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Abstract

The polynomial identity lemma (also called the “Schwartz-Zippel lemma”) states that any
nonzero polynomial f (x1, . . . , xn) of degree at most s will evaluate to a nonzero value at some
point on a grid Sn ⊆ Fn with |S| > s. Thus, there is an explicit hitting set for all n-variate degree
s, size s algebraic circuits of size (s + 1)n.

In this paper, we prove the following results:

• Let ε > 0 be a constant. For a sufficiently large constant n and all s > n, if we have an
explicit hitting set of size (s + 1)n−ε for the class of n-variate degree s polynomials that
are computable by algebraic circuits of size s, then for all s, we have an explicit hitting set
of size sexp(exp(O(log∗ s))) for s-variate circuits of degree s and size s.

That is, if we can obtain a barely non-trivial exponent (a factor-sO(1) improvement) com-
pared to the trivial (s + 1)n sized hitting set even for constant variate circuits, we can get
an almost complete derandomization of PIT.

• The above result holds when “circuits” are replaced by “formulas” or “algebraic branch-
ing programs”.

This extends a recent surprising result of Agrawal, Ghosh and Saxena (STOC 2018, PNAS
2019) who proved the same conclusion for the class of algebraic circuits, if the hypothesis pro-
vided a hitting set of size at most

(
sn0.5−δ

)
(where δ > 0 is any constant). Hence, our work

significantly weakens the hypothesis of Agrawal, Ghosh and Saxena to only require a slightly
non-trivial saving over the trivial hitting set, and also presents the first such result for algebraic
formulas.
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1 Introduction

Multivariate polynomials are the primary protagonists in the field of algebraic complexity and
algebraic circuits form a natural robust model of computation for multivariate polynomials. For
completeness, we now define algebraic circuits : an algebraic circuit is a directed acyclic graph
with internal gates labeled by + (addition) and × (multiplication), and with leaves labeled by
either variables or field constants; computation flows in the natural way.

In the field of algebraic complexity, much of the focus has been restricted to studying n-variate
polynomials whose degree is bounded by a polynomial function in n, and such polynomials are
called low-degree polynomials. This restriction has several a priori and a posteriori motivations, and
excellent discussions of this can be seen in the thesis of Forbes [For14, Section 3.2] and Grochow’s
answer [Gro13] on cstheory.SE. The central question in algebraic complexity is to find a family
of low-degree polynomials that requires large algebraic circuits to compute it. Despite having
made substantial progress in various subclasses of algebraic circuits (cf. surveys [SY10, Sap15]),
the current best lower bound for general algebraic circuits is merely an Ω(n log d) lower bound of
Baur and Strassen [BS83].

An interesting approach towards proving lower bounds for algebraic circuits is via showing
good upper bounds for the algorithmic task of polynomial identity testing. Our results in this paper
deal with this problem, and we elaborate on this now.

1.1 Polynomial Identity Testing

Polynomial identity testing (PIT1) is the algorithmic task of checking if a given algebraic circuit C
of size s computes the identically zero polynomial. As discussed earlier, although a circuit of size
s can compute a polynomial of degree 2s, this question typically deals only with circuits whose
formal degree2 is bounded by the size of the circuit.

PIT is an important algorithmic question of its own right, and many classical results such as
the primality testing algorithm [AKS04], IP = PSPACE [LFKN90, Sha90], algorithms for graph
matching [MVV87, FGT16, ST17] all have a polynomial identity test at its core.

This algorithmic question has two flavors: whitebox PIT and blackbox PIT. Whitebox polyno-
mial identity tests consist of algorithms that can inspect the circuit (that is, look at the underlying
gate connections etc.) to decide whether the circuit computes the zero polynomial or not. A
stronger algorithm is a blackbox polynomial identity test where the algorithm is only provided basic
parameters of the circuit (such as its size, the number of variables, a bound on the formal degree)
and only has evaluation access to the circuit C. Hence, a blackbox polynomial identity test for a
class C of circuits is essentially just a list of evaluation points H ⊆ Fn such that every nonzero
circuit C ∈ C is guaranteed to have some a ∈ H such that C(a) ̸= 0. Such sets of points are also

1We use the abbreviation PIT for both the noun ‘polynomial identity test’ and gerund/adjective ‘polynomial identity
testing’. The case would be clear from context.

2This is defined inductively by setting the formal degree of leaves as 1, and taking the sum at every multiplication
gate and the max at every sum gate.
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called hitting sets for C. Therefore, the running time of a blackbox PIT algorithm is given by the
size of the hitting set, the time taken to generate it given the parameters of the circuit, and the time
taken to evaluate the circuit on these points. We shall say that a hitting set H is explicit if there is
an algorithm that, given the parameters n, d, s, outputs the set H in time that is polynomial in the
bit complexity3 of H.

The classical Polynomial Identity Lemma4 [Ore22, DL78, Zip79, Sch80] states that any nonzero
polynomial f (x1, . . . , xn) of degree at most d will evaluate to a nonzero value at a randomly cho-
sen point from a grid Sn ⊆ Fn with probability at least 1 − d

|S| . Therefore, this automatically
yields a randomized polynomial time blackbox PIT algorithm, and also an explicit hitting set of
size (d + 1)n, for the class of n-variate formal-degree d polynomials. Furthermore, a simple count-
ing/dimension argument also says that there exist (non-explicit) poly(s) sized hitting sets for the
class of polynomials computed by size s algebraic circuits. The major open question is to find a
better deterministic algorithm for this problem, and the task of constructing deterministic PIT al-
gorithms is intimately connected with the question of proving explicit lower bounds for algebraic
circuits.

Heintz and Schnorr [HS80], and Agrawal [Agr05] observed that given an explicit hitting set
for size s circuits, any nonzero polynomial that is designed to vanish on every point of the hitting
set cannot be computable by size s circuits. By tailoring the number of variables and degree of
the polynomial in this observation, they showed that polynomial time blackbox PITs yield an E-
computable family { fn} of n-variate multilinear polynomials that require 2Ω(n) sized circuits. This
connection between PIT and lower bounds was strengthened further by Kabanets and Impagli-
azzo [KI04] who showed that explicit families of hard functions can be used to give non-trivial
derandomizations for PIT. Thus, the question of proving explicit lower bounds and the task of
finding upper bounds for PIT are essentially two sides of the same coin.

1.2 Bootstrapping

A recent result of Agrawal, Ghosh and Saxena [AGS19] showed, among other things, the following
surprising result: blackbox PIT algorithms for size s and n-variate circuits with running time as
bad as

(
sn0.5−δ

)
, where δ > 0 is a constant, can be used to construct blackbox PIT algorithms for

size s circuits with running time sexp(exp(O(log∗ s))). Note that log∗ n refers to the smallest i such that
the i-th iterated logarithm log◦i(n) is at most 1. This shows that good-enough derandomizations
of PIT would be sufficient to get a nearly complete derandomization. Their proof uses a novel
bootstrapping technique where they use the connection between hardness and derandomization
repeatedly so that by starting with a weak hitting set we can obtain better and better hitting sets.

One of the open questions of Agrawal, Ghosh and Saxena [AGS19] was whether the hypothesis
can be strengthened to a barely non-trivial derandomization. That is, suppose we have a blackbox

3Throughout the paper, we will only talk about the sizes of the hitting sets as the bit complexities will essentially
follow the same asymptotic behavior as those of the sizes. We provide more details about this analysis in Section 4.1.

4A more elaborate discussion on the history of this result can be found here. [BCPS18]
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PIT algorithm, for the class of size s and n-variate circuits, that runs in time so(n), can we use this
to get a nearly complete derandomization? Note that we have a trivial (s + 1)n · poly(s) algorithm
from the polynomial identity lemma [Ore22, DL78, Zip79, Sch80]. Our main result is an affirmative
answer to this question in a very strong sense. Furthermore, our result holds for typical subclasses
that are reasonably well-behaved under composition. Formally, we prove the following theorem.

Theorem 1.1 (Bootstrapping PIT for algebraic formulas, branching programs and circuits). Let
ε > 0 and n ≥ 2 be constants. Suppose that, for all large enough s, there is an explicit hitting set of size
sn−ε for all degree s, size s algebraic formulas (algebraic branching programs or circuits respectively) over
n variables. Then, there is an explicit hitting set of size sexp(exp(O(log∗ s))) for the class of degree s, size s
algebraic formulas (algebraic branching programs or circuits respectively) over s variables.

Remark 1.2. While the hypothesis of Theorem 1.1 above assumes that n is a constant, qualitatively similar
results continue to hold even when n is slowly growing with s. For simplicity of notation, we work with
constant n throughout the paper and discuss the extension to growing n in more detail in Section 4.2. ♢

Note that (s + 1)n−ε = sn−ε ·
(
1 + 1

s

)n−ε
< e · sn−ε < sn−ε′ for some other constant ε′ > 0 since s

is large enough. Hence, for this theorem, there is no qualitative difference if the hitting set had size
(s + 1)n−ε instead of sn−ε. We also note that as far as we understand, such a statement for classes
such as algebraic formulas, even with the stronger hypothesis of there being an sO(n(1/2)−ε), did not
follow from the results in [AGS19]. We elaborate more on this, and the differences between our
proof and theirs in the next subsection.

An interesting, albeit simple corollary of the above result is the following statement.

Corollary 1.3 (From slightly non-trivial PIT to lower bounds). Let ε > 0 and k ≥ 2 be constants.
Suppose that, for all large enough s, there is an explicit hitting set of size

(
sk−ε

)
for all degree s, size s

algebraic formulas (algebraic branching programs or circuits respectively) over k variables. Then, for every
function d : N → N, there is a polynomial family { fn}, where fn is n variate and degree d(n), and
for every large enough n, fn cannot be computed by algebraic formulas (algebraic branching programs or

circuits respectively) of size smaller than (n+d
d )

1
exp(exp(O(log∗ nd))) . Moreover, there is an algorithm which when

given as input an n variate monomial of degree d, outputs its coefficient in fn in deterministic time (n+d
d ).

Thus, a slightly non-trivial blackbox PIT algorithm leads to hard families with near optimal
hardness (as any n-variate polynomial of total degree d trivially has a circuit of size (n+d

d )). In a
recent result concerning non-commutative algebraic circuits, Carmosino, Impagliazzo, Lovett and
Mihajlin [CILM18] showed that given an explicit polynomial family of constant degree which
requires super linear sized non-commutative circuits, one can obtain explicit polynomial families
of exponential hardness. Besides the obvious differences in the statements, one important point to
note is that the notions of explicitness in the conclusions of the two statements are different from
each other. In [CILM18], the final exponentially hard polynomial family is in VNP provided the
initial polynomial family is also in VNP. On the other hand, for our result, we can say that the
hard polynomial family obtained in the conclusion is explicit in the sense that its coefficients are
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computable in deterministic time (n+d
d ). Another difference between Corollary 1.3 and the main

result of [CILM18] is in the hypothesis. From a non-trivial hitting set, we can obtain a large class
of lower bounds by varying parameters appropriately (see Theorem 1.4), however the main result
of [CILM18] starts with a lower bound for a single family. In that regard, our hypothesis appears
to be much stronger and slightly non-standard. We discuss this issue in some detail at the end of
the next section.

In another relevant result, Jansen and Santhanam [JS12] showed that marginal improvements
to known hitting set constructions imply lower bounds for the permanent polynomial. In par-
ticular, they show that a “sufficiently succinct” hitting set of size d, for univariates of degree d
that have constant-free algebraic circuits of small size, would imply that the permanent polyno-
mial requires superpolynomial sized constant-free algebraic circuits. Note that even though their
hypothesis needs a much weaker improvement in the size of the hitting set when compared to
ours, the hitting set is additionally required to be “succinct”5, which makes it difficult to compare
the two hypotheses.

1.3 Proof overview

The basic intuition for the proofs in this paper, and as per our understanding also for the proofs of
the results in the work of Agrawal, Ghosh and Saxena [AGS19], comes from the results of Kabanets
and Impagliazzo [KI04], and those of Heintz and Schnorr [HS80] and Agrawal [Agr05]. We start
by informally stating these results.

Theorem 1.4 (Informal, Heintz and Schnorr [HS80], Agrawal [Agr05]). Let H(n, d, s) be an explicit
hitting set for circuits of size s, degree d in n variables. Then, for every k ≤ n and d′ such that d′k ≤ d
and (d′ + 1)k > |H(n, d, s)|, there is a nonzero polynomial on k variables and individual degree d′ that
vanishes on the hitting set H(n, d, s), and hence cannot be computed by a circuit of size s.

In a nutshell, given an explicit hitting set, we can obtain hard polynomials. In fact, playing
around with the parameters d′ and k ≤ n, we can get a hard polynomial on k variables, degree kd′

for all k, d′ satisfying d′k < d and (d′ + 1)k > |H(n, d, s)|.
We now state a result of Kabanets and Impagliazzo [KI04] that shows that hardness can lead

to derandomization.

Theorem 1.5 (Informal, Kabanets and Impagliazzo [KI04]). A superpolynomial lower bound for al-
gebraic circuits for an explicit family of polynomials implies a deterministic blackbox PIT algorithm for all
algebraic circuits in n variables and degree d of size poly(n) that runs in time dO(nε) for every ε > 0.

Now, we move on to the main ideas in our proof. Suppose we have non-trivial hitting sets for
size s, degree d ≤ s circuits on n variables. The goal is to obtain a blackbox PIT for circuits of size
s, degree s on s variables with a much better dependence on the number of variables.

5They require their hitting sets to be encoded by uniform TC0 circuits of appropriately small size. See [JS12] for
details.
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Observe that if the number of variables was much, much smaller than s, say at most a constant,
then the hitting set in the hypothesis has a polynomial dependence on s, and we are done. We will
proceed by presenting variable reductions to eventually reach this stage. With this in mind, the
hitting sets for s variate circuits in the conclusion of Theorem 1.1 are designed iteratively starting
from hitting sets for circuits with very few variables. In each iteration, we start with a hitting set
for size s, degree d ≤ s circuits on n variables with some dependence on n and obtain a hitting
set for size s, degree d ≤ s circuits on m = 2nδ

variables (for some δ > 0), that has a much better
dependence on m. Then, we repeat this process till the number of variables increases up to s,
which takes O(log∗ s) iterations. We now briefly outline the steps in each such iteration.

• Obtaining a family of hard polynomials : The first step is to obtain a family of explicit hard
polynomials from the given hitting sets. This step is done via Theorem 1.4, which simply
uses interpolation to find a nonzero polynomial Q on k variables and degree d that vanishes
on the hitting set for size s′, degree d′ circuits on n variables, for some s′, d′ to be chosen
appropriately.

• Variable reduction using Q : Next we take a combinatorial design (see Definition 2.6)
{S1, S2, . . . , Sm}, where each Si is a subset of size k of a universe of size ℓ = poly(k), and∣∣Si ∩ Sj

∣∣ ≪ k. Consider the map Γ : F[x1, x2, . . . , xm] → F[y1, y2, . . . , yℓ] given by the substi-
tution Γ(C(x1, x2, . . . , xm)) = C (Q(y |S1), Q(y |S2), . . . , Q(y |Sm)). As Kabanets and Impagli-
azzo show in the proof of Theorem 1.5, Γ preserves the nonzeroness of all algebraic circuits
of size s on m variables, provided Q is hard enough.

We remark that our final argument for this part is slightly simpler than that of Kabanets and
Impagliazzo, and hence our results also hold for algebraic formulas. In particular, we do not
need Kaltofen’s seminal result that algebraic circuits are closed under polynomial factoriza-
tion, whereas the proof of Kabanets and Impagliazzo crucially uses Kaltofen’s result [Kal89].
This comes from the simple, yet effective, observation that if Q vanishes on some hitting set,
then so does any multiple of Q. This allows us to use the hardness of low-degree multiples of
Q, and so, we do not need any complexity guarantees on factors of polynomials.

It is worth mentioning that the result of Kabanets and Impagliazzo [KI04] is the algebraic
analogue of the famous result of Nisan and Wigderson [NW94] from the boolean world.
However, the algebraic setting allows us to construct polynomials with hardness that is
super-exponential in the number of variables. This is a key reason for bootstrapping to work,
and we shall elaborate a bit more on this later in this section.

• Blackbox PIT for m-variate circuits of size s and degree s : We now take the hitting set
given by the hypothesis for the circuit Γ(C) (invoked with appropriate size and degree pa-
rameters) and evaluate Γ(C) on this set. From the discussion so far, we know that if C is
nonzero, then Γ(C) cannot be identically zero, and hence it must evaluate to a nonzero value
at some point on this set. The number of variables in Γ(C) is at most ℓ = poly log m, whereas
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its size turns out to be not too much larger than s. Hence, the size of the hitting set for C ob-
tained via this argument turns out to have a better dependence on the number of variables
m than the hitting set in the hypothesis.

To prove Corollary 1.3, we let t(n) = exp(exp(O(log∗ n))). Now, we invoke the conclusion

of Theorem 1.1 with s = (n+d
d )

1
10t(n) . Thus, we get an explicit hitting set H of size (n+d

d )
1
10 for n

variate circuits of size s and degree d. We now use Theorem 1.4 to get a nonzero polynomial of
degree d and n which vanishes on the set H and hence cannot be computed by circuits of size at
most s. We skip the rest of the details.

Why does bootstrapping work? As far as we understand, the primary reason that makes such
bootstrapping results feasible is the following observation from the results of Heintz and Schnorr,
and Agrawal [HS80, Agr05]: Given a single hitting set, we can obtain a family of lower bounds by
varying the degree and the number of variables in the interpolating polynomial. It turns out that
in the result of Kabanets and Impagliazzo [KI04] that converts a hard polynomial P into a hitting
set, the proof of this conversion has different sensitivities to the degree of P and the number of
variables it depends on. The combination of both these facts allows us to start with a moderately
non-trivial hitting set, obtaining a hard polynomial from it of the right degree and number of vari-
ables, and use that to obtain a hitting set which is significantly better than what we started with.
In particular, by choosing a degree that is polynomial in the hitting set size, say |H|0.1, we can ob-
tain a constant-variate polynomial that vanishes on H, for any H. This is impossible in the boolean
world where the best hardness one could hope for is exponential in the number of variables. This,
in our opinion, is a high level picture of why bootstrapping works in the algebraic world.

Similarities and differences with the proof of Agrawal, Ghosh and Saxena [AGS19]. The high
level outline of our proof is essentially the same as that in [AGS19]. However, there are some dif-
ferences that make our final arguments shorter, simpler and more robust than those of Agrawal,
Ghosh and Saxena thus leading to a stronger and near optimal bootstrapping statement in Theo-
rem 1.1. Moreover, as we already alluded to, our proof extends to formulas and algebraic branch-
ing programs as well, whereas, to the best of our understanding, the proofs in [AGS19] do not. We
now elaborate on the differences.

One of the main differences between the proofs in this paper and those in [AGS19] is in the
use of the result of Kabanets and Impagliazzo [KI04]. Agrawal, Ghosh and Saxena use this result
as a blackbox to get deterministic PIT using hard polynomials. The result of Kabanets and Im-
pagliazzo [KI04] requires a result of Kaltofen, which shows that low degree algebraic circuits are
closed under polynomial factorization. That is, if a degree d, n variate polynomial P has a circuit
of size at most s, then any factor of P has a circuit of size at most (snd)e for a constant e. Such a
closure result is not known to be true for formulas6, and hence the results in [AGS19] do not seem

6Even for algebraic branching programs such a result was shown only recently (after our work) by Sinhababu and
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to extend to these settings. Also, the removal of any dependence on the “factorization exponent”
e is a key ingredient in our proof as it allows us to start with a hypothesis of a barely non-trivial
hitting set. To see this more clearly, suppose we wish to start with a hypothesis that gives hitting
sets of size sg(n) for n-variate circuits of size and degree s. It is then not too difficult to infer from
Lemma 3.2 that for any proof of “variable reduction” using the hybrid argument of Kabanets and
Impagliazzo [KI04], we require g(n) to satisfy the relation e · g(n) ≤ n. This would mean that sg(n)

can never be something like sn−ε that is, a poly(s) factor better than the trivial sn.
The other main difference between our proof and that in [AGS19] is rather technical, but we

try to briefly describe it. This is in the choice of combinatorial designs. The designs used in this
paper are based on the standard Reed-Solomon code, and they yield larger set families than the
designs used by [AGS19]. However, even without these improved design parameters, our proof
can be used to provide the same conclusion when starting off with a hitting set of size snδ

, instead
of the hypothesis of Theorem 1.17.

Also, their proof is quite involved, and we are unsure if there are other constraints in their
proof that force such choices of parameters. Our proof, though along almost exactly the same
lines, appears to be more transparent and more malleable with respect to the choice of parameters.

The strength of the hypothesis. The hypothesis of Theorem 1.1 and also those of the results in
the work of Agrawal, Ghosh and Saxena [AGS19] is that we have a non-trivial explicit hitting set
for algebraic circuits of size s, degree d on n variables where d and s could be arbitrarily large as
functions of n. This seems like an extremely strong assumption, and also slightly non-standard
in the following sense. In a typical setting in algebraic complexity, we are interested in PIT for
size s, degree d circuits on n variables where d and s are polynomially bounded in the number of
variables n. A natural open problem here, which would be a more satisfying statement to have,
would be to show that one can weaken the hypothesis in Theorem 1.1 to only hold for circuits
whose degree and size are both polynomially bounded in n. It is not clear to us if such a result can
be obtained using the current proof techniques, or is even true.

Having noted that our hypothesis is very strong, and perhaps even slightly unnatural with
respect to the usual choice of parameters in the algebraic setting, we remark that our hypothesis
does in fact follow from the assumptions that the Permanent is hard for Boolean circuits, and the
Generalized Riemann Hypothesis (GRH). The proof is essentially the same as that of Corollary 1 in
the work of Jansen and Santhanam [JS12]. The only difference is that while Jansen and Santhanam
show that there are non-trivial explicit8 hitting sets for univariate polynomials with small circuits
assuming the hardness of Permanent for Boolean circuits and the GRH, here we have to work
with circuits computing multivariate polynomials. At a high level, the proof in [JS12] proceeds
by constructing a pseudorandom generator for Boolean circuits of appropriate size assuming the
hardness of permanent for Boolean circuits. Then, the set of binary strings in the output of this

Thierauf [ST20].
7Even though n, ε and δ are constants, nδ and (n − ε) are qualitatively different, as ε is independent of n.
8In fact their notion of explicitness is stronger than ours.
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generator is interpreted as an integer in the natural way. This gives us a small set of integer
points, which can be constructed deterministically. Then they argue that there is no constant
free algebraic circuit of small size which vanishes on all these integer points. The proof of this
step is via contradiction, where they assume the existence of such a constant free algebraic circuit
to construct a Boolean circuit of small size which is not fooled by the aforementioned Boolean
pseudorandom generator. For algebraic circuits which are not constant free and are allowed to
use arbitrary field constants and hence cannot be efficiently simulated by a Boolean circuit, they
assume the GRH to reduce to the case of constant free circuits in a fairly standard way. For our
setting, we interpret the output of the Boolean pseudorandom generator as not just a single integer
point, but a k tuple of integers points. These set of points in Zk form our candidate hitting set. The
rest of the proof carries over without any changes. We refer the interested reader to [JS12] for
further details.

Remark 1.6. Throughout the paper, we shall assume that there are suitable ⌊·⌋’s or ⌈·⌉’s if necessary so that
certain parameters chosen are integers. We avoid writing this purely for the sake of readability.

All results in this paper continue to hold for the underlying model of algebraic formulas, algebraic
branching programs or algebraic circuits. In fact, the results also extend to the model of border of algebraic
formulas, algebraic branching programs or algebraic circuits. That is, if there is a slightly non-trivial hitting
set for polynomials in the border of these classes, then our main theorem gives a highly non-trivial explicit
hitting set for these polynomials. Since our proofs extend as it is to this setting with essentially no changes,
we skip the details for this part, and confine our discussions in the rest of the paper to just standard algebraic
formulas. ♢

2 Preliminaries

Notation

• For a positive integer n, we use [n] to denote the set {1, 2, . . . , n}.

• We use boldface letters such as x[n] to denote a set {x1, . . . , xn}. We drop the subscript when-
ever the number of elements is clear or irrelevant in the context.

• For a polynomial f (x1, . . . , xn), we shall say its individual degree is at most k to mean that the
exponent of any of the xi’s in any monomial is at most k.

We now define some standard notions we work with, and state some of the known results that
we use in this paper.

2.1 Algebraic models of computation

Throughout the paper we would be dealing with some standard algebraic models, and we define
them formally for completeness.
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Definition 2.1 (Algebraic branching programs (ABPs)). An algebraic branching program in vari-
ables {x1, x2, . . . , xn} over a field F is a directed acyclic graph with a designated starting vertex s with
in-degree zero, a designated end vertex t with out-degree zero, and the edge between any two vertices
labeled by an affine form from F[x1, x2, . . . , xn]. The polynomial computed by the ABP is the sum of all
weighted paths from s to t, where the weight of a directed path in an ABP is the product of labels of the edges
in the path.

The size of an ABP is defined as the number of edges in the underlying graph. ♢

Definition 2.2 (Algebraic formulas). An algebraic circuit is said to be a formula if the underlying graph
is a tree. The size of a formula is defined as the number of leaves.

The notation C(n, d, s) will be used to denote the class of n-variate9 polynomials of degree at most d that
are computable by formulas of size at most s. ♢

We will use the following folklore algorithm for computing univariate polynomials, often at-
tributed to Horner10. We also include a proof for completeness.

Proposition 2.3 (Horner rule). Let P(x) = ∑d
i=0 pixi be a univariate polynomial of degree d over any

field F. Then, P can be computed by an algebraic formula of size 2d + 1.

Proof. Follows from the fact that P(x) = (· · · ((pdx+ pd−1)x+ pd−2) · · · )x+ p0, which is a formula
of size 2d + 1.

The following observation shows that the classes of algebraic formulas/ABPs/circuits are “ro-
bust” under some very natural operations; we shall call such models as natural models. These
properties are precisely the ones that we rely on in this paper. Any natural model would be suf-
ficient for our purposes, but it might be convenient for the reader to focus on just the standard
models of formulas, ABPs and circuits.

Definition 2.4 (Natural algebraic models). An algebraic model A is called a natural model if the class
of polynomials computed by it satisfies the following properties.

• Any polynomial of degree d with at most s monomials has A-size at most s · d. In the specific setting
when the polynomial is a univariate, its A-size is O(d).

• Partial substitution of variables by constants does not increase the A-size of any polynomial.

• If each of Q1, . . . , Qk is computable in A-size s, then ∑ Qi is computable in A-size at most sk.

• Suppose P(x1, . . . , xn) is computable in A-size s1 and say Q1, . . . , Qn are polynomials each of which
can be computed in A-size s2. Then, P(Q1, . . . , Qn) can be computed in A-size at most s1 · s2. ♢

Observation 2.5. Algebraic circuits, branching programs (ABPs), and formulas are natural algebraic
models.

9This class may also include polynomials that actually depend on fewer variables but are masquerading to be n-
variate polynomials.

10Though this method was discovered at least 800 years earlier by Iranian mathematician and astronomer Sharaf
al-Dı̄n T. ūsı̄ (cf. Hogendijk [Hog89]).
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2.2 Combinatorial designs

Definition 2.6 (Combinatorial designs (cf. [NW94])). A family of sets {S1, . . . , Sm} is said to be an
(ℓ, k, r) design if

• Si ⊆ [ℓ],

• |Si| = k,

•
∣∣Si ∩ Sj

∣∣ < r for any i ̸= j. ♢

The following is a standard construction of such designs based on the Reed-Solomon code, similar
to the construction described in [NW94, Lemma 2.5].

Lemma 2.7 (Construction of designs). Let c ≥ 2 be any positive integer. There is an algorithm that,
given parameters ℓ, k, r satisfying ℓ = kc and r ≤ k with k being a power of 2, outputs an (ℓ, k, r) design
{S1, . . . , Sm} for m ≤ k(c−1)r in time poly(m).

Proof. Since k is a power of 2, we can identify [k] with the field Fk of k-elements and [ℓ] with
Fk × Fkc−1 . For each univariate polynomial p(x) ∈ Fkc−1 [x] of degree less than r, define the set Sp

as

Sp = {(i, p(i)) : i ∈ Fk} .

Since there are k(c−1)r such polynomials we get k(c−1)r subsets of Fk ×Fkc−1 of size k each. Further-
more, since any two distinct univariate polynomials cannot agree at r or more places, it follows
that

∣∣Sp ∩ Sq
∣∣ < r for p ̸= q.

2.3 Hardness-randomness connections

Observation 2.8. Let H be a hitting set for the class C(n, d, s) of n-variate polynomials of degree at most
d that are computable by formulas of size s. Then, for any nonzero polynomial Q(x1, . . . , xn) such that
deg(Q) ≤ d and Q(a) = 0 for all a ∈ H, we have that Q cannot be computed by formulas of size s.

Proof. If Q was indeed computable by formulas of size at most s, then Q is a member of C(n, d, s)
for which H is a hitting set. This would violate the assumption that H was a hitting set for this
class as Q is a nonzero polynomial in the class that vanishes on all of H.

From this observation, it is easy to see that explicit hitting sets can be used to construct lower
bounds.

Lemma 2.9 (Hitting sets to hardness [HS80, Agr05]). Let H be an explicit hitting set for C(n, d, s).
Then, for any k ≤ n such that k|H| 1

k ≤ d, there is a polynomial Q(z1, . . . , zk) of individual degree smaller
than |H| 1

k that is computable in time poly(|H|) that requires formulas of size s to compute it. Furthermore,
given the set H, there is an algorithm to output a formula of size |H| · d for Q in time poly(|H|).

11



Proof. This is achieved by finding a nonzero k-variate polynomial, for k ≤ n, of individual degree
d′ < |H| 1

k , that vanishes on the hitting set H; this can be done by interpreting it as a homogeneous
linear system with (d′+ 1)k “variables” and at most |H| “constraints”. Such a Qk can then be found
via interpolation by solving a system of linear equations in time poly(|H|). The degree of Qk is at
most k · |H| 1

k ≤ d from the hypothesis and the hardness of Qk follows from Observation 2.8.

Remark 2.10 (Bit complexity of Qk). Note that we can obtain a hard polynomial Qk such that its coeffi-
cients have bit-complexities that are at most polynomially large in terms of the bit-complexities of the points
in the given hitting set. Moreover, one can also ensure that such a computation only handles numbers of
polynomially larger bit complexities11, thereby making Lemma 2.9 constructive in an explicit sense. ♢

It is also known that we can get non-trivial hitting sets from suitable hardness assumptions.
For a fixed (ℓ, k, r) design {S1, . . . , Sm} and a polynomial Q(z1, . . . , zk) ∈ F[z] we shall use the
notation QJℓ, k, rKNW to denote the vector of polynomials

QJℓ, k, rKNW := (Q(y |S1), Q(y |S2), . . . , Q(y |Sm)) ∈ (F[y1, . . . , yℓ])
m .

Kabanets and Impagliazzo [KI04] showed that, if Q(z[k]) is hard enough, then P(QJℓ, k, rKNW)

is nonzero if and only if P(x[m]) is nonzero. However, their proof crucially relies on a result of
Kaltofen [Kal89] (or even a non-algorithmic version due to Bürgisser [Bür00]) about the complex-
ity of factors of polynomials. Hence, this connection is not directly applicable while working with
other subclasses of circuits such as algebraic formulas as we do not know if they are closed under
factorization. The following lemma can be used in such settings and this paper makes heavy use
of this.

Lemma 2.11 (Hardness to randomness without factor complexity). Let Q(z1, . . . , zk) be an arbitrary
polynomial of individual degree smaller than d. Suppose there is an (ℓ, k, r) design {S1, . . . , Sm} and a
nonzero polynomial P(x1, . . . , xm), of degree at most D, that is computable by a formula of size at most s
such that P(QJℓ, k, rKNW) ≡ 0. Then there is a polynomial P̃(z1, . . . , zk), whose degree is at most k · d · D
that is divisible by Q and computable by formulas of size at most s · (r − 1) · dr · (D + 1).

Moreover, if r = 2, then this upper bound can be improved to 4 · s · d · (D + 1)

If the polynomial Q(z1, . . . , zk) in the above lemma was chosen such that Q vanished on some
hitting set H for the class of size s′, n-variate, degree d′ polynomials where s′ ≥ s · (r − 1) · dr ·
(D + 1), then so does P̃ since Q divides it. If it happens that deg(P̃) ≤ d′, then Observation 2.8
immediately yields that P̃ cannot be computed by formulas of size s′, contradicting the conclusion
of the above lemma. Hence, in such instances, we would have that P(QJℓ, k, rKNW) ̸≡ 0, without
appealing to any result about closure of the particular model under factorization.

Proof. Borrowing the ideas from Kabanets and Impagliazzo [KI04], we look at the m-variate substi-
tution (x1, . . . , xm) 7→ QJℓ, k, rKNW as a sequence of m univariate substitutions. We now introduce
some notation to facilitate this analysis.

11This can be done via a cleverer variant of Gaussian elimination, e.g. Bareiss algorithm [Bar68].
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Given the (ℓ, k, r) design {S1, . . . , Sm}, let yi = y |Si , for each i ∈ [m]. The tuple QJℓ, k, rKNW can
therefore be written as (Q(y1), Q(y2), . . . , Q(ym)) ∈ (F[y1, . . . , yℓ])

m. For each 0 ≤ i ≤ m, let

Pi = P(Q(y1), Q(y2), . . . , Q(yi), xi+1, . . . , xm) ,

which is P after substituting for the variables x1, . . . , xi. Since P0 = P is a nonzero polynomial and
Pm = P(QJℓ, k, rKNW) ≡ 0, let t be the unique integer with 1 ≤ t ≤ m, for which Pt−1 ̸≡ 0 and
Pt ≡ 0.

Since Pt(y, xt, . . . , xm) is a nonzero polynomial, there exist values that can be substituted to the
variables besides xt and yt such that it remains nonzero; let this polynomial be P′

t (yt, xt). Also,
for each j ∈ [t − 1], let Q(t)(yj ∩ yt) be the polynomial obtained from Q(yj) after this substitution,
which is a polynomial of individual degree less than d on at most (r − 1) variables. We can now
make the following observations about P′(yt, xt):

• Each Q(t)(yj ∩ yt) has a formula of size at most (d(r − 1)) · dr−1, and thus P′(yt, xt) has a
formula of size at most (s · (r − 1) · dr),

• deg(P′) ≤ D · deg(Q) ≤ D · (kd), and degxt
(P′) ≤ D,

• P′(yt, Q(yt)) ≡ 0.

The last observation implies that the polynomial (xt − Q(yt)) divides P′. Therefore, we can
write P′ = (xt − Q(yt)) · R, for some polynomial R. Consider P′ and R as univariates in xt with
coefficients as polynomials in yt:

P′ =
D

∑
i=0

P′
i · xi

t , R =
D−1

∑
i=0

Ri · xi
t.

If a is the smallest index such that P′
a ̸= 0, then P′

a = −Ra · Q(yt) and hence Q(yt) divides P′
a. Any

coefficient P′
i can be obtained from P′ using interpolation from (D + 1) evaluations of xt. Hence,

P̃ = P′
a can be computed in size (s · (r − 1) · dr · (D + 1)).

For the case of r = 2, observe that the polynomial Q(t)(yj ∩ yt) is a univariate of degree at most
d. Thus, by Proposition 2.3, Q(t)(yj ∩ yt) can be computed by a formula of size 2d + 1 ≤ 4d. So,
we get an upper bound of (4 · s · d) on the formula complexity of P′(yt, xt) (instead of O(sd2) that
we would get by invoking the general bound for r = 2) and after interpolation as above, we get a
bound of 4 · s · d · (D + 1) on the formula complexity of P′

a as defined above.

3 Bootstrapping Hitting Sets

The following are the main bootstrapping lemmas to yield our main result. These lemmas follow
the same template as in the proof of Agrawal, Ghosh and Saxena [AGS19] but with some simple
but important new ideas that avoid any requirement on bounds on factor complexity, and also
permitting a result starting from a barely non-trivial hitting set.
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Lemma 3.1 (Barely non-trivial to moderately non-trivial hitting sets). Let ε > 0 and n ≥ 2 be
constants. Suppose that for all large enough s there is an explicit hitting set of size sn−ε, for all degree s, size
s algebraic formulas over n variables.

Then for a large enough m ≥ n8, and for all s ≥ m, there is an explicit hitting set of size s
m
50 for all

degree s, size s algebraic formulas over m variables.

Lemma 3.2 (Bootstrapping moderately non-trivial hitting sets). Let n0 be large enough, and n be any
power of two that is larger than n0. Suppose for all s ≥ n there are explicit hitting sets of size sg(n) for
C(n, s, s), the class of n-variate degree s polynomials computed by size s formulas.

1. Suppose g(n) ≤ n
50 , then for m = n10 and all s ≥ m, there are explicit hitting sets of size sh(m) for

C(m, s, s) where h(m) ≤
( 1

10

)
· m

1
4 .

2. Suppose g(n) ≤
( 1

10

)
· n

1
4 , then for m = 2n

1
4 and all s ≥ m, there are explicit hitting sets of size

sh(m) for C(m, s, s) where h(m) = 20 ·
(

g(log4 m)
)2

.

Furthermore, h(m) also satisfies h(m) ≤
( 1

10

)
· m

1
4 .

We will defer the proofs of these lemmas to the end of this section and complete the proof of
Theorem 1.1.

Theorem 1.1 (Bootstrapping PIT for algebraic formulas, branching programs and circuits). Let
ε > 0 and n ≥ 2 be constants. Suppose that, for all large enough s, there is an explicit hitting set of size
sn−ε for all degree s, size s algebraic formulas (algebraic branching programs or circuits respectively) over
n variables. Then, there is an explicit hitting set of size sexp(exp(O(log∗ s))) for the class of degree s, size s
algebraic formulas (algebraic branching programs or circuits respectively) over s variables.

Proof. Notice that Lemma 3.1 and Lemma 3.2 are structured so that the conclusion of Lemma 3.1 is
precisely the hypothesis of Lemma 3.2(1), the conclusion of Lemma 3.2(1) is precisely the hypothe-
sis of Lemma 3.2(2), and Lemma 3.2(2) admits repeated applications as its conclusion also matches
the requirements in the hypothesis. Thus, we can use one application of Lemma 3.1 followed by
one application of Lemma 3.2(1) and repeated applications of Lemma 3.2(2) to get hitting sets
for polynomials depending on larger sets of variables, until we can get a hitting set for the class
C(s, s, s).

Let n0 be large enough to satisfy the hypothesis of Lemma 3.1, and the two parts of Lemma 3.2.
We start with an explicit hitting set of size sn0−ε for C(n0, s, s) and one application of Lemma 3.1
gives an explicit hitting set of size s

n1
50 for C(n1, s, s) for n1 ≥ n8

0 and all s ≥ n1. Using Lemma 3.2(1)

we obtain an explicit hitting set of size s(1/10)·m
1
4
0 for the class C(m0, s, s) for all s ≥ m0 = n10

1 . We
are now in a position to apply Lemma 3.2(2) repeatedly. We now set up some basic notation to
facilitate this analysis.

Suppose after i applications of Lemma 3.2(2) we have an explicit hitting set for the class

C(mi, s, s) of size sti . We wish to track the evolution of mi and ti. Recall that mi = 2m
1
4
i−1 after

one application of Lemma 3.2(2).
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Let {bi}i be such that b0 = log m0 and, for every i > 0, let bi = 2(bi−1/4) so that bi = log mi.
Similarly to keep track of the complexity of the hitting set, if sti is the size of the hitting set for

C(mi, s, s), then by Lemma 3.2(2) we have t0 =
( 1

10

)
m

1
4
0 and ti = 20 · t2

i−1 for all i > 0.
The following facts are easy to verify.

• mi ≥ s or bi ≥ log s for i = O(log∗ s),

• For all j, we have tj = 20(2
j−1) · t2j

0 = exp(exp(O(j))).

• The exponent of s in the complexity of the final hitting set is tO(log∗ s) = exp(exp(O(log∗ s))).

Therefore, we have an explicit hitting set of size sexp(exp(O(log∗ s))) for C(s, s, s). An explicit algorithm
describing the hitting set generator is presented in Section 4.1.

3.1 Proofs of the bootstrapping lemmas

Here we prove the two main lemmas used in the proof of Theorem 1.1. We restate the lemmas
here for convenience. The proofs follow a very similar template but with different settings of
parameters and minor adjustments.

Lemma 3.1 (Barely non-trivial to moderately non-trivial hitting sets). Let ε > 0 and n ≥ 2 be
constants. Suppose that for all large enough s there is an explicit hitting set of size sn−ε, for all degree s, size
s algebraic formulas over n variables.

Then for a large enough m ≥ n8, and for all s ≥ m, there is an explicit hitting set of size s
m
50 for all

degree s, size s algebraic formulas over m variables.

Proof. Let a = max(n, 250
ε ). We begin by fixing the design parameters, k = n, ℓ = a · k4 = a · n4

and r = 2.

Constructing a suitably hard polynomial: For B = 5k
ε , we construct a polynomial Qk(z1, . . . , zk)

that vanishes on the hitting set for all size sB degree sB formulas over k variables, that has
size sB(k−ε) using Lemma 2.9. The polynomial Qk(z) has the following properties.

• Qk has individual degree d < sB(k−ε)/k, and total degree < k · sB(k−ε)/k.

• Qk is not computable by formulas of size sB.

• Qk has a formula of size ≤ (kd) · sB(k−ε).

Building the NW design: Using Lemma 2.7, we now construct an (ℓ, k, r) design {S1, . . . , Sm}
with m :=

(
ℓ
k

)r
=

(
ak(4−1)

)2
= a2k6.

Variable reduction: Let P(x1, . . . , xm) be a nonzero m-variate degree s polynomial computable
by a formula of size s, and let P(QkJℓ, k, rKNW) ≡ 0. Then, from the ‘moreover’ part of
Lemma 2.11 (since r = 2), we get that there is a polynomial P̃(z1, . . . , zk) that vanishes on a
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hitting set for formulas of size sB and degree sB, and is computable by a formula of size at
most

size(P̃) ≤ 4 · s · d · (s + 1)

≤ 4s(s + 1) · sB(k−ε)/k

≤ s
(

5+ B(k−ε)
k

)
= s5+ 5k

ε −5 = sB.

Moreover, note that the degree of P̃(z1, . . . , zk) is at most (k · d) · s ≤ s
(

2+ B(k−ε)
k

)
< sB. Since P̃

vanishes on the hitting set for formulas of size sB and degree sB, we get a contradiction due
to Observation 2.8. Therefore, it must be the case that P(QkJℓ, k, rKNW) is nonzero.

Construction of the hitting set: Therefore, starting with a nonzero formula of degree s, size s,
over m variables, we obtain a nonzero ℓ-variate polynomial of degree at most s · (kd) ≤ sB.
At this point we can just use the trivial hitting set given by the polynomial identity lemma
[Ore22, DL78, Zip79, Sch80], which has size at most sBℓ.

Therefore, what remains to show is that our choice of parameters ensures that Bℓ < m
50 . This

is true, as m
50 = a2k6

50 = ak
50 · ak5 =

(
5k
ε

)
· ℓ · k > Bℓ.

The construction runs in time that is polynomial in the size of the hitting set in the conclusion, and
the bit-size of the points in it. See Section 4.1 for a more elaborate discussion.

Lemma 3.2 (Bootstrapping moderately non-trivial hitting sets). Let n0 be large enough, and n be any
power of two that is larger than n0. Suppose for all s ≥ n there are explicit hitting sets of size sg(n) for
C(n, s, s), the class of n-variate degree s polynomials computed by size s formulas.

1. Suppose g(n) ≤ n
50 , then for m = n10 and all s ≥ m, there are explicit hitting sets of size sh(m) for

C(m, s, s) where h(m) ≤
( 1

10

)
· m

1
4 .

2. Suppose g(n) ≤
( 1

10

)
· n

1
4 , then for m = 2n

1
4 and all s ≥ m, there are explicit hitting sets of size

sh(m) for C(m, s, s) where h(m) = 20 ·
(

g(log4 m)
)2

.

Furthermore, h(m) also satisfies h(m) ≤
( 1

10

)
· m

1
4 .

Proof. The proofs of both parts follow the same template as in the proof of Lemma 3.1 but with
different parameter settings. Hence, we will defer the choices of the parameters ℓ, k, r towards the
end to avoid further repeating the proof. For now, let ℓ, k, r be parameters that satisfy r ≤ k, ℓ = k2

and 5r · g(n) ≤ k.

Constructing a hard polynomial: The first step is to construct a polynomial Qk(z1, . . . , zk) that
vanishes on the hitting set for the class C(n, s5, s5), where12 k ≤ n. This can be done by using
Lemma 2.9. The polynomial Qk(z) will therefore have the following properties.

12That is, Qk is a k-variate polynomial that is just masquerading as an n-variate polynomial that does not depend on
the last n − k variables.
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• Qk has individual degree d smaller than s5g(n)/k, and degree at most k · s5g(n)/k.

• Computing Qk requires formulas of size more than s5.

• Qk has a formula of size at most s10g(n).

Building the NW design: Using the parameters ℓ, k, r, and the construction from Lemma 2.7, we
now construct an (ℓ, k, r) design {S1, . . . , Sm} with m ≤ kr.

Variable reduction using Qk: Let P(x1, . . . , xm) ∈ C(m, s, s) be a nonzero polynomial. Suppose
for contradiction that P(QkJℓ, k, rKNW) ≡ 0, then Lemma 2.11 states that there is a nonzero
polynomial P̃(z1, . . . , zk) of degree at most s · k · d such that Qk divides P̃, and that P̃ can be
computed by a formula of size at most

s · (r − 1) · dr · (s + 1) ≤ s4 · dr

≤ s4 · s5r·g(n)/k

≤ s5. (since k, r satisfy 5r · g(n) ≤ k)

Furthermore, the degree of P̃ is at most s · r · s5g(n)/k ≤ s5. Hence, P̃ is a polynomial on
k ≤ n variables, of degree at most s5 that vanishes on the hitting set of C(n, s5, s5) since Qk

divides P̃. But then, Observation 2.8 states that P̃ must require formulas of size more than
s5, contradicting the above size bound. Hence, it must be the case that P(QkJℓ, k, rKNW) ̸≡ 0.

Hitting set for C(m, s, s): At this point, we set the parameters k and r depending on how quickly
g(n) grows.

Part (1)
(

g(n) ≤ n
50

)
: In this case, we choose k = n and r = 10 (so we satisfy 5r · g(n) ≤ n =

k). From Lemma 2.7, we have an explicit (ℓ, k, r) design {S1, . . . , Sm} with m = kr = n10.

For any nonzero P ∈ C(m, s, s), we have that P(QkJℓ, k, rKNW) is a nonzero ℓ-variate
polynomial of degree at most s · k · s5g(n)/k ≤ s3. Hence, by just using the trivial hitting
set via the polynomial identity lemma [Ore22, DL78, Sch80, Zip79], we have an explicit

hitting set of size s3ℓ ≤ s3m
1
5 . Since m ≥ n0 and n0 is large enough, we have that

h(m) := 3m
1
5 ≤

(
1
10

)
· m

1
4 .

Part (2)
(

g(n) ≤
( 1

10

)
n

1
4

)
: In this case, we choose k =

√
n and r = n

1
4 , so that 5r · g(n) ≤

10r · g(n) ≤ k and ℓ = n. Using Lemma 2.7, we now construct an explicit (ℓ, k, r) design

{S1, . . . , Sm} with m = 2n
1
4 ≤ kr.

We have a formula computing the n-variate polynomial P(QkJℓ, k, rKNW) of size at most
s · s10g(n) ≤ s20g(n) =: s′. Using the hypothesis for hitting sets for C(n, s′, s′), we have an
explicit hitting set for C(m, s, s) of size at most

(
s′
)g(n)

= s20g(n)2
= sh(m),

17



where h(m) = 20
(

g((log m)4)
)2. Since n0 is large enough, we have that

10 · h(m) ≤ 20 · 10 ·
(

g((log m)4)
)2

≤ 2 (log m)2 (since g(n) ≤
(

1
10

)
n

1
4 )

≤ m
1
4 . (since m ≥ n0 and n0 is large enough)

This completes the proof of both parts of the lemma.

4 Finer analysis of the main result

This section addresses some subtle aspects about Theorem 1.1 as follows. First, we provide an
algorithm outlining all the steps in obtaining the final hitting set from the initial one, which also
helps us illustrate the explicitness of all the intermediate hitting sets (including the corresponding
bit complexities). We then discuss how our theorem statement changes if the hypothesis holds
only when the number of variables is a growing function of the size/degree s.

4.1 Algorithm for generating the hitting set

We now give an algorithm to generate an explicit hitting set for C(s, s, s), for all large s, using the
hypothesis of Theorem 1.1. Let n0 be the initial threshold from the hypothesis and let n1 be a
constant that satisfies the “large enough” requirements of Lemma 3.2.

n0 ≥ 2 t0 = (n0 − ε)

n1 is large enough t1 =
n1

50

n2 = n10
1 t2 =

(
1
10

)
n

1
4
2

For all i ≥ 3, ni = 2n
1
4
i−1 ti := 20t2

i−1

We are provided an algorithm INITIAL-HITTING-SET(s) that outputs a hitting set for C(n0, s, s) of
size at most sn0−ε. Algorithm 1 describes a function HITTING-SET which, given inputs i and s,
outputs a hitting set for C(ni, s, s) of size at most sti in time poly(sti).

From the growth of ni, it follows that nb ≥ s for b = O(log∗ s) and ti = 202i−1t2i

0 . Un-
folding the recursion for HITTING-SET(j, s), for any j, the algorithm makes at most 2j calls to
INITIAL-HITTING-SET(s′) for various sizes s′ satisfying

s′ ≤ sB·20j−1 ∏
j−1
i=1 ti ≤ sBt2

j−1 = sO(tj).

Thus, for HITTING-SET(b, s), the algorithm makes at most 2b calls to INITIAL-HITTING-SET(s′),
for sizes s′ that are at most sexp(exp(O(log∗ s))). The overall running time is polynomial time in the
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Algorithm 1: HITTING-SET

Input : Parameter i and a size s.
Output: A hitting set of size sti size for C(ni, s, s).

1 if i = 1 then
2 Let A = max

(
n0, 250

ε

)
, B = 3n0

ε

3 Let H0(sB) := INITIAL-HITTING-SET(sB) // size at most sB(n0−ε)

4 Compute a nonzero polynomial Q on k = n0 variables of individual degree smaller
than sBt0/k that vanishes on H0(sB). // takes poly(sBt0) time

5 Compute an (A · n4
0, n0, 2)-design {S1, . . . , Sn1} .

6 Let S ⊆ F be of size at least sB.

7 return
{
(QJℓ, k, rKNW) (a) : a ∈ SAn5

0

}
// size at most sBAn5

0 ≤ s
n1
50 = st1

8 else if i = 2 then
9 H1(s5) := HITTING-SET(1, s5) // size at most s5t1

10 Compute a nonzero polynomial Q on k = n1 variables of individual degree smaller
than s5t1/k that vanishes on H1(s5). // takes poly(s5t1) time

11 Compute an (n2
1, n1, 10)-design {S1, . . . , Sn2} .

12 Let S ⊆ F be of size at least s3.

13 return
{
(QJℓ, k, rKNW) (a) : a ∈ Sn2

1

}
// size at most s3n2

1 ≤ s0.1·n
1
4
2 = st2

14 else if i ≥ 3 then
15 Hi−1(s5) := HITTING-SET(i − 1, s5) // size at most s5ti−1

16 Compute a nonzero polynomial Q on k =
√

ni−1 variables of individual degree smaller
than s5ti−1/k that vanishes on Hi−1(s5). // takes poly(s5ti−1) time

17 Compute an (ni−1,
√

ni−1, 4
√

ni−1)-design {S1, . . . , Sni}

18 Hi−1(s20ti−1) := HITTING-SET(i − 1, s20ti−1) // size at most s20t2
i−1

19 return
{
(QJℓ, k, rKNW) (a) : a ∈ Hi−1(s20ti−1)

}
// size at most s20t2

i−1 = sti
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size of the final hitting set which is stb = sexp(exp(O(log∗ s))).

Bit-complexity of the hitting sets. We will now discuss the bit complexity of the hitting sets that
are generated during the bootstrapping procedure. We will analyze Algorithm 1 and show that
any hitting set H for n-variate formulas that the algorithm outputs, will have a bit-complexity that
is at most |H| f (n), for f (n) = exp(O(log∗ n)).

Let us first consider the case when i ≥ 3. Suppose each evaluation point in S0 := Hi−1(s5) is at
most ha bits long, where h = |S0| and a = f (ni−1). Using Remark 2.10, we get that each coefficient
of Q is at most hca bits long, for some other constant c. The output of Algorithm 1 for this case will
be evaluations of Q on S1 := Hi−1(s20ti−1). Since |S1| = h4ti−1 , the bit complexity of S1 is at most
h4ati−1 . Now Q is a degree < s5 polynomial with O(h) monomials. As a result any evaluation of
Q on a point from S1 will have at most O(log h) ·

(
hca + s5 · h4ati−1

)
≤ h2a·(4ti−1) = |S1|2a, as ti−1 is

large enough. Since ni = 2n1/4
i−1 , we have that f (n) = exp(O(log∗ n)). For the cases when i = 1 or

i = 2, since we use the trivial hitting sets in place of S1 in the above discussion, the same bounds
will continue to hold.

We want to remark that although the bit complexity of the output of HITTING-SET(i, s) is
not polynomial in the size sti , the exponent ti is always larger than f (ni). As a result the time
taken to generate the final hitting set in the conclusion of Theorem 1.1 can still be bounded by
sexp(exp(O(log∗ s))), albeit with a slightly larger constant in O(log∗ s).

4.2 Bootstrapping with a slightly weaker hypothesis

We now discuss the analogue of Theorem 1.1 when the number of variables n in the hypothesis
grows with the size parameter s. In particular, the hypothesis now guarantees a hitting set that
is better than the brute force hitting set of size (s + 1)n only when n grows faster than a certain
function of s. For example, suppose that for all large n and s, the class C(n, s, s) has hitting sets of
size13 at most snδ(log◦3 s)δ

for some small constant δ. Note that this hypothesis is not “helpful” when
n is a constant, or even (log◦3 s)o(1). Nevertheless, we shall show that even this scenario allows
for a very similar bootstrapping procedure, and leads to hitting sets of size spoly(log◦2 s) for the class
C(s, s, s).

We now state the analogue of the “single-step lemma” (Lemma 3.2) that helps us in proving
our main theorem of this section (Theorem 4.3, which is proved at the end of the section).

Lemma 4.1. Let g, t : N → N be non-decreasing functions such that g(k) ≤ k1/4 and t(xlog x) ≤ 2t(x)
for all x. Let 1 ≤ m ≤ s such that

20 · g
(
(log m)4

)
· t(s) ≤ log m. (4.2)

Let (k1, s1) =
(
(log m)4, s5) and (k2, s2) =

(
(log m)4, s100g((log m)2)t(s)

)
. Suppose C(k1, s1, s1) and

13Here log◦i denotes i iterated applications of log, that is log◦3 s = log log log s.
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C(k2, s2, s2) have explicit hitting sets of size at most sg(k1)t(s1)
1 and sg(k2)t(s2)

2 respectively.
Then, we have an explicit hitting set for C(m, s, s) of size at most sg′(m)t′(s), where

g′(m) ≤ 400 ·
(

g
(
(log m)4

))2

t′(s) ≤ t(s)2.

Proof. The proof is exactly along similar lines, with just a little more care to set parameters appro-
priately.

Fix any m, s that satisfy (4.2). Set r = log m, k = (log m)2 and ℓ = (log m)4. With these
parameters, (4.2) simplifies to 20 · g(ℓ) · t(s) ≤ r.

Let S1, . . . , Sm be an (ℓ, k, r) design, as guaranteed by Lemma 2.7. Let s1 = s5. By the hypothesis
for (k1 = ℓ, s1), there is an explicit hitting set H of size at most sg(ℓ)t(s1)

1 ≤ s5g(ℓ)·2·t(s) ≤ sr for
C(k, s1, s1). Let Q(z1, . . . , zk) be the explicit polynomial of individual degree at most s10g(ℓ)t(s)/k ≤
sr/k, as guaranteed by Lemma 2.9, that vanishes on the set H. Therefore, Qk satisfies the following
properties:

• Qk has individual degree less than sr/k and total degree at most k · sr/k.

• Qk can be computed by formulas of size at most s20g(ℓ)t(s) ≤ sr.

Now, suppose P(x1, . . . , xm) is any nonzero polynomial in C(m, s, s) but P(QkJℓ, k, rKNW) ≡ 0,
then Lemma 2.11 states that there is a nonzero polynomial P̃(z1, . . . , zk) such that

• P̃ has degree at most s3, and is a multiple of Qk

• P̃ is computed by formulas of size at most s3 · sr2/k = s4

However, Observation 2.8 asserts that P̃ must require formulas of size at least s5 and hence it must
be the case that P(QkJℓ, k, rKNW) ̸≡ 0.

Let P′(z1, . . . , zℓ) = P(QkJℓ, k, rKNW). This is an ℓ-variate nonzero polynomial of degree at
most s · deg(Qk) ≤ s3 and is computable by formulas of size s2 = s · s20g(ℓ)t(s) ≤ s20g(ℓ)t(s). Since
20g(ℓ)t(s) ≤ log m ≤ log s, we have that t(s2) ≤ 2t(s). Using the hypothesis for (k2 = ℓ, s2) an
explicit hitting set for C(ℓ, s2, s2) of size at most sg(ℓ)t(s2)

2 which can be bounded above as follows:

sg(ℓ)t(s2)
2 ≤ s2·g(ℓ)t(s)

2

≤ s20·g(ℓ)t(s)·2·g(ℓ)·t(s)

≤ s400·g(ℓ)2·t(s)2 ≤ sg′(m)t′(s).

Therefore, we have an explicit hitting set for C(m, s, s) of size at most sg′(m)t′(s).

Intuitively, the above lemma states that if g(k)t(s) is substantially smaller than k, then explicit
hitting sets of size sg(k)t(s) for C(k, s, s) can be used to obtain an sg′(m)t′(s) hitting set for C(m, s, s)
where m is exponentially larger than k (if s is not too large in comparison to m). Suppose g′(m)t′(s)
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is also substantially smaller than m (which would roughly translate to g(k)t(s) being much smaller
than k; say something like log log k), then we may be in a position to use the lemma again to get
an even better hitting set.

The following theorem sets up the parameters suitably when we are in a position to use the
above lemma multiple times.

Theorem 4.3. Let g0, t0 : N → N be non-decreasing functions with g0(m) ≤ m1/4 and t0(s) ≤ log s.
Let g1, g2, . . . : N → N and t1, t2, . . . : N → N be defined as gi+1(m) = 400 ·

(
gi
(
(log m)4))2 and

ti+1(s) = (t(s))2. Furthermore, let L0 : N → N as L1(x) = (log x)2 and Li+1(x) = (Li((log x)4))2 for
all i ≥ 1.

Suppose for every m, s ≥ 1 we have an explicit hitting set for C(m, s, s) of size at most sg0(m)·t0(s). Let
rm,s ≥ 1 be the largest index such that

• gr(x) ≤ x1/4 and tr(xlog x) ≤ 2 · tr(x) for all x ≥ 1,

• 100 · gr(m) · tr(s) ≤ Lr(m).

Then for any j ≤ rm,s, we have an explicit hitting set for C(m, s, s) of size at most sgj(m)tj(s).
In particular, C(s, s, s) has an explicit hitting set of size sLr(s) for r = rs,s.

Although the above theorem is stated in a general form, it would be instructive to just consider
nice functions of the form g0(s) = s0.1. In this case, it can be seen that

gi(s) = 22O(i) · poly(log◦i s),

ti(s) = (log◦3 s)2i
, and

Li(s) = 22O(i) · poly(log◦i s),

where g1(s) ≪ L1(s) but, certainly for i = log∗ s we have gi(s) > Li(s). If t0 is the constant
function, then we are essentially in the same regime as in the previous sections, so we get rs,s =

Θ(log∗ s), and we recover Theorem 1.1. However, if, say, t0(s) = log◦3 s (where log◦i s is the
iterated logarithm function, that is log◦3 s = log log log s), then t3(s) = (log◦3 s)23

> L3(s) and
hence rs,s = 2. Nevertheless, the above theorem yields an explicit hitting set of size C(s, s, s) of
size at most spoly log◦2 s which is still substantially better than sg0(s)t0(s) > ss0.1

.

Proof. We will prove the theorem by induction on j. For any m, s, the base case of j = 0 trivially
satisfied by the hypothesis of the theorem and hence there is nothing to prove.

Inductive step (j → j + 1): Suppose gj+1(x) ≤ x1/4 and tj+1(xlog x) ≤ 2 · tj+1(x) for all x ≥ 1.
For each i ≤ j + 1, define Di = {(m, s) : m ≤ s , 100 · gi(m)ti(s) ≤ Li(m)}. By the induction
hypothesis, for every (k, s′) ∈ Dj we have an explicit hitting set for C(k, s′, s′) of size at most
s′gj(k)tj(s′).

Fix any (m, s) ∈ Dj+1. To construct the explicit hitting set for C(m, s, s), we will use Lemma 4.1.
In order to do that, we need to assert the following claims:
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(a) (m, s) satisfy (4.2) (for g = gj and t = tj),

(b) C(ℓ, s1, s1), for ℓ = (log m)4 and s = s5, has an explicit hitting set of size at most s
gj(ℓ)tj(s)
1 , and

(c) C(ℓ, s2, s2), for ℓ = (log m)4 and s2 = s20gj(ℓ)tj(s), has an explicit hitting set of size at most
s

gj(ℓ)tj(s2)
2 .

Pf of (a): (m, s) ∈ Dj+1 implies that

20 · gj((log m)4) · tj(s) = 20 ·
(

gj+1(m)

400

)1/2

·
(
tj+1(m)

)1/2

=
(

gj+1(m)tj+1(s)
)1/2

≤ 1
10

· Lj+1(m)1/2 ≤ log m.

Pf of (b): If ℓ = (log m)4 and s1 = s5,

100 · gj(ℓ)tj(s1) ≤ 200 · gj(ℓ)tj(s)

= 10 ·
(

gj+1(m) · tj+1(s)
)1/2

≤ 10
10

· Lj+1(m)1/2

= Lj(ℓ).

Hence, (ℓ, s1) ∈ Dj and by the inductive hypothesis, we have an explicit hitting set for C(ℓ, s1, s1)

of size at most s
gj(ℓ)tj(s1)

1 .

Pf of (c): For ℓ = (log m)4 and s2 = s20gj(ℓ)tj(s), note that ((a)) shows that 20gj(ℓ)tj(s) ≤ log m ≤ log s
and hence tj(s2) ≤ 2tj(s). Therefore,

100 · gj(ℓ)tj(s2) ≤ 200 · gj(ℓ)tj(s)

= 10 ·
(

gj+1(m) · tj+1(s)
)1/2

=
(

Lj+1(m)
)1/2 ≤ Lj(ℓ).

Hence, (ℓ, s2) ∈ Dj and, by the induction hypothesis, we have an explicit hitting set for C(ℓ, s2, s2)

of size at most s
gj(ℓ)tj(s2)
2 .

Using Lemma 4.1, we have that C(m, s, s) has an explicit hitting set of size sgj+1(m)tj+1(s).

5 Open problems

We conclude with some open questions.

• A natural question in the spirit of the results in this paper, and those in [AGS19] seems to
be the following: Can we hope to bootstrap lower bounds? In particular, can we hope to
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start from a mildly non-trivial lower bound for general algebraic circuits (for example su-
perlinear or just superpolynomial), and hope to amplify it to get a stronger lower bound
(superpolynomial or truly exponential respectively). In the context of non-commutative al-
gebraic circuits, Carmosino, Impagliazzo, Lovett and Mihajlin [CILM18] recently showed
such results, but no such result appears to be known for commutative algebraic circuits.

• It would also be interesting to understand if it is possible to bootstrap white box PIT algo-
rithms. The proofs in this paper strongly rely on the fact that we have a non-trivial blackbox
derandomization of PIT.

• Kabanets and Impagliazzo [KI04] show that given a polynomial family which requires expo-
nential sized circuits, there is a blackbox PIT algorithm which runs in time exp(poly(log n))
on circuits of size poly(n) and degree poly(n), where n is the number of variables. Thus,
even with the best hardness possible, the running time of the PIT algorithm obtained is still
no better than quasipolynomially bounded. The question is to improve this running time
to get a better upper bound than that obtained in [KI04]. In particular, can we hope to get
a deterministic polynomial time PIT assuming that we have explicit polynomial families of
exponential hardness. This seems to be closely related to the question about bootstrapping
lower bounds.

Since the first version of this paper appeared, there has been some work related to the problems
studied in this paper. Specifically, Guo, Kumar, Saptharishi and Solomon [GKSS19] showed that
it is possible to bootstrap even explicit hitting sets of size sn − 1 for n variate circuits of size s
and degree s circuits, for a constant n, to obtain polynomial time PIT for s-variate circuits of size
and degree s. The proof in [GKSS19] goes via the direct construction of a hitting set generator
with constant seed length assuming a sufficiently strong hardness assumption, thereby making
progress on the last open question state above as well. One caveat of the results in [GKSS19]
is that the underlying field needs to be of sufficiently large characteristic or characteristic zero.
Proving analogous results over fields of small characteristic continues to be a very interesting
open problem.
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