the case that R(π) > 0. Therefore, E satisfies the second
condition as well. �

Proof of Claim 3.10. For brevity denote W as the set of x with W (x) = 1, D(A||B) = δ0 and
A(W ) = δ1. First, we show that B(W ) < O(D(A||B)) = O(δ0). Note that D(A||B) can be written
as

D(A||B) =
∑
x∈W

A(x) log
A(x)

B(x)
+
∑
x/∈W

A(x) log
A(x)

B(x)
= δ0 (34)

Applying log-sum, we get

A(W ) log
A(W )

B(W )
+A(W ) log

A(W )

B(W )
≤ δ0

Assume for contradiction that B(W ) > KA(W ), where K is some parameter that we will setup
later for contradiction. And put B(W ) = αA(W ) for α > K. Since A(W ) = 1 − δ1 by our
assumption, substituting the terms we get

(1− δ1) log
1− δ1

1− αδ1
+ δ1 log

1

α
= (1− δ1) log

1

1− (α−1)δ1
1−δ1

+ δ1 log
1

α

Suppose for now that α < 1
2δ1

+ 1
2 . Then note that log(1/(1 − x)) = Ω(x). Applying this fact to

the first term, we get

δ0 > (1− δ1) log
1− δ1

1− αδ1
+ δ1 log

1

α
> Ω((α− 1− logα)δ1) > Ω(αδ0).

where the last inequality holds due to our assumption that δ1 > δ0. Picking an appropriately large
constant α = O(1), we get a contradiction. Instead if α > 1

2δ1
+ 1

2 , then

(1− δ1) log
1− δ1

1− αδ1
+ δ1 log

1

α
> (1− δ1) log 2(1− δ1) + δ1 log 2δ1 = H(δ1) + 1 > δ0
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which indeed is a contradiction since δ0 < 1 and H(δ1) ≥ 0. Thus B(W ) < O(δ1) = K0δ1.

To bound D(AW ||B), we first bound
∑

x∈W A(x) log A(x)
B(x) . Note that via our bound on B(W )

implies ∑
x/∈W

A(x) log
A(x)

B(x)
> A(W ) log

A(W )

B(W )
> δ1 log

1

K0

Applying this to (34), we have∑
x∈W

A(x) log
A(x)

B(x)
= δ0 −

∑
x/∈W

A(x) log
A(x)

B(x)
< δ0 − δ1 log

1

K0

Now we use the above fact to bound D(AW ||B).

D(AW ||B) =
∑
x

aW (x) log
aW (x)

b(x)
=
∑
x∈W

aW (x) log
aW (x)

a(x)

a(x)

b(x)

= D(AW ||A) +
∑
x∈W

aW (x) log
a(x)

b(x)
≤ log(1/A(W )) +

∑
x∈W

a(x)

A(W )
log

a(x)

b(x)

< log(1/A(W )) +
D(A||B)

A(W )
+

1−A(W )

A(W )
logK0

< log(1/A(W )) +
D(A||B)

A(W )
+O

(
1−A(W )

A(W )

)
which is indeed the statement of the claim. �
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