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We study the problem of computing the p→q norm of a matrix A ∈ Rm×n, defined as

‖A‖p→q := max
x∈Rn\{0}

‖Ax‖q

‖x‖p
.

This problem generalizes the spectral norm of a matrix (p = q = 2) and the Grothendieck
problem (p = ∞, q = 1), and has been widely studied in various regimes. When p ≥ q,
the problem exhibits a dichotomy: constant factor approximation algorithms are known if
2 ∈ [q, p], and the problem is hard to approximate within almost polynomial factors when
2 /∈ [q, p].

The regime when p < q, known as hypercontractive norms, is particularly significant for
various applications but much less well understood. The case with p = 2 and q > 2 was
studied by [Barak et al., STOC’12] who gave sub-exponential algorithms for a promise
version of the problem (which captures small-set expansion) and also proved hardness
of approximation results based on the Exponential Time Hypothesis. However, no NP-
hardness of approximation is known for these problems for any p < q.

We study the hardness of approximating matrix norms in both the above cases. We
prove the following results:

- We show that for any 1 < p < q < ∞ with 2 /∈ [p, q], ‖A‖p→q is hard to approximate

within 2O((log n)1−ε) assuming NP 6⊆ BPTIME
(

2(log n)O(1)
)

. This suggests that, similar
to the case of p ≥ q, the hypercontractive setting may be qualitatively different when
2 does not lie between p and q.

- For all p ≥ q with 2 ∈ [q, p], we show that ‖A‖p→q is hard to approximate within
any factor smaller than 1/(γp∗ · γq), where for any r, γr denotes the rth norm of a
standard normal random variable, and p∗ := p/(p− 1) is the dual norm of p. The
hardness factor is tight for the cases when p or q equals 2.
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1 Introduction

We consider the problem of finding the p→q norm of a given matrix A ∈ Rm×n, which is
defined as

‖A‖p→q := max
x∈Rn\{0}

‖Ax‖q

‖x‖p
.

The quantity ‖A‖p→q is a natural generalization of the well-studied spectral norm, which
corresponds to the case p = q = 2. For general p and q, this quantity computes the
maximum distortion (stretch) of the operator A from the normed space `n

p to `m
q .

The case when p = ∞ and q = 1 is the well known Grothendieck problem [KN12,
Pis12], where the goal is to maximize 〈y, Ax〉 subject to ‖x‖∞, ‖y‖∞ ≤ 1. In fact, via simple
duality arguments (see Section 2), the general problem computing ‖A‖p→q can be seen to
be equivalent to the following variant of the Grothendieck problem (and to ‖AT‖q∗→p∗)

‖A‖p→q = max
‖x‖p≤1
‖y‖q∗≤1

〈y, Ax〉 = ‖AT‖q∗→p∗ ,

where p∗, q∗ denote the dual norms of p and q, satisfying 1/p + 1/p∗ = 1/q + 1/q∗ = 1.
The case when p < q, known as the case of hypercontractive norms, also has a special

significance to the analysis of random walks, expansion and related problems in hardness
of approximation [Bis11, BBH+12]. Bounds on hypercontractive norms of operators are
often used to prove small-set expansion of graphs (where the operator is related to the ad-
jacency matrix) and thus the approximability of hypercontractive norms is closely related
to the problem of determining small-set expansion of graphs. The problem of computing
‖A‖2→4 is also known to be equivalent to determining the maximum acceptance proba-
bility of a quantum protocol with multiple unentangled provers, and is related to several
problems in quantum information theory [HM13, BH15].

1.1 Known results

The problem of approximating norms has been studied in various contexts, and we sum-
marize several known results in Fig. 1. While the case of p = q = 2 corresponds to the
spectral norm, the problem is also easy when q = ∞ (or equivalently p = 1) since this
corresponds to selecting the row of A with the maximum `p∗ norm. Note that in general,
Fig. 1 is symmetric about the principal diagonal. Also note that if ‖A‖p→q is a hyper-
contractive norm (p < q) then so is the equivalent ‖AT‖q∗→p∗ (the hypercontractive and
non-hypercontractive case are separated by the non-principal diagonal).

The non-hypercontractive case (p ≥ q). Many results are known in the case of p ≥ q,
where the problem admits good approximations when 2 ∈ [q, p], and is hard otherwise.
Determining the right constants in these approximations when 2 ∈ [q, p] has been of con-
siderable interest in the analysis and optimization community.

For the case of ∞→1 norm, Grothendieck’s theorem [Gro56] shows that the integrality
gap of a semidefinite programming (SDP) relaxation is bounded by a constant, and the
(unknown) optimal value is now called the Grothendieck constant KG. Krivine [Kri77]
proved an upper bound of π/(2 ln(1 +

√
2)) = 1.782 . . . on KG, and it was later shown

by Braverman et al. that KG is strictly smaller than this bound. The best known lower
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bound on KG is about 1.676, due to (an unpublished manuscript of) Reeds [Ree91] (see
also [KO09] for a proof).

An upper bound of KG on the approximation factor also follows from the work of
Nesterov [Nes98] for any p ≥ 2 ≥ q. A later work of Steinberg [Ste05] also gave an upper
bound of min

{
γp/γq, γq∗/γp∗

}
, where γp denotes pth norm of a standard normal random

variable (i.e. the p-th root of the p-th gaussian moment). Note that Steinberg’s bound is
less than KG for some values of (p, q), in particular for all values of the form (2, q) with
q ≤ 2 (and equivalently (p, 2) for p ≥ 2), where it equals 1/γq (and 1/γp∗ for (p, 2)).

On the hardness side, Briët, Regev and Saket [BRS15] showed NP-hardness of π/2 for
the ∞→1 norm, strengthening a hardness result of Khot and Naor based on the Unique
Games Conjecture (UGC) [KN08] (for a special case of the Grothendieck problem when
the matrix A is positive semidefinite). Assuming UGC, a hardness result matching Reeds’
lower bound was proved by Khot and O’Donnell[KO09], and hardness of approximating
within KG was proved by Raghavendra and Steurer [RS09].

For a related problem known as the Lp-Grothendieck problem, where the goal is to
maximize 〈x, Ax〉 for ‖x‖p ≤ 1, results by Steinberg [Ste05] and Kindler, Schechtman and
Naor [KNS10] give an upper bound of γ2

p, and a matching lower bound was proved as-
suming UGC by [KNS10], which was strengthened to NP-hardness by Guruswami et al.
[GRSW16]. However, note that this problem is quadratic and not necessarily bilinear, and
is in general much harder than the Grothendieck problems considered here. In particular,
the case of p = ∞ only admits an Θ(log n) approximation instead of KG for the bilinear
version [AMMN06, ABH+05].

For the case when 2 /∈ [q, p], an upper bound of O(max{m, n}25/128) on the approxima-
tion ratio was proved by Steinberg [Ste05]. Bhaskara and Vijayaraghavan [BV11] showed
NP-hardness of approximation whithin any constant factor, and hardness of approxima-
tion within an O

(
2(log n)1−ε

)
factor for arbitrary ε > 0 assuming NP 6⊆ DTIME

(
2(log n)O(1)

)
.

The hypercontractive case (p < q). Relatively fewer results are known for the case when
p < q. Steinberg’s result [Ste05] also applies to this case, giving an upper bound of
O(max {m, n}25/128) on the approximation factor, for all p, q. For the case of 2→q norm (for
any q > 2), Barak et al. [BBH+12] give an approximation algorithm for a promise version
of the problem, running in time exp

(
Õ(n2/q)

)
. They also provide an additive approxima-

tion algorithm for the 2→4 norm (where the error depends on 2→2 norm and 2→∞ norm
of A), which was extended to the 2→q norm by Harrow and Montanaro [HM13]. Barak et
al. also prove NP-hardness of approximating ‖A‖2→4 within a factor of 1+ Õ(1/no(1)), and
hardness of approximating better than exp O((log n)1/2−ε) in polynomial time, assuming
the Exponential Time Hypothesis (ETH). This reduction was also used by Harrow, Natara-
jan and Wu [HNW16] to prove that Õ(log n) levels of the Sum-of-Squares SDP hierarchy
cannot approximate ‖A‖2→4 within any constant factor.

1.2 Our contribution

We extend the hardness results of [BRS15] for the ∞ → 1 and 2 → 1 norms of a matrix to
any p ≥ 2 ≥ q. The hardness factors obtained match the performance of known algorithms
(due to Steinberg [Ste05]) for the cases of 2→ q and p→ 2.
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1 2

2

∞

∞

p

q
≤ min{γq∗/γp∗ , γp/γq} [Ste05]

≤ KG [Nes98]

≥ 1/(γqγp∗) [∗]
≥ π/2 (∞→ 1) [BRS15]

≥ 2log
1−ε n [∗]

≥ 2log
1−ε n [BV11]

≥ 2log
1−ε n [∗]

≥ 2log
1−ε n [BV11]

≥ 2log
1/2−ε n [BBH+12]

(Assuming ETH)

Figure 1: Upper and lower bounds for approximating ‖A‖p→q. Arrows indicate the region
to which a boundary belongs and thicker shaded regions represent exact algorithms. Our
results are indicated by [∗]. We omit UGC-based hardness results in the figure.

Theorem 1.1. For any p, q such that ∞ ≥ p ≥ 2 ≥ q ≥ 1 and ε > 0, it is NP-hard to approximate
the p→q norm within a factor 1/(γp∗γq)− ε.

We also prove the first strong inapproximability results for hypercontractive norms
without assuming ETH. We show that it is hard to approximate ‖A‖p→q within almost
polynomial factors unless NP is in randomized quasi-polynomial time. This is the content
of the following theorem.

Theorem 1.2. For any p, q such that 1 < p ≤ q < 2 or 2 < p ≤ q < ∞ and ε > 0, there is
no polynomial time algorithm that approximates the p→q norm of an n× n matrix within a factor
2log1−ε n unless NP ⊆ BPTIME

(
2(log n)O(1)

)
. When q is an even integer, the same inapproximabil-

ity result holds unless NP ⊆ DTIME
(

2(log n)O(1)
)

1.

We view the above theorem as providing some evidence that while hypercontractive
norms have been studied as a single class so far, the case when 2 ∈ [p, q] may be qualita-
tively different (with respect to techniques) from the case when 2 /∈ [p, q]

As discussed below, it is indeed possible to overcome the obstructions in designing
reductions for hypercontractive norms in the case when 2 /∈ [p, q]. However, the case
when 2 ∈ [p, q] remains a very interesting open problem.

1 Interestingly, Barak et al. [BBH+12] gave a subexponential algorithm for a promise version of 2→q norm,
with runtime 2O(n2/q) and our reduction rules out a constant factor approximation algorithm for ‖A‖p→q (2 <

p < q < ∞) running in time 2no(1/q)
(assuming NP 6⊆ DTIME

(
2o(n)

)
). That is, one cannot have a significantly

better runtime than that of Barak et al. for the p→q norm problem when 2 < p < q < ∞.
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Both the above theorems are in fact consequences of our main technical theorem, which
proves hardness of approximating ‖A‖2→r for r < 2 (and hence ‖A‖r∗→2 for r∗ > 2) while
providing additional structure in the matrix A produced by the reduction. This theorem is
proved in Section 3.

1.3 Proof overview

The hardness of proving hardness for hypercontractive norms. Reductions for various
geometric problems use a “smooth” version of the Label Cover problem, composed with
long-code functions for the labels of the variables. In various reductions, including the
ones by Guruswami et al. [GRSW16] and Briët et al. [BRS15] (which we closely follow)
the solution vector x to the geometric problem consists of the Fourier coefficients of the
various long-code functions, with a “block” xv for each vertex of the label-cover instance.
The relevant geometric operation (transformation by the matrix A in our case) consists of
projecting to a space which enforces the consistency constraints derived from the label-
cover problem, on the Fourier coefficients of the encodings.

However, this strategy presents with two problems when designing reductions for
hypercontractive norms. Firstly, while projections maintain the `2 norm of encodings cor-
responding to consistent labelings and reduce that of inconsistent ones, their behaviour
is harder to analyze for `p norms for p 6= 2. Secondly, the global objective of maximizing
‖Ax‖q is required to enforce different behavior within the blocks xv, than in the full vector
x. The block vectors xv in the solution corresponding to a satisfying assignment of label
cover are intended to be highly sparse, since they correspond to “dictator functions” which
have only one non-zero Fourier coefficient. This can be enforced in a test using the fact that
for a vector xv ∈ Rt, ‖xv‖q is a convex function of ‖xv‖p when p ≤ q, and is maximized for
vectors with all the mass concentrated in a single coordinate. However, a global objective
function which tries to maximize ∑v‖xv‖q

q, also achieves a high value from global vectors
x which concentrate all the mass on coordinates corresponding to few vertices of the la-
bel cover instance, and do not carry any meaningful information about assignments to the
underlying label cover problem.

Since we can only check for a global objective which is the `q norm of some vector
involving coordinates from blocks across the entire instance, it is not clear how to enforce
local Fourier concentration (dictator functions for individual long codes) and global well-
distribution (meaningful information regarding assignments of most vertices) using the
same objective function. While the projector A also enforces a linear relation between the
block vectors xu and xv for all edges (u, v) in the label cover instance, using this to ensure
well-distribution across blocks seems to require a very high density of constraints in the
label cover instance, and no hardness results are available in this regime.

Our reduction. We show that when 2 /∈ [p, q], it is possible to bypass the above issues
using hardness of ‖A‖2→r as an intermediate (for r < 2). Note that since ‖z‖r is a concave
function of ‖z‖2 in this case, the test favors vectors in which the mass is well-distributed
and thus solves the second issue. For this, we use local tests based on the Berry-Esséen
theorem (as in [GRSW16] and [BRS15]). Also, since the starting point now is the `2 norm,
the effect of projections is easier to analyze. This reduction is discussed in Section 3.

By duality, we can interpret the above as a hardness result for ‖A‖p→2 when p > 2
(using r = p∗). We then convert this to a hardness result for p→q norm in the hyper-
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contractive case by composing A with an “approximate isometry” B from `2 → `q (i.e.,
∀y ‖By‖q ≈ ‖y‖2) since we can replace ‖Ax‖2 with ‖BAx‖q. Milman’s version of the
Dvoretzky theorem [Ver17] implies random operators to a sufficiently high dimensional
(nO(q)) space satisfy this property, which then yields constant factor hardness results for
the p→q norm. A similar application of Dvoretzky’s theorem also appears in an indepen-
dent work of Krishnan et al. [KMW18] on sketching matrix norms.

We also show that the hardness for hypercontractive norms can be amplified via ten-
soring. This was known previously for the 2→4 norm using an argument based on parallel
repetition for QMA [HM13], and for the case of p = q [BV11], but appears to have gone
unnoticed for the general p < q case. The amplification is then used to prove hardness of
approximation within almost polynomial factors.

Nonhypercontractive norms. We also use the hardness of ‖A‖2→r to obtain hardness for
the non-hypercontractive case of ‖A‖p→q with q < 2 < p, by using an operator that “fac-
torizes” through `2. In particular, we obtain hardness results for ‖A‖p→2 and ‖A‖2→q (of
factors 1/γp∗and 1/γq respectively) using the reduction in Section 3. We then combine
these hardness results using additional properties of the operator A obtained in the reduc-
tion, to obtain a hardness of factor (1/γp∗) · (1/γq) for the p→q norm for p > 2 > q. The
composition, as well as the hardness results for hypercontractive norms, are presented in
Section 4.

2 Preliminaries and Notation

2.1 Matrix Norms

For a vector x ∈ Rn, throughout this paper we will use x(i) to denote its i-th coordinate.
For p ∈ [1, ∞), we define ‖·‖`p to denote the counting p-norm and ‖·‖Lp to denote the
expectation p-norm; i.e. for a vector x ∈ Rn,

‖x‖`p :=

(
∑

i∈[n]
|x(i)|p

)1/p

and ‖x‖Lp := E
i∼[n]

[|x(i)|p] 1/p =

(
1
n
· ∑

i∈[n]
|x(i)|p

)1/p

.

Clearly ‖x‖`p = ‖x‖Lp · n1/p. For p = ∞, we define ‖x‖`∞ = ‖x‖L∞ := maxi∈[n] |x(i)|.
We will use p∗ to denote the ‘dual’ of p, i.e. p∗ = p/(p − 1). Unless stated otherwise,
we usually work with ‖·‖`p . We also define inner product 〈x, y〉 to denote the inner prod-
uct under the counting measure unless stated otherwise; i.e. for two vectors x, y ∈ Rn,
〈x, y〉 := ∑i∈[n] x(i)y(i).

We next record a well-known fact about p-norms that is used in establishing many
duality statements.

Observation 2.1. For any p ∈ [1, ∞], ‖x‖`p = sup‖y‖`p∗=1 〈y, x〉.

We next define the primary problems of interest in this paper.

Definition 2.2. For p, q ∈ [1, ∞], the p→q norm problem is to maximize

‖Ax‖`q

‖x‖`p

5



given an m× n matrix A.

Definition 2.3. For p, q ∈ [1, ∞], we define a generalization of the Grothendieck problem, namely
(p, q)-Grothendieck, as the problem of computing

sup
‖y‖`p=1

sup
‖x‖`q=1

〈y, Ax〉

given an m× n matrix A.

The original Grothendieck problem is precisely (∞, ∞)-Grothendieck. We next state
the well known equivalence of p→q norm, (q*, p)-Grothendieck, and q*→p* norm.

Observation 2.4. For any p, q ∈ [1, ∞] and any matrix A,

‖A‖`p→`q = sup
‖y‖`q∗=1

sup
‖x‖`p=1

〈y, Ax〉 = ‖AT‖`q∗→`p∗ .

Proof. Using 〈y, Ax〉 = 〈x, ATy〉,

‖A‖`p→`q = sup
‖x‖`p=1

‖Ax‖`q = sup
‖x‖`p=1

sup
‖y‖`q∗=1

〈y, Ax〉 = sup
‖y‖`q∗=1

sup
‖x‖`p=1

〈y, Ax〉

= sup
‖x‖`p=1

sup
‖y‖`q∗=1

〈x, ATy〉 = sup
‖y‖`q∗=1

‖ATy‖`p∗ = ‖AT‖`q∗→`p∗ .

The following observation will be useful for composing hardness maps for p→2 norm
and 2→q norm to get p→q norm hardness for when p > q and p ≥ 2 ≥ q.

Observation 2.5. For any p, q, r ∈ [1, ∞] and any matrices B, C,

‖BC‖`p→`q = sup
x

‖BCx‖`q

‖x‖`p

≤ sup
x

‖B‖`r→`q‖Cx‖`r

‖x‖`p

≤ ‖B‖`r→`q‖C‖`p→`r .

2.2 Fourier Analysis

We introduce some basic facts about Fourier analysis of Boolean functions. Let R ∈ N be
a positive integer, and consider a function f : {±1}R → R. For any subset S ⊆ [R] let
χS := ∏i∈S xi. Then we can represent f as

f (x1, . . . , xR) = ∑
S⊆[R]

f̂ (S) · χS(x1, . . . xR), (1)

where
f̂ (S) = Ex∈{±1}R [ f (x) · χS(x)] for all S ⊆ [R]. (2)

The Fourier transform refers to a linear operator F that maps f to f̂ as defined as (2). We
interpret f̂ as a 2R-dimensional vector whose coordinates are indexed by S ⊆ [R]. Endow
the expectation norm and the expectation norm to f and f̂ respectively; i.e.,

‖ f ‖Lp :=
(

E
x∈{±1}R

[| f (x)|p]
)1/p

and ‖ f̂ ‖`p :=

(
∑

S⊆[R]
| f̂ (S)|p

)1/p

.
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as well as the corresponding inner products 〈 f , g〉 and 〈 f̂ , ĝ〉 consistent with their 2-norms.
We also define the inverse Fourier transform FT to be a linear operator that maps a given
f̂ : 2R → R to f : {±1}R → R defined as in (1). We state the following well-known facts
from Fourier analysis.

Observation 2.6 (Parseval’s Theorem). For any f : {±1}R → R, ‖ f ‖L2 = ‖F f ‖`2 .

Observation 2.7. F and FT form an adjoint pair; i.e., for any f : {±1}R → R and ĝ : 2R → R,

〈ĝ, F f 〉 = 〈FT ĝ, f 〉.

Observation 2.8. FT F is the identity operator.

In Section 3, we also consider a partial Fourier transform FP that maps a given func-
tion f : {±1}R → R to a vector f̂ : [R] → R defined as f̂ (i) = Ex∈{±1}R [ f (x) · xi] for
all i ∈ [R]. It is the original Fourier transform where f̂ is further projected to R coordi-
nates corresponding to linear coefficients. The partial inverse Fourier transform FT

P is a
transformation that maps a vector f̂ : [R] → R to a function f : {±1}R → R as in (1)
restricted to S = {i} for some i ∈ [R]. These partial transforms satisfy similar observations
as above: (1) ‖ f ‖L2 ≥ ‖FP f ‖`2 , (2) ‖FT

P f̂ ‖L2 = ‖ f̂ ‖`2 , (3) FP and FT
P form an adjoint pair, and

(4) (FT
P FP) f = f if and only if f is a linear function.

2.3 Smooth Label Cover

An instance of Label Cover is given by a quadruple L = (G, [R], [L], Σ) that consists of
a regular connected graph G = (V, E), a label set [R] for some positive integer n, and
a collection Σ = ((πe,v, πe,w) : e = (v, w) ∈ E) of pairs of maps both from [R] to [L]
associated with the endpoints of the edges in E. Given a labeling ` : V → [R], we say that
an edge e = (v, w) ∈ E is satisfied if πe,v(`(v)) = πe,w(`(w)). Let OPT(L) be the maximum
fraction of satisfied edges by any labeling.

The following hardness result for Label Cover, given in [GRSW16], is a slight variant of
the original construction due to [Kho02]. The theorem also describes the various structural
properties, including smoothness, that are identified by the hard instances.

Theorem 2.9. For any ξ > 0 and J ∈ N, there exist positive integers R = R(ξ, J), L = L(ξ, J)
and D = D(ξ), and a Label Cover instance (G, [R], [L], Σ) as above such that

- (Hardness): It is NP-hard to distinguish between the following two cases:

– (Completeness): OPT(L) = 1.
– (Soundness): OPT(L) ≤ ξ.

- (Structural Properties):

– (J-Smoothness): For every vertex v ∈ V and distinct i, j ∈ [R], we have

P
e:v∈e

[πe,v(i) = πe,v(j)] ≤ 1/J.

– (D-to-1): For every vertex v ∈ V, edge e ∈ E incident on v, and i ∈ [L], we have
|π−1

e,v (i)| ≤ D; that is at most D elements in [R] are mapped to the same element in [L].
– (Weak Expansion): For any δ > 0 and vertex set V ′ ⊆ V such that |V ′| = δ · |V|, the

number of edges among the vertices in |V ′| is at least (δ2/2)|E|.
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3 Hardness of 2→r norm with r < 2

This section proves the following theorem that serves as a starting point of our hardness
results. The theorem is stated for the expectation norm for consistency with the current
literature, but the same statement holds for the counting norm, since if A is an n× n matrix,
‖A‖`2→`r = n1/r−1/2 · ‖A‖L2→Lr . Note that the matrix A used in the reduction below does
not depend on r

Theorem 3.1. For any ε > 0, there is a polynomial time reduction that takes a 3-CNF formula ϕ
and produces a symmetric matrix A ∈ Rn×n with n = poly(|ϕ|) such that

- (Completeness) If ϕ is satisfiable, there exists x ∈ Rn with |x(i)| = 1 for all i ∈ [n] and
Ax = x. In particular, ‖A‖L2→Lr ≥ 1 for all 1 ≤ r ≤ ∞.

- (Soundness) ‖A‖L2→Lr ≤ γr + ε2−r for all 1 ≤ r < 2.

We adapt the proof by Briët, Regev and Saket for the hardness of 2 → 1 and ∞ → 1
norms to prove the above theorem. A small difference is that, unlike their construction
which starts with a Fourier encoding of the long-code functions, we start with an eval-
uation table (to ensure that the resulting matrices are symmetric). We also analyze their
dictatorship tests for the case of fractional r.

3.1 Reduction and Completeness

Let L = (G, [R], [L], Σ) be an instance of Label Cover with G = (V, E). In the rest of
this section, n = |V| and our reduction will construct a self-adjoint linear operator A :
RN → RN with N = |V| · 2R, which yields a symmetric N × N matrix representing A in
the standard basis. This section concerns the following four Hilbert spaces based on the
standard Fourier analysis composed with L.

1. Evaluation space R2R
. Each function in this space is denoted by f : {±1}R → R.

The inner product is defined as 〈 f , g〉 := Ex∈{±1}R [ f (x)g(x)], which induces ‖ f ‖2 :=
‖ f ‖L2 . We also define ‖ f ‖Lp := Ex[| f (x)|p]1/p in this space.

2. Fourier space RR. Each function in this space is denoted by f̂ : [R] → R. The inner
product is defined as 〈 f̂ , ĝ〉 := ∑i∈[R] f̂ (i)ĝ(i), which induces ‖ f̂ ‖2 := ‖ f̂ ‖`2 .

3. Combined evaluation space RV×2R
. Each function in this space is denoted by f : V ×

{±1}R → R. The inner product is defined as 〈f, g〉 := Ev∈V [Ex∈{±1}R [f(v, x)g(v, x)]],
which induces ‖f‖L2 := ‖f‖L2 . We also define ‖f‖p := Ev,x[|f(v, x)|p]1/p in this space.

4. Combined Fourier space RV×R. Each function in this space is denoted by f̂ : V ×
[R] → R. The inner product is defined as 〈f̂, ĝ〉 := Ev∈V [∑i∈[R] f̂(v, i)ĝ(v, i)], which
induces ‖f̂‖2, which is neither a counting nor an expectation norm.

Note that f ∈ RV×2R
and a vertex v ∈ V induces fv ∈ R2R

defined by fv(x) := f(v, x),
and similarly f̂ ∈ RV×R and a vertex v ∈ V induces f̂v ∈ RR defined by f̂v(x) := f̂(v, x).
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As defined in Section 2.2, we use the standard following (partial) Fourier transform F that
maps f ∈ R2R

to f̂ ∈ RR as follows. 2

f̂ (i) = (F f )(i) := E
x∈{±1}R

[xi f (x)] . (3)

The (partial) inverse Fourier transform FT that maps f̂ ∈ RR to f ∈ R2R
is defined by

f (x) = (FT f̂ )(x) := ∑
i∈[R]

xi f̂ (i). (4)

This Fourier transform can be naturally extended to combined spaces by defining F :
f 7→ f̂ as fv 7→ f̂v for all v ∈ V. Then FT maps f̂ to f as f̂v 7→ fv for all v ∈ V.

Finally, let P̂ : RV×R → RV×R be the orthogonal projector to the following subspace of
the combined Fourier space:

L̂ :=

f̂ ∈ RV×R : ∑
j∈π−1

e,u (i)

f̂u(i) = ∑
j∈π−1

e,v (i)

f̂v(j) for all (u, v) ∈ E and i ∈ [L]

 . (5)

Our transformation A : RV×2R → RV×2R
is defined by

A := (FT)P̂F. (6)

In other words, given f, we apply the Fourier transform for each v ∈ V, project the com-
bined Fourier coefficients to L̂ that checks the Label Cover consistency, and apply the in-
verse Fourier transform. Since P̂ is a projector, A is self-adjoint by design.

We also note that a similar reduction that produces (FT)P̂ was used in Guruswami et
al. [GRSW16] and Briët et al. [BRS15] for subspace approximation and Grothendieck-type
problems, and indeed this reduction suffices for Theorem 3.1 except the self-adjointness
and additional properties in the completeness case.

Completeness. We prove the following lemma for the completeness case. A simple intu-
ition is that if L admits a good labeling, we can construct a f such that each fv is a linear
function and f̂ is already in the subspace L̂. Therefore, each of Fourier transform, projection
to L̂, and inverse Fourier transform does not really change f.

Lemma 3.2 (Completeness). Let ` : V → [R] be a labeling that satisfies every edge of L. There
exists a function f ∈ RV×2R

such that f(v, x) is either +1 or −1 for all v ∈ V, x ∈ {±1}R and
Af = f.

Proof. Let f(v, x) := x`(v) for every v ∈ V, x ∈ {±1}R. Consider f̂ = Ff. For each vertex
v ∈ V, f̂(v, i) = f̂v(i) = 1 if i = `(v) and 0 otherwise. Since ` satisfies every edge ofL, f̂ ∈ L̂
and P̂f̂ = f̂. Finally, since each fv is a linear function, the partial inverse Fourier transform
FT satisfies (FT) f̂v = fv, which implies that (FT)f̂ = f. Therefore, Af = (FTP̂F)f = f.

2We use only linear Fourier coefficients in this work. F was defined as FP in Section 2.2.
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3.2 Soundness

We prove the following soundness lemma. This finishes the proof of Theorem 3.1 since The-
orem 2.9 guarantees NP-hardness of Label Cover for arbitrarily small ξ > 0 and arbitrarily
large J ∈N.

Lemma 3.3 (Soundness). For every ε > 0, there exist ξ > 0 (that determines D = D(ξ)
as in Theorem 2.9) and J ∈ N such that if OPT(L) ≤ ξ, L is D-to-1, and L is J-smooth,
‖A‖L2→Lr ≤ γr + 4ε2−r for every 1 ≤ r < 2.

Proof. Let f ∈ RV×2R
be an arbitrary vector such that ‖f‖L2 = 1. Let f̂ = Ff, ĝ = L̂f̂, and

g = FT ĝ so that g = (FTL̂F)f = Af. By Parseval’s theorem, ‖ f̂v‖`2 ≤ ‖ fv‖L2 for all v ∈ V
and ‖f̂‖2 ≤ ‖f‖L2 ≤ 1. Since L̂ is an orthogonal projection, ‖ĝ‖2 ≤ ‖f̂‖2 ≤ 1. Fix 1 ≤ r < 2
and suppose

‖g‖r
Lr
= E

v∈V

[
‖gv‖r

Lr

]
≥ γr

r + 4ε2−r . (7)

Use Lemma A.2 to obtain δ = δ(ε) such that ‖gv‖p
Lp

> (γ
p
p + ε)‖ĝv‖p

`2
implies ‖ĝ‖`4 >

δ‖ĝ‖`2 for all 1 ≤ p < 2 (so that δ does not depend on r), and consider

V0 := {v ∈ V : ‖ĝv‖`4 > δε and ‖ĝv‖`2 ≤ 1/ε}. (8)

We prove the following lemma that lower bounds the size of V0.

Lemma 3.4. For V0 ⊆ V defined as in (8), we have |V0| ≥ ε2|V|.

Proof. The proof closely follows the proof of Lemma 3.4 of [BRS15]. Define the sets

V1 = {v ∈ V : ‖ĝv‖`4 ≤ δε and ‖ĝv‖`2 < ε},
V2 = {v ∈ V : ‖ĝv‖`4 ≤ δε and ‖ĝv‖`2 ≥ ε},
V3 = {v ∈ V : ‖ĝv‖`2 > 1/ε}.

From (7), we have

∑
v∈V0

‖gv‖r
Lr
+ ∑

v∈V1

‖gv‖r
Lr
+ ∑

v∈V2

‖gv‖r
Lr
+ ∑

v∈V3

‖gv‖r
Lr
≥ (γr

r + 4ε2−r)|V| . (9)

We bound the four sums on the left side of (9) individually. Parseval’s theorem and the
fact that r < 2 implies ‖gv‖Lr ≤ ‖gv‖L2 = ‖ĝv‖`2 , and since ‖ĝv‖`2 ≤ 1/ε for every v ∈ V0,
the first sum in (9) can be bounded by

∑
v∈V0

‖gv‖r
Lr
≤ |V0|/εr. (10)

Similarly, using the definition of V1 the second sum in (9) is at most εr|V|. By Lemma A.2,
for each v ∈ V2, we have ‖gv‖r

Lr
≤ (γr

r + ε)‖ĝv‖r
`2

. Therefore, the third sum in (9) is
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bounded as

∑
v∈V2

‖gv‖r
Lr
≤ (γr

r + ε) ∑
v∈V2

‖ĝv‖r
`2

= (γr
r + ε)|V2|Ev∈V2 [‖ĝv‖r

`2
]

≤ (γr
r + ε)|V2|Ev∈V2 [‖ĝv‖2

`2
]r/2 (By Jensen using r < 2)

= (γr
r + ε)|V2|

(
∑v∈V2

‖ĝv‖2
`2

|V2|

)r/2

≤ (γr
r + ε)|V2|1−r/2|V|r/2 ( ∑

v∈V2

‖ĝv‖2
`2
≤ ∑

v∈V
‖ĝv‖2

`2
≤ |V|)

≤ (γr
r + ε)|V|. (11)

Finally, the fourth sum in (9) is bounded by

∑
v∈V3

‖gv‖r
Lr
≤ ∑

v∈V3

‖gv‖r
L2

(Since r < 2)

= ∑
v∈V3

‖ĝv‖r
`2

(By Parseval’s theorem)

= ∑
v∈V3

‖ĝv‖r−2
`2
‖ĝv‖2

`2

< ∑
v∈V3

ε2−r‖ĝv‖2
`2

(‖ĝv‖`2 > 1/ε for v ∈ V3, and r < 2)

= ε2−r ∑
v∈V3

‖ĝv‖2
`2
≤ ε2−r|V|. (12)

Combining the above with (9) yields

|V0| ≥ εr ∑
v∈V0

‖gv‖r
Lr

≥ εr
(
(γr

r + 4ε2−r)|V| − εr|V| − (γr
r + ε)|V| − ε2−r|V|

)
≥ εrε2−r|V| = ε2|V|, (13)

where the last inequality uses the fact that ε2−r ≥ ε ≥ εr.

Therefore, |V0| ≥ ε2|V| and every vertex of v satisfies ‖ĝv‖`4 > δε and ‖ĝv‖`2 ≤ 1/ε.
Using only these two facts together with ĝ ∈ L̂, Briët et al. [BRS15] proved that if the
smoothness parameter J is large enough given other parameters, L admits a labeling that
satisfies a significant fraction of edges.

Lemma 3.5 (Lemma 3.6 of [BRS15]). Let β := δ2ε3. There exists an absolute constant c′ > 0
such that if L is T-to-1 and T/(c′ε8β4)-smooth for some T ∈N, there is a labeling that satisfies at
least ε8β4/1024 fraction of E.

This finishes the proof of Lemma 3.3 by setting ξ := ε8β4/1024 and J := D(ξ)/(c′ε8β4)
with D(ξ) defined in Theorem 2.9.
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4 Hardness of p→q norm

In this section, we prove our main results. We prove Theorem 1.1 on hardness of approxi-
mating p→q norm when p ≥ 2 ≥ q, and Theorem 1.2 on hardness of approximating p→q
norm when 2 < p < q. By duality, the same hardness is implied for the case of p < q < 2.

Our result for p ≥ 2 ≥ q in Section 4.1 follows from Theorem 3.1 using additional
properties in the completeness case. For hypercontractive norms, we start by showing
constant factor hardness via reduction from p→2 norm (see Section 4.2), and then amplify
the hardness factor by using the fact that all hypercontractive norms productivize under
Kronecker product, which we prove in Section 4.4.

4.1 Hardness for p ≥ 2 ≥ q

We use Theorem 3.1 to prove hardness of p→q norm for p ≥ 2 ≥ q, which proves Theo-
rem 1.1.

Proof of Theorem 1.1: Fix p, q, and δ > 0 such that ∞ ≥ p ≥ 2 ≥ q and p > q. Our goal
is to prove that p→q norm is NP-hard to approximate within a factor 1/(γp∗γq + δ). For
2→q norm for 1 ≤ q < 2, Theorem 3.1 (with ε ← δ1/(2−q)) directly proves a hardness ratio
of 1/(γq + ε2−q) = 1/(γq + δ). By duality, it also gives an 1/(γp∗ + δ) hardness for p→2
norm for p > 2.

For p→q norm for p > 2 > q, apply Theorem 3.1 with ε = (δ/3)max(1/(2−p∗),1/(2−q)).
It gives a polynomial time reduction that produces a symmetric matrix A ∈ Rn×n given a
3-SAT formula ϕ. Our instance for p→q norm is AAT = A2.

- (Completeness) If ϕ is satisfiable, there exists x ∈ Rn such that |x(i)| = 1 for all
i ∈ [N] and Ax = x. Therefore, A2x = x and ‖A2‖Lp→Lq ≥ 1.

- (Soundness) If ϕ is not satisfiable,

‖A‖Lp→L2 = ‖A‖L2→Lp∗ ≤ γp∗ + ε2−p∗ ≤ γp∗ + δ/3, and

‖A‖L2→Lq ≤ γq + ε2−q ≤ γq + δ/3.

This implies that

‖A2‖Lp→Lq ≤ ‖A‖Lp→L2‖A‖L2→Lq ≤ (γp∗ + δ/3)(γq + δ/3) ≤ γp∗γq + δ .

This creates a gap of 1/(γp∗γq + δ) between the completeness and the soundness case. The
same gap holds for the counting norm since ‖A2‖`p→`q = n1/q−1/p · ‖A2‖Lp→Lq .

4.2 Reduction from p→2 norm via Approximate Isometries

Let A ∈ Rn×n be a hard instance of p→2 norm. For any q ≥ 1, if a matrix B ∈ Rm×n

satisfies ‖Bx‖`q = (1 ± o(1))‖x‖`2 for all x ∈ Rn, then ‖BA‖p→q = (1 ± o(1))‖A‖p→2.
Thus BA will serve as a hard instance for p→q norm if one can compute such a matrix B
efficiently. In fact, a consequence of the Dvoretzky-Milman theorem is that a sufficiently
tall random matrix B satisfies the aforementioned property with high probability. In other
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words, for m = m(q, n) sufficiently large, a random linear operator from `n
2 to `m

q is an
approximate isometry.

To restate this from a geometric perspective, for m(q, n) sufficiently larger than n, a
random section of the unit ball in `m

q is approximately isometric to the unit ball in `n
2 . In

the interest of simplicity, we will instead state and use a corollary of the following matrix
deviation inequality due to Schechtman (see [Sch06], Chapter 11 in [Ver17]).

Theorem 4.1 (Schechtman [Sch06]). Let B be an m × n matrix with i.i.d. N (0, 1) entries.
Let f : Rm → R be a positive-homogeneous and subadditive function, and let b be such that
f (y) ≤ b‖y‖`2 for all y ∈ Rm. Then for any T ⊂ Rn,

sup
x∈T
| f (Bx)−E [ f (Bx)] | = O(b · γ(T) + t · rad(T))

with probability at least 1 − e−t2
, where rad(T) is the radius of T, and γ(T) is the gaussian

complexity of T defined as

γ(T) := E
g∼N (0,In)

[
sup
t∈T
|〈g, t〉|

]
The above theorem is established by proving that the random process given by Xx :=

f (Bx) − E[ f (Bx)] has sub-gaussian increments with respect to L2 and subsequently ap-
pealing to Talagrand’s Comparison tail bound.

We will apply this theorem with f (·) = ‖·‖`q , b = 1 and T being the unit ball under
‖·‖`2 . We first state a known estimate of E[ f (Bx)] = E[‖Bx‖`q ] for any fixed x satisfying
‖x‖`2 = 1. Note that when ‖x‖`2 = 1, Bx has the same distribution as an m-dimensional
random vector with i.i.d. N (0, 1) coordinates.

Theorem 4.2 (Biau and Mason [BM15]). Let X ∈ Rm be a random vector with i.i.d. N (0, 1)
coordinates. Then for any q ≥ 2,

E
[
‖X‖`q

]
= m1/q · γq + O(m(1/q)−1)).

We are now equipped to see that a tall random gaussian matrix is an approximate
isometry (as a linear map from `n

2 to `m
q ) with high probability.

Corollary 4.3. Let B be an m× n matrix with i.i.d. N (0, 1) entries where m = ω(nq/2). Then
with probability at least 1− e−n, every vector x ∈ Rn satisfies,

‖Bx‖`q = (1± o(1)) ·m1/q · γq · ‖x‖`2 .

Proof. We apply Theorem 4.1 with function f being the `q norm, b = 1, and t =
√

n.
Further we set T to be the `2 unit sphere, which yields γ(T) = Θ(

√
n) and rad(T) = 1.

Applying Theorem 4.2 yields that with probability at least 1− et2
= 1− e−n, for all x with

‖x‖`2 = 1, we have∣∣∣‖Bx‖`q −m1/q · γq

∣∣∣ ≤ ∣∣∣‖Bx‖`q −E
[
‖X‖`q

]∣∣∣+ ∣∣∣E [‖X‖`q

]
−m1/q · γq

∣∣∣
≤ O(b · γ(T) + t · rad(T) + m(1/q)−1)

≤ O(
√

n +
√

n + m(1/q)−1)

≤ o(m1/q).
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We thus obtain the desired constant factor hardness:

Proposition 4.4. For any p > 2, 2 ≤ q < ∞ and any ε > 0, there is no polynomial time algorithm
that approximates p→q norm (and consequently q∗→p∗ norm) within a factor of 1/γp∗ − ε unless
NP 6⊆ BPP.

Proof. By Corollary 4.3, for every n× n matrix A and a random m× n matrix B with i.i.d.
N (0, 1) entries (m = ω(nq/2)), with probability at least 1− e−n, we have

‖BA‖`p→`q = (1± o(1)) · γq ·m1/q · ‖A‖`p→`2 .

Thus the reduction A→ BA combined with p→2 norm hardness implied by Theorem 3.1,
yields the claim.

The generality of the concentration of measure phenomenon underlying the proof of
the Dvoretzky-Milman theorem allows us to generalize Proposition 4.4, to obtain constant
factor hardness of maximizing various norms over the `p ball (p > 2). In this more general
version, the strength of our hardness assumption is dependent on the gaussian width of
the dual of the norm being maximized. Its proof is identical to that of Proposition 4.4.

Theorem 4.5. Consider any p > 2, ε > 0, and any family ( fm)m∈N of positive-homogeneous and
subadditive functions where fm : Rm → R. Let (bm)m∈N be such that fm(y) ≤ bm · ‖y‖`2 for all
y and let N = N(n) be such that γ∗( fN) = ω(bN ·

√
n), where

γ∗( fN) := E
g∼N (0,IN)

[ fN(g)] .

Then unless NP 6⊆ BPTIME (N(n)), there is no polynomial time (1/γp∗ − ε)-approximation
algorithm for the problem of computing sup‖x‖p=1 fm(Ax), given an m× n matrix A.

4.3 Derandomized Reduction

In this section, we show how to derandomize the reduction in Proposition 4.4 to obtain
NP-hardness when q ≥ 2 is an even integer and p > 2. Similarly to Section 4.2, given
A ∈ Rn×n as a hard instance of p→2 norm, our strategy is to construct a matrix B ∈ Rm×n

and output BA as a hard instance of p→q norm.
Instead of requiring B to satisfy ‖Bx‖`q = (1 ± o(1))‖x‖`2 for all x ∈ Rn, we show

that ‖Bx‖`q ≤ (1 + o(1))‖x‖`2 for all x ∈ Rn and ‖Bx‖`q ≥ (1− o(1))‖x‖`2 when every
coordinate of x has the same absolute value. Since Theorem 3.1 ensures that ‖A‖`p→`2 is
achieved by x = Ax for such a well-spread x in the completeness case, BA serves as a hard
instance for p→q norm.

We use the following construction of q-wise independent sets to construct such a B
deterministically.

Theorem 4.6 (Alon, Babai, and Itai [ABI86]). For any k ∈ N, one can compute a set S of
vectors in {±1}n of size O(nk/2), in time nO(k), such that the vector random variable Y obtained
by sampling uniformly from S satisfies that for any I ∈ ([n]k ), the marginal distribution Y|I is the
uniform distribution over {±1}k.

For a matrix B as above, a randomly chosen row behaves similarly to an n-dimensional
Rademacher random vector with respect to ‖·‖`q .
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Corollary 4.7. Let R ∈ Rn be a vector random variable with i.i.d. Rademacher (±1) coordinates.
For any even integer q ≥ 2, there is an m× n matrix B with m = O(nq/2), computable in nO(q)

time, such that for all x ∈ Rn, we have

‖Bx‖`q = m1/q ·E
R
[〈R, x〉q] 1/q.

Proof. Let B be a matrix, the set of whose rows is precisely S. By Theorem 4.6,

‖Bx‖q
`q
= ∑

Y∈S
〈Y, x〉q = m ·E

R
[〈R, x〉q] .

We use the following two results that will bound ‖BA‖`p→`q for the completeness case
and the soundness case respectively.

Theorem 4.8 (Stechkin [Ste61]). Let R ∈ Rn be a vector random variable with i.i.d. Rademacher
coordinates. Then for any q ≥ 2 and any x ∈ Rn whose coordinates have the same absolute value,

E [〈R, x〉] 1/q = (1− o(1)) · γq‖x‖`2 .

Theorem 4.9 (Khintchine inequality [Haa81]). Let R ∈ Rn be a vector random variable with
i.i.d. Rademacher coordinates. Then for any q ≥ 2 and any x ∈ Rn,

E [〈R, x〉q] 1/q ≤ γq · ‖x‖`2 .

We finally prove the derandomimzed version of Proposition 4.4 for even q ≥ 2.

Proposition 4.10. For any p > 2, ε > 0, and any even integer q ≥ 2, it is NP-hard to approximate
p→q norm within a factor of 1/γp∗ − ε.

Proof. Apply Theorem 3.1 with r1 ← p∗ and ε ← ε. Given an instance ϕ of 3-SAT, The-
orem 3.1 produces a symmetric matrix A ∈ Rn×n in polynomial time as a hard instance
of p→2 norm. Our instance for p→q norm is BA where B is the m × n matrix given by
Corollary 4.7 with m = O(nq/2).

- (Completeness) If ϕ is satisfiable, there exists a vector x ∈ {± 1√
n}

n such that Ax = x.

So we have ‖BAx‖`q = ‖Bx‖`q = (1− o(1)) ·m1/q · γq, where the last equality uses
Corollary 4.7 and Theorem 4.8. Thus ‖BA‖`p→`q ≥ (1− o(1)) ·m1/q · γq.

- (Soundness) If ϕ is not satisfiable, then for any x with ‖x‖`p = 1,

‖BAx‖`q = m1/q ·E
R
[〈R, Ax〉q] 1/q ≤ m1/q · γq · ‖Ax‖`2

≤ m1/q · γq · ‖A‖`p→`2 ≤ m1/q · γq · (γp∗ − ε)

where the first inequality is a direct application of Theorem 4.9.
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4.4 Hypercontractive Norms Productivize

We will next amplify our hardness results using the fact that hypercontractive norms pro-
ductivize under the natural operation of Kronecker or tensor product. Bhaskara and Vi-
jayraghavan [BV11] showed this for the special case of p = q and the Harrow and Mon-
tanaro [HM13] showed this for 2→4 norm (via parallel repetition for QMA(2)). In this
section we prove this claim whenever p ≤ q.

Theorem 4.11. Let A and B be m1 × n1 and m2 × n2 matrices respectively. Then for any 1 ≤
p ≤ q < ∞, ‖A⊗ B‖`p→`q ≤ ‖A‖`p→`q · ‖B‖`p→`q .

Proof. We will begin with some notation. Let ai, bj respectively denote the i-th and j-th
rows of A and B. Consider any z ∈ R[n1]×[n2] satisfying ‖z‖`p = 1. For k ∈ [n1], let zk ∈ Rn2

denote the vector given by zk(`) := z(k, `). For j ∈ [m2], let zj ∈ Rn1 denote the vector
given by zj(k) := 〈bj, zk〉. Finally, for k ∈ [n1], let λk := ‖zk‖

p
`p

and let vk ∈ Rm2 be the
vector given by vk(j) := |zj(k)|p/λk.

We begin by ’peeling off’ A:

‖(A⊗ B)z‖q
`q

= ∑
i,j
|〈ai ⊗ bj, z〉|q = ∑

j
∑

i
|〈ai, zj〉|q

= ∑
j
‖Azj‖

q
`q

≤ ‖A‖q
`p→`q

·∑
j
‖zj‖

q
`p

= ‖A‖q
`p→`q

·∑
j

(
‖zj‖

p
`p

)q/p

In the special case of p = q, the proof ends here since the expression is a sum of terms
of the form ‖By‖p

`p
and can thus be upper bounded term-wise by ‖B‖p

`p→`p
· ‖zk‖

p
`p

which

sums to ‖B‖p
`q→`p

. To handle the case of q > p, we will use a convexity argument:

‖A‖q
`p→`q

·∑
j

(
‖zj‖

p
`p

)q/p

= ‖A‖q
`p→`q

·∑
j

(
∑

k
|zj(k)|p

)q/p

= ‖A‖q
`p→`q

· ‖∑
k

λk · vk‖
q/p
`q/p

(|zj(k)|p = λkvk(j))

≤ ‖A‖q
`p→`q

·∑
k

λk · ‖vk‖
q/p
`q/p

(by convexity of ‖·‖q/p
q/p when q ≥ p)

≤ ‖A‖q
`p→`q

·max
k
‖vk‖

q/p
`q/p
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It remains to show that ‖vk‖
q/p
`q/p

is precisely ‖Bzk‖
q
`q

/‖zk‖
q
`p

.

‖A‖q
`p→`q

·max
k
‖vk‖

q/p
`q/p

= ‖A‖q
`p→`q

·max
k

1
‖zk‖

q
`p

·∑
j
|zj(k)|q

= ‖A‖q
`p→`q

·max
k

1
‖zk‖

q
`p

·∑
j
|〈bj, zk〉|q

= ‖A‖q
`p→`q

·max
k

‖Bzk‖
q
`q

‖zk‖
q
`p

≤ ‖A‖q
`p→`q

· ‖B‖q
`p→`q

Thus we have established ‖A⊗ B‖`p→`q ≤ ‖A‖`p→`q · ‖B‖`p→`q . Lastly, the claim follows
by observing that the statement is equivalent to the statement obtained by replacing the
counting norms with expectation norms.

We finally establish super constant NP-Hardness of approximating p→q norm, prov-
ing Theorem 1.2.

Proof of Theorem 1.2: Fix 2 < p ≤ q < ∞. Proposition 4.4 states that there exists
c = c(p, q) > 1 such that any polynomial time algorithm approximating the p→q norm
of an n× n-matrix A within a factor of c will imply NP ⊆ BPP. Using Theorem 4.11, for
any integer k ∈ N and N = nk, any polynomial time algorithm approximating the p→q
norm of an N × N-matrix A⊗k within a factor of ck implies that NP admits a randomized
algorithm running in time poly(N) = nO(k). Under NP 6⊆ BPP, any constant factor ap-
proximation algorithm is ruled out by setting k to be a sufficiently large constant. For any
ε > 0, setting k = log1/ε n rules out an approximation factor of ck = 2O(log1−ε N) unless
NP ⊆ BPTIME

(
2logO(1) n

)
.

By duality, the same statements hold for 1 < p ≤ q < 2. When 2 < p ≤ q and q is an
even integer, all reductions become deterministic due to Proposition 4.10.

A Dictatorship Test

First we prove an implication of Berry-Esséen estimate for fractional moments (similar to
Lemma 3.3 of [GRSW16], see also [KNS10]).

Lemma A.1. There exist universal constants c > 0 and δ0 > 0 such that the following statement
is true. If X1, · · · , Xn are bounded independent random variables with |Xi| ≤ 1, E[Xi] = 0 for
i ∈ [n], and ∑i∈[n] E[X2

i ] = 1, ∑i∈[n] E[|Xi|3] ≤ δ for some 0 < δ < δ0, then for every p ≥ 1:

(
E

[∣∣∣∣∣ n

∑
j=1

Xj

∣∣∣∣∣
p]) 1

p

≤ γp ·
(

1 + cδ (log (1/δ))
p
2

)
.

Now we state and prove the main lemma of this section:
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Lemma A.2. Let f : {±1}R → R be a linear function for some positive integer R ∈ N and
f̂ : [R]→ R be its linear Fourier coefficients defined by

f̂ (i) := E
x∈{±1}R

[xi f (x)] .

For all ε > 0, there exists δ > 0 such that if ‖ f ‖Lr > (γr + ε)‖ f̂ ‖`2 then ‖ f̂ ‖`4 > δ‖ f̂ ‖`2 for all
1 ≤ r < 2.

Proof. We will prove this lemma by the method of contradiction. Let us assume ‖ f̂ ‖`4 ≤
δ‖ f̂ ‖`2 , for δ to be fixed later.

Let us define yi := f̂ (i)
‖ f̂ ‖`2

. Then, for all x ∈ {−1, 1}R,

g(x) := ∑
i∈[n]

xi · yi =
f (x)
‖ f̂ ‖`2

.

Let Zi = xi · yi be the random variable when xi is independently uniformly randomly
chosen from {−1, 1}. Now

∑
i∈[n]

E
[
Z2

i
]
= ∑

i∈[n]

f̂ (i)2

‖ f̂ ‖2
`2

= 1 .

and

∑
i∈[n]

E
[
|Zi|3

]
= ∑

i∈[n]

∣∣∣ f̂ (i)∣∣∣3
‖ f̂ ‖3

`2

= ∑
i∈[n]

∣∣∣ f̂ (i)∣∣∣2
‖ f̂ ‖2

`2

·

∣∣∣ f̂ (i)∣∣∣
‖ f̂ ‖`2

≤
‖ f̂ ‖2

`4

‖ f̂ ‖2
`2

≤ δ2 ,

where the penultimate inequality follows from Cauchy-Schwarz ineqality.
Hence, by applying Lemma A.1 on the random variables Z1, · · · , Zn, we get:

‖ f ‖Lr

‖ f̂ ‖`2

= ‖g‖Lr =

(
E

x∈{−1,1}n

[
|g(x)|r

]) 1
r

=

(
E

x∈{−1,1}n

[∣∣∣∣∣ ∑
i∈[n]

Zi

∣∣∣∣∣
r]) 1

r

≤ γr

(
1 + cδ2

(
log

1
δ

)r)

We choose δ > 0 small enough (since 1 ≤ r < 2, setting δ <
√

ε

min(δ0,
√

γ2 log cγ2
ε )

=
√

ε
min(δ0,log c

ε )

suffices) so that δ2(log 1
δ )

r < ε
cγr

. For this choise of δ, we get: ‖ f ‖Lr ≤ (γr + ε)‖ f̂ ‖`2 – a
contradiction. And hence the proof follows.

Finally we prove Lemma A.1:
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Proof of Lemma A.1: The proof is almost similar to that of Lemma 2.1 of [KNS10]. From
Berry-Esséen theorem (see [vB72] for the constant), we get that:

P

[∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣ ≥ u

]
≤ P [|g| ≥ u] + 2

n

∑
i=1

E
[
|Xi|3

]
≤ P [|g| ≥ u] + 2δ ,

for every u > 0 and where g ∼ N (0, 1). By Hoeffding’s lemma,

P

[∣∣∣∣∣ ∑
i∈[n]

Xi

∣∣∣∣∣ ≥ t

]
< 2e−2t2

for every t > 0. Combining the above observations, we get:

E

[∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣
p]

=
∫ ∞

0
pup−1P

[∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣ ≥ u

]
du

≤
∫ a

0
pup−1P [|g| > u] du + 2δap + 2

∫ ∞

a
pup−1e−2u2

du

=

√
2
π

∫ a

0
upe−u2/2du + 2δap +

2p

2
p−1

2

∫ ∞

2a2
z

p+1
2 −1e−zdz

= γ
p
p −

√
2
π

∫ ∞

a
upe−u2/2du + 2δap + Γ

(
p + 1

2
, 2a2

)
,

where Γ(·, ·) is the upper incomplete gamma function and a is a large constant determined
later depending on δ and p. The second term is bounded as∫ ∞

a
upe−u2/2du = ap−1e−a2/2 + (p− 1)

∫ ∞

a
up−2e−u2/2du ≤ ap−1e−a2/2 +

p− 1
a2

∫ ∞

a
upe−u2/2du .

Hence
∫ ∞

a upe−u2/2du ≤ ap+1e−a2/2

1+a2−p .

We know, Γ(p+1/2, x) → x
p−1

2 e−x as x → ∞. We choose a = γp

√
log 1

δ . Hence there

exists δ0 so that for all small enough δ < δ0, we have Γ(p+1/2, 2a2) ∼ 2
p−1

2 ap−1δ2γ2
p � δap

where the last inequality follows from the fact that 2γ2
p > 1 (as p > 1). Putting all this

together, we get:

2δap + Γ
(

p + 1
2

, 2a2
)
−
√

2
π

∫ ∞

a
upe−u2/2du� 3δap−

√
2
π

ap+1e−a2/2

1 + a2 − p
≤ cγ

p
pδ

(
log

1
δ

)p/2

,

where c is an absolute constant independent of a and p. This completes the proof of the
lemma.
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