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Abstract. A basic goal in complexity theory is to understand the communi-
cation complexity of number-on-the-forehead problems f : ({0, 1}n)k → {0, 1}
with k � logn parties. We study the problems of inner product and set dis-
jointness and determine their randomized communication complexity for every
k > logn, showing in both cases that Θ(1 + dlogne/ logd1 + k/ logne) bits are
necessary and sufficient. In particular, these problems admit constant-cost
protocols if and only if the number of parties is k > nε for some constant
ε > 0.

1. Introduction

The number-on-the-forehead model, due to Chandra et al. [8], is the standard
model of multiparty communication. The model features k collaborative players
and a Boolean function F : X1 × X2 × · · · × Xk → {0, 1} with k arguments. An
input (x1, x2, . . . , xk) is distributed among the k players with overlap, by giving the
ith player the arguments x1, . . . , xi−1, xi+1, . . . , xk but not xi. This arrangement
can be visualized as having the k players seated in a circle with xi written on the
ith player’s forehead, whence the name of the model. The players communicate
according to a protocol agreed upon in advance. The communication occurs in
the form of broadcasts, with a message sent by any given player instantly reaching
everyone else. The players’ objective is to compute F on any given input with
minimal communication. We are specifically interested in randomized protocols,
where the players have an unbounded supply of shared random bits. The cost
of a protocol is the total bit length of all the messages broadcast in a worst-case
execution. The ε-error randomized communication complexity Rε(F ) is the least
cost of a randomized protocol that computes F with probability of error at most ε
on every input.

Number-on-the-forehead communication complexity is a natural subject of study
in its own right, in addition to its applications to circuit complexity, pseudoran-
domness, and proof complexity [3, 27, 15, 23, 6]. Number-on-the-forehead is the
most studied model in the area because any other way of assigning arguments to
players results in a less powerful formalism—provided of course that one does not
assign all the arguments to some player, in which case there is never a need to com-
municate. The generous overlap in the players’ inputs makes proving lower bounds
in the number-on-the-forehead model difficult. The strongest lower bound for an
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explicit communication problem F : ({0, 1}n)k → {0, 1} is currently Ω(n/2k), ob-
tained by Babai et al. [3] almost thirty years ago. This lower bound becomes trivial
at k = log n, and it is a longstanding open problem to overcome this logarithmic
barrier and prove strong lower bounds for an explicit function with k � log n. As
one would expect, the existence of such functions is straightforward to prove using
a counting argument [3, 13]. In particular, it is known [13, Sec. 9.2] that for all
n and k, a uniformly random function F : ({0, 1}n)k → {0, 1} almost surely has
randomized communication complexity

R1/3(F ) > n− 5, (1.1)

which essentially meets the trivial upper bound R1/3(F ) 6 n+ 1.
The two most studied problems in communication complexity theory are (gener-

alized) inner product and set disjointness. In the k-party versions of these problems,
the inputs are subsets S1, S2, . . . , Sk ⊆ {1, 2, . . . , n}. As usual, the ith player knows
S1, . . . , Si−1, Si+1, . . . , Sk but not Si. In the inner product problem, the objective
is to determine whether |

⋂
Si| is odd. In set disjointness, the objective is to de-

termine whether
⋂
Si = ∅. In Boolean form, these two functions are given by the

formulas

GIPn,k(X) =

n⊕
i=1

k∧
j=1

Xi,j ,

DISJn,k(X) =

n∧
i=1

k∨
j=1

Xi,j ,

respectively, where the input is an n × k Boolean matrix X ∈ {0, 1}n×k whose
columns are the characteristic vectors of the input sets. In the setting of two play-
ers, the communication complexity is well-known to be Θ(n) for both inner prod-
uct [11] and set disjointness [17, 22, 4]. A moment’s thought reveals that the k-party
communication complexity of these problems is monotonically nonincreasing in k,
and determining this dependence has been the subject of extensive research in the
area [3, 14, 26, 7, 19, 9, 5, 25, 24]. On the upper bounds side, Grolmusz [14] proved
that k-party inner product has communication complexity O(kdn/2ke), which easily
carries over to k-party set disjointness. The best lower bounds to date are Ω(n/4k)
for inner product, due to Babai et al. [3]; and Ω(n/4k)1/4 and Ω(

√
n/2kk) for set

disjointness, due to Sherstov [25, 24].

1.1. Our results. Our work began with a basic question: how many players k does
it take to compute inner product and set disjointness with constant communication?
As discussed above, the best bounds on the communication complexity of these
functions for large k prior to this paper were Ω(1) and O(log n). We close this
logarithmic gap, determining the communication complexity up to a multiplicative
constant for every k > log n.
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Theorem 1.1 (Main result). For any k > log n, inner product and set disjointness
have randomized communication complexity

R1/3(GIPn,k) = Θ

 log n

log
⌈
1 + k

logn

⌉ + 1

 ,

R1/3(DISJn,k) = Θ

 log n

log
⌈
1 + k

logn

⌉ + 1

 .

To our knowledge, Theorem 1.1 is the first nontrivial (i.e., superconstant) lower
bound for any explicit communication problem with k > log n players. In particular,
inner product and set disjointness have communication protocols with constant
cost if and only if the number of players is k > nε for some constant ε > 0. It
is noteworthy that we prove the upper bounds in Theorem 1.1 using simultaneous
protocols, where the players do not interact. In more detail, each player in a
simultaneous protocol broadcasts all his messages at once and without regard to
the messages from the other players. The output of a simultaneous protocol is
fully determined by the shared randomness and the concatenation of the messages
broadcast by all the players. The cost of a simultaneous protocol is defined in the
usual way, as the total number of bits broadcast by all the players in a worst-case
execution. Theorem 1.1 shows that as far as inner product and set disjointness are
concerned, simultaneous protocols are asymptotically as powerful as general ones.

A natural next step is to construct a problem Fn,k : ({0, 1}n)k → {0, 1} whose
communication complexity remains nontrivial for all k. Its existence follows from
the lower bound (1.1) on the communication complexity of random functions. In
the theorem below, we give an explicit function with communication complexity at
least c log n for some absolute constant c > 0 and all n and k.We remind the reader
that MODm stands for the Boolean function that evaluates to true if and only if
the sum of its arguments is a multiple of m.

Theorem 1.2. Define Fn,k : ({0, 1}n)k → {0, 1} by

Fn,k(X) = MOD3

 k⊕
j=1

X1,j , . . . ,

k⊕
j=1

Xn,j

 .

Then

R1/3(Fn,k) >
1

3
log n− 1

3
.

As with inner product and set disjointness, we show that the lower bound of The-
orem 1.2 is asymptotically tight for all k > log n.

1.2. Our techniques. The upper bounds in Theorem 1.1 are based on Grolmusz’s
deterministic protocol for multiparty inner product [14], which we are able to speed
up using public randomness. The lower bounds in Theorems 1.1 and 1.2 are more
subtle. First of all, it may be surprising that we are able to prove any lower bounds
at all for k � log n players since all known techniques for explicit functions stop
working at k = log n players. The key is to realize that we only need to rule out
communication protocols with cost O(log n), and in any given execution of such a
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protocol all but O(log n) players remain silent! This makes it possible to reduce the
analysis to the setting of k 6 log n players, where strong lower bounds are known.
This reduction involves constructing an input distribution such that the portion of
the input seen by any small set of players does not significantly help with computing
the output. Our communication lower bounds use the discrepancy method, which
we adapt here to reflect the number of active players.

The remainder of this paper is organized as follows. Section 2 gives a thorough
review of the technical preliminaries. Our results for inner product and set disjoint-
ness are presented in Sections 3 and 4, respectively. Section 5 concludes the paper
with a proof of Theorem 1.2 along with a matching upper bound.

2. Preliminaries

2.1. General. We use lowercase letters for vectors and strings, and uppercase
letters for matrices. The empty string is denoted ε. For a bit string x ∈ {0, 1}n,
we let |x| = x1 + x2 + · · · + xn denote the Hamming weight of x. We let the bar
operator denote either complex conjugation or set complementation, depending
on the nature of the argument. For convenience, we adopt the convention that
0/0 = 0. The notation log x refers to the logarithm of x to base 2.

We will view Boolean functions as mappings f : X → {0, 1} for a finite set X,
typically X = {0, 1}n. A partial function f on a set X is a function whose do-
main of definition, denoted dom f, is a proper subset of X. For (possibly partial)
Boolean functions f and g on {0, 1}n and X, respectively, the symbol f ◦ g refers
to the (possibly partial) Boolean function on Xn given by (f ◦ g)(x1, x2, . . . , xn) =
f(g(x1), g(x2), . . . , g(xn)). Clearly, the domain of f ◦g is the set of all (x1, . . . , xn) ∈
(dom g)n for which (g(x1), g(x2), . . . , g(xn)) ∈ dom f. As usual, for (possibly par-
tial) Boolean functions f and g, the symbol f ⊕ g refers to the (possibly par-
tial) Boolean function given by (f ⊕ g)(x, y) = f(x) ⊕ g(y). Observe that in
this notation, f ⊕ f and f are completely different functions. We abbreviate
f⊕n = f ⊕ f ⊕ · · · ⊕ f (n times). The familiar functions ANDn, ORn, and
XORn on the Boolean hypercube {0, 1}n are given by ANDn(x) =

∧n
i=1 xi,

ORn(x) =
∨n
i=1 xi, and XORn(x) =

⊕n
i=1 xi. We let MOD3 : {0, 1}∗ → {0, 1}

be the Boolean function given by MOD3(x) = 1 ⇔ |x| ≡ 0 (mod 3). Finally, we
define a partial Boolean function ÃNDn on {0, 1}n as the restriction of ANDn to
{x : |x| > n− 1}. In other words,

ÃNDn(x) =

{
x1 ∧ x2 ∧ · · · ∧ xn if |x| > n− 1,

undefined otherwise.

We let Xn×k denote the family of n × k matrices with entries in X, the most
common cases being those of real matrices (X = R) and Boolean matrices (X =
{0, 1}). For a matrix M ∈ Rn×m and a set S ⊆ {1, 2, . . . , n}, we let M |S denote
the submatrix of M obtained by keeping the rows with index in S. More generally,
for sets S ⊆ {1, 2, . . . , n} and T ⊆ {1, 2, . . . ,m}, we let M |S,T denote the |S| × |T |
submatrix of M obtained by keeping the rows with index in S and columns with
index in T. We adopt the standard convention that the ordering of the rows (and
columns) in a submatrix is inherited from the containing matrix.
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For nonnegative integers n and k, we define(
n

6k

)
:=

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

k

)
=

min{k,n}∑
i=0

(
n

i

)
.

The following bounds are well-known [16, Proposition 1.4]:(n
k

)k
6

(
n

6k

)
6
(en

k

)k
(1 6 k 6 n). (2.1)

2.2. Analytic preliminaries. For a finite set X, we let RX denote the linear
space of real functions X → R. This space is equipped with the usual norms and
inner product:

‖φ‖∞ = max
x∈X

|φ(x)| (φ ∈ RX),

‖φ‖1 =
∑
x∈X

|φ(x)| (φ ∈ RX),

〈φ, ψ〉 =
∑
x∈X

φ(x)ψ(x) (φ, ψ ∈ RX).

The support of φ ∈ RX is the subset suppφ = {x ∈ X : φ(x) 6= 0}. The pointwise
(Hadamard) product of φ, ψ ∈ RX is denoted φ ·ψ ∈ RX and given by (φ ·ψ)(x) =
φ(x)ψ(x). The tensor product of φ ∈ RX and ψ ∈ RY is the function φ⊗ψ ∈ RX×Y
given by (φ ⊗ ψ)(x, y) = φ(x)ψ(y). The tensor product φ ⊗ φ ⊗ · · · ⊗ φ (n times)
is abbreviated φ⊗n. Tensor product notation generalizes to partial functions in the
natural way: if φ and ψ are partial real functions on X and Y, respectively, then
φ⊗ ψ is a partial function on X × Y with domain domφ× domψ and is given by
(φ ⊗ ψ)(x, y) = φ(x)ψ(y) on that domain. Similarly, φ⊗n is a partial function on
Xn with domain (domφ)n.

We now recall the Fourier transform on {0, 1}n. For a subset S ⊆ {1, 2, . . . , n},
define χS : {0, 1}n → {−1,+1} by χS(x) =

∏
i∈S(−1)xi . Then every function

φ : {0, 1}n → R has a unique representation of the form φ =
∑
S φ̂(S)χS , where

φ̂(S) = Ex∈{0,1}n φ(x)χS(x). The reals φ̂(S) are the Fourier coefficients of φ, and
the mapping φ 7→ φ̂ is the Fourier transform of φ.

2.3. Probability. We view probability distributions first and foremost as real
functions and use the notational shorthands above. In particular, we write suppµ
to refer to the support of the probability distribution µ, and µ ⊗ λ to refer to the
Cartesian product of the distributions µ and λ. The notation X ∼ µ means that
the random variable X is distributed according to µ. We let B(n, p) denote the
binomial distribution with n trials and success probability p.

Fact 2.1. For any integer n > 1,

E
s∼B(n−1,p)

1√
n− s

6
1√

(1− p)n
, (2.2)

E
s∼B(n−1,q)

1√
s+ 1

6
1
√
qn
, (2.3)

E
s∼B(n,p)

|s− pn| 6
√
p(1− p)n. (2.4)
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Proof. For (2.2), we have(
E

s∼B(n−1,p)

1√
n− s

)2

6 E
s∼B(n−1,p)

1

n− s

=

n−1∑
s=0

(
n− 1

s

)
ps(1− p)n−1−s

n− s

=
1

(1− p)n

n−1∑
s=0

(
n

s

)
ps(1− p)n−s

=
1− pn

(1− p)n
,

where the first step follows from the Cauchy-Schwarz inequality, and the last step
uses the binomial theorem. The bound (2.3) follows from (2.2) since the distribution
of s+1 for B(n−1, q) is the same as the distribution of n−s for s ∼ B(n−1, 1−q).
For (2.4),(

E
s∼B(n,p)

|s− pn|
)2

6 E
s∼B(n,p)

[(s− pn)2]

= p(1− p)n,

where the first step uses the Cauchy-Schwarz inequality, and the second step uses
the fact that the binomial distribution B(n, p) has variance p(1− p)n.

2.4. Approximation by polynomials. We let deg p denote the total degree of
a multivariate polynomial p. In this paper, we use the terms “degree” and “total
degree” interchangeably, preferring the former for brevity. Let φ : X → R be given,
for a finite subset X ⊂ Rn. The ε-approximate degree of φ, denoted degε(φ), is the
least degree of a real polynomial p such that ‖φ − p‖∞ 6 ε. We generalize this
definition to partial functions φ on X by defining degε(φ) as the least degree of a
real polynomial p with

|φ(x)− p(x)| 6 ε, x ∈ domφ,

|p(x)| 6 1 + ε, x ∈ X \ domφ.

}
(2.5)

For a (possibly partial) real function φ on a finite subset X ⊂ Rn, we define E(φ, d)
to be the least ε such that (2.5) holds for some polynomial of degree at most d. In
this notation, degε(φ) = min{d : E(φ, d) 6 ε}. The canonical setting of the error
parameter is ε = 1/3, which is without loss of generality since the error in a uniform
approximation of a Boolean function can be reduced from any given constant in
(0, 1/2) to any other constant in (0, 1/2) with only a constant-factor increase in
the degree of the approximant. One of the earliest results on the approximation
of Boolean functions by polynomials is the following seminal theorem due to Nisan
and Szegedy [20].

Theorem 2.2 (Nisan and Szegedy).

deg1/3(ANDn) > deg1/3(ÃNDn) = Ω(
√
n).
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2.5. Multiparty communication. An excellent introduction to communication
complexity theory is the monograph by Kushilevitz and Nisan [18]. In our overview,
we will limit ourselves to key definitions and notation. This paper uses the stan-
dard model of randomized multiparty communication known as the number-on-the-
forehead model [8]. Let F be a (possibly partial) Boolean function on X1 ×X2 ×
· · ·×Xk, for some finite sets X1, X2, . . . , Xk. The model features k players. A given
input (x1, x2, . . . , xk) ∈ X1 × X2 × · · · × Xk is distributed among the players by
placing xi on the forehead of party i (for i = 1, 2, . . . , k). In other words, party i
knows x1, . . . , xi−1, xi+1, . . . , xk but not xi. The players communicate according to
an agreed-upon protocol by writing bits on a shared blackboard, visible to them
all. They additionally have access to a shared source of random bits which they
can use in deciding what messages to send. Their goal is to accurately compute
the value of F on any given input in the domain of F. An ε-error communication
protocol for F is one which, on every input (x1, x2, . . . , xk) ∈ domF, produces the
correct answer F (x1, x2, . . . , xk) with probability at least 1− ε. The cost of a com-
munication protocol is the total number of bits written to the blackboard in the
worst case on any input. The ε-error randomized communication complexity of F ,
denoted Rε(F ), is the least cost of an ε-error randomized communication protocol
for F . As usual, the standard setting of the error parameter is ε = 1/3, which is
without loss of generality since the error probability in a communication protocol
can be efficiently reduced by running the protocol several times independently and
outputting the majority answer.

The communication problems of interest to us are generalized inner product
GIPn,k : {0, 1}n×k → {0, 1} and set disjointness DISJn,k : {0, 1}n×k → {0, 1}, given
by

GIPn,k(X) =

n⊕
i=1

k∧
j=1

Xi,j ,

DISJn,k(X) =

n∧
i=1

k∨
j=1

Xi,j .

These k-party communication problems are both defined on n× k matrices, where
the ith party receives as input all but the ith column of the matrix. The disjointness
function evaluates to true if and only if the input matrix does not have an all-
ones row, whereas the generalized inner product function evaluates to true if and
only if the number of all-ones rows is odd. We also consider a partial Boolean
function UDISJn,k on {0, 1}n×k, called unique set disjointness and defined as the
restriction of DISJn,k to matrices with at most one all-ones row. In other words,
UDISJn,k(X) is undefined if X has two or more all-ones rows, and is given by
UDISJn,k(X) = DISJn,k(X) otherwise.

Let G be a (possibly partial) Boolean function on X1×X2×· · ·×Xk, represent-
ing a k-party communication problem, and let f be a (possibly partial) Boolean
function on {0, 1}n. We view the composition f ◦ G as a k-party communication
problem on Xn

1 × Xn
2 × · · · × Xn

k . It will be helpful to keep in mind that for all
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positive integers m and n,

GIPmn,k = XORm ◦GIPn,k, (2.6)
DISJmn,k = ANDm ◦DISJn,k, (2.7)

UDISJmn,k = ÃNDm ◦UDISJn,k. (2.8)

Similarly, if Fi for i = 1, 2, . . . ,m is a (possibly partial) k-party communication
problem on Xi,1 ×Xi,2 × · · · ×Xi,k, we view

⊕m
i=1 Fi as a k-party communication

problem on (
∏
Xi,1)× (

∏
Xi,2)× · · · × (

∏
Xi,k).

2.6. Cylinder intersections. Let X1, X2, . . . , Xk be nonempty finite sets. A
cylinder intersection on X1×X2×· · ·×Xk is any function χ : X1×X2×· · ·×Xk →
{0, 1} of the form

χ(x1, . . . , xk) =

k∏
i=1

χi(x1, . . . , xi−1, xi+1, . . . , xk), (2.9)

where χi : X1 × · · · ×Xi−1 ×Xi+1 × · · · ×Xk → {0, 1}. In other words, a cylinder
intersection is the product of k Boolean functions, where the ith function does
not depend on the ith coordinate but may depend arbitrarily on the other k − 1
coordinates. For a given set S ⊆ {1, 2, . . . , k}, we further specialize this notion to
S-cylinder intersections, defined as functions of the form

χ(x1, . . . , xk) =
∏
i∈S

χi(x1, . . . , xi−1, xi+1, . . . , xk)

for some χi : X1 × · · · × Xi−1 × Xi+1 × · · · × Xk → {0, 1}. Finally, an `-cylinder
intersection on X1 × X2 × · · · × Xk is any S-cylinder intersection for a subset
S ⊆ {1, 2, . . . , k} of cardinality at most `. Cylinder intersections were introduced
by Babai, Nisan, and Szegedy [3] and play a fundamental role in the theory due to
the following fact.

Fact 2.3. Let Π: X1 ×X2 × · · · ×Xk → {0, 1} be a deterministic k-party commu-
nication protocol with cost c. Then

Π =

2c∑
i=1

aiχi

for some min{c, k}-cylinder intersections χ1, . . . , χ2c and some a1, . . . , a2c ∈ {0, 1}.

We refer the reader to [18] for a simple proof of Fact 2.3. Recall that a randomized
protocol of cost c is a probability distribution on deterministic protocols of cost c.
With this in mind, one easily infers the following from Fact 2.3:

Corollary 2.4. Let F be a (possibly partial) Boolean function on X1×X2×· · ·×
Xk. If Rε(F ) = c, then

|F (x1, . . . , xk)−Π(x1, . . . , xk)| 6 ε, (x1, . . . , xk) ∈ domF,

|Π(x1, . . . , xk)| 6 1, (x1, . . . , xk) ∈ X1 ×X2 × · · · ×Xk,

where Π =
∑
χ aχχ is a linear combination of min{c, k}-cylinder intersections with∑

χ |aχ| 6 2c.
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2.7. Discrepancy. For a (possibly partial) Boolean function F on X1×X2×· · ·×
Xk, a probability distribution µ on the domain of F, and a set S ⊆ {1, 2, . . . , k},
the S-discrepancy of F with respect to µ is defined as

discS(F, µ) = max
χ
|〈(−1)F , µ · χ〉|

= max
χ

∣∣∣∣∣ ∑
x∈domF

(−1)F (x)µ(x)χ(x)

∣∣∣∣∣ ,
where the maximum is over S-cylinder intersections χ. Further maximizing over S
gives the key notions of `-discrepancy and discrepancy, as follows:

disc`(F, µ) = max
S⊆{1,2,...,k}
|S|6`

discS(F, µ),

disc(F, µ) = max
S⊆{1,2,...,k}

discS(F, µ).

By definition,

discS(F, µ) 6 disc`(F, µ) 6 disc(F, µ)

for every ` = 0, 1, . . . , k and every set S of cardinality at most `.
In light of Corollary 2.4, upper bounds on the discrepancy give lower bounds

on the communication complexity. This fundamental technique is known as the
discrepancy method [11, 3, 18]:

Theorem 2.5 (Discrepancy method). For every (possibly partial) Boolean function
F on X1 ×X2 × · · · ×Xk and every probability distribution µ on the domain of F,

2Rε(F ) >
1− 2ε

disc(F, µ)
. (2.10)

More generally,

2Rε(F ) >
1− 2ε

discmin{Rε(F ),k}(F, µ)
. (2.11)

A proof of (2.10) can be found in [25]; that same proof carries over to discrepancy
with respect to any given family χ of functions and in particular establishes (2.11)
as well.

A useful property of discrepancy is its convexity in the second argument, as
formalized by the following proposition.

Proposition 2.6 (Convexity of discrepancy). Let F be a (possibly partial) Boolean
function on X1×X2× · · · ×Xk, and let µ and λ be probability distributions on the
domain of F. Then for every S ⊆ {1, 2, . . . , k} and 0 6 p 6 1,

discS(F, pµ+ (1− p)λ) 6 p discS(F, µ) + (1− p) discS(F, λ),

and likewise for disc` and disc .

By induction, Proposition 2.6 immediately generalizes to any finite convex combi-
nation of probability distributions. It is this more general form that we will invoke
in our applications.
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Proof of Proposition 2.6. Immediate from the following inequality for any cylinder
intersection χ:

|〈(−1)F , (pµ+ (1− p)λ) · χ〉|
6 p · |〈(−1)F , µ · χ〉|+ (1− p) · |〈(−1)F , λ · χ〉|,

where for partial functions F the inner products are restricted to the domain of
F.

It is clear that discrepancy is a continuous function of the input distribution.
The following proposition quantifies this continuity.

Proposition 2.7 (Continuity of discrepancy). For any k-party communication
problem F : X1 ×X2 × · · · ×Xk → {0, 1} and any probability distributions µ and µ̃
on the domain of F,

disc(F, µ) 6 disc(F, µ̃) + ‖µ− µ̃‖1.

More generally, for any S ⊆ {1, 2, . . . , k}, any (possibly partial) k-party commu-
nication problems F1, F2, . . . , Fm, and any probability distributions µ1, µ2, . . . , µm
and µ̃1, µ̃2, . . . , µ̃m on the corresponding domains,

discS

(
m⊕
i=1

Fi,

m⊗
i=1

µi

)
6

∑
A⊆{1,2,...,m}

discS

(⊕
i∈A

Fi,
⊗
i∈A

µ̃i

)∏
i/∈A

‖µi − µ̃i‖1

and likewise for disc` and disc .

Proof. It suffices to prove the claim for discS . Fix a set S ⊆ {1, 2, . . . , k} and an
S-cylinder intersection χ with

discS

(
m⊕
i=1

Fi,

m⊗
i=1

µi

)
=

∣∣∣∣∣
〈

m⊗
i=1

(−1)Fi , χ ·
m⊗
i=1

µi

〉∣∣∣∣∣ ,
where as usual the inner product on the right-hand side is restricted to

∏
domFi.

Then

discS

(
m⊕
i=1

Fi,

m⊗
i=1

µi

)
=

∣∣∣∣∣
〈

m⊗
i=1

(−1)Fi , χ ·
m⊗
i=1

(µ̃i + (µi − µ̃i))

〉∣∣∣∣∣
=

∣∣∣∣∣∣
∑

A⊆{1,2,...,m}

〈
m⊗
i=1

(−1)Fi , χ · ΛA

〉∣∣∣∣∣∣ , (2.12)
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where ΛA is given by ΛA(x1, x2 . . . , xm) =
∏
i∈A µ̃i(xi) ·

∏
i/∈A(µi(xi) − µ̃i(xi)).

Continuing,∣∣∣∣∣
〈

m⊗
i=1

(−1)Fi , χ · ΛA

〉∣∣∣∣∣
=

∣∣∣∣∣ ∑
x1,...,xm

χ(x)
∏
i∈A

(−1)Fi(xi)µ̃i(xi) ·
∏
i/∈A

(−1)Fi(xi)(µi(xi)− µ̃i(xi))

∣∣∣∣∣
6
∑
xi:i/∈A

∣∣∣∣∣ ∑
xi:i∈A

χ(x)
∏
i∈A

(−1)Fi(xi)µ̃i(xi)

∣∣∣∣∣∏
i/∈A

|µi(xi)− µ̃i(xi)|

6
∑
xi:i/∈A

discS

(⊕
i∈A

Fi,
⊗
i∈A

µ̃i

)∏
i/∈A

|µi(xi)− µ̃i(xi)|

= discS

(⊕
i∈A

Fi,
⊗
i∈A

µ̃i

)∏
i/∈A

‖µi − µ̃i‖1, (2.13)

where the next to last step is legitimate because for any fixing of xi for i /∈ A, the
function χ continues to be an S-cylinder intersection with respect to the remaining
coordinates. In view of (2.12) and (2.13), the proof is complete.

3. Inner product

In this section, we determine the communication complexity of the inner product
problem GIPn,k for k > log n players. Our proofs build on the classic lower and up-
per bounds for this problem for k 6 log n, due to Babai et al. [3] and Grolmusz [14],
respectively.

3.1. Lower bound. For the lower bound, we use the generalization of the dis-
crepancy method given by Theorem 2.5. We will work with the following input
distribution.

Definition 3.1. Let υn,k,` denote the probability distribution on n × k Boolean
matrices whereby each row is chosen independently and uniformly at random from
the set {u ∈ {0, 1}k : |u| > k − `}.

In particular, υn,k,k is the uniform probability distribution on {0, 1}n×k. In this
special case, a strong upper bound on the discrepancy of generalized inner product
was obtained in the seminal work of Babai, Nisan, and Szegedy [3].

Theorem 3.2 (Babai, Nisan, and Szegedy). For any positive integers n and k,

disc(GIPn,k, υn,k,k) 6

(
1− 1

4k−1

)n
.

We generalize this discrepancy bound to υn,k,` for any `.

Theorem 3.3. For any positive integers n, k, ` with ` 6 k,

disc`(GIPn,k, υn,k,`) 6

(
1− 1

2`−1
(
k
6`

))n .
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For ` = k, this discrepancy bound is identical to that of Theorem 3.2. In the setting
`� k of interest to us, however, the new bound is substantially stronger.

Proof of Theorem 3.3. Since the communication problem GIPn,k and the probabil-
ity distribution υn,k,` are both symmetric with respect to the k players, we have

disc`(GIPn,k, υn,k,`) = disc{1,2,...,`}(GIPn,k, υn,k,`). (3.1)

For a given set S ⊆ {1, 2, . . . , n} and a probability distribution σ on matrices
X ∈ {0, 1}n×k, let σ|S stand for the probability distribution induced by σ after
conditioning on the event that (Xi,`+1, Xi,`+2, . . . , Xi,k) = (1, 1, . . . , 1) if and only if
i ∈ S. Observe that υn,k,`|S is a probability distribution on matrices X ∈ {0, 1}n×k
whereby X|S and X|S are distributed independently such that

X|S,{1,2,...,`} ∼ υ|S|,`,`, (3.2)

X|S,{`+1,`+2,...,k} =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 , (3.3)

and X|S does not have an all-ones row. In particular, the rows in X|S do not affect
the value of the function. The conditional probability distribution of X|S given any
value of X|S is always (3.2)–(3.3). Viewing υn,k,`|S as the convex combination of
these conditional probability distributions, corresponding to every possible value of
X|S , we conclude by Proposition 2.6 that

disc{1,2,...,`}(GIPn,k, υn,k,`|S) 6 disc(GIP|S|,`, υ|S|,`,`). (3.4)

We will now express υn,k,` as a convex combination of probability distributions
υn,k,`|S and use the convexity of discrepancy to complete the proof. Specifically,
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let p = 2`/
(
k
6`

)
. Then

disc{1,2,...,`}(GIPn,k, υn,k,`)

= disc{1,2,...,`}

GIPn,k, E
s∼B(n,p)

E
S⊆{1,2,...,n}
|S|=s

υn,k,`|S


by definition of υn,k,`

6 E
s∼B(n,p)

E
S⊆{1,2,...,n}
|S|=s

disc{1,2,...,`}(GIPn,k, υn,k,`|S)

by Proposition 2.6

6 E
s∼B(n,p)

disc(GIPs,k, υs,`,`) by (3.4)

6 E
s∼B(n,p)

(
1− 1

4`−1

)s
by Theorem3.2

=

n∑
s=0

(
n

s

)(
1− 1

4`−1

)s
ps(1− p)n−s

=
(

1− p

4`−1

)n
=

(
1− 1

2`−1
(
k
6`

))n .
In light of (3.1), the proof is complete.

As a corollary to the new bound on the discrepancy of generalized inner product,
we obtain our claimed communication lower bound for this function.

Theorem 3.4. Abbreviate R = R1/3(GIPn,k). Then

(
k

6R

)2

R > Ω(n). (3.5)

In particular,

R1/3(GIPn,k) = Ω

 log n

log
⌈
1 + k

logn

⌉ + 1

 . (3.6)
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Proof. We have

2R >
1

3 discmin{R,k}(GIPn,k, υn,k,min{R,k})
by Theorem2.5

>
1

3
exp

(
n

2min{R,k}
(

k
6min{R,k}

)) by Theorem3.3

>
1

3
exp

 n(
k

6R

)2
 ,

settling (3.5). Now, recall from (2.1) that(
k

6R

)
6 eR

⌈
k

R

⌉R
.

Substituting this estimate in (3.5) gives e2Rdk/Re2RR > Ω(n), whence (3.6).

3.2. Upper bound. We now prove a matching upper bound on the communi-
cation complexity of inner product for k > log n players. Our proof is based on
Grolmusz’s well-known deterministic protocol [14] for this function, which we are
able to speed up using shared randomness. In addition to lower communication
cost, the protocol below has the advantage of being simultaneous, which was not
the case in previous work [14, 2].

Theorem 3.5. For any k > log n and any constant ε > 0,

Rε(GIPn,k) = O

 log n

log
⌈
1 + k

logn

⌉ + 1

 .

Moreover, this upper bound is achieved by a simultaneous protocol.

Proof. We first consider the case

k > log 3n. (3.7)

Recall that the generalized inner product problem, GIPn,k, is the k-party problem
of determining whether a given n × k Boolean matrix X contains an odd number
of all-ones rows, where the ith party (1 6 i 6 k) sees all the columns of X except
for the ith column. Let ` denote the smallest natural number, 0 6 ` 6 k, with the
property that(

k

6`

)
> 3n. (3.8)

Such ` exists by (3.7). Moreover, in view of the lower bound in (2.1), it is straight-
forward to verify that

` = O

 log n

log
⌈
1 + k

logn

⌉ + 1

 . (3.9)

As the first step of the protocol, the players use their shared randomness to pick
a uniformly random row vector y ∈ {0, 1}k with Hamming weight at least k − `.
The defining property (3.8) of ` ensures that with probability 2/3 or higher, y is
distinct from every row of the input matrix X. We will prove that conditioned on
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this event, the protocol is guaranteed to output the correct answer. We emphasize
that this first step requires no communication. Indeed, it is our only departure
from Grolmusz’s protocol [14], where the corresponding vector was computed de-
terministically and counted toward the communication cost.

The rest of the analysis is identical to [14]. Specifically, by renumbering if nec-
essary the players and the columns of X, we may assume that

y = (0, 0, . . . , 0︸ ︷︷ ︸
j

, 1, 1, . . . , 1)

for some j 6 `. Let ni denote the number of rows of X of the form

(0, 0, . . . , 0︸ ︷︷ ︸
i

, 1, 1, . . . , 1).

In this notation, nj = 0 by the assumption on y, and the objective of the protocol
is to compute the quantity n0 mod 2. For i = 1, 2, . . . , j, the protocol has the ith
party broadcast the sum (ni−1 +ni) mod 2, which is known to him because he sees
all but the ith coordinate of every row of X. These j broadcasts are sufficient to
compute the answer since

n0 ≡ (n0 + n1) + (n1 + n2) + · · ·+ (nj−1 + nj) + nj (mod 2)

≡ (n0 + n1) + (n1 + n2) + · · ·+ (nj−1 + nj) (mod 2).

Observe that the described protocol is simultaneous, with communication cost
bounded by (3.9). Its error probability can be reduced from 1/3 to any constant
ε > 0 by running several copies of the protocol in parallel and using the majority
answer.

We handle the case k ∈ [log n, log 3n) in a manner analogous to [14], using the
composed structure (2.6) of generalized inner product. Specifically, the players
partition the input matrix horizontally into submatrices with at most n/3 rows
each and run the above protocol on the resulting submatrices with a small constant
error parameter, simultaneously and in parallel. The protocol output is the XOR
of these answers.

4. Set disjointness

We now turn to the set disjointness problem DISJn,k, proving matching lower and
upper bounds on its communication complexity for k > log n players. Analogous to
the previous section, our lower bound is a reduction to the case k 6 log n followed
by an appeal to a known lower bound for that setting [25]. The treatment here is
more technical than for inner product.

4.1. `-discrepancy. For positive integers n and k, let µn,k denote the uniform
probability distribution on matrices X ∈ {0, 1}n×k such that Xi,1 = Xi,2 = · · · =
Xi,k−1 = 1 for precisely one row i. The following result [25, Theorem 4.2] bounds
the multiparty discrepancy of the XOR of m independent instances of the set dis-
jointness problem, each distributed according to the probability distribution just
defined.
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Theorem 4.1 (Sherstov). For any integers n1, n2, . . . , nm,

disc

(
m⊕
i=1

DISJni,k,
m⊗
i=1

µni,k

)
6

(2k−1 − 1)m
√
n1n2 · · ·nm

.

For the purposes of this paper, we will slightly adapt Theorem 4.1 to obtain a
discrepancy bound under a more symmetric distribution. Specifically, let

σn,k =
1

2
σ0
n,k +

1

2
σ1
n,k, (4.1)

where σ0
n,k is the uniform probability distribution on n×k Boolean matrices without

an all-ones row, and σ1
n,k is the uniform probability distribution on n× k Boolean

matrices with precisely one all-ones row.

Theorem 4.2. For any integers n1, n2, . . . , nm,

disc

(
m⊕
i=1

DISJni,k,
m⊗
i=1

σni,k

)

6

(
(
√

2k − 1 + 1)
√

2k − 2

2

)m
1

√
n1n2 · · ·nm

.

Proof. Instead of analyzing the discrepancy with respect to the tensor product⊗
σni,k, we will define a different family of probability distributions σ̃ni,k and

bound the discrepancy with respect to
⊗
σ̃ni,k using Theorem 4.1. We will then

prove that σni,k and σ̃ni,k are close in statistical distance for each i, and appeal to
Proposition 2.7 to complete the proof.

Abbreviate p = 1/(2k − 1). For a given set S ⊆ {1, 2, . . . , n} and a probability
distribution σ on matrices X ∈ {0, 1}n×k, let σ|S stand for the probability distri-
bution induced by σ after conditioning on the event that (Xi,1, Xi,2, . . . , Xi,k) =
(1, 1, . . . , 1, 0) if and only if i ∈ S. Observe that for a fixed set S ( {1, 2, . . . , n},
the convex combination

σ1
n,k|S
2

+ E
S′⊃S

|S′|=|S|+1

σ0
n,k|S′

2
(4.2)

is a probability distribution on matrices X ∈ {0, 1}n×k whereby

X|S =


1 1 · · · 1 0
1 1 · · · 1 0
...

...
. . .

...
...

1 1 · · · 1 0


and

X|S ∼ µn−|S|,k.

In other words, the rows with indices in S are fixed to non-1k values and can
therefore be disregarded from the point of view of set disjointness, whereas the
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remaining rows have joint probability distribution µn−|S|,k. It follows that for any
sets S1, S2, . . . , Sm with Si ( {1, 2, . . . , ni},

disc

 m⊕
i=1

DISJni,k,
m⊗
i=1

σ1
ni,k
|Si

2
+ E

S′i⊃Si
|S′i|=|Si|+1

σ0
ni,k
|S′i

2




= disc

(
m⊕
i=1

DISJni−|Si|,k,
m⊗
i=1

µni−|Si|,k

)

6
m∏
i=1

2k−1 − 1√
ni − |Si|

=

m∏
i=1

1− p
2p
√
ni − |Si|

,

where the second step uses Theorem 4.1. Proposition 2.6 now implies that for any
integers s1, s2, . . . , sm with 0 6 si < ni,

disc

(
m⊕
i=1

DISJni,k,
m⊗
i=1

(
E

|Si|=si

σ1
ni,k
|Si

2
+ E
|Si|=si+1

σ0
ni,k
|Si

2

))

6
m∏
i=1

1− p
2p
√
ni − si

. (4.3)

We now define an approximation to the probability distribution σn,k, namely,

σ̃n,k = E
s∼B(n−1,p)

[
E
|S|=s

σ1
n,k|S
2

+ E
|S|=s+1

σ0
n,k|S
2

]
. (4.4)

For random integers s1, s2, . . . , sm distributed independently according to si ∼
B(ni − 1, p),

disc

(
m⊕
i=1

DISJni,k,
m⊗
i=1

σ̃ni,k

)

6 E
s1,...,sm

disc

(
m⊕
i=1

DISJni,k,
m⊗
i=1

(
E

|Si|=si

σ1
ni,k
|Si

2
+ E
|Si|=si+1

σ0
ni,k
|Si

2

))
by Proposition 2.6

6 E
s1,...,sm

m∏
i=1

1− p
2p
√
ni − si

by (4.3)

=

m∏
i=1

E
si

1− p
2p
√
ni − si

by independence

6
m∏
i=1

√
1− p

2p
√
ni

by Fact 2.1.

Of course, this calculation shows more generally that

disc

(⊕
i∈A

DISJni,k,
⊗
i∈A

σ̃ni,k

)
6
∏
i∈A

√
1− p

2p
√
ni

(4.5)
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for any set A ⊆ {1, 2, . . . ,m}. This completes the first part of the program.
We proceed to bound the statistical distance between σn,k and σ̃n,k. To start

with,

σ0
n,k =

n∑
s=0

(
n

s

)
ps(1− p)n−s E

|S|=s
σ0
n,k|S ,

σ1
n,k =

n−1∑
s=0

(
n− 1

s

)
ps(1− p)n−1−s E

|S|=s
σ1
n,k|S ,

σ̃n,k =
1

2

n∑
s=1

(
n− 1

s− 1

)
ps−1(1− p)n−s E

|S|=s
σ0
n,k|S

+
1

2

n−1∑
s=0

(
n− 1

s

)
ps(1− p)n−1−s E

|S|=s
σ1
n,k|S ,

where the first two equations hold by definition, and the third is a restatement of
(4.4). Then

‖σn,k − σ̃n,k‖1 =

∥∥∥∥∥σ0
n,k + σ1

n,k

2
− σ̃n,k

∥∥∥∥∥
1

=
1

2

∥∥∥∥∥
n∑
s=0

(
n

s

)
ps(1− p)n−s E

|S|=s
σ0
n,k|S

−
n∑
s=1

(
n− 1

s− 1

)
ps−1(1− p)n−s E

|S|=s
σ0
n,k|S

∥∥∥∥∥
1

=
1

2

n∑
s=1

∣∣∣∣(ns
)
ps(1− p)n−s −

(
n− 1

s− 1

)
ps−1(1− p)n−s

∣∣∣∣
+

(1− p)n

2

=
1

2pn

n∑
s=0

(
n

s

)
ps(1− p)n−s|s− pn|

=
1

2pn
E

s∼B(n,p)
|s− pn|

6
1

2

√
1− p
pn

, (4.6)

where the first and last steps use (4.1) and Fact 2.1, respectively. This completes
the second part of the proof program.
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It remains to put together the above ingredients and appeal to the continuity of
discrepancy:

disc

(
m⊕
i=1

DISJni,k,
m⊗
i=1

σni,k

)

6
∑

A⊆{1,2,...,m}

disc

(⊕
i∈A

DISJni,k,
⊗
i∈A

σ̃ni,k

)∏
i/∈A

‖σni,k − σ̃ni,k‖1

6
∑

A⊆{1,2,...,m}

∏
i∈A

√
1− p

2p
√
ni
·
∏
i/∈A

√
1− p

2
√
pni

=

m∏
i=1

(√
1− p

2p
√
ni

+

√
1− p

2
√
pni

)

=

m∏
i=1

(
√

2k − 1 + 1)
√

2k − 2

2
√
ni

,

where the first inequality uses Proposition 2.7, and the second inequality follows
from the upper bounds in (4.5) and (4.6).

We now refine the previous theorem for cylinder intersections that contain sig-
nificantly fewer cylinders than there are players. Formally, define σ0

n,k,` to be the
probability distribution on n×k Boolean matrices whereby the rows are chosen inde-
pendently and uniformly at random from the set {u ∈ {0, 1}k : k−` 6 |u| 6 k−1}.
Define σ1

n,k,` to be the probability distribution on n×k Boolean matrices whereby a
randomly chosen row is set to 1k and the remaining rows are chosen independently
and uniformly at random from the set {u ∈ {0, 1}k : k − ` 6 |u| 6 k − 1}. We
will analyze the `-discrepancy of set disjointness with respect to the probability
distribution

σn,k,` =
1

2
σ0
n,k,` +

1

2
σ1
n,k,`. (4.7)

This setup is indeed a generalization of the case ` = k dealt with above. Specifically,

σ0
n,k,k = σ0

n,k,

σ1
n,k,k = σ1

n,k,

σn,k,k = σn,k.

Theorem 4.3. For any integers n1, n2, . . . , nm > 1 and k > ` > 1,

disc`

(
m⊕
i=1

DISJni,k,
m⊗
i=1

σni,k,`

)

6 (2` − 1)m/2
((

k

1

)
+

(
k

2

)
+ · · ·+

(
k

`

))m/2
1

√
n1n2 · · ·nm

.

In the setting `� k of interest to us, the new bound is considerably stronger than
the bound of Theorem 4.2. The proof is essentially a reprise of Theorem 4.2. Indeed,
we could have combined the two theorems for a more economical presentation.
Treating them separately, as we do in this paper, has the advantage of simplifying
the notation and illustrating the proof idea in a simpler setting first.
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Proof of Theorem 4.3. We will closely follow the proof of the previous theorem.
Specifically, instead of analyzing the discrepancy with respect to the tensor product⊗
σni,k,`, we will define a different family of probability distributions σ̃ni,k,` and

bound the discrepancy with respect to
⊗
σ̃ni,k,`. We will then prove that σni,k,`

and σ̃ni,k,` are close in statistical distance for each i, and appeal to Proposition 2.7
to complete the proof.

Since the communication problem DISJn,k and the probability distribution σn,k,`
are both symmetric with respect to the k players, we have

disc`

(
m⊕
i=1

DISJni,k,
m⊗
i=1

σni,k,`

)

= disc{1,2,...,`}

(
m⊕
i=1

DISJni,k,
m⊗
i=1

σni,k,`

)
. (4.8)

For a given set S ⊆ {1, 2, . . . , n} and a probability distribution σ on matrices
X ∈ {0, 1}n×k, let σ|S stand for the probability distribution induced by σ after
conditioning on the event that (Xi,`+1, Xi,`+2, . . . , Xi,k) = (1, 1, . . . , 1) if and only
if i ∈ S. Observe that for a fixed nonempty set S ⊆ {1, 2, . . . , n}, the convex
combination

σ1
n,k,`|S

2
+
σ0
n,k,`|S

2
(4.9)

is the probability distribution on matrices X ∈ {0, 1}n×k whereby X|S and X|S
are distributed independently such that

X|S,{1,2,...,`} ∼ σ|S|,`, (4.10)

X|S,{`+1,`+2,...,k} =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 , (4.11)

and X|S does not have an all-ones row. In particular, the rows in X|S do not
affect the value of the function. Since the conditional probability distribution of
X|S given X|S is always (4.10)–(4.11), we arrive at the following conclusion: for
any nonempty sets S1, S2, . . . , Sm with Si ⊆ {1, 2, . . . , ni},

disc{1,2,...,`}

(
m⊕
i=1

DISJni,k,
m⊗
i=1

(
σ1
ni,k,`

|Si
2

+
σ0
ni,k,`

|Si
2

))

6 disc

(
m⊕
i=1

DISJ|Si|,`,
m⊗
i=1

σ|Si|,`

)

6
m∏
i=1

(
√

2` − 1 + 1)
√

2` − 2

2
√
|Si|

,
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where the second step holds by Theorem 4.2. Proposition 2.6 now implies that for
any integers s1, s2, . . . , sm with 1 6 si 6 ni,

disc{1,2,...,`}

(
m⊕
i=1

DISJni,k,
m⊗
i=1

(
E

|Si|=si

σ1
ni,k,`

|Si
2

+ E
|Si|=si

σ0
ni,k,`

|Si
2

))

6
m∏
i=1

(
√

2` − 1 + 1)
√

2` − 2

2
√
si

. (4.12)

We now define the promised approximation σ̃n,k,` to the probability distribution
σn,k,`, namely,

σ̃n,k,` = E
s∼B(n−1,q)

E
|S|=s+1

σ0
n,k,`|S + σ1

n,k,`|S
2

(4.13)

where

q =
2` − 1(

k
1

)
+
(
k
2

)
+ · · ·+

(
k
`

) .
Then for random integers s1, s2, . . . , sm distributed independently according to si ∼
B(ni − 1, q), we have

disc{1,2,...,`}

(
m⊕
i=1

DISJni,k,
m⊗
i=1

σ̃ni,k,`

)

6 E
s1,...,sm

disc{1,2,...,`}

(
m⊕
i=1

DISJni,k,
m⊗
i=1

(
E

|Si|=si+1

σ0
ni,k,`

|Si + σ1
ni,k,`

|Si
2

))
by Proposition 2.6

6 E
s1,...,sm

m∏
i=1

(
√

2` − 1 + 1)
√

2` − 2

2
√
si + 1

by (4.12)

=

m∏
i=1

E
si

(
√

2` − 1 + 1)
√

2` − 2

2
√
si + 1

by independence

6
m∏
i=1

(
√

2` − 1 + 1)
√

2` − 2

2
√
qni

by Fact 2.1.

Of course, this calculation shows more generally that

disc{1,2,...,`}

(⊕
i∈A

DISJni,k,
⊗
i∈A

σ̃ni,k,`

)

6
∏
i∈A

(
√

2` − 1 + 1)
√

2` − 2

2
√
qni

(4.14)

for any set A ⊆ {1, 2, . . . ,m}. This completes the first part of the program.
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In this second part of the proof, we bound the statistical distance between σn,k,`
and σ̃n,k,`. We have

σ0
n,k,` =

n∑
s=0

(
n

s

)
qs(1− q)n−s E

|S|=s
σ0
n,k,`|S ,

σ1
n,k,` =

n∑
s=1

(
n− 1

s− 1

)
qs−1(1− q)n−s E

|S|=s
σ1
n,k,`|S ,

σ̃n,k,` =
1

2

n∑
s=1

(
n− 1

s− 1

)
qs−1(1− q)n−s E

|S|=s
σ0
n,k,`|S

+
1

2

n∑
s=1

(
n− 1

s− 1

)
qs−1(1− q)n−s E

|S|=s
σ1
n,k,`|S ,

where the first two equations hold by definition, and the third is a restatement of
(4.13). Then

‖σn,k,` − σ̃n,k,`‖1 =

∥∥∥∥∥σ1
n,k,` + σ0

n,k,`

2
− σ̃n,k,`

∥∥∥∥∥
1

=
1

2

∥∥∥∥∥
n∑
s=0

(
n

s

)
qs(1− q)n−s E

|S|=s
σ0
n,k,`|S

−
n∑
s=1

(
n− 1

s− 1

)
qs−1(1− q)n−s E

|S|=s
σ0
n,k,`|S

∥∥∥∥∥
1

=
1

2

n∑
s=1

∣∣∣∣(ns
)
qs(1− q)n−s −

(
n− 1

s− 1

)
qs−1(1− q)n−s

∣∣∣∣
+

(1− q)n

2

=
1

2qn

n∑
s=0

(
n

s

)
qs(1− q)n−s|s− qn|

=
1

2qn
E

s∼B(n,q)
|s− qn|

6
1

2

√
1− q
qn

, (4.15)

where the first and last steps use (4.1) and Fact 2.1, respectively. This completes
the second part of the proof program.
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It remains to put together the above ingredients and appeal to the continuity of
discrepancy:

disc`

(
m⊕
i=1

DISJni,k,
m⊗
i=1

σni,k,`

)

= disc {1,2,...,`}

(
m⊕
i=1

DISJni,k,
m⊗
i=1

σni,k,`

)

6
∑

A⊆{1,2,...,m}

disc{1,2,...,`}

(⊕
i∈A

DISJni,k,
⊗
i∈A

σ̃ni,k,`

)

×
∏
i/∈A

‖σni,k,` − σ̃ni,k,`‖1

6
∑

A⊆{1,2,...,m}

∏
i∈A

(
√

2` − 1 + 1)
√

2` − 2

2
√
qni

·
∏
i/∈A

√
1− q

2
√
qni

=

m∏
i=1

(
√

2` − 1 + 1)
√

2` − 2 +
√

1− q
2
√
qni

6
m∏
i=1

(2` − 1)
√
qni

,

where the first step is valid by (4.8), the next step uses Proposition 2.7, and the
third step follows from the upper bounds in (4.14) and (4.15).

4.2. Lower bound. We are now in a position to prove the claimed lower bound on
the communication complexity of set disjointness. Following [25], we find it helpful
to work in the more general setting of composed communication problems f ◦ G,
where f is any Boolean function with high approximate degree and G is an instance
of set disjointness on a small number of variables. This approach is motivated by
the composed structure (2.7)–(2.8) of the set disjointness problem.

The following communication lower bound was obtained in [25, Theorem 5.1].

Theorem 4.4 (Sherstov). Let f be a (possibly partial) Boolean function on {0, 1}n.
Consider the k-party communication problem F = f ◦UDISJr,k. Then for ε, δ > 0,

2Rε(F ) > (δ − ε)
(

degδ(f)
√
r

2ken

)degδ(f)

.

Using the new discrepancy upper bound in this paper, we are able to obtain the
following improvement:

Theorem 4.5. Let f be a (possibly partial) Boolean function on {0, 1}n. Consider
the k-party communication problem F = f ◦UDISJr,k. Then for ε, δ > 0,

2Rε(F ) > (δ − ε)

(
degδ(f)

√
r

2
(

k
6Rε(F )

)
en

)degδ(f)

.
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The lower bound of Theorem 4.5 is always at least as strong as that of Theorem 4.4,
up to a small constant factor in the denominator. The improvement becomes sig-
nificant in the setting k � Rε(F ) of interest to us, where the number of players far
exceeds the communication requirements of the problem.

Proof of Theorem 4.5. The proof is virtually identical to that in [25], the only dif-
ference being the use of the improved discrepancy upper bound in this paper (The-
orem 4.3). The idea behind the proof is to show that any low-cost communication
protocol for F can be converted into a low-degree polynomial approximating f in
the infinity norm. Details follow.

Put ` = min{Rε(F ), k} and recall the probability distribution

σr,k,` =
1

2
σ0
r,k,` +

1

2
σ1
r,k,`, (4.16)

where σ0
r,k,` and σ1

r,k,` (both defined in Section 4.1) are probability distributions
on UDISJ−1r,k(0) and UDISJ−1r,k(1), respectively. Consider the following averaging
operator L, which linearly sends real functions χ on ({0, 1}r×k)n to real functions
on {0, 1}n according to

(Lχ)(z) = E
X1∼σ

z1
r,k,`

· · · E
Xn∼σznr,k,`

χ(X1, . . . , Xn) (z ∈ {0, 1}n).

When χ is an `-cylinder intersection,

|L̂χ(S)| =

∣∣∣∣∣ E
z∈{0,1}n

E
X1∼σ

z1
r,k,`

· · · E
Xn∼σznr,k,`

[
χ(X1, . . . , Xn)

∏
i∈S

(−1)zi

]∣∣∣∣∣
=

∣∣∣∣∣ E
X1,...,Xn∼σr,k,`

[
χ(X1, . . . , Xn)

∏
i∈S

(−1)UDISJr,k(Xi)

]∣∣∣∣∣
6 disc`

(
DISJ⊕|S|r,k , (σr,k,`)

⊗|S|
)

6

(
2` − 1

r
·
((

k

1

)
+

(
k

2

)
+ · · ·+

(
k

`

)))|S|/2
6

(
1√
r
·
(
k

6`

))|S|
, (4.17)

where the second and fourth steps use (4.16) and Theorem 4.3, respectively.
Now, fix a randomized communication protocol for F with error ε and cost

Rε(F ). Approximate F as in Corollary 2.4 by a linear combination of `-cylinder
intersections Π =

∑
χ aχχ, where

∑
χ |aχ| 6 2Rε(F ). We claim that LΠ is approx-

imable by a low-degree polynomial. Indeed, let d be a positive integer to be chosen
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later. Discarding the Fourier coefficients of LΠ of order d and higher gives

E(LΠ, d− 1) 6 min

1,
∑
χ

|aχ|
∑
|S|>d

|L̂χ(S)|


6 min

{
1, 2Rε(F )

n∑
i=d

(
n

i

)(
1√
r
·
(
k

6`

))i}

6 min

{
1, 2Rε(F )

n∑
i=d

(
en

d
√
r
·
(
k

6`

))i}

6 2Rε(F )

(
2en

d
√
r
·
(
k

6`

))d
, (4.18)

where the second and third steps use (4.17) and (2.1), respectively. On the other
hand, recall from Corollary 2.4 that Π approximates F in the sense that ‖Π‖∞ 6 1
and |F − Π| 6 ε on the domain of F. It follows that ‖LΠ‖∞ 6 1 and |f − LΠ| 6 ε
on the domain of f, whence

E(f, d− 1) 6 ε+ E(LΠ, d− 1).

Substituting the estimate from (4.18),

E(f, d− 1) 6 ε+ 2Rε(F )

(
2en

d
√
r
·
(
k

6`

))d
.

For d = degδ(f), the left-hand side of this inequality by definition exceeds δ, com-
pleting the proof.

We now specialize the previous theorem to set disjointness.

Theorem 4.6. Abbreviate R = R1/4(UDISJn,k). Then(
k

6R

)2

R4 > Ω(n). (4.19)

In particular,

R1/3(DISJn,k) > R1/3(UDISJ) = Ω

 log n

log
⌈
1 + k

logn

⌉ + 1

 . (4.20)

Proof. Observe that R1/4(UDISJn,k) is monotonically nondecreasing in n. Now for
all 1 6 r 6 n, we have R > R1/4(ÃNDbn/rc ◦UDISJr,k) by (2.8) and therefore

2R >

(
1

3
− 1

4

)(
deg1/3(ÃNDbn/rc)

√
r

2ebn/rc
(
k

6R

) )deg1/3(ÃNDbn/rc)

by Theorem 4.5. This in turn simplifies to

2R >
1

12

(
cr

√
n
(
k

6R

))c
√
n/r

(4.21)
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for some absolute constant c > 0, by Theorem 2.2. There are two cases to examine.
If
(
k

6R

)
> c

2

√
n, then (4.19) is trivially true. Otherwise, letting r = d 2c

√
n
(
k

6R

)
e in

(4.21) forces (4.19).
It remains to explain how the newly obtained relation (4.19) implies the com-

munication lower bounds in the theorem statement. By (2.1),(
k

6R

)
6 eR

⌈
k

R

⌉R
.

Substituting this estimate in (4.19) gives e2Rdk/Re2RR4 > Ω(n), whence (4.20).

Remark 4.7. Theorem 4.5 is sufficiently general to imply our lower bound for
generalized inner product as well (Theorem 3.4). However, considering the effort
required to prove Theorem 4.5 itself, the treatment of GIPn,k in Section 3.1 appears
to be more direct.

4.3. Upper bound. To prove a matching upper bound on the communication
complexity of set disjointness for k > log n players, we reduce this problem to inner
product and appeal to our previously established Theorem 3.5.

Theorem 4.8. For any k > log n and any constant ε > 0,

Rε(DISJn,k) = O

 log n

log
⌈
1 + k

logn

⌉ + 1

 .

Moreover, this upper bound is achieved by a simultaneous protocol.

Proof. Recall that for any string y ∈ {0, 1}n,

P
S⊆{1,2,...,n}

[⊕
i∈S

yi = 0

]
=

{
1 if y = 0n,

1/2 otherwise.

This gives the following well-known relation between generalized inner product and
set disjointness:

P
S⊆{1,2,...,n}

[
GIP|S|,k(X|S) = 0

]
=

{
1 if DISJn,k(X) = 1,

1/2 otherwise.

Thus, the players can solve an instance X ∈ {0, 1}n×k of set disjointness by es-
timating PS [GIP|S|,k(X|S) = 0]. This can be done by running the protocol of
Theorem 3.5 with error parameter 1/4 a constant number of times, simultaneously
and in parallel, each time on a uniformly random subset of the rows of X.

5. Communication bounds independent of k

In this final section, we study the communication problem Fn,k : ({0, 1}n)k →
{0, 1} given by

Fn,k(X) = MOD3

 k⊕
j=1

X1,j , . . . ,

k⊕
j=1

Xn,j

 . (5.1)

Ada et al. [1] proved that this function has randomized communication complexity
R1/3(Fn,k) = Ω(n/4k). Here, we derive the incomparable lower bound R1/3(Fn,k) >
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1
3 log n− 1

3 for all n and k, which shows that Fn,k requires nontrivial communication
regardless of the number of players k. We also prove that for every k > log n, our
lower bound is tight up to a multiplicative constant.

5.1. Lower bound. In what follows, we use the shorthand e(t) = exp(2πit), where
i is the imaginary unit. Our proof requires the following correlation bound for
cylinder intersections, which is implied by the more general work of Ada et al. [1].

Lemma 5.1 (cf. Ada et al.). For every cylinder intersection χ : ({0, 1}n)k → {0, 1},∣∣∣∣∣∣ E
X∈{0,1}n×k

e

1

3

n∑
i=1

k⊕
j=1

Xi,j

χ(X)

∣∣∣∣∣∣ < exp
(
− n

4k

)
.

For the reader’s convenience, a short and self-contained proof of Lemma 5.1 as
stated above is available in Appendix A. We now sharpen this result for `-cylinder
intersections with ` 6 k.

Lemma 5.2. For every `-cylinder intersection χ : ({0, 1}n)k → {0, 1},∣∣∣∣∣∣ E
X∈{0,1}n×k

e

1

3

n∑
i=1

k⊕
j=1

Xi,j

χ(X)

∣∣∣∣∣∣ < exp
(
− n

4`

)
. (5.2)

Proof. By symmetry, we may assume that χ is a {1, 2, . . . , `}-cylinder intersection.
In what follows, we let X stand for a uniformly random matrix in {0, 1}n×k. Define
auxiliary random variables X ′, X ′′ by

X ′ =


X1,1 X1,2 · · · X1,`−1 X1,` ⊕ · · · ⊕X1,k

X2,1 X2,2 · · · X2,`−1 X2,` ⊕ · · · ⊕X2,k

...
...

...
...

Xn,1 Xn,2 · · · Xn,`−1 Xn,` ⊕ · · · ⊕Xn,k

 ,

X ′′ =


X1,`+1 X1,`+2 · · · X1,k

X2,`+1 X2,`+2 · · · X2,k

...
...

...
Xn,`+1 Xn,`+2 · · · Xn,k

 .
In this notation,

E

e
1

3

n∑
i=1

k⊕
j=1

Xi,j

χ(X)

∣∣∣∣∣∣ X ′′


= E

e
1

3

n∑
i=1

⊕̀
j=1

X ′i,j

χ(X)

∣∣∣∣∣∣ X ′′
 . (5.3)

Setting X ′′ to any given value makes χ(X) a cylinder intersection in terms of X ′.
Moreover, the conditional probability distribution of X ′ given X ′′ is uniform on
{0, 1}n×`. In view of Fact 5.1, we conclude that the expectation on the right-hand
side of (5.3) is smaller in absolute value than exp(−n/4`). Averaging over X ′′ now
gives (5.2).
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We are now in a position to prove our claimed lower bound on the communication
complexity of Fn,k.

Theorem 5.3. Let Fn,k : ({0, 1}n)k → {0, 1} be given by (5.1). Then

disc`(Fn,k, ν) 6 2 exp
(
− n

4`

)
, (5.4)

where ν is the probability distribution under which the weight of any point of F−1n,k(1)

is double the weight of any point of F−1n,k(0). In particular,

R1/3(Fn,k) >
1

3
log n− 1

3
. (5.5)

Proof. Observe that

e

(
t

3

)
+ e

(
t

3

)
=

{
2 if t ≡ 0 (mod 3),

−1 if t ≡ ±1 (mod 3),

where the bar denotes complex conjugation. As a result,

e

1

3

n∑
i=1

k⊕
j=1

Xi,j

+ e

1

3

n∑
i=1

k⊕
j=1

Xi,j

 ≡ c · 2nk(−1)Fn,k(X)+1ν(X)

for some normalizing constant c > 1. We conclude that for every `-cylinder inter-
section χ,

∣∣∣ E
X∼ν

(−1)Fn,k(X)χ(X)
∣∣∣ =

1

c

∣∣∣∣∣∣ E
X∈{0,1}n×k

e
1

3

n∑
i=1

k⊕
j=1

Xi,j

χ(X)

+e

1

3

n∑
i=1

k⊕
j=1

Xi,j

χ(X)


∣∣∣∣∣∣∣

6 2

∣∣∣∣∣∣ E
X∈{0,1}n×k

e
1

3

n∑
i=1

k⊕
j=1

Xi,j

χ(X)

∣∣∣∣∣∣
6 2 exp

(
− n

4`

)
,

where the final step uses Lemma 5.2. This establishes (5.4). Now Theorem 2.5
yields

2R1/3(Fn,k) >
1

6
exp

(
n

4R1/3(Fn,k)

)
,

which implies (5.5) by elementary calculus.

5.2. Upper bound. We now show that our lower bound on the communication
complexity of Fn,k is tight up to a constant factor for all k > log n. The idea is to
alter Fn,k in a random fashion on a small portion of the domain so as to make it
representable by a polynomial of degree k − 1, which the players can then directly
evaluate. This technique was previously used in [1, 10].
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Theorem 5.4. Let Fn,k : ({0, 1}n)k → {0, 1} be given by (5.1). Then

R1/3(Fn,k) 6 c log n+ c

for some absolute constant c > 0 and all n > 1 and k > log n. Moreover, this upper
bound is achieved by a simultaneous protocol.

Proof. For u ∈ {0, 1}k, consider the multivariate polynomial pu ∈ Z3[x1, x2, . . . , xk]
given by

pu(x1, x2, . . . , xk) =

k∏
i=1

(xi + 1)−
k∏
i=1

(xi + ui − 1)− 1.

Then

deg pu 6 k − 1, (5.6)

pu(x1, x2, . . . , xk) = x1 ⊕ x2 ⊕ · · · ⊕ xk, x ∈ {0, 1}k \ {u}. (5.7)

Our protocol for Fn,k is as follows. On input X ∈ {0, 1}n×k, the players pick a
random point u ∈ {0, 1}k using shared randomness, and consider the following
polynomial Fn,k,u ∈ Z3[X1,1, . . . , Xn,k]:

Fn,k,u(X) =

n∑
i=1

pu(Xi,1, Xi,2, . . . , Xi,k).

It follows from (5.6) that degFn,k,u 6 k−1, which makes it possible to partition the
monomials of Fn,k,u among the players in some predetermined fashion and have each
player report the sum of the monomials assigned to him. This simultaneous protocol
has cost kdlog 3e = 2k. With probability at least 1−n2−k over shared randomness,
we have u 6= (Xi,1, Xi,2, . . . , Xi,k) for i = 1, 2, . . . , n, in which case (5.7) implies that
Fn,k(X) ≡ 1− Fn,k,u(X)2 (mod 3). In particular, the players’ broadcasts uniquely
identify Fn,k(X) with probability at least 1− n2−k on any given input X. Thus,

Rn2−k(Fn,k) 6 2k. (5.8)

To complete the proof of the theorem, we consider three cases depending on the
value of k.

• Equation (5.8) directly implies that R1/3(Fn,dlog 3ne) 6 2dlog 3ne, which
settles the case k = dlog 3ne. As usual, the error probability can be re-
duced from 1/3 to any positive constant by running the protocol simulta-
neously multiple times and outputting the majority answer. In particular,
Rε(Fn,dlog 3ne) = O(log n) for any fixed ε > 0.

• For k > dlog 3ne, observe that

Fn,k(X) = MOD3

X1,1 ⊕ · · · ⊕X1,dlog 3ne−1 ⊕

 k⊕
j=dlog 3ne

X1,j

 , . . .

Xn,1 ⊕ · · · ⊕Xn,dlog 3ne−1 ⊕

 k⊕
j=dlog 3ne

Xn,j
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and in particular Rε(Fn,k) 6 Rε(Fdlog 3ne,k) for all ε. As a result, we con-
clude by the first case that Rε(Fn,k) 6 O(log n) for any fixed ε > 0 and
k > dlog 3ne.

• For log n 6 k < dlog 3ne, the players partition the input matrix X horizon-
tally into submatrices with at most n/3 rows each and run the protocol from
the previous cases with the error parameter set to a small constant. Then
with probability at least 2/3, the players’ broadcasts uniquely determine∑n
i=1

⊕k
j=1Xi,j modulo 3 and thereby reveal Fn,k(X).
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Appendix A. A correlation bound

The purpose of this appendix is to provide a short proof of Lemma 5.1. The only
technical prerequisite for the proof is the following fact about cylinder intersections,
which is implicit in the work of Babai et al. [3] and is derived explicitly in the
followup papers by Chung and Tetali [12] and Raz [21].

Fact A.1 (Chung and Tetali; Raz). Let U1, U2, . . . , Uk be finite sets. Then for any
function φ : U1 × U2 × · · · × Uk → C and any cylinder intersection χ : U1 × U2 ×
· · · × Uk → {0, 1},∣∣∣∣ E

u1,...,uk
φ(u1, . . . , uk)χ(u1, . . . , uk)

∣∣∣∣2k

6 E
u0
1,...,u

0
k

u1
1,...,u

1
k

 ∏
z∈{0,1}k
|z| even

φ(uz11 , . . . , u
zk
k ) ·

∏
z∈{0,1}k
|z| odd

φ(uz11 , . . . , u
zk
k )

 ,
where ui, u0i , u1i ∈ Ui for each i.

We are now in a position to prove Lemma 5.1, which we restate below for the
reader’s convenience. Recall that we use the shorthand e(t) = exp(2πit), where i is
the imaginary unit.

Lemma (cf. Ada et al.). For every cylinder intersection χ : ({0, 1}n)k → {0, 1},∣∣∣∣∣∣ E
X∈{0,1}n×k

e

1

3

n∑
i=1

k⊕
j=1

Xi,j

χ(X)

∣∣∣∣∣∣ < exp
(
− n

4k

)
.
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Proof. We mostly follow the analysis of Ada et al. [1], who proved a more general
correlation bound. As one would expect, focusing on a special case as we do here
allows for a shorter and simpler presentation. We have:∣∣∣∣∣∣ E

X∈{0,1}n×k
e

1

3

n∑
i=1

k⊕
j=1

Xi,j

χ(X)

∣∣∣∣∣∣
2k

6 E
X0,X1∈{0,1}n×k

∏
z∈{0,1}k

e

 (−1)|z|

3

n∑
i=1

k⊕
j=1

X
zj
i,j


= E
X0,X1∈{0,1}n×k

n∏
i=1

e

1

3

∑
z∈{0,1}k

(−1)|z|
k⊕
j=1

X
zj
i,j


=

 E
x0,x1∈{0,1}k

e

1

3

∑
z∈{0,1}k

(−1)|z|
k⊕
j=1

x
zj
j

n

=

 E
x0,x1∈{0,1}k

e

1

3

∑
z∈{0,1}k

(−1)|z|

 k∏
j=1

(x
zj
j + 1)− 1

n

=

 E
x0,x1∈{0,1}k

e

1

3

k∏
j=1

(x0j − x1j )

n

, (A.1)

where the first step follows from Fact A.1, and the fourth step uses the fact that
k⊕
j=1

x
zj
j ≡

k∏
j=1

(x
zj
j + 1)− 1 (mod 3).

A routine calculation reveals that

e

1

3

k∏
j=1

(x0j − x1j )

 =

{
1 if x0j = x1j for some j,
− 1

2 +
√
3
2 i
∏k
j=1(x0j − x1j ) otherwise,

where i is the imaginary unit. Making this substitution in (A.1) yields∣∣∣∣∣∣ E
X∈{0,1}n×k

e

1

3

n∑
i=1

k⊕
j=1

Xi,j

χ(X)

∣∣∣∣∣∣
2k

6

((
1− 1

2k

)
· 1− 1

2k
· 1

2

)n
6

(
1− 1

2k

)n
< exp

(
− n

2k

)
.
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