
Lower Bounds for Circuits of Bounded Negation Width

Stasys Jukna1 ∗ Andrzej Lingas2 †

1Institute of Computer Science, Goethe University Frankfurt, Germany
2Department of Computer Science, Lund University, Box 118, 22100 Lund, Sweden

Abstract

We consider Boolean circuits over {∨,∧,¬} with negations applied only to input variables.
To measure the “amount of negation” in such circuits, we introduce the concept of their “nega-
tion width.” In particular, a circuit computing a monotone Boolean function f(x1, . . . , xn) has
negation width w if no nonzero term produced (purely syntactically) by the circuit contains more
than w distinct negated variables. Circuits of negation width w = 0 are equivalent to monotone
circuits, while those of negation width w = n have no restrictions. Our motivation is that already
circuits of moderate negation width w = nǫ for an arbitrarily small constant ǫ > 0 can be even
exponentially stronger than monotone circuits.

We show that the size of any circuit of negation width w computing f is roughly at least

the minimum size of a monotone circuit computing f divided by K = min{wm,mw}, where m

is the maximum length of a prime implicant of f . We also show that the depth of any circuit

of negation width w computing f is roughly at least the minimum depth of a monotone circuit

computing f minus logK. Finally, we show that formulas of bounded negation width can be

balanced without increasing their negation width.

1 Introduction and results

Understanding the power of negations in computations is one of the most basic tasks in com-
putational complexity. While strong, even exponential, lower bounds for explicit monotone
Boolean functions are already known for monotone Boolean {∨,∧} circuits, we can currently
prove only depressingly small (linear) lower bounds on the size of {∨,∧,¬} circuits when
there are no restrictions on the number or the usage of negation gates.

In this paper, we concentrate on DeMorgan circuits, that is, on {∨,∧,¬} circuits with
fanin-2 OR and AND gates, and with negation applied only to input variables. In other
words, a DeMorgan circuit is a circuit with fanin-2 OR and AND gates, while inputs are
variables x1, . . . , xn and their negations x1, . . . , xn; to simplify notation, we will write xi
instead of ¬xi. DeMorgan circuits are sometimes called normalized circuits [21], standard
circuits [34, Section 6.13] or circuits with tight negations [28]. A circuit is a formula if its
underlying graph is a tree. A monotone circuit is a DeMorgan circuit with no negated input
variables at all. By just doubling the circuit size and using DeMorgan rules, any circuit over

∗Research supported by the DFG grant JU 3105/1-1 (German Research Foundation).
Affiliated with the Institute of Data Science and Digital Technologies, Faculty of Mathematics and Informatics
of Vilnius University, Lithuania. Email: stjukna@gmail.com

†Research supported in part by VR grant 2017-03750 (Swedish Research Council).
Email: Andrzej.Lingas@cs.lth.se

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 154 (2018)

{∨,∧,¬} of size s can be converted to a DeMorgan circuit computing the same function and
having size at most 2s (see, for example, [8, Theorem 3.1]).

We use standard terminology regarding Boolean functions (see, for example, [34]). In
particular, a term is an AND of literals, each being a variable or its negation. The length of
a term is the number of distinct literals in it. A term is a zero term if it contain a variable
and its negation. An implicant of a Boolean function f(x1, . . . , xn) is a nonzero term p such
that p ≤ f holds, that is, p(a) ≤ f(a) holds for all a ∈ {0, 1}n. An implicant of f is a prime

implicant of f if no proper sub-term of p is an implicant of f . The set of all prime implicants
of f will be denoted by PI(f). A Boolean function f is monotone if a ≤ b implies f(a) ≤ f(b).
Note that if f is monotone, then all prime implicants of f are positive, that is, consist solely
of not negated variables.

1.1 Negation width of circuits

Our goal is to understand to what extent the usage of negated input variables can decrease the
size or the depth of DeMorgan circuits computing monotone Boolean functions. As a measure
of the “amount of negation” in DeMorgan circuits, we will use their “negation width.” This
measure is motivated by a trivial fact that every DeMorgan circuit not only computes a
particular Boolean function but also produces (purely syntactically) some set of terms in a
natural way.

Definition 1 (Terms produced by circuits). The set of terms produced at an input gate
holding a literal z is a singleton-set {z}. The set produced at an OR gate is a union of sets
produced at its two inputs, while the set produced at the AND gate is obtained by taking
the AND of every term produced at one of its inputs with every term produced at the other
input.

The set T (C) of terms produced by the entire circuit C is the set of terms produced at the
output gate of C. During the production of terms, we use the “shortening” axiom x∧ x = x,
but do not use the “annihilation” axiom x ∧ x = 0. So, T (C) can contain also zero terms,
those having a variable and its negation.1 Easy induction on the circuit size shows that the
Boolean function f computed by a circuit C is the function computed by the OR of all terms
produced by C.

If the circuit C is monotone (has no negated inputs at all), then we clearly have PI(f) ⊆
T (C), that is, every prime implicant of f must then be produced by the circuit. But even
then, the equality T (f) = PI(f) does not need to hold: already in 1981, Okol’nishnikova [22]
exhibited an explicit monotone Boolean function f of n variables which can be computed by
a monotone circuit of size O(n), but any monotone circuit C satisfying T (C) = PI(f) must

have 2Ω(n1/4) gates.
The situation when the computed function f is monotone, but a DeMorgan circuit C is

not necessarily monotone, is even more subtle: then even the inclusion PI(f) ⊆ T (C) does
not need to hold. For example, the function f = x ∨ y is computed by a circuit C = xy ∨ y,
but T (C) = {xy, y} whereas PI(f) = {x, y}.

1At a “functional” level, zero terms are redundant: they contribute nothing to the values of the computed
function. The only reason to keep them in T (C) is to ensure that “syntactical” changes of circuits (replacements
of some input gates by constants), which we will latter make, do not turn some previously zero terms into
nonzero terms.

2

However, we have the following simple and well-known property of (not necessarily mono-
tone) DNFs computing monotone Boolean functions (see, for example, [7, Theorem 1.24 on
p. 37]): if D is a (not necessarily monotone) DNF computing a monotone Boolean function f ,
then the monotone DNF obtained from D by first removing all zero terms, and then removing
all occurrences of negated variables from the remaining terms, also computes f .

If C is a DeMorgan circuit computing f , then the OR of terms in T (C) computes f . So, by
the aforementioned fact [7, Theorem 1.24 on p. 37], for every prime implicant p of f , the set
T (C) must contain either p itself or at least one extension of p, that is, a nonzero term of the
form p · r, where the term r = xi1 · · · xil consists solely of negated variables. This motivates
the following measure of DeMorgan circuits computing monotone Boolean functions.

Definition 2 (Negation width). A DeMorgan circuit computing a monotone Boolean function
f has negation width w if for every prime implicant p of f , the circuit produces either p itself
or some its extension containing at most w negated variables.

There are no other restrictions on the remaining produced terms, except a trivial one that
the function computed by the OR of all produced terms must coincide with f . Note that the
negation width w of any DeMorgan circuit computing f satisfies 0 ≤ w ≤ n −m, where m
is the minimum length of a prime implicant of f . Also, minimal circuits of negation width
w = 0 are monotone circuits: just replace each negated input gate xi by constant 0.

The negation width (without using this term) was already considered by Amano and
Maruoka [3, Sect. 4] (we recall their result right before Corollary 2). Examples of sufficient
conditions for a circuit to have negation width at most w are any of the following.

- The circuit has at most w negated input variables; such circuits were considered, for
example, by Raz and Wigderson [24], and Guo et al.[12].

- No input-output path has more than2 logw AND gates; such circuits computing quadratic
forms (multi-output functions) were considered in [21].

- No nonzero term produced by the circuit contains more than w distinct negated vari-
ables. Note that this restriction is a relaxation of both two previous restrictions.

None of these sufficient conditions is necessary. In particular, the negation width puts no
restrictions on the length of produced zero terms. So, at intermediate gates, the circuit can
produce very long terms, and then cancellate them (turn them into zero terms). At this
point, it is worth to mention that DeMorgan circuits computing monotone Boolean functions
f more efficiently than monotone circuits must use cancellations (must produce zero terms):
otherwise, we could just replace all negated input variables by constants 1, and the resulting
monotone circuit would still compute f .

We will also consider DeMorgan circuits of bounded average negation width. Let C be a
DeMorgan circuit computing a monotone Boolean function f .

Definition 3 (Average negation width). The negation width of a prime implicant p ∈ PI(f)
in the circuit C is the minimum number w such that T (C) contain an extension of p with at
most w negated variables. The average negation width of the circuit C is the average, over
all prime implicants p ∈ PI(f), of the negation width of p in C.

Note that a circuit C computing f has negation width w if every prime implicant of f has
negation width at most w in C. Average negation width relaxes this “every” requirement.

2All logarithm in this paper are to the base 2.

3

1.2 Motivation

Our motivation to consider circuits of bounded negation width w is that allowance of even
moderately large negation width w = nǫ for an arbitrarily small constant ǫ > 0 can substan-
tially reduce the size of monotone circuits.

Example 1. The triangle function has one variable for every edge of the complete graph Kn

on {1, . . . , n}, and accepts a subgraph G of Kn if and only if G contain a triangle. It is known
that this function requires monotone circuits of almost cubic size n3−o(1) [26, 2]. According
to Claim 1 in Appendix A, the function can be computed in already sub-cubic size n3−ǫ/4 if
negation width w = nǫ is allowed; we will show (Corollary 1) that about n3−4ǫ gates are then
still necessary.

Example 2. The threshold-k function Thnk accepts a Boolean input of length n if and only
if it contains at least k ones. The smallest known monotone circuits for Thnk have size of
order n log k (see, for example, [19]). On the other hand, for k ≤ n1/3, the function Thnk can

be computed by a DeMorgan circuit of linear size O(n) if negation width w = k3 is allowed
(see Claim 3 in Appendix A.3).

Using monotone circuit lower bounds of Razborov [27] and Tardos [32], one can show that,
on some monotone Boolean functions, super-polynomial, and even exponential gaps between
the size of monotone circuits and circuits of moderate negation width can be achieved; see
Examples 4 and 5 in Appendix A.

1.3 Results

Our first result relates (non-monotone) DeMorgan circuits and formulas of bounded negation
width to monotone circuits and formulas.

Theorem 1. Let f be a monotone Boolean function with all prime implicants of length at

most m. Let s be the minimum size of a monotone circuit computing f , and d the minimum

depth of such a circuit. Then any DeMorgan circuit of negation width w computing f must

have size at least s/K−1 and depth at least d−logK, where K = 8min{mw, wm}·log |PI(f)|.
Our second result concerns circuits of bounded average width.

Definition 4. A monotone Boolean function h K-approximates a monotone Boolean function
f if there is an OR g of at least a 1/K portion of prime implicants of f such that g ≤ h ≤ f
holds.

Theorem 2. Let f be a monotone Boolean function with all prime implicants of length at most

m. Let w ≥ 0 and K = 8 ·min{m2w, (2w)m}. If every monotone circuit K-approximating f
requires at least t gates, then every DeMorgan circuit of average negation width w computing f
must also have at least t gates.

Remark 1. Note the difference between Theorems 1 and 2. To apply Theorem 1, one can
directly use known lower bounds on the monotone circuit complexity of the function f them-

selves. Theorem 2 is more general: it applies to circuits when only the average negation width
is bounded, and we do not have the additional log |PI(f)| factor in the “blow down” param-
eter K. However, in order to apply Theorem 2, one has to show that not only the function
f itself but also any sufficiently close approximation of f requires large monotone circuits.
So, one has to analyze the monotone lower bound proofs to ensure this latter property; we
demonstrate this in the derivation of Corollary 6 in Section 7.

4

Our third result extends the well-known Spira’s depth reduction theorem [30] to DeMorgan
formulas of bounded negation width: it shows that such formulas can also be balanced without

increasing their negation width.

Theorem 3. If a monotone Boolean function f can be computed by a DeMorgan formula of

size s and negation width w, then f can be also computed by a DeMorgan formula of depth

at most 3 · log s and the same negation width w.

The rest of the paper is organized as follows. In Section 2, we shortly recall previous
work on {∨,∧,¬} circuits with limited use of negations. In Section 3, a special type of
“random subcircuits” is introduced. Sections 4–6 are devoted to the proof of our main results
(Theorems 1–3). In Section 7, we give some applications of our general results to specific
Boolean functions. Appendix A contains proofs of the upper bounds claimed in our motivating
examples (Examples 1–4). Appendix B gives an alternative proof of the lower bound on the
depth of DeMorgan circuits of bounded negation width using the communication complexity
arguments.

2 Related work

The effect of negations on the size or depth of {∨,∧,¬} circuits was mainly considered by
either restricting the total number of used negation gates, or by restricting the usage of
negations.

There is an extensive literature on the research in the first direction, when the total number
of NOT gates is bounded; here negations can be applied not only to input variables. We refer
to [16, Chapter 10] and the papers cited therein for this line of research; see also [29, 5, 12]
for more recent developments in this direction.

Another line of research (which attracted much less attention, and which we follow in this
paper) was to restrict the usage of negation gates. One of the first results in this direction
was proved by Raz and Wigderson [24] for the s-t connectivity function f = STCON(n) of
n-vertex graphs. This is a monotone Boolean function of

(n
2

)

variables, one for each edge of
the complete graph Kn on [n] = {1, . . . , n}. Every assignment of Boolean values to these
variables specifies a subgraph of Kn, and the function accepts the assignment if and only if
the specified graph contains a path from vertex s = 1 to vertex t = n. It was know that
monotone circuits for this require depth Ω(log2 n); see Karchmer and Wigderson [17], or
Grigni and Sipser [10] for a simpler proof. Raz and Wigderson [24, Theorem 4.1] extend this
to non-monotone circuits: if w ≤ n2−ǫ for a constant ǫ > 0, then any DeMorgan circuit for f
with at most w negated input variables must have depth Θ(log2 n).

Our Theorem 3 holds also in the special case when w is the total number of allowed
negated input variables in DeMorgan formulas. So, the result of Raz and Wigderson implies
that if a DeMorgan formula computes STCON(n) and uses only w ≤ n2−ǫ negated inputs for
a constant ǫ > 0, then the formula must have size nΩ(logn). On the other hand, STCON(n)
can be computed by an even monotone circuit of size O(n3) arising from the well-known
Bellman–Ford dynamic programming algorithm. So, this shows a super-polynomial gap be-
tween monotone circuits and non-monotone DeMorgan formulas with bounded number of
allowed negated inputs.

Guo et al. [12] have recently used the communication complexity approach of Karchmer
andWigderson [17] to prove that any DeMorgan circuit with at most w negated input variables

5

computing a monotone Boolean function f must have depth at least the monotone circuit
depth of f minus w.

DeMorgan circuits with bounded total number of allowed negated input variables (consid-
ered in [24, 12]) have the following functional restriction. Recall that a function g(x1, . . . , xn)
is monotone in the ith variable xi if changing the value of xi from 0 to 1 (while keeping the
other variables fixed) cannot change the value of g from 1 to 0; hence, a function is monotone
if and only if it is monotone in each of its variables. Now, if C is a DeMorgan circuit with w
negated input variables, then the functions computed at all gates of C are monotone in one

and the same set of at least n − w variables, namely, are monotone in all those variables xi
whose negations are not inputs of C.

Koroth and Sarma [20] relax this restriction, and say that a (not necessarily DeMorgan)
circuit C over {∨,∧,¬} has orientation weight w if the function computed at each gate of C is
monotone in at least n−w variables; for different gates, these sets of variables can be different.
Using the communication complexity approach of Karchmer and Wigderson [17], they prove
that the depth of any circuit over {∨,∧,¬} of orientation weight w computing a monotone
function f is at least the minimum depth of a monotone circuit computing f divided by 4w+1.
They also prove an interesting result showing the limitations of their relaxation: there exists
a (non-explicit) monotone Boolean function f which cannot be computed by poly-log depth
monotone circuits, but f can be computed by a circuit of poly-log depth if at some two of its
gates non-monotone Boolean functions can be computed.

In circuits of nonzero orientation w, negations are allowed to be applied to inner gates
(not only to input variables). On the other hand, the (functional) use of such NOT gates is
severely restricted: the function computed at each NOT gate in such a circuit cannot depend
on more than 2w variables. To see this, let g = ¬h be the function computed at some NOT
gate, and h the function computed at its input. Let X be the set of variables on which g
depends. We know that neither g nor h can be non-monotone in more than w variables. If g
is monotone in a variable xi ∈ X, then h is non-monotone in xi. So, g cannot be monotone
in more than w variables of X. Since, due to the orientation width restriction, the function g
itself cannot be non-monotone in more than w variables, the desired upper bound |X| ≤ 2w
follows.

Remark 2. Our relaxation (the negation width, see Definition 2) is of a more “syntactic”
nature than that of the orientation weight in [20], but is also of a similar spirit. Instead of
requiring that the produced extensions of prime implicants can only use negated variables
from one fixed subset of ≤ w negated variables (as in [24, 12]), we now allow the extensions
to use different subsets of ≤ w negated variables for different prime implicants. In contrast
to [20], we have no restrictions on functions computed at intermediate gates: only terms
produced at the end do matter. And only nonzero terms do matter: produced zero terms do
not contribute to the negation width at all.

Remark 3. Examples 1-2 given in the introduction (as well as Examples 4-5 in Appendix A)
show that already moderately negation width (nǫ for an arbitrary small constant ǫ > 0)
can substantially reduce the size of monotone circuits (see also Appendix A). We are not
aware of any similar separating examples for restrictions on the use of negations considered
in [24, 20, 12]: restricted number of allowed negated input variables, or restricted orientation
weight.

6

3 Random subcircuits

Let f(x1, . . . , xn) be a monotone Boolean function, and C be a DeMorgan circuit computing f .
For a subset Y = {xi : i ∈ I} of variables, the monotone Y -subcircuit of C is obtained as
follows.

1. First, set to 0 all variables in Y ; so, for every i ∈ I, the input gate xi is set to 0, while
the negated input gate xi is set to 1.

2. Then replace by constant 0 each of the remaining negated input gates xj for j 6∈ I.
3. Finally, eliminate constant input gates through repeated replacements of 0 ∧ u by 0,

1 ∨ u by 1, and 0 ∨ u, 1 ∧ u by u.
Schematically:

C(x, y, x, y)
Step 17→ C(x, 0, x, 1)

Step 27→ C(x, 0, 0, 1)
Step 37→ C+(x) .

Example 3. Consider the DeMorgan formula C = (x1∨x2∨x3)(x1∨x2∨x5)(x3∨x4∨x5), and
Y = {x1, x4}. After the first step, we obtain the formula (0∨x2∨x3)(1∨x2∨x5)(x3∨0∨x5).
After the second step, we obtain the formula (0∨x2 ∨ 0)(1∨ 0∨x5)(x3 ∨ 0∨ 0) and, after the
elimination of constants, the resulting monotone sub-formula of C is x2x3.

The following lemma is just a simple observation.

Lemma 1. If a DeMorgan circuit C computes a monotone Boolean function f , then the

monotone Boolean function h computed by any monotone subcircuit of C satisfies h ≤ f .

Proof. Take an arbitrary subset Y = {xi : i ∈ I} of variables, and let C+ be a monotone
Y -subcircuit of C. Let h be the monotone Boolean function computed by C+. We have to
show that h ≤ f holds.

Let g be a monotone Boolean function computed by the circuit C ′ obtained from C by
setting all variables in Y to 0. Since the function f is monotone, we have g ≤ f , and even
PI(g) ⊆ PI(f). Now, the circuit C+ is obtained from C ′ by replacing by zeroes all remaining
(not yet set to constant 1) negated input variables. So, the set T (C+) of terms produced by
C+ is obtained from T (C ′) by removing all terms with at least one negated variable (including
all zero terms). Since g is the OR of all terms in T (C ′), and h is the OR of all terms in T (C+),
the inclusion T (C+) ⊆ T (C ′) yields h ≤ g. So, h ≤ g ≤ f , as desired.

Let m ≥ 3 and w ≥ 1 be integers. A random (m,w)-subcircuit C of C is a monotone
Y -subcircuit of C for Y ⊆ {x1, . . . , xn} being a random subset of variables with each variable
included in Y independently with probability 1− ǫ, where

ǫ :=

{

1
w if w ≥ m,

1− 1
m if w < m.

The next lemma is just a refinement of [21, Lemma 3].

Lemma 2. Let C be a DeMorgan circuit computing a monotone Boolean function f , and

C be a random (m,w)-subcircuit of C for m ≥ 3 and w ≥ 1. If a prime implicant p of f
has length at most m, and has negation width at most w in C, then p is produced by C with

probability at least 1/K, where K ≤ 4mw for w = 1, 2, and K ≤ 4 ·min{mw, wm} for w ≥ 3.

7

Proof. Since the negation width of the prime implicant p in the (deterministic) circuit C is
at most w, the set T (C) of terms produced by C must contain a nonzero term p · r, where
term r consists solely of l ≤ w negated variables. The probability that all these negated l
variables are set to 0 (and hence, that the term r is set to 1) is at least (1 − ǫ)l ≥ (1 − ǫ)w.
The probability that none of the t ≤ m variables of p is set to 0 is ǫt ≥ ǫm. So, the prime
implicant p is produced by C with probability at least α := ǫm(1 − ǫ)w. So, it remains to
show that α ≥ 1/K.

We will use two simple facts: (1 − 1/t)t ≥ 1/4 holds for all integers t ≥ 2, and ts ≥ st

holds for all integers 3 ≤ t ≤ s. The first inequality follows from the fact that the sequence
at = (1−1/t)t for t = 2, 3, . . . is non-decreasing. Namely, at+1/at is t/(t+1) times (t2/(t2−1))t

where, by the Bernoulli inequality, the latter term (1 + 1/(t2 − 1))t ≥ (1 + 1/t2)t is at least
1 + t · (1/t2) = (t + 1)/t. So, (1 − 1/t)t ≥ a2 = 1/4 holds for all integers t ≥ 2. To see the
second fact, observe that ts ≥ st is equivalent to t1/t ≥ s1/s, and that the sequence t1/t for
t = 3, 4, . . . is non-decreasing. This latter claim can be shown by an easy induction on t.
Namely, the inequality t1/t ≥ (t+ 1)1/(t+1) is equivalent to tt+1 ≥ (t+ 1)t, or t ≥ (1 + 1/t)t.
Since (1 + 1/t)t is at most the Euler number e < 3, and since we assumed that t ≥ 3, the
inequality follows.

Now, if w ≥ m, then ǫ = 1/w, and we obtain α = (1/w)m(1 − 1/w)w ≥ 1
4w

−m ≥ 1
4m

−w,
where the last inequality holds because m ≥ 3. If w < m, then ǫ = 1 − 1/m, and we obtain
α = (1− 1/m)m(1/m)w ≥ 1

4m
−w ≥ 1

4w
−m, where the last inequality holds, as long as w ≥ 3.

In both cases, we have that α is at least 1
4 ·max{m−w, w−m} ≥ 1/K, as desired. If w = 1 or

w = 2, then w < m, and we have α ≥ 1
4m

−w.

4 Proof of Theorem 1

Theorem 1 is a direct consequence of the following lemma.

Lemma 3 (Reduction lemma). Let f be a monotone Boolean function with all prime impli-

cants of length at most m. If C is a DeMorgan circuit of negation width w computing f , then
there exist at most K = 8 ·min{mw, wm} · log |PI(f)| monotone sub-circuits of C whose OR

also computes f .

In particular, if C has size s and depth d, then the resulting monotone circuit has size
s+ ≤ (s + 1)K and depth d+ ≤ d + logK. Hence, the lower bounds s ≥ s+/K − 1 and
d ≥ d+ − logK claimed in Theorem 1 follow.

Proof. Let C be a random (m,w)-subcircuit of C, and take K independent copies C1, . . . ,CK

of C. Since the circuit C has negation width w, every prime implicant of f must have negation
width at most w in C. By Lemma 2, we have Pr {p ∈ T (C)} ≥ 1/t for every prime implicant
p ∈ PI(f) of f , where t := 4 · min{wm,mw}. Note that K/t = 2 · log |PI(f)|. Hence, for
every prime implicant p ∈ PI(f), we have

Pr {p 6∈ T (Ci) for all i = 1, . . . ,K} ≤ (1− 1/t)K ≤ e−K/t ≤ |PI(f)|−2 .

By the union bound, the probability that some prime implicant of f is produced by none of
the circuits C1, . . . ,CK is strictly smaller than 1. Consequently, there must be a sequence
C1, . . . , CK of realizations of these circuits such that every prime implicant of f is produced
by at least one of these circuits. Replace all negated input variables in these circuits by

8

constants 0. Let C+

1 , . . . , C
+

K be the resulting monotone circuits, and consider the monotone
Boolean function h = h1 ∨ · · · ∨ hK , where hi is the function computed by C+

i . By Lemma 1,
we have h ≤ f . On the other hand, the inclusion PI(f) ⊆ T (C+

1) ∪ · · · ∪ T (C+

K) yields
the converse inequality f ≤ h. So, the OR of the circuits C+

1 , . . . , C
+

K computes h = f , as
desired.

5 Proof of Theorem 2

Let f be a monotone Boolean function with all prime implicants of length at most m. Let
C be a DeMorgan circuit of average negation width w computing f . Recall that a monotone
Boolean function h K-approximates a monotone Boolean function f if there is an OR g of at
least a 1/K portion of prime implicants of f such that g ≤ h ≤ f holds. Now suppose that
every monotone circuit K-approximating f for K = 8 · min{m2w, (2w)m} requires t gates.
Our goal is to show that then the circuit C must have at least t gates.

Since the average negation width of C is w, some set P ⊆ PI(f) of |P | ≥ 1
2 |PI(f)| prime

implicants of f have negation width at most 2w in C. Let C be a random (m,w)-subcircuit
of C. By Lemma 2, we have Pr {p ∈ T (C)} ≥ 2/K for every prime implicant p ∈ P . So, the
expected number of prime implicants p ∈ P produced by C is at least 2|P |/K ≥ |PI(f)|/K.

There must therefore be a realization C+ of C such that the set P ′ = P ∩ T (C+) has
|P ′| ≥ |PI(f)|/K terms. Let g be the OR of the terms in P ′, and h be the monotone Boolean
function computed by C+. Since P ′ ⊆ T (C+), we have g ≤ h, while the second inequality
h ≤ f follows from Lemma 1. This means that the circuit C+ K-approximates f and, by
our assumption about the function f , the monotone circuit C+ and, hence, also the original
(non-monotone) circuit C must have at least t gates, as desired.

6 Proof of Theorem 3

It is long known that DeMorgan formulas can be balanced: every DeMorgan formula of size
s can be simulated by a DeMorgan formula of depth at most c log s. This was first proved
by Spira [30] with c < 3.42, while the best currently known constant c < 1.73 is due to
Khrapchenko [18].

In our context (when the negation width of formulas is bounded), the following natural
question arises: can also DeMorgan formulas of bounded negation width be balanced without

increasing the negation width of the resulting (balanced) formulas? The question is nontrivial
because Spira’s argument, as well as subsequent ones introduce negation gates applied to sub-
formulas (not just to input variables), which may result in a much larger negation width.

We therefore will argue a bit differently: we first show that monotone formulas can be
turned into balanced formulas by preserving the produced by the original formula terms, and
then use this additional property to prove Theorem 3 itself.

As before, for a DeMorgan circuit or formula F , T (F) denotes the set of terms produced
by F . Two formulas are equivalent if they compute the same function.

Lemma 4. For every monotone formula F of size s, there is an equivalent monotone formula

F ′ of depth at most 3 log s such that T (F ′) ⊇ T (F).

Proof. We argue by induction on s. The claim is trivially true for s = 2 (just take F ′ = F).
Now assume that the claim holds for all formulas with fewer than s leaves, and prove it for

9

formulas with s leaves. Take an arbitrary monotone formula F with s leaves. By walking
from the output-gate of F we can find a sub-formula H such that H has ≥ s/2 leaves but its
left and right sub-formulas each have < s/2 leaves. Now replace the sub-formula H of F by
constants 0 and 1, and let F0 and F1 be the resulting formulas. The key observation (already
made by Brent, Kuck and Maruyama [6], and Wegener [33]) is that, due to the monotonicity,
F1(x) = 0 implies F0(x) = 0. Thus the formula H ∧ F1 ∨ F0 is equivalent to F .

The formulas F0 and F1 as well as the left and right sub-formulas of H each have at most
s/2 leaves. By the induction hypothesis, F0 and F1 can be replaced by formulas F ′

0 and F ′
1

of depth at most 3 log(s/2), and the formula H can be replaced by a formula H ′ of depth at
most 1 + 3 log(s/2) such that

T (F1) ⊆ T (F ′
1) , T (F0) ⊆ T (F ′

0) and T (H) ⊆ T (H ′) . (1)

Thus, the resulting entire formula

F ′ = H ′ ∧ F ′
1 ∨ F ′

0 (2)

is equivalent to F and has depth at most 2 + 1 + 3 log(s/2) = 3 log s.
It remain to show that the set T (F ′) of terms produced by the (balanced) formula F ′

satisfies T (F ′) ⊇ T (F). Let Fz be the formula obtained from F by replacing the sub-formula
H by a new variable z. Then the set of terms produced by Fz has the form T (Fz) = {z}∗Q∪R,
where Q is some set of terms, R consists of all terms in T (Fz) with no occurrences of the
variable z, and T1 ∗ T2 stands for the set of terms {t1 ∧ t2 : t1 ∈ T1, t2 ∈ T2}. This yields

T (F) = [T (H) ∗Q] ∪R , T (F1) = Q ∪R and T (F0) = R . (3)

So,

T (F ′)
(2)
= [T (H ′) ∗ T (F ′

1)] ∪ T (F ′
0)

(1)

⊇ [T (H) ∗ T (F1)] ∪ T (F0)

(3)
= [T (H) ∗ (Q ∪R)] ∪R ⊇ [T (H) ∗Q] ∪R

(3)
= T (F) .

Proof of Theorem 3. Let f be a monotone Boolean function, and w ≥ 0. Suppose that f can
be computed by a DeMorgan formula G = G(x, x) of size s and negation width w. Our goal
is to show that then Dw(f) ≤ 3 · log s holds.

Replace all negated input variables xi in G by new variables yi, and consider the monotone
formula F = G(x, y). Since the formula G has negation width w, we know that the monotone
formula F has the following property:
(a) for every prime implicant p =

∧

i∈S xi of f there is a term p ·r ∈ T (F) with r =
∧

j∈T yj,
T ∩ S = ∅ and |T | ≤ w.

Apply Lemma 4 to the formula F (x, y). This gives us a monotone formula F ′(x, y) of depth
at most 3 log s whose set T (F ′) of produced terms contains all terms produced by the formula
F . This latter property implies that the (balanced) formula F ′ also has property (a). So, if
we replace back in F ′(x, y) the input variables yi by negated variables xi, the obtained (also
balanced) DeMorgan formula F ′′(x, x) computes our function f and has negation width w,
as desired.

10

7 Explicit lower bounds

For a monotone Boolean function f(x1, . . . , xn), Cw(f) will denote the minimum size of a
DeMorgan circuit of negation width w computing f , while C+(f) will denote the minimum
size of a monotone circuit computing f . In the case of DeMorgan formulas, these measures
are denoted by Lw(f) and L+(f); in this case, the size of a formula is the number of leaves
of the underlying tree. Let also Dw(f) denote the minimum depth of a DeMorgan circuit
of negation width w computing f , and let D+(f) denote the minimum depth of a monotone
circuit computing f .

Theorem 1 directly yields the following lower bounds on the size and depth of DeMorgan
circuits of bounded negation width. Let f(x1, . . . , xn) be a monotone Boolean function with
M prime implicants, each of length at most m. Then for any w ≥ 0, we have

Cw(f) ≥
C+(f)

K
− 1 , Lw(f) ≥

L+(f)

K
− 1 and Dw(f) ≥ D+(f)− logK , (4)

where
K = 8 ·min{mw, wm} · log |PI(f)| . (5)

In Appendix B, we also give an entirely different proof of a lower bound Dw(f) ≥ D+(f)−
w · ⌈log(n+ 1)⌉ on the depth of DeMorgan circuit of negation width w using communication
complexity arguments. The argument exposes the meaning of the negation width restriction
from the communication point of view.

The k-clique function CLIQUE(n, k) has
(n
2

)

variables, one for each edge of the complete
graph Kn on [n] = {1, . . . , n}. Every assignment of Boolean values to these variables specifies
a subgraph of Kn, and the function accepts the assignment if and only if the specified graph
contains a complete graph on k or more vertices; note that we do not require k to be an
integer.

Corollary 1 (Small cliques). There are absolute constants c1, c2 > 0 such that, if f =
CLIQUE(n, 3), and w ≤ nǫ for ǫ > 0, then

c1n
3−4ǫ ≤ Cw(f) ≤ c2n

3−ǫ/4 .

Proof. Here we only show the lower bound; the proof of the upper bound Cw(f) = O(n3−ǫ/4)
is given in Appendix A.2 (see Claim 2). As shown by Alon and Boppana [2, Lemma 3.14],
C+(f) = Ω

(

n3/ log3 n
)

holds. Since f has M =
(n
3

)

≤ n3 prime implicants, each of length
m = 3, the parameter K in Eq. (5) is at most a constant times wm · logM ≤ 3n3ǫ log n, and
Eq. (4) yields the desired lower bound Cw(f) ≥ C+(f)/K − 1 = Ω(n3−4ǫ).

Amano and Maruoka [3, Theorem 4.2] proved that, for any 3 ≤ k ≤ n2/3, DeMorgan

circuits of negation width w = o(
√
k) computing f = CLIQUE(n, k) require 2Ω(

√
k) gates.

(In their definition of the negation width [3, Definition 4.1], they use different terminology,
but it is not difficult to see that their measure coincides with that given in our Definition 2.)
Note, however, that here the allowed negation width w = o(

√
k) is much smaller than the

clique size k. When combined with the lower bound of Alon and Boppana [2] for cliques of
moderate (logarithmic) size, Eq. (4) directly yields super-polynomial lower bounds also when
the allowed negation width is much larger, even exponential, in the cliques size.

Corollary 2 (Moderate cliques). Let f = CLIQUE(n, s) with k = log1/3 n. Then Cw(f) =
nΩ(k) holds for w = 2k.

11

Proof. By [2, Theorem 3.16], we have C+(f) ≥ nk/t where t = (8k2ek log n)k is at most
a constant times 22k · log2 n ≤ n. Since f has M =

(n
k

)

≤ nk prime implicants, each of

length m =
(

k
2

)

≤ k2, the parameter K in Eq. (5) is at most a constant times wm · logM ≤
2k

3

k log n ≤ n log2 n, and Eq. (4) yields that Cw(f) ≥ C+(f)/K − 1 is at least a constant
c > 0 times nk/n2 log2 n = nΩ(k).

Corollary 3 (Large cliques). Let f = CLIQUE(n, n/2). If w ≤ ǫn/ log n for a sufficiently

small constant ǫ > 0, then Dw(f) = Ω(n).

Proof. Raz and Wigderson [25, Corollary 4.1] have proved that D+(f) = Ω(n). Since f has
M =

(n
n/2

)

≤ 2n prime implicants, each of length m =
(n/2

2

)

≤ n2, the logarithm of the

parameter K in Eq. (5) is at most a constant times w logm+log logM = O(w log n). Eq. (4)
yields Dw(f) ≥ D+(f)− logK = D+(f)−O(w log n) = Ω(n), as desired.

Corollary 4. If f = CLIQUE(n, n/2), then Lw(f) = 2Ω(n) holds for DeMorgan formulas of

negation width w = o(n/ log n).

Proof. The desired lower bound follows directly from Corollary 3 and our refinement of Spira’s
depth-reduction given in Theorem 3.

Corollary 5 (Tardos’ function). There is a monotone Boolean function Tn of n variables such

that Tn can be computed by a DeMorgan circuit of polynomial in n size, but Cw(Tn) = 2Ω(n1/7)

holds when the allowed negation width is w ≤ n1/7.

Proof. Tardos [32] observed that an efficient algorithm for computing the Lovász theta func-
tion, designed by Grötschel, Lovász and Schrijver [11], gives us a monotone Boolean function
Tn of n =

(

v
2

)

variables which is computable by DeMorgan circuits of polynomial in n size,
and shares common properties with Clique functions sufficient for Alon and Boppana [2] to

yield a lower bound C+(Tn) = 2Ω(v/ log v)1/3 = 2Ω(n/ logn)1/6 . On the other hand, the parame-
ter K in Eq. (5) is exponential in at most a constant times w log n ≤ n1/7 log n. So, Eq. (4)

immediately yields the claimed lower bound Cw(Tn) ≥ C+(Tn)/K − 1 = 2Ω(n1/7) for circuits
of negation width w = n1/7.

Remark 4. Note that the total number N of variables in each clique function CLIQUE(n, k) is
N =

(n
2

)

= Θ(n2). The highest known lower bound on the monotone circuit complexity of an
explicit Boolean function of N variables was proved by Harnik and Raz [13], and is exponential
in (N/ logN)1/3 Recently, Pitassi and Robere [23] gave an explicit monotone Boolean function
f of N variables such that D+(f) = Ω(N). The lower bound in Eq. (4) implies that any (non-
monotone) DeMorgan circuit of negation width w = ǫN for a sufficiently small constant
ǫ > 0 must have linear depth Ω(N). Together with Theorem 3, this result implies a truly
exponential lower bound Lw(f) = 2Ω(N) on the size of DeMorgan formulas of negation width
w = ǫN . Note that the ultimative goal is to prove lower bounds for DeMorgan circuits of
negation width w = N (or only w = N − m, where m is the minimum length of a prime
implicant): these bounds then would hold for unrestricted circuits.

Finally, let us give an application of our Theorem 2 concerning DeMorgan circuits of
bounded average negation width. As we already mentioned in Section 1.3, in order to apply
this theorem, we need lower bounds on the size of monotone circuits that only approximate

a given monotone Boolean function (see Definition 4).

12

Fortunately, known lower bound arguments for monotone circuits (see, for example, [16,
Chapter 9] and the literature cited herein) work also when the monotone circuits are only
required to produce a large enough subset of prime implicants (not necessarily all prime
implicants). Just to give an example, let us show the following simple consequence of [15,
Theorem 3.4].

Lemma 5. Let 3 ≤ k ≤ √
n, and let f be a monotone Boolean function which rejects all

graphs of chromatic number at most k− 1, and accepts a 1/K-fraction of all k-cliques. Then

C+(f) ≥ 2Ω(
√
k)/K.

Proof. Every q-coloring h : [n] → [q] of the vertices ofKn defines the graphGh whose edges are
pairs of vertices receiving the same color. Note that the chromatic number of the complement
of every Gh does not exceed q; so, for q := k − 1, the complements of graphs Gh must be
rejected by f . An s-forest is a forest with s edges.

As shown in [15, Theorem 3.4], if f can be computed by a monotone circuit of size t,
then for any integer parameters 1 ≤ r, s ≤ n− 1 there exist a family of t · (2s)2r r-cliques, a
family of t · (2r)2s s-forests, and a set E of r2 edges such that at least one of the following
two assertions holds:
(1) every k-clique accepted by f contains at least one of the given r-cliques;
(2) for every q-coloring h, the graph Gh either intersects E or contains at least one of the

given s-forests.
Every r-clique is contained in exactly

(

n−r
k−r

)

k-cliques. So, under the first alternative (1),

the size t of the circuit must be at least
(

n
k

)

/K divided by (2s)2r
(

n−r
k−r

)

, which is at least

(n/4ks2)r/K. On the other hand, out of all qn possible q-colorings h of the vertices of Kn,
at most qn−l of the graphs Gh can contain a fixed forest with l edges. This is directly shown
in the proof of Theorem 3.4 in [15], but also follows from the fact that random q-coloring
colors two vertices by the same color with probability 1/q, and these events are independent
for edges in a forest. So, under the second alternative (2), the size t of the circuit must be at
least qn − r2 · qn−1 = qn(1− r2/q) divided by (2r)2sqn−s which, for any r ≤

√

q/2, is at least
1
2(k/4r

2)s.

By taking the parameters r := ⌊
√

k/16⌊ and s := ⌊
√

n/8k⌋, the first alternative yields
a lower bound t ≥ 2r/K, while the second one yields t ≥ 1

24
s ≥ 2s. Since our assumption

k ≤ √
n yields s ≥ r, the desired lower bound t ≥ 2r/K ≥ 2Ω(k)/K follows.

Corollary 6. Let f = CLIQUE(n, k) for k ≤ √
n. Then every DeMorgan circuit of average

negation width w = o(
√
k/ log k) computing f must have 2Ω(

√
k) gates.

Proof. Lemma 5 implies that, for every K ≥ 1, every monotone circuit K-approximating f

requires at least t = 2Ω(
√
k)/K gates. The length of prime implicants of f is m =

(k
2

)

. So, by

taking K := 8m2w = 2o(
√
k), Theorem 2 yields the desired lower bound on the size t of any

DeMorgan circuit of average negation width w computing f .

Let us mention that the aforementioned result [15, Theorem 3.4] holds also for monotone
circuits with unbounded fanin AND and OR gates. The reduction lemma (Lemma 3) also
holds for DeMorgan circuits with unbounded fanin AND and OR gates. So, Corollary 6 holds
for DeMorgan circuits with unbounded fanin gates.

13

References

[1] L.M. Adleman, K.S. Booth, F.P. Preparata, and W.L. Ruzzo. Improved time and space bounds for
Boolean matrix multiplication. Acta Inf., 11:61–77, 1978.

[2] N. Alon and R. Boppana. The monotone circuit complexity of boolean functions. Combinatorica, 7(1):1–
22, 1987.

[3] K. Amano and A. Maruoka. The potential of the approximation method. SIAM J. Comput., 33(2):433–
447, 2004.

[4] M.D. Atkinson and N. Santoro. A practical algorithm for Boolean matrix multiplication. Inf. Process.

Lett., 29:37–38, 1988.
[5] E. Blais, C.L. Canonne, I.C. Oliveira, R.A. Servedio, and L.Y. Tan. Learning circuits with few nega-

tions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
volume 40 of LIPIcs, pages 512–527, 2015.

[6] R.P. Brent, D.J. Kuck, and K. Maruyama. The parallel evaluation of arithmetic expressions without
divisions,. IEEE Trans. Computers, C-22:523–534, 1973.

[7] Y. Crama and P.L. Hammer, editors. Boolean Functions: Theory, Algorithms, and Applications, volume
142 of Encyclopedia of Mathematics and Its Applications. Cambridge University Pess, 2011.

[8] P.E. Dunne. Relationship between monotone and non-monotone network complexity. In M.S. Paterson,
editor, Boolean Function Complexity, volume 169 of London Math. Soc. Lect. Note Series, pages 1–24.
Cambridge University Press, 1992.

[9] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proc. of 39th Int. Symp. on Symbolic

and Algebraic Computation, pages 296–303, 2014.
[10] M. Grigni and M. Sipser. Monotone separation of logarithmic space from logarithmic depth. J. Comput.

Syst. Sci., 50(3):433–437, 1995.
[11] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combinatorial

optimization. Combinatorica, 1(2):169–197, 1981.
[12] S. Guo, T. Malkin, I.C. Oliveira, and A. Rosen. The power of negations in cryptography. In Proc. of

12th Theory of Cryptography Conference, TCC, volume 9014 of Lect. Notes in Comput. Sci., pages 36–65.
Springer, 2015.

[13] D. Harnik and R. Raz. Higher lower bounds on monotone size. In Proc. 32nd Ann. ACM Symp. on

Theory of Computing, pages 378–387, 2000.
[14] J.E. Hopcroft and R.M. Karp. An n5/2 algorithm for maximum matching in bipartite graphs. SIAM J.

Comput., 2:225–231, 1973.
[15] S. Jukna. Combinatorics of monotone computations. Combinatorica, 19(1):65–85, 1999. Preliminary

versions in: ECCC Report Nr. 26, 1996, and in Proc. of 12th Ann. IEEE Conf. on Comput. Complexity.
1997, pp. 223-238.

[16] S. Jukna. Boolean Function Complexity: Advances and Frontiers. Springer-Verlag, 2012.
[17] M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-logarithmic depth.

SIAM J. Discrete Math., 3:255–265, 1990.
[18] V.M. Khrapchenko. On a relation between the complexity and the depth of formulas. In Methods of

Discrete Analysis in Synthesis of Control Systems, volume 32, pages 76–94. 1978. (In Russian).
[19] M. Kochol. Efficient monotone circuits for threshold functions. Inf. Process. Lett., 32:121–122, 1989.
[20] S. Koroth and J. Sarma. Depth lower bounds against circuits with sparse orientation. Fundam. Inform.,

152(2):123–144, 2017.
[21] A. Lingas. Small normalized boolean circuits for semi-disjoint bilinear forms require logarithmic conjunc-

tion-depth. In Proc. of 33rd Comput. Complexity Conf., volume 102 of LIPIcs, pages 26:1–26:10, 2018.
Extended version in: ECCC Report Nr. 108, 2018.

[22] E.A. Okol’nishnikova. On the influence of one type of restrictions to the complexity of combinational
circuits. Diskrete Analysis, 36:46–58, 1981. (In Russian).

[23] T. Pitassi and R. Robere. Strongly exponential lower bounds for monotone computation. In Proc. 49th

Ann. ACM Symp. on Theory of Computing, STOC, pages 1246–1255, 2017.
[24] R. Raz and Wigderson. Probabilistic communication complexity of boolean relations. In Proc. of 30th

Ann. Symp. on Foundations of Computer Sci., FOCS, pages 562–567, 1989.
[25] R. Raz and A. Wigderson. Monotone circuits for matching require linear depth. JACM, 39(3):736–744,

1992.
[26] A.A. Razborov. Lower bounds for the monotone complexity of some boolean functions. Soviet Math.

Dokl., 31:354–357, 1985.
[27] A.A. Razborov. Lower bounds on monotone complexity of the logical permanent. Math. Notes of the

14

Acad. of Sci. of the USSR, 37(6):485–493, 1985.
[28] A.A. Razborov. Applications of matrix methods to the theory of lower bounds in computational com-

plexity. Combinatorica, 10(1):81–93, 1990.
[29] B. Rossman. Correlation bounds against monotone NCˆ1. In Proc. of 30th Comput. Complexity Conf.,

volume 33 of LIPIcs, pages 392—411, 2015.
[30] P.M. Spira. On time–hardware complexity tradeoffs for boolean functions. In Proc. of 4th Hawaii Symp.

on System Sciences, pages 525–527. Western Periodicals Company, North Hollywood, 1971.
[31] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356, 1969.
[32] É. Tardos. The gap between monotone and non-monotone circuit complexity is exponential. Combina-

torica, 7(4):141–142, 1987.
[33] I. Wegener. Relating monotone formula size and monotone depth of Boolean functions. Infrom. Process.

Letters, 16:41–42, 1983.
[34] I. Wegener. The complexity of Boolean functions. Wiley-Teubner, 1987.
[35] V. Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In Proc. of 44th Symp.

on Theory of Comput., STOC, pages 887–898, 2012.

A Motivating examples

Examples of monotone Boolean functions f(x1, . . . , xn), for which already “moderate” nega-
tion width allows to substantially reduce the size of monotone circuits computing f , can
be constructed using two simple observations: (1) negation width is always at most the
total number of input variables, and (2) OR gates cannot increase the negation width.
In particular, if f = f1 ∨ · · · ∨ fr where each fi is a monotone Boolean function, then
Cw(f) ≤ Cw(f1) + · · · +Cw(fr) + r − 1 holds for every w ≥ 0.

A general idea is the following. Take a monotone Boolean function h : {0, 1}m → {0, 1},
about which we know that it can be computed by small (unrestricted) DeMorgan circuits,
but requires large monotone circuits. An extension f(X) of h to |X| = r · m variables
is obtained as follows. Split X into disjoint blocks X1, . . . ,Xr of size |Xi| = m, and let
f(X) = h(X1) ∨ h(X2) ∨ · · · ∨ h(Xr).

Then C+(f) ≥ C+(h) clearly holds: having a monotone circuit for f , just set to 0 the
variables in all but one block Xi, and the resulting circuit will compute h(Xi). On the
other hand, since each of the functions h(Xi) has only m variables, the negation width of
any DeMorgan circuit computing h is trivially at most m. So, Cw(h) ≤ C(h) holds for
w = m; here, C(h) is the unrestricted DeMorgan circuit complexity of h. Since OR gates
do not increase the negation width, we have the upper bound Cw(f) ≤ r · Cw(h) + r ≤
r · C(h) + r for circuits of negation width w = m. So, the monotone vs. bounded negation
width gap C+(f)/Cw(f) on the function f is at least about the monotone vs. non-monotone
gap C+(h)/C(h) on the initial function h.

A.1 Super-polynomial gaps

Example 4 (Logical permanent). The logical permanent function Perm is a monotone Boolean
function of m2 variables which takes a Boolean m×m matrices Y as inputs, and outputs 1 if
and only if Y contains m 1-entries no two of which lie in the same row or the same column.
Let 0 < ǫ < 1/2 be an arbitrarily small constant, and assume for simplicity that both m = nǫ

and r = n1−ǫ are integers. Consider the monotone Boolean function f(X) whose variables are
arranged into an n× n matrix X. Split X into r2 disjoint m×m submatrices. The function
f accepts X if and only if Perm(Y) = 1 holds for at least one of these submatrices Y . The

15

monotone circuit complexity of f is at least the monotone circuit complexity of Perm which,
as shown by Razborov [27], is mΩ(logm) = nΩ(logn).

On the other hand, it is well known that Perm can be computed by a DeMorgan circuit of
size polynomial in m; see, for example, Hopcroft and Karp [14]. The negation width of such
a circuit is clearly at most the number m2 of its input variables. So, since at OR gates the
negation width is not increased, we obtain a DeMorgan circuit for f of size r2 ·mO(1) = nO(1)

and negation width w ≤ m2 = n2ǫ.

Example 5 (Tardos’ function). Let 0 < ǫ < 1 be an arbitrarily small constant, and assume for
simplicity that both m = nǫ and r = n1−ǫ are integers. As we already mentioned in the proof
of Corollary 5, Tardos [32] exhibited a monotone Boolean function Tm of m =

(

v
2

)

variables
which be computed by a DeMorgan circuit of polynomial in m size, but the monotone circuit
complexity of Tm is exponential in (v/ log v)1/3 = mΩ(1). Let fn be an extension of Tm on
n = r ·m; hence, fn is the OR of r copies of Tm each on a distinct set of m variables. Then
the monotone circuit complexity of fn is also exponential in mΩ(1) = nΩ(1), but the function
fn can be computed by a DeMorgan circuit of size r · nO(1) = nO(1) if the negation width
w = m (= nǫ) is allowed.

These two examples show that the size of monotone circuits (DeMorgan circuits of negation
width w = 0) can be substantially (even super-polynomially) reduced by allowing moderate
negation width w = nǫ. Our next two examples (of the triangle function and threshold
functions) show that non-trivial savings are also possible for monotone Boolean functions
that have small (polynomial) monotone circuits.

A.2 The triangle function

It is known that every monotone circuit computing the triangle function ∆n = CLIQUE(n, 3)
must have about n3/ log3 n gates [2, Lemma 3.14]. Corollary 1 shows that any DeMorgan
circuit of negation width w = nǫ for a constant ǫ > 0 computing ∆n must have at least
Ω(n3−4ǫ) gates. Our goal is to show that this lower bound is not too far from an optimal
one: for every constant ǫ > 0, the function ∆n can be computed by a DeMorgan circuit of
negation width w = nǫ using a sub-cubic number O(n3−ǫ/4) of gates.

To this end, we first consider a multi-output “cousin” of the triangle function—the Boolean
matrix multiplication operator BMM(n) : {0, 1}2n2 → {0, 1}n2

. This operator takes two n×n
Boolean matrices X = (xi,j) and Y = (yi,j) as inputs, and computes n2 monotone Boolean
functions fi,j =

∨n
k=1 xi,kyk,j. Note that now, instead of just one output gate, every circuit

computing BMM(n) has n2 output gates. The negation width of such a (multi-output) circuit
is just the maximum negation width of its sub-circuits computing the functions fi,j, each of
2n variables.

Fast algebraic algorithms for arithmetic matrix multiplication [31, 9, 35] yield circuits over
{∨,∧,¬} for the n × n Boolean matrix product with O(nω) gates, where ω is the so-called
matrix multiplication exponent; after the Strassen [31] breakthrough algorithm showed that
ω < 2.807, this exponent was pushed down by Vassilevska Williams [35] and Le Gall [9] to
ω < 2.373. This can be used to show that the circuit complexity of BMM(n) remains sub-

cubic also when the negation width of circuits is lowered from the trivial w = 2n (unrestricted
circuits) to w = nǫ for an arbitrarily small constant ǫ > 0.

Claim 1. For every 0 < ǫ ≤ 1, the operator BMM(n) can be computed by a DeMorgan circuit

of negation width w = n2ǫ and size O(n3−ǫ/2).

16

Proof. We use the standard “divide and conquer” idea to reduce the multiplication of large
matrices to the multiplication of matrices of smaller dimension. This idea was used many
times to speed up matrix multiplication; see, for example, Adleman et al. [1], or Atkinson and
Santoro [4]. The idea was also recently used in [21, Proposition 12] to show that BMM(n) can
be computed by DeMorgan circuits of sub-cubic size when the allowed AND-depth is smaller
than log n.

Set m := 1
2n

ǫ, and assume (for the sake of simplicity) that both m and r := n/m are
integers. Partition the given n × n matrices X and Y into disjoint m×m submatrices Xu,v

and Yu,v, for u, v = 1, . . . , r. The corresponding m×m submatrix Zu,v of the product matrix
Z = X ·Y is then Zu,v =

∨r
w=1Xu,w ·Yw,v, where the OR is componentwise. Using fast matrix

multiplication, we can compute each of the r3 matrix products Xu,w · Yw,v by a DeMorgan
circuit of size O(mω). Since each such circuit has only 2m2 input variables (entries of matrices
Xu,w and Yw,v), the negation width of each of these circuits is trivially at most 2m2 = n2ǫ.
Using additional rn2 OR gates, we can then compute all n2 entries of the product matrix
Z. Since the negation width can only increase at AND gates, the negation width of the
resulting circuit remains the same, that is, remains at most w = n2ǫ. Since r = n/m with
m = 1

2n
ǫ, and since 3− ω ≥ 1/2, the size of the resulting circuit is at most a constant times

r3mω + rn2 = n3/m3−ω + n3/m ≤ 2n3/
√
m ≤ 3n3−ǫ/2, as desired.

Claim 2. For every 0 < ǫ ≤ 1, the triangle function f = CLIQUE(n, 3) can be computed by

a DeMorgan circuit of negation width w = n2ǫ and size O(n3−ǫ/2).

Proof. Recall that the triangle function f has
(n
2

)

variables xi,j, one for each edge {i, j} of
Kn, and is the OR of all

(n
3

)

terms xi,lxl,jxi,j for i < l < j. Let Y = (yi,j) be the n×n matrix
with yi,i = 0 and yi,j = yj,i = xi,j for i 6= j. Let Z = (zi,j) be the product Z = Y 2 of matrix
Y with itself. Note that, for every i 6= j, zi,j = 1 if and only if there is an l 6∈ {i, j} such that
xi,l = xl,j = 1. So, f =

∨

i<j zi,j · xi,j .
By Claim 1, we know that the entries zi,j of the matrix Z can be simultaneously computed

by a DeMorgan circuit of negation width w = n2ǫ and size O(n3−ǫ/2). So, the triangle function
f itself can be computed by a DeMorgan circuit of size O(n3−ǫ/2 + n2) = O(n3−ǫ/2) and the
same negation width w: neither the additional OR gates nor taking the ANDs zi,j ·xi,j of the
zi,j with (not negated) variables xi,j can increase the negation width.

A.3 Threshold functions

Recall that the threshold-k function Thnk accepts a Boolean input of length n if and only
if it contains at least k ones. The smallest known monotone circuits for Thnk have size of
order n log k (see, for example, [19]). On the other hand, we will now show that Thnk can be
computed by a DeMorgan circuit of linear size O(n) if negation width w = k3 is allowed.

Claim 3. If w = k3, then Cw(Th
n
k) = O(n).

Proof. For the sake of simplicity of argumentation, assume that the number of variables
n is divisible by the parameter s ≥ k (to be chosen latter). Divide the sequence X of
|X| = n Boolean variables into m := n/s consecutive segments X1, . . . ,Xm of length s, and
let Qj

l = Thsl (Xj) be the threshold-l function on the s variables in the jth segment.
It is well known (see, for example, [34, Sect. 3.4]) that all functions Thn1 ,Th

n
2 , . . . ,Th

n
n

can be simultaneously computed by a (non-monotone) DeMorgan circuit of size O(n). So,

17

for every j = 1, . . . ,m, all the functions Qj
0, Q

j
1, . . . , Q

j
k can be simultaneously computed by a

DeMorgan circuit of size O(s). It follows that all functionsQj
l for j = 1, . . . ,m and l = 1, . . . , k

can be simultaneously computed by a DeMorgan circuit of size at most a constant times
s · (n/s) = n. We now use a simple dynamic program to compute all the Boolean functions
P j
l such that P j

l = 1 if and only if there are at least l ones in the first j segments.

As basis functions we take P j
0 = Qj

0 = 1 (constant 1 functions) for all j = 1, . . . ,m,
P 1
l = Q1

l for all l = 1, . . . , k, and construct a DeMorgan circuit C using the recurrences

P j
l =

l
∨

r=0

P j−1
l−r ∧Qj

r . (6)

It is easy to see that the whole input sequence contains at least k ones iff Pm
k = 1. For the jth

segment, we account O(k2) additional gates implementing the recurrences for P j
l . Hence, the

size of the DeMorgan circuit C computing Pm
k is at most a constant times mk2 = (n/s)k2.

Induction on the number j on segments shows that for every (fixed) j and all l = 1, . . . , k,
the negation width of the sub-circuits computing the functions P j

l does not exceed ls; hence,
the negation width of the entire circuit is at most ks. But let us give a non-inductive proof
explicitly showing the form of the terms produced by the entire circuit.

Namely, by expanding the recursion (6), we see that Pm
k is computed as the OR of ANDs

Q1
r1(X1) ∧Q2

r2(X2) ∧ · · · ∧Qm
rm(Xm) (7)

over all sequences r1, . . . , rm of nonnegative integers satisfying r1 + · · · + rm = k; recall that
Qj

0 = 1 for all j. Since at most k of the rjs in each such sequence can be nonzero, at most k

of the functions Qj
rj in Eq. (7) can be not constant 1 functions. So, every term produced by

the circuit C is of the form q =
∧

j∈J qj for some subset J ⊆ [m] of size |J | ≤ k, where each
qj is a (not necessarily nonzero) term containing variables or their negations only from the
jth segment Xj . So, if q is a nonzero term, then it can have at most

∑

j∈J |Xj | ≤ ks distinct
literals and, hence also at most ks distinct negated variables. In particular, this means that
all nonzero terms produced by the circuit C including the extensions of prime implicants of
the computed by C function Pm

k , have at most ks distinct negated variables.
So, the constructed circuit C for the threshold-k function Thnk has negation width w ≤ ks

and size of order (n/s)k2. It remains to take the segment-length s = k2. This gives us a
circuit of linear size O(n) and negation width at most k3, as desired.

A.4 Cancellations

We will now give and example which explicitly demonstrates how cancellations can reduce
the number of gates.

Let g(X) be a Boolean function of n = m2 variables arranged into an m × m matrix
X = (xi,j). The function accepts X if and only if every row of X has at least one 1 and
every column of X has at least one 0. To make the function monotone, just take an OR
f(X) = g(X) ∨ Thnm+1(X) of g with the threshold-(m + 1) function. So, f(X) accepts X if
and only if either X has |X| > m ones, or |X| = m and g(X) = 1 holds. A trivial monotone

formula for f is F+ = (G ∧H) ∨ T , where

G(X) =

m
∧

i=1

(m
∨

j=1

xi,j

)

, H(X) =
∨

j1<j2

(m
∨

i=1

xi,j1

)

∧
(m
∨

i=1

xi,j2

)

,

18

and T (X) is a minimal monotone formula computing Thnm+1. Note that G(X) = 1 iff every
row of X has at least one 1, and H(X) = 1 iff not all 1s of X are in the same column. On
the other hand, the function f can also be computed by a (also trivial but simpler) formula
F = (G ∧H ′) ∨ T of negation width w = m =

√
n, where

H ′(X) =

m
∧

j=1

(m
∨

i=1

xi,j

)

=

m
∨

i=1

m
∧

j=1

xi,j .

The formula H ′(X) accepts a matrix X if and only if every its column has at least one zero.
The size of the monotone formula F+ is of the order m3 + s = n3/2 + s, where s is the size of
the formula T , whereas the size of the formula F is only of the order m2+ s = n+ s. The set
of terms produced by the formula F consists of all terms produced by the formula T and all
terms of the form x1,j1x2,j2 · · · xm,jm · xi1,1xi2,2 · · · xim,m, a lot of which are zero terms.

B Negation-width and communication

Let f : {0, 1}n → {0, 1} be a monotone Boolean function, and w ≥ 0 be and integer. Let
d+ = D+(f) be the minimum depth of a monotone circuit computing f , and d = Dw(f) be
the minimum depth of a DeMorgan circuit of negation width w computing f . Lemma 3 gives
an upper bound d+ ≤ d+ logK, where K is a constant times min{wm,mw} · log |PI(f)|, and
m is the maximum length of a prime implicant of f .

In this section, we give an entirely different proof of a slightly weaker upper bound d+ ≤
d+w ·⌈log(n+1)⌉ using the Karchmer–Wigderson communication complexity arguments [17].

As shown by Karchmer and Wigderson [17], d+ is exactly the maximum, over all inputs
(a, b) ∈ f−1(1) × f−1(0), of the minimum number of bit of communication required for the
players, Alice and Bob, in the following game. When an input pair (a, b) with f(a) = 1 and
f(b) = 0 arrives, the first vector a is given to Alice, and the second vector b to Bob. Their
goal is to find a position i ∈ [n] such that ai = 1 and bi = 0; since f is monotone, such a
position always exists. We call such a position a separating position for the pair (a, b). Note
that, since f is monotone, such a position always exists.

Now take a DeMorgan circuit C of negation width w computing f , and whose depth is d. In
order to show the inequality d+ ≤ d+w ·⌈log(n+1)⌉ it is enough, by the aforementioned result
of Karchmer and Wigderson [17], to design a communication protocol for the game on f which
uses at most d+w·⌈log(n+1)⌉ bits of communication on all input pairs (a, b) ∈ f−1(1)×f−1(0).

1. Alice takes a vector a′ ≤ a with a minimal number of 1s which still satisfies f(a′) = 1.
Then p(a′) = 1 holds for some prime implicant p =

∧

i∈S xi of f ; note that a
′
i = 1 if and

only if i ∈ S.
2. Since the negation width of the circuit C is bounded by w, there is a term r =

∧

i∈I xi
with |I| ≤ w such that p · r ∈ T (C) and p · r(a′) = 1; hence, f(a′) = 1 and S ∩ I = ∅.

3. Alice uses |I| ·⌈log(n+1)⌉ ≤ w ·⌈log(n+1)⌉ bits to send Bob the entire set I of positions
of negated variables in her chosen term p · r.

4. Since Bob knows Alice’s strategy, he knows that Alice’s current input a′ must have
solely zeros in all positions i ∈ I. So, he replaces his original input vector b by the
vector b′ ≤ b with b′i = 0 for i ∈ I, and b′i = bi for i 6∈ I. Since the computed by C
function f is monotone, we have f(b′) = 0.

5. The players now replace by zeros all negated input gates xi with i 6∈ I, and consider
the resulting circuit C ′.

19

6. Since no negated literal of the term p · r was set to 0, this term belongs also to the
set T (C ′) of terms produced by the new circuit. So, since p · r(a′) = 1, the circuit C ′

accepts vector a′. On the other hand, since the original circuit C rejected vector b, and
we have only replaced some input gates by zeros, the circuit C ′ rejects vector b′.

7. So, the players can now run the standard Karchmer–Wigderson protocol on the pair
(a′, b′) using the circuit C ′ (see [17, Lemma 2.1]). After communicating at most d bits
(the depth of C ′ can only be smaller than d), they will arrive at some input literal z of
the circuit C ′ such that z(a′) = 1 and z(b′) = 0. The literal z is either an non-negated
variable xi, or a negated variable xi for some i ∈ I: the circuit C ′ has no other input
literals.

8. Since vectors a′ and b′ coincide in all positions i ∈ I (both have zeros here), z = xi must
hold for some (non-negated) variable xi, implying that the found input literal z gives
the position i with a′i = 1 and b′i = 0.

Now, a′i = 1 and a′ ≤ a imply ai = 1. On the other hand, since the position i lies outside
I, and since vector b′ coincides with b on all such positions, b′i = 0 also implies bi = 0. So, i
is the desired separating position for the input pair (a, b).

20

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

