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Abstract

The classical lemma of Ore-DeMillo-Lipton-Schwartz-Zippel states that any nonzero poly-
nomial f (x1, . . . , xn) of degree at most s will evaluate to a nonzero value at some point on
a grid Sn ⊆ Fn with |S| > s. Thus, there is a deterministic polynomial identity test (PIT)
for all degree-s size-s algebraic circuits in n variables that runs in time poly(s) · (s + 1)n. In
a surprising recent result, Agrawal, Ghosh and Saxena (STOC 2018) showed any determinis-
tic blackbox PIT algorithm for degree-s, size-s, n-variate circuits with running time as bad as(

sn0.5−δ
)

HUGE(n), where δ > 0 and HUGE(n) is an arbitrary function, can be used to construct

blackbox PIT algorithms for degree-s size s circuits with running time sexp ◦ exp(O(log∗ s)).
The authors asked if a similar conclusion followed if their hypothesis was weakened to

having deterministic PIT with running time so(n) · HUGE(n). In this paper, we answer their
question in the affirmative. We show that, given a deterministic blackbox PIT that runs in
time so(n) ·HUGE(n) for all degree-s size-s algebraic circuits over n variables, we can obtain a
deterministic blackbox PIT that runs in time sexp ◦ exp(O(log∗ s)) for all degree-s size-s algebraic
circuits over n variables. In other words, any blackbox PIT with just a slightly non-trivial
exponent of s compared to the trivial sO(n) test can be used to give a nearly polynomial time
blackbox PIT algorithm.
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1 Introduction

Multivariate polynomials are the primary protagonists in the field of algebraic complexity and
algebraic circuits form a natural robust model of computation for multivariate polynomials. For
completeness, an algebraic circuit is defined via a directed acyclic graph with internal gates la-
beled by + (addition) and × (multiplication) and with leaves labeled by either variables or field
constants; computation flows in the natural way.

In the field of algebraic complexity, much of the focus has been restricted to studying n-variate
polynomials whose degree is bounded by a polynomial function in n, and such polynomials are
called low-degree polynomials. This restriction has several a-priori and a-posteriori motivations, and
excellent discussions of this can be seen in the thesis of Forbes [For14, Section 3.2] and Grochow’s
answer [Gro] on cstheory.SE. The central question in algebraic complexity is to find a family
of low-degree polynomials that requires large algebraic circuits to compute it. Despite having
made substantial progress in various subclasses of algebraic circuits (cf. surveys [SY10, Sap15]),
the current best lower bound for general algebraic circuits is merely an Ω(n log d) lower bound of
Baur and Strassen [BS83].

An interesting approach towards proving lower bounds for algebraic circuits is via showing
good upper bounds for the algorithmic task called polynomial identity testing. Our results deal with
this approach and we elaborate on this now.

1.1 Polynomial Identity Testing

Polynomial identity testing (PIT1) is the algorithmic task of checking if a given algebraic circuit C
of size s computes the identically zero polynomial. As discussed earlier, although a circuit of size
s can compute a polynomial of degree 2s, this question typically deals only with circuits whose
formal degree2 is bounded by the size of the circuit.

This algorithmic question has two flavours: whitebox PIT and blackbox PIT. Whitebox polyno-
mial identity tests consist of algorithms that can inspect the circuit (that is, look at the underlying
gate connections etc.) to decide whether the circuit computes the zero polynomial or not. A
stronger algorithm is a blackbox polynomial identity test where the algorithm is only provided basic
parameters of the circuit (such as its size, the number of variables, a bound on the formal degree)
and only has evaluation access to the circuit C. Hence, a blackbox polynomial identity test for a
class C of circuits is just a list of evaluation points H ⊆ Fn such that every nonzero circuit C ∈ C
is guaranteed to have some a ∈ H such that C(a) 6= 0. Such sets of points are also called hitting
sets for C. Therefore, the running time of a blackbox PIT algorithm is essentially given by the size
of the hitting set and the time taken to generate it given the parameters of the circuit.

The classical Ore-DeMillo-Lipton-Schwartz-Zippel Lemma [Ore22, DL78, Zip79, Sch80] states

1We use the abbreviation PIT for both the noun ‘polynomial identity test’ and gerund/adjective ‘polynomial identity
testing’. The case would be clear from context.

2This is defined inductively by setting the formal degree of leaves as 1, and taking the sum at every multiplication
gate and the max at every sum gate.
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that any nonzero polynomial f (x1, . . . , xn) of degree at most d will evaluate to a nonzero value at
a randomly chosen point from a grid Sn ⊆ Fn with probability at least 1− d

|S| . Therefore, this au-
tomatically yields a randomized polynomial time blackbox PIT algorithm, and also a deterministic
(d + 1)n · poly(s) blackbox PIT algorithm, for the class of size s and formal-degree d circuits. Fur-
thermore, a simple counting/dimension argument also says that there exist (non-explicit) poly(s)
sized hitting sets for the class of polynomials computed by size s algebraic circuits. The major
open question is to find a better deterministic algorithm for this problem.

PIT is an important algorithmic question of its own right, and many classical results such as
the primality testing algorithm [AKS04], IP = PSPACE [LFKN90, Sha90], algorithms for graph
matching [MVV87, FGT16, ST17] all have a polynomial identity test at its core. Yet another reason
why PIT is an important algorithmic question is its intimate connections with the question of
proving explicit lower bounds for algebraic circuits.

Heintz and Schnorr [HS80], and Agrawal [Agr05] observed that given an explicit hitting set
for size s circuits, any nonzero polynomial that is designed to vanish on every point of the hitting
set cannot be computable by size s circuits. By tailoring the number of variables and degree of
the polynomial in this observation, they showed that polynomial time blackbox PITs yield an E-
computable family { fn} of n-variate multilinear polynomials that require 2Ω(n) sized circuits. This
connection between PIT and lower bounds was strengthened further by Kabanets and Impagli-
azzo [KI04] who showed that explicit families of hard functions can be used to give non-trivial
derandomizations for PIT. Thus, the question of proving explicit lower bounds and the task of
finding upper bounds for PIT are essentially two sides of the same coin.

1.2 Bootstrapping

A recent result of Agrawal, Ghosh and Saxena [AGS18] showed, among other things, the following
surprising result: blackbox PIT algorithms for size s and n-variate circuits with running time as
bad as

(
sn0.5−δ ·HUGE(n)

)
, where δ > 0 and HUGE is an arbitrary function of n, can be used

to construct blackbox PIT algorithms for size s circuits with running time sexp ◦ exp(O(log∗ s)). Note
that log∗ n refers to the smallest i such that the i-th iterated logarithm log◦i(n) is at most 1. This
shows that good-enough derandomizations of PIT would be sufficient to get a nearly complete
derandomization. Their proof uses a novel bootstrapping technique where they use the connection
between hardness and derandomization repeatedly so that by starting with a weak hitting set we
can obtain better and better hitting sets.

One of the open questions of Agrawal, Ghosh and Saxena [AGS18] was whether the hypothesis
can be strengthened to a barely non-trivial derandomization. That is, suppose we have a blackbox
PIT algorithm, for the class of size s and n-variate circuits, that runs in time so(n) ·HUGE(n), can
we use this to get a nearly complete derandomization? Note that we have a trivial sO(n) algorithm
from the Ore-DeMillo-Lipton-Schwartz-Zippel lemma [Ore22, DL78, Zip79, Sch80]. Our main
result is an answer to this question in the affirmative.
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Theorem 1.1 (Main theorem). Let HUGE : N → N be an arbitrary function. Suppose there is an
explicit hitting set of size so(n)HUGE(n) for all degree-d size-s circuits over n variables. Then, there is an
explicit hitting set of size sexp ◦ exp(O(log∗ s)) for the class of degree-s size-s circuits over s variables.

1.3 Proof overview

The basic intuition for the proofs in this paper, and as per our understanding also for the proofs
of the results in the work of Agrawal et al. [AGS18], comes from the results of Kabanets and
Implagliazzo [KI04] and those of Heintz and Schnorr [HS80] and Agrawal [Agr05]. We start by
informally stating these results.

Theorem 1.2 (Informal, Heintz and Schnorr [HS80], Agrawal [Agr05]). Let H(n, d, s) be an explicit
hitting set for circuits of size s, degree d in n variables. Then, for every d′ and k ≤ n such that d′k < d and
d′k > |H(n, d, s)|, there is a nonzero polynomial on n variables and individual degree d′ that vanishes on
the hitting set H(n, d, s), and hence cannot be computed by a circuit of size s.

In a nutshell, given an explicit hitting set, we can obtain hard polynomials. In fact, playing
around with the parameters d′ and k ≤ n, we can get a hard polynomial on k variables, degree kd′

for all k, d′ satisfying d′k < d and d′k > |H(n, d, s)|.
We now state a result of Kabanets and Impagliazzo [KI04] that shows that hardness can lead

to derandomization.

Theorem 1.3 (Informal, Kabanets and Impagliazzo [KI04]). A superpolynomial lower bound for al-
gebraic circuits for an explicit family of polynomials implies a deterministic blackbox PIT algorithm for all
algebraic circuits in n variables and degree d of size poly(n) that runs in time poly(d)nε

for every ε > 0.

Now, we move on to the main ideas in our proof. Suppose we have hitting sets of size so(n) for
size s, degree d ≤ s circuits on n variables. The goal is to obtain a blackbox PIT for circuits of size
s, degree s on s variables with a much better dependence on the number of variables.

Observe that if the number of variables was much much smaller than s, say at most a constant,
then the hitting set in the hypothesis has a polynomial dependence on s, and we are done. With
this in mind, the hitting sets for s variate circuits in the conclusion of Theorem 1.1 are designed
iteratively starting from hitting sets for circuits with very few variables. In each iteration, we start
with a hitting set for size s, degree d ≤ s circuits on n variables with some dependence on n and
obtain a hitting set for size s, degree d ≤ s circuits on m = 2nδ

variables (for some δ > 0), that has a
much better dependence on m. Then, we repeat this process till the number of variables increases
up to s, which takes O(log∗ s) iterations. We now briefly outline the steps in each such iteration.

• Obtaining a family of hard polynomials : The first step is to obtain a family of explicit hard
polynomials from the given hitting sets. This step is done via Theorem 1.2, which simply
uses interpolation to find a nonzero polynomial Q on k variables and degree d that vanishes
on the hitting set for size s′, degree d′ circuits on n variables, for some s′, d′ to be chosen
appropriately.
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• Variable reduction using Q : Next, we take a Nisan-Wigderson design (see Definition 2.1)
{S1, S2, . . . , Sm}, where each Si is a subset of size k of a universe of size k2, and

∣∣Si ∩ Sj
∣∣ ≤ √k.

Consider the map Γ : F[x1, x2, . . . , xm] → F[y1, y2, . . . , yk2 ] given by Γ(C(x1, x2, . . . , xm))

= C (Q(y |S1), Q(y |S2), . . . , Q(y |Sm)). As Kabanets and Impagliazzo show in the proof
of Theorem 1.3, Γ preserves the nonzeroness of all algebraic circuits of size s on m variables,
provided Q is hard enough, i.e. s′ = sa for a sufficiently large a.

• Blackbox PIT for m-variate circuits of size s and degree s : We now take the hitting set
given by the hypothesis for the circuit Γ(C) (invoked with appropriate size and degree pa-
rameters) and evaluate Γ(C) on this set. From the discussion so far, we know that if C is
nonzero, then Γ(C) cannot be identically zero, and hence it must evaluate to a nonzero value
at some point on this set. The number of variables in Γ(C) is at most k2 = log2 m, whereas its
size turns out to be not too much larger than s. Hence, the size of the hitting set for C obtained
via this argument turns out to have a better dependence on the number of variables m than
the hitting set in the hypothesis.

Similarities and differences with the proof of Agrawal et al. [AGS18]. The high level outline of
our proof is essentially the same as that of Agrawal et al. [AGS18]. However, there are some quan-
titative differences in the argument, that make our final arguments shorter and simpler than those
of Agrawal et al. and lead to a stronger and near optimal boostrapping statement in Theorem 1.1.

The primary differences between our proof and that of Agrawal et al. are rather technical but
we try to briefly describe them. The first difference is in the choice of Nisan-Wigderson designs.
The designs used in this paper are based on the standard Reed-Solomon code and they yield larger
set families than the designs used by Agrawal et. al.3 The second difference is the evolution of
parameters in the inductive argument. We believe the primary difference is in the main inductive
hypothesis [AGS18, Lemma 18] that assumes a non-trivial hitting set for some n-variate circuits
for n smaller than some large constant n0 (which they then use to bootstrap). However, this hy-
pothesis does not degrade gracefully for n-variate circuits when n is a little larger than n0 and
appears to force them to use more stringent parameters. Also, their proof is quite involved and
we are unsure if there are other constraints in their proof that force such choices of parameters.
Our proof, though along almost exactly the same lines, appears to be more transparent and more
malleable with respect to the choice of parameters.

The strength of the hypothesis. The hypothesis of Theorem 1.1 and also those of the results in
the work of Agrawal et al. [AGS18] is that we have a non-trivial explicit hitting set for algebraic
circuits of size s, degree d on n variables where d and s could be arbitrarily large as a function of n.
This seems like an extremely strong assumption, and also slightly non-standard in the following
sense. In a typical setting in algebraic complexity, we are interested in PIT for size s, degree d

3However, even without these improved design parameters, our proof can be used to provide the same conclusion
when starting off with a hitting set of size sn1−δ ·HUGE(n), instead of the hypothesis of Theorem 1.1.
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circuits on n variables where d and s are polynomially bounded in the number of variables n. A
natural open problem here, which would be a more satisfying statement to have, would be to
show that one can weaken the hypothesis in Theorem 1.1 to only hold for circuits whose degree
and size are both polynomially bounded in n. It is not clear to us if such a result can be obtained
using the current proof techniques, or is even true.

Remark. Throughout the paper, we shall assume that there are suitable b·c’s or d·e’s if necessary so that
certain parameters chosen are integers. We avoid writing this purely for the sake of readability.

Furthermore, we make absolutely no attempt to optimise constants. Several of the inequalities used
are weak and tightening them makes little qualitative difference to the final theorem statements. ♦

2 Preliminaries

2.1 Notation

• For a positive integer n, we use [n] to denote the set {1, 2, . . . , n}.

• We use boldface letters such as x[n] to denote a set {x1, . . . , xn}. We drop the subscript when-
ever the number of elements is clear or irrelevant in the context.

• We use C(n, d, s) to denote the class of n-variate polynomials of formal degree at most d that
are computable by algebraic circuits of size at most s. This class may also include polynomi-
als that actually depend on fewer variables but are masquerading to be n-variate polynomi-
als.

• For a polynomial f (x1, . . . , xn), we shall say its individual degree is at most k to mean that the
exponent of any of the xi’s in any monomial is at most k.

2.2 Some basic definitions and lemmas

Definition 2.1 (Nisan-Wigderson designs [NW94]). A family of sets S1, . . . , Sm ⊆ [`] is said to be an
(`, k, r)-design if

• |Si| = k,

•
∣∣Si ∩ Sj

∣∣ < r for any i 6= j. ♦

The following is a standard construction of such designs based on the Reed-Solomon code.

Lemma 2.2 (Construction of NW designs). There is an algorithm that, given parameters `, k, r satisfying
` = k2 and r ≤ k with k being a power of 2, outputs an (`, k, r)-design {S1, . . . , Sm} for m ≤ kr in time
poly(m).

Proof. Since k is a power of 2, we can identify [k] with the field Fk of k-elements and [`] with
Fk ×Fk. For each univariate polynomial p(x) ∈ Fk[x] of degree less than r, define the set Sp as

Sp = {(i, p(i)) : i ∈ Fk} .
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Since there are kr such polynomials we get kr subsets of Fk × Fk of size k each. Furthermore,
since any two distinct univariate polynomials cannot agree at r or more places, it follows that∣∣Sp ∩ Sq

∣∣ < r for p 6= q.

Hardness-randomness connection

For a fixed (`, k, r)-design S1, . . . , Sm and a polynomial Q(z1, . . . , zk) ∈ F[x] we shall use the nota-
tion QJ`, k, rKNW to denote the vector of polynomials

QJ`, k, rKNW := (Q(y |S1), Q(y |S2), . . . , Q(y |Sm)) ∈ (F[y1, . . . , y`])
m .

Lemma 2.3 (Generators from hard polynomials [KI04]). Let S1, . . . , Sm be an (`, k, r)-design and let
Q(z1, . . . , zk) be a k-variate polynomial of individual degree bounded by d. Suppose there is a size s circuit
computing a nonzero polynomial P(x1, . . . , xm) of degree at most D such that P(QJ`, k, rKNW) ≡ 0. Then,
there is a circuit of size at most (s + m(d + 1)r)e (for a universal constant e) computing Q(z1, . . . , zk).

Remark. The exponent e in the above theorem, in the setting when D ≤ s, is at most 5 using the bound on
the complexity of factors due to Bürgisser [Bür00, Theorem 2.21]. ♦

Conversely, if Q(z[k]) was hard enough, then P(QJ`, k, rKNW) is nonzero `-variate polynomial when-
ever P(x[m]) is nonzero.

Lemma 2.4 (Hitting sets to hardness [HS80, Agr05]). Let H be an explicit hitting set for C(n, d, s), the
class of n-variate of formal degree at most d polynomials computable by size s algebraic circuits. Then, for
any k ≤ n such that k|H|1/k ≤ d, there is a polynomial Q(z1, . . . , zk) of degree at most k|H|1/k that is
computable in time poly(|H|) such that it cannot be computed by algebraic circuits of size s. Moreover
Q(x) has an algebraic circuit of size O(|H|).

Proof. This is achieved by finding a nonzero k-variate polynomial, for k ≤ n, of individual degree
smaller than |H|1/k that vanishes on the hitting set H for C(n, d, s). The degree of Qk is at most
k · |H|1/k ≤ d from the hypothesis. Such a Qk can be found by solving a system of linear equations
in time poly(|H|). By the definition of the hitting set, we must have that Qk(z1, . . . , zk) cannot be an
element of C(n, d, s) and therefore Qk cannot be computed by algebraic circuits of size s. However,
note that Qk is a sum of at most |H| monomials over k variables and thus has an algebraic circuit
of size at most k + 1 + |H|.

3 Bootstrapping Hitting Sets

In this section, we give a simple proof of the main result of Agrawal et al. [AGS18] along the
same lines as the original proof albeit with different parameters. This proof, besides being a more
transparent exposition, would also ensure that any constraints while setting various parameters
are made clear.
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Theorem 3.1. (A weaker version of [AGS18, Theorem 3]) Let n0 be a large enough4 constant that is
a power of 2, and let s be a growing parameter. Suppose g : N → N is a non-decreasing function with
30 · g(n0) < n1/4

0 such that, for all large enough values of s, there is an explicit hitting set of size sg(n0) for
C(n0, s, s).

Then there is an explicit hitting set for C(s, s, s) of size sexp ◦ exp(O(log∗ s)).

The following lemma describes the main inductive statement using which Theorem 3.1 follows
readily.

Lemma 3.2. Let n0 be a large enough4 power of 2, and let s be a growing parameter. Suppose g : N→ N

is a non-decreasing function with 30 · g(n0) < n1/4
0 such that, for all large enough s, there is an explicit

hitting set of size sg(n0) for degree-s size-s circuits over n0 variables.
Then for n1 = 2n1/4

0 > n0 and h : N → N given by h(n) = 30 · (g((log n)4))2, there is an
explicit hitting set of size sh(n1) for degree-s size-s circuits on n1 variables. Furthermore, h(n1) also satisfies
30 · h(n1) < n1/4

1 .

We will defer the proof of this lemma and finish the proof of Theorem 3.1.

Proof of Theorem 3.1. The hypothesis and conclusion of Lemma 3.2 admit repeated applications
of the lemma to get hitting sets for polynomials depending on larger sets of variables. The natural
strategy is therefore to apply the lemma repeatedly to obtain a hitting set for the class C(s, s, s).
We now set up some basic notation to facilitate this analysis.

We start with an explicit hitting set of size sg(n0) for C(n0, s, s) circuits and say after i applica-
tions of Lemma 3.2 we have an explicit hitting set for the class C(ni, s, s) of size sti . We wish to
track the evolution of ni and ti. Recall that ni = 2n1/4

i−1 after one iteration of Lemma 3.2. Let {mi}i

be such that m0 = log n0 and, for every i > 0, let mi = 2(mi−1/4) so that mi = log ni. Similarly to
keep track of the complexity of the hitting set, if sti is the size of the hitting set for C(ni, s, s), then
by Lemma 3.2 we have t0 = g(n0) and ti = 30 · t2

i−1 for all i ≥ 1.
The following facts are easy to verify.

• mi ≥ log s for i = O(log∗ s),

• for all j, we have tj = 30(2
j−1) · t2j

0 = exp ◦ exp(O(j)).

• the exponent of s in the complexity of the final hitting set is tO(log∗ s) = exp ◦ exp(O(log∗ s)).

Therefore we have an sexp ◦ exp(O(log∗ s)) sized explicit hitting set for C(s, s, s).

Proof of Lemma 3.2. We would need to fix some parameters: k = n1/2
0 , ` = n0 and r = n1/4

0 .

Constructing a hard polynomial: The first step is to construct a polynomial Qk(z1, . . . , zk) that
cannot be computed by n0-variate size s15 circuits. This can be done by using Lemma 2.4.
The polynomial Qk(z) will therefore have the following properties.

4This is to ensure that 2n1/4
> n for all n > n0 and this is true for any n0 > 216.
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• Individual degree ≤ s15g(n0)/k ≤ s, and degree ≤ s15g(n0)/k · s ≤ s2.

• Qk is not computable by circuits of size s15.

• Qk has an algebraic circuit of size ≤ 2s15g(n0).

Building the NW design: Using Lemma 2.2 5, construct an (`, k, r)-design {S1, . . . , Sn1} for 2r =

n1, which is bigger than n0 since n0 is large enough4.

Variable reduction using Qk: Let 0 6≡ P(x1, . . . , xm) ∈ C(m, s, s). Suppose P(QJ`, k, rKNW) ≡ 0,
then Lemma 2.3 forces Qk to have an algebraic circuit of size bounded by(

s + n1 · 2s15g(n0)r/k
)e
≤ (s + s2)5 ≤ s15,

which we know is false by our construction of Qk. Therefore, P(QJ`, k, rKNW) is a nonzero
polynomial.

Since P has a circuit of size s and Qk has a circuit of size s15g(n0), it follows that the polynomial
P(QkJ`, k, rKNW) has a circuit of size at most s + k · 2s15g(n0) ≤ s30g(n0) =: s′. Furthermore, the
degree of the polynomial P(QkJ`, k, rKNW) is at most s · k · s15g(n0)/k ≤ s30g(n0).

Hitting set for C(n1, s, s): From the above discussion, the polynomial P(x) ≡ 0 if and only if P′ =
P(QkJ`, k, rKNW) ≡ 0. We also know that P′ ∈ C(`, s′, s′) where s′ = s30g(n0). Therefore,
by composing the hitting set for C(`, s′, s′) with QkJ`, k, rKNW, we obtain a hitting set for
C(n1, s, s). The size of the hitting set is

(s′)g(n0) = s30(g(n0))
2 ≤ s30g((log n1)

4)2
= sh(n1).

Re-establishing the invariant:

30h(n1) = (30g((log n1)
4))2 = (30g(n0))

2 < n1/2
0 = (log n1)

2 < 30n1/4
1 ,

where the last inequality uses the fact that (log n)2 < 30n1/4 for all n ≥ 1.

It is clear that the entire construction is in polynomial time in the size of the hitting set of the
conclusion and the running time of the hitting set construction in the hypothesis.

3.1 Near-optimal bootstrapping

To finish the proof of the main theorem (Theorem 1.1), we show how we can go from the hypothe-
sis of Theorem 1.1 to the hypothesis of Theorem 3.1. This is again along the same lines as the proof
of Lemma 3.2 but with a different choice of parameters.

5The lemma can provide more sets but this weaker version is chosen to just make some calculations easier.
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Lemma 3.3. Let f : N → N be a growing function and let HUGE : N → N be an arbitrary function.
Suppose there is an explicit hitting set of size

(
sn/ f (n)

)
HUGE(n) for all degree-s size-s circuits over n

variables.
Then there exists a constant m0 that is a power of 2 and large enough4, and a non-decreasing function

h : N → N satisfying 30 · h(m0) < m1/4
0 such that for all large enough values of s, there is an explicit

hitting set of size sh(m0) for degree-s size-s circuits over m0 variables.

Again, we will defer the proof of this lemma as Theorem 1.1 follows readily from this lemma.

Proof of Theorem 1.1. As a consequence of Lemma 3.3, we have that for large enough m0 and
h : N→N satisfying 30h(m0) < m1/4

0 (given by Lemma 3.3), there is an explicit hitting set of size
sh(m0) for C(m0, s, s) for all large enough values of s.

Since this conclusion satisfies the hypothesis of Theorem 3.1 we can infer that there is an ex-
plicit hitting set for C(s, s, s) of size sexp ◦ exp(O(log∗ s)).

Proof of Lemma 3.3. The strategy is exactly along the lines of Lemma 3.2 but we would have to
work with slightly different parameters. Let n be the smallest integer satisfying the following
constraints:

• n is at least 7 and is a power of 2,

•
√

f (n) > 30.

Fix n0 := n2. Note that for every s ≥ maxm≤n0(HUGE(m)) and every m ≤ n0, we have an explicit
hitting set of size at most s2m/ f (m) for the class C(m, s, s).

Fix the parameters ` := n0, k :=
√

n0 = n and r :=
√

f (n).

Constructing a suitably hard polynomial: We will construct a polynomial Qn(z1, . . . , zn) that is
not computable by algebraic circuits of size s15. We will again invoke Lemma 2.4 to do this.
The polynomial Qn(z) has the following properties.

• Individual degree ≤ s30/ f (n) ≤ s, and degree ≤ s30/ f (n) · s ≤ s2.

• Qn is not computable by circuits of size s15.

• Qn has an algebraic circuit of size ≤ 2s30n/ f (n).

Building the NW design: We will use Lemma 2.2 to construct an (`, n, r) design {S1, . . . , Sm0}
with m0 := nr = n

√
f (n).

Variable reduction: Let P(x1, . . . , xm0) be a nonzero circuit from C(m0, s, s). Like in Lemma 3.2,
since (

s + m0 · 2s30
√

f (n)/ f (n)
)5
≤ (s + s2)5 ≤ s15,
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and Qn is hard for circuits of size s15 by construction, we have that P(QJ`, n, rKNW) must be
nonzero.

Note that P has a circuit of size s and Qn is trivially computable by a circuit of size 2s30n/ f (n).
Therefore P(QJ`, n, rKNW) has a circuit of size s + m0 · 2s30n/ f (n) ≤ s60n/ f (n) = s′ (say). Also
the degree of the polynomial computed by P(QJ`, n, rKNW) is at most s · ns30/ f (n) ≤ s3 ≤
s60n/ f (n).

Hitting set for C(m0, s, s): Starting with a nonzero circuit from C(m0, s, s), we have now obtained
a nonzero circuit in the class C(n0, s′, s′). We now apply the hypothesis to the circuit on n0

variables thereby obtaining an explicit hitting set for C(m0, s, s) of size

(
s′
)2n0/ f (n0) ≤

(
s60n/ f (n)

)2n0/ f (n0)
= s120n·n0/( f (n)· f (n0)) ≤ s120n3

.

Bounding h(m0): Define h(m0) := 120n3, for our choice of m0 = n
√

f (n). Therefore 30h(m0) =

30 · 120n3 = 3600n3 and m1/4
0 = n

1
4

√
f (n). Since n was chosen so that n > 7 and

√
f (n) > 30,

we have m1/4
0 > n30/4 and m0 > 216. For such a choice of n we also have 3600n3 < n15/2 and

hence m0 is large enough and 30 · h(m0) < m1/4
0 as required.

It is easy to verify that the entire construction runs in time that is polynomial in (1) the time
required for the construction of the hitting set from the hypothesis and (2) the size of the hitting
set in the conclusion (sh(m)).

4 Conclusions

The main results show that it suffices to construct hitting sets of size so(n), that are barely better
than the trivial hitting set of sn, to obtain an almost complete derandomisation. A natural ques-
tion in the spirit of the results in this paper, and those in Agrawal et al. [AGS18] seems to be the
following : Can we hope to bootstrap lower bounds? In particular, can we hope to start from a
mildly non-trivial lower bound for general arithmetic circuits (e.g. superlinear or just superpoly-
nomial), and hope to amplify it to get a stronger lower bound (superpolynomial or truly exponen-
tial respectively). In the context of non-commutative algebraic circuits, Carmosino et al. [CILM18]
recently showed such results, but no such result appears to be known for commutative algebraic
circuits.

Acknowledgements: Ramprasad and Anamay would like to thank the organisers of the Work-
shop on Algebraic Complexity Theory (WACT 2018) where we first started addressing this prob-
lem.

11



References

[Agr05] Manindra Agrawal. Proving Lower Bounds Via Pseudo-random Generators. In Pro-
ceedings of the 25th International Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS 2005), volume 3821 of Lecture Notes in Computer Science,
pages 92–105. Springer, 2005.

[AGS18] Manindra Agrawal, Sumanta Ghosh, and Nitin Saxena. Bootstrapping variables in
algebraic circuits. In Proceedings of the 50th Annual ACM Symposium on Theory of Com-
puting (STOC 2018), pages 1166–1179. ACM, 2018. eccc:TR18-035.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathe-
matics, 160(2):781–793, 2004.

[BS83] Walter Baur and Volker Strassen. The Complexity of Partial Derivatives. Theoretical
Computer Science, 22:317–330, 1983.

[Bür00] Peter Bürgisser. Completeness and Reduction in Algebraic Complexity Theory, volume 7 of
Algorithms and Computation in Mathematics. Springer, 2000.

[CILM18] Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan Mihajlin. Hard-
ness Amplification for Non-Commutative Arithmetic Circuits. In Proceedings of the 33rd
Annual Computational Complexity Conference (CCC 2018), volume 102 of LIPIcs, pages
12:1–12:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. eccc:TR18-095.

[DL78] Richard A. DeMillo and Richard J. Lipton. A Probabilistic Remark on Algebraic Pro-
gram Testing. Information Processing Letters, 7(4):193–195, 1978.

[FGT16] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is
in quasi-NC. In Proceedings of the 48th Annual ACM Symposium on Theory of Computing
(STOC 2016), pages 754–763. ACM, 2016. eccc:TR15-177.

[For14] Michael Forbes. Polynomial Identity Testing of Read-Once Oblivious Algebraic Branching
Programs. PhD thesis, Massachusetts Institute of Technology, 2014.

[Gro] Joshua Grochow. http://cstheory.stackexchange.com/questions/19261/

degree-restriction-for-polynomials-in-mathsfvp/19268#19268.

[HS80] Joos Heintz and Claus-Peter Schnorr. Testing Polynomials which Are Easy to Compute
(Extended Abstract). In Proceedings of the 12th Annual ACM Symposium on Theory of
Computing (STOC 1980), pages 262–272. ACM, 1980.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing Polynomial Identity
Tests Means Proving Circuit Lower Bounds. Computational Complexity, 13(1-2):1–46,
2004. Preliminary version in the 35th Annual ACM Symposium on Theory of Computing
(STOC 2003).

12

http://dx.doi.org/10.1007/11590156_6
http://dx.doi.org/10.1145/3188745.3188762
http://dx.doi.org/10.1145/3188745.3188762
http://eccc.hpi-web.de/report/2018/035/
http://dx.doi.org/10.1016/0304-3975(83)90110-X
http://dx.doi.org/10.1007/978-3-662-04179-6
http://dx.doi.org/10.4230/LIPIcs.CCC.2018.12
http://dx.doi.org/10.4230/LIPIcs.CCC.2018.12
http://eccc.hpi-web.de/report/2018/095/
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1145/2897518.2897564
http://dx.doi.org/10.1145/2897518.2897564
http://eccc.hpi-web.de/report/2015/177/
http://hdl.handle.net/1721.1/89843
http://hdl.handle.net/1721.1/89843
http://cstheory.stackexchange.com/questions/19261/degree-restriction-for-polynomials-in-mathsfvp/19268#19268
http://cstheory.stackexchange.com/questions/19261/degree-restriction-for-polynomials-in-mathsfvp/19268#19268
http://dx.doi.org/10.1145/800141.804674
http://dx.doi.org/10.1145/800141.804674
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1007/s00037-004-0182-6


[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic Meth-
ods for Interactive Proof Systems. In Proceedings of the 31st Annual IEEE Symposium on
Foundations of Computer Science (FOCS 1990), pages 2–10, 1990.

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as
matrix inversion. Combinatorica, 7(1):105–113, 1987. Preliminary version in the 19th
Annual ACM Symposium on Theory of Computing (STOC 1987).

[NW94] Noam Nisan and Avi Wigderson. Hardness vs Randomness. Journal of Computer and
System Sciences, 49(2):149–167, 1994. Available on citeseer:10.1.1.83.8416.

[Ore22] Øystein Ore. Über höhere Kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15, 1922.

[Sap15] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity.
Github survey, 2015.

[Sch80] Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identi-
ties. Journal of the ACM, 27(4):701–717, 1980.

[Sha90] Adi Shamir. IP=PSPACE. In Proceedings of the 31st Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS 1990), pages 11–15, 1990.

[ST17] Ola Svensson and Jakub Tarnawski. The Matching Problem in General Graphs Is in
Quasi-NC. In Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2017), pages 696–707. IEEE Computer Society, 2017. arXiv:1704.01929.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent results
and open questions. Foundations and Trends in Theoretical Computer Science, 5:207–388,
March 2010.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Alge-
braic Computation, EUROSAM ’79, An International Symposiumon Symbolic and Algebraic
Computation, volume 72 of Lecture Notes in Computer Science, pages 216–226. Springer,
1979.

13
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il

http://dx.doi.org/10.1007/BF02579206
http://dx.doi.org/10.1007/BF02579206
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.8416
https://github.com/dasarpmar/lowerbounds-survey/releases/
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1109/FOCS.2017.70
http://dx.doi.org/10.1109/FOCS.2017.70
http://arxiv.org/abs/1704.01929
http://dx.doi.org/http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1007/3-540-09519-5_73

