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Abstract. Quantified Boolean Formulas (QBFs) extend propositional formulas with Boolean
quantifiers. Working with QBF differs from propositional logic in its quantifier handling, but
as propositional satisfiability (SAT) is a sub-problem of QBF, all SAT hardness in solving and
proof complexity transfers to QBF. This makes it difficult to analyse efforts dealing with “QBF
hardness” specifically. In one response to this, Beyersdorff et. al. [18] created a framework for
proof systems that allows us to factor out genuine QBF hardness from propositional hardness
using oracles from the polynomial hierarchy.
Our work specifically deals with the most important case- when we use an NP oracle, removing
any hardness due to propositional satisfiability in our proof systems.
The first results we present are re-examinations of the proof complexity landscape for QBF.
Looking at the collapses of the QBF proof complexity simulation structure when including NP
oracles. Some new simulations occur due to the NP oracles, in particular both universal resolution
and weak extended variables are subsumed by the NP derivations. Some separations remain
intact even with the NP-derivation rule such as the gap between expansion and QCDCL systems.
The NP-derivation rule allows us to say even more about QBF proof complexity. We show that
QBF systems with general extension variables are incredibly powerful, and when adding in the
NP-derivation rule, we can say something about its optimality and its use in practice. In Jussila
et. al [31] Extended Q-Res was put forward as reasonable calculus for a universal proof checking
of solver. We here justify that partially through theory. We find that, with the NP derivation
rule, general extended QU-Res achieves an optimality result simulating all QBF proof systems as
long as they have strategy extraction.

1 Introduction

Quantified Boolean formulas (QBF) extend propositional logic by adding Boolean quantifica-
tion. Boolean existential and universal quantifiers are short-hands for expressions involving
disjunction and conjunction respectively. QBF cannot be any more expressive than proposi-
tional logic but may be more succinct.

The question over its succinctness can be seen through the relation to complexity classes.
While satisfiability and tautology in propositional logic is NP-complete and coNP-complete
respectively [22], QBF has been proven to be PSPACE-complete [36]. Whether QBF provides a
meaningful shorthand for very large satisfiability problems comes down to the unsolved NP vs
PSPACE problem. QBFs have practical applications, including verification and planning. QBFs
are also good at coding games including “Connect4” [25] and some problems in checkers [2] as
well as popular video games [1].

QBFs are a superset of propositional satisfiability (SAT) problems. This means that
when considering QBF lower bounds in solving or proofs, we also have to factor in all the
propositional lower bounds. An example of this is in QBF proof complexity, QBF resolution
incorporates new QBF rules into the propositional resolution system [20,38]. However, these
rules do nothing on purely propositional problems. If they were to in a meaningful way, it
would in fact give rise to a new propositional system. In this way, every QBF proof system
has an underlying propositional system, the same is true for solving.
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The fact that hardness can be lifted from propositional logic can hinder our interpretation
of hardness in QBF. One way to tackle this are the purely comparative studies in [5,10,24],
where hardness is assessed relative to the other QBF proof systems. Another approach is to
study QBF systems whose underlying propositional proof system has no known lower bounds,
indeed while AC0[p]-Frege has no known lower bounds, it was shown [8] that the QBF system
AC0[p]-Frege +∀red, which extends it in a natural way, has a known lower bound. The final
way from [18,21] which we explore further in this paper is to relax the notion of a proof system
to allow the use of an NP oracle, factoring out the propositional component.

In [18], they present a way to augment a QBF proof system modulo NP by adding a rule
that can do all propositional inference. In this work, we re-examine the QBF proof complexity
whilst using this framework. Automatically it means that we cannot use purely propositional
lower bounds as lower bounds to our system. It unfortunately means that lower techniques
lifted from propositional logic to QBF (as in [12,13,15]) cannot be reliably used. There are two
techniques that work specifically for QBF, strategy extraction and cost-capacity. Fortunately
these also work under NP oracles.

We first look at some QBF lower bounds, now under the spotlight of NP oracles. Most of
these have either been investigated prior to this or are simply corollaries of the fact that some
techniques still work with NP oracles. We do show that Clique-CoClique formulas that were
originally shown as hard for QU-Res are still hard under NP oracles. Originally hardness was
shown via monotone feasible interpolation, which is a propositional technique lifted to QBF.
We show it here again using the cost-capacity technique.

Next we look at the pairwise comparisons between the different QBF proof systems now
with NP oracles. A simulation that existed prior to using NP oracles should still hold, as NP
oracle rules should in most cases directly simulate each other. Where simulations were not
known or known to be impossible there is a possibility that they can be shown here, in fact
we even show some systems become equivalent under an NP oracle.

The final result we show is an optimality result. We show that among all QBF proof
systems with strategy extraction, that using NP oracles with the Extended Q-Resolution proof
system is optimal. Because we are using NP oracles and are only looking at proof systems with
the strategy extraction property we do not really say anything about the major open problems
of optimality. This may be relevant to solving, however. Strategy extraction is usually seen as
helpful in solvers. Sometimes you do not just require the existence of a winning strategy, but
the strategy itself. Indeed in a QBF representing a two-player game, it would be natural to
want to know the winning strategy. Furthermore, the use of NP-oracle is natural, as QBFs
regularly use SAT-solvers as black boxes. It makes the study of QBF proof systems with
strategy extraction using NP oracles relevant to the state of practice.

2 Preliminaries

2.1 Proof Complexity.

Formally, a proof system [23] for a language L over alphabet Γ is a polynomial-time computable
partial function f : Γ? ⇁ Γ? with rng(f) = L. The partial function f actually gives a proof
checking function. Soundness is given by rng(f) ⊆ L and completeness is given by rng(f) ⊇ L.
The polynomial-time computability is an indication of feasibility, relying on the complexity
notion that if something is in polynomial time it is considered feasible.



From the definition of a proof system, we can start defining proof size. For a proof system
f for language L and string x ∈ L we define sf (x) = min(|w| : f(w) = x). Thus the partial
function sf tells us the minimum proof size of a theorem. We can overload the notation by
setting sf (n) = max(sf (x) : |x| ≤ n) where n ∈ N. We do not focus on the exact numerical
proof size, but how proof size behaves asymptotically. For a function t : N→ N, a proof system
f is called t-bounded if ∀n ∈ N, sf (n) ≤ t(n).

A proof system f is polynomially bounded if there is a polynomial p(x) such that sf (n) ≤
p(n). Cook and Reckhow [23] proved that NP = coNP if and only if there is a polynomially
bounded proof system of propositional tautologies, where coNP is the class of all languages
whose complements are in NP. A super-polynomial lower bound is an infinite family of formulas
Φn where there is no polynomial p such that the shortest proof of each formula is ≤ p(|Φn|).
An exponential lower bound is an infinite family of formulas Φn where there is an exponential
function f = 2n

Ω(1)
such that the shortest proof of each formula is ≥ f(|Φn|).

Proof systems are compared by simulations. We say that a proof system f simulates g
(g ≤ f) if there exists a polynomial p such that for every g-proof πg there is an f -proof πf
with f(πf ) = g(πg) and |πf | ≤ p(|πg|). If πf can even be constructed from πg in polynomial
time, then we say that f p-simulates g (g ≤p f). Two proof systems f and g are (p-)equivalent
(g ≡(p) f) if they mutually (p-)simulate each other.

Definition 1 (Messner, Toran [35]). A proof system in language L is optimal if and only
if it can simulate all other proof systems for L.

It is not known if optimal propositional proof systems exist. Note that an optimal proof
system does not necessarily imply that it is polynomially bounded, as a lower bound may be
in a family of formulas that are not polynomial time recognisable.

2.2 Quantified Boolean Formulas

Quantified Boolean Formulas extend propositional logic with quantifiers ∀,∃ [32]. The standard
semantics are that ∀x. Ψ is satisfied by the same truth assignments as Ψ [0/x] ∧ Ψ [1/x] and
∃x. Ψ is satisfied by the same truth assignments as Ψ [0/x] ∨ Ψ [1/x].

A prenex QBF is a QBF where all quantification is done outside of the propositional
connectives. A prenex QBF Φ therefore consists of a propositional part φ called the matrix
and a prefix of quantifiers Π and can be written as Φ = Π · φ. A literal is a variable or its
negation. A clause is disjunction of literals and a conjunctive normal form is a conjunction of
clauses. When the propositional matrix of a prenex QBF is a CNF, then we have a PCNF.

If we have that each variable is bound only once then this causes no issues. We then can
transform the matrix into a CNF using Tseitin variables, these Tseitin variables need to be
quantified and the quantifier of the new variable must occur to the right of all variables they
depend on. A prenex QBF without any variables in the prefix is just a propositional formula.

A closed QBF is a QBF where all variables are bound in quantifiers. A closed QBF must
be either true or false, since if we semantically expand all the quantifiers we have a Boolean
connective structure on 0, 1.

QBF Game Semantics. Often it is useful to think of a closed prenex QBF Q1X1 . . .QkXk. φ,
where Xi are blocks of variables, as a game between ∀ and ∃. In the i-th step of the game, the
player Qi assigns values to all the variables Xi. The existential player wins the game if and only



if the matrix φ evaluates to 1 under the assignment constructed in the game. The universal
player wins if and only if the matrix φ evaluates to 0. Given a universal variable u with index i,
a strategy for u is a function, which maps assignments of 0/1 values to the variables of lower
index than u to {0, 1} (the intended response for u). Therefore a QBF is false if and only if
there exists a winning strategy for the universal player, i.e. if the universal player has a strategy
for all universal variables that wins any possible game [26] [3, Sec. 4.2.2] [36, Chap. 19].

2.3 Proof Systems for Quantified Boolean Formulas

Resolution Systems. ∀Exp+Res by Janota and Marques de Silva is a resolution-like refuta-
tion system that operates on QBFs in prenex form where the matrix is a CNF. It uses the basic
idea behind the semantics of the quantifiers, allowing you to expand out a universal variable
to create two copies of the matrix. Doing such would lead to an expansion explosion, however
careful refutation could potentially only use the clauses it needs to get the contradiction,
rather than the fully expanded matrix.

The key here is that variables have to be duplicated and distinguished, to keep track of
this we label variables with an annotation and only resolve variables that have matching
annotations. The calculus can be defined as in Figure 1.

(Axiom)∨
(
{
lrestrictl(τ) | l ∈ C, l is existential

}
∪ {τ(l) | l ∈ C, l is universal})

C is a clause from the matrix and τ is an assignment to all universal variables.
restrictl(τ) are partial assignments obtained by restricting τ to universal variables u with lv(u) < lv(l).

C1 ∨ xτ C2 ∨ ¬xτ
(Res)

C1 ∨ C2

Fig. 1. The rules of ∀Exp+Res (adapted from [30])

Q-resolution by Kleine Büning, Karpinski, and Flögel [33] is also a QBF resolution system,
but is more straightforward. It uses the propositional resolution rule on existential variables.
In addition, Q-resolution has a universal reduction rule to remove universal variables (for
Figure 2 recall that ¬¬z = z for literals).

Example 2. We wish to refute the following PCNF in Q-Res:

∃x1∃x2∀y1∀y2∃x3(x1 ∨ y1 ∨ x3) ∧ (¬x1 ∨ ¬y1 ∨ x3) ∧ (¬x2 ∨ y2 ∨ ¬x3) ∧ (x2 ∨ ¬y2 ∨ ¬x3)

This QBF can be shown as false by a semantic argument, using the two-player game. As
long as the universal player plays y1 ← x1 and y2 ← ¬x2, then whatever the existential player
sets for x3 one clause gets refuted.

A refutation is given in Figure 3. Note that we cannot perform universal reduction on
any of the axioms. We first can resolve the x3 variables in every possible combination. The
resulting clauses unblock universal literals which can then be reduced. Finally we can use
resolution to reach the empty clause.



(Ax)
C

C ∨ x D ∨ ¬x (Res)
C ∨D

Ax : C is a clause in the propositional matrix.
Res: variable x is existential.

C ∨ l (∀-Red)
C

literal l has variable u, which is universal and all other existential variables x ∈ C are left of u in the
quantifier prefix. Literal ¬l does not appear in C.

Fig. 2. The rules of Q-Res [33]

x1∨y1∨x3 x̄2∨y2∨x̄3 x2∨ȳ2∨x̄3 x̄1∨ȳ1∨x3

x1∨x̄2∨y1∨y2 x1∨x2∨y1∨ȳ2 x̄1∨x̄2∨ȳ1∨y2 x̄1∨x2∨ȳ1∨ȳ2

x1∨x̄2∨y1 x1∨x2∨y1 x̄1∨x̄2∨ȳ1 x̄1∨x2∨ȳ1

x1∨x̄2 x1∨x2 x̄1∨x̄2 x̄1∨x2

x1 x̄1

⊥

Fig. 3. An example of a Q-Res refutation

Q-Res has a number of augmentations. Long-distance Q-resolution (LD-Q-Res) appears
originally in the work of Zhang and Malik [44] and was formalized into a calculus by Balabanov
and Jiang [4]. It merges complementary literals of a universal variable u into the special
literal u∗. These special literals behave like universal literals in that they can be reduced, but
there are conditions on valid merging steps and further use of merged literals. We will not use
this calculus in this paper, because it is unclear how to use propositional inference from the
NP oracle when dealing with these merged literals.

QU-resolution (QU-Res) [43] removes the restriction from Q-Res that the resolved variable
must be existential and instead allows resolution of universal variables.

Extended resolution for propositional resolution [41], enables adding clauses expressing the
equality v ⇔ (¬x∨¬y), for a fresh variable v. We follow this idea in the context of Q-resolution.
Here, we need to decide the position of the fresh variable in the prefix. Two versions are
considered; a weak one and a general one. Both versions require extension variables to be
existential, however they differ in their placement of the existential quantifier.

Figure 4 defines the two forms of the extension rule, which gives us two flavours of extended
Q-resolution.

Weak extended Q-resolution [31] is the calculus of Q-Res enhanced with the extension rule
in its weak form. Every extension variable appears at the end (innermost) of the prefix.

Extended Q-resolution is the calculus of Q-Res enhanced with the extension rule in general
form. Each extension variable is quantified directly after the variables it is defined from.



(¬x ∨ ¬y ∨ ¬v), (x ∨ v), (y ∨ v)

where:
x, y are variables already in the formula
v is a fresh variable,
v is inserted into prefix as existentially quantified,
weak extension: insert v at the end of the prefix.
general extension: insert v after x and y in the prefix.

Fig. 4. Two versions of extension rule

Frege Systems. C-Frege +∀red uses circuit lines we from the class C. It combines rules
from Frege systems that operate on the circuit class C, with a generalised reduction. While
Frege systems are inferential, because we are using reduction, C-Frege +∀red is a refutational
system.

(Ax)
C

C1, . . . Ck
(C-Frege)

D

Ax : C is a circuit in the propositional matrix.
C-Frege: deriving circuit D from circuits C1, . . . Ck is compliant with an axiom or rule in C-Frege.

B is a C circuit in variables left of u.
C (∀-Red)

C[B/u]

Variable u is universal and all other variables x ∈ C are left of u in the quantifier prefix.

Fig. 5. The rules of C-Frege+∀red [8]

In practice we concentrate on a few special cases of C, particularly when C is AC0 (bounded-
depth), AC0[p] (bounded depth with mod p gates), NC 1 (the standard Frege systems) or
P/poly (circuit Frege, equivalent to eFrege).

NP Oracles. In the above QBF proof systems, we take a propositional proof system and
augment it with some rules in order for it to deal with genuine QBFs. This approach is mostly
unavoidable as every QBF proof system also is a propositional system. The drawback is that
when observing lower bounds every propositional lower bound is inherited for QBFs. We would
like to separate lower bounds from propositional logic with “genuine” QBF hardness.

Recent work [18,21] has started to factor out the component of propositional hardness in
QBF. Most work has been done on the QU-Res systems although this approach generalises to
other systems as well.

Definition 3 (Σp
k Oracle derivations [18]). A PΣ

p
k proof of a QBF Φ is a derivation of

the empty clause by any of the P rules or the Σp
k-derivation rule.

C1, . . . Cl (Σp
k-derivation)

D

For any l, where there is some Σb
k-relaxation Π ′ of the prefix Π such that Π ′

∧l
i=1Ci �

Π ′
∧l
i=1Ci ∧D. D and Ci have to be lines permitted in P (e.g. clauses, formulas).



We will not here define a Σb
k-relaxation for every k but for k = 1, we replace all universal

quantifiers with existential ones. In other words, we can infer D from Π
∧l
i=1Ci whenever∧l

i=1Ci � D. When we do add D we do not change the prefix Π. Hence PNP augments QBF
proof system P with all propositional inference.

Notice that PNP is not a proof system unless we can check the NP-derivation in polynomial
time. This cannot be done unless P = NP. However it gives us a framework for analysing QBF
proof systems ignoring propositional hardness, which would otherwise be pervasive in QBF
proof complexity. A similar approach was made previously in [21].

Definition 4. Let P,Q be QBF proof systems, then we write P ≡NP Q whenever QNP and
PNP mutually p-simulate each other.

3 Lower bounds for QBF proof systems modulo NP

The first thing we should note about QBF proof systems modulo NP is that any technique
directly lifted from propositional logic no longer works in general. This comes from the fact
that every propositional lower bound no longer exists when the NP derivation can be used. This
means that feasible interpolation [12, 37], the Prover-Delayer game [15, 17] and the size-width
relation [6,13,16] cannot be used in their current QBF forms. It may be possible that some
sort of adaptation of these techniques can exist that deal only with QBF difficulty, indeed
there are formulas that are genuinely QBF that make use of these techniques to show a lower
bound. We will not focus on adapting these propositional techniques, instead will we focus on
the highly successful techniques that are specific to QBF.

3.1 Strategy Extraction

Definition 5 (Strategy Extraction). A refutational proof system P has strategy extraction
if there is a polynomial time algorithm that takes P refutations π of QBF φ and outputs a
circuit Du for each universal variable u in prenex QBF φ, where the input variables of Du are
quantified to the left of u in φ and playing every u according to the output of Du constitutes a
winning strategy for the universal player.

We look at the strategy extraction technique, using the circuit extracted from the proof. If
that circuit is large then the proof must also be large. The technique depends on the proof
systems having a strategy extraction property- that a circuit giving the winning strategy for
the universal player can be efficiently extracted from the proof. For specific circuit class C,
C-strategy extraction for a particular proof system P is the property that there is a polynomial
time way to extract from a P -proof of a false QBF, a winning universal strategy in circuit
class C for the relevant false QBF. For example, the QBF proof system AC [p]-Frege +∀red
has AC [p]-strategy extraction [8]. Circuit lower bounds for AC [p] can then be exploited to
prove AC [p]-Frege +∀red proof-size lower bounds.

One circuit model that is very useful when dealing with strategy extraction is the decision
list. Below we define the C-decision list for circuit class C.

Definition 6 (C-decision list). A C-decision list is a program of the following form



if C1(x) then u← B1(x);
else if C2(x) then u← B2(x);

...

else if C`−1(x) then u← B`−1(x);
else u← B`(x),

where C1, . . . , C`−1 and B1, . . . , B` are circuits in the class C. Hence a decision list as above
computes a Boolean function u = g(x).

This comes from the original decision list where Ci is a term (conjunction of literals) and
Bi is a Boolean constant. QU-Res has strategy extraction in these original depth-1 decision
lists, while other QBF systems have strategy extraction in C-decision lists where C depends
on the system. We find that the situation is very similar when we include NP derivations.

Theorem 7. The following strategy extraction theorems hold for NP derivations:

– QU-Res NP has depth-1 circuit decision list strategy extraction.

– CP+∀red NP has LTF-decision list strategy extraction.

– For any circuit class C, C-Frege +∀red NP has C-decision list strategy extraction.

Proof. We use a similar proof as from [8,10,14] except we account for the NP derivation rule
exactly as how propositional rules were dealt with.

Let π = (L1, . . . , Ls) be a refutation of the false QBF Πφ in one of these systems and let

πi =

{
∅ if i = s,

(Li+1, . . . , Ls) otherwise.

We show, by downward induction on i, that from πi it is possible to construct in linear
time (w.r.t. |πi|) a winning strategy σi for the universal player for the QBF formula Πφi,
where

φi =

{
φ if i = 0,

φ ∧ L1 ∧ · · · ∧ Li otherwise,

such that for each universal variable u in Πφ, there exists an C-decision list Di
u computing σiu

as a function of the variables in Q left of u, having size O(|πi|). If we include every universal
u, σiu is part of a wider strategy σi.

The statement of this theorem corresponds to the case when i = 0. The base case of the
induction is for i = s. In this case σs is trivial since φs contains the line Ls = ⊥, and we can
define all the Ds

u as u← 0.

We show now how to construct σi−1u and Di−1
u from σiu and Di

u:

• If Li is derived from an NP derivation rule, then for each universal variable u we set
σi−1u = σiu and Di−1

u = Di
u.

• If Li is derived by some propositional rule, then for each universal variable u we set
σi−1u = σiu and Di−1

u = Di
u.

• If Li is the result of an application of a ∀red rule, that is
Lj

Lj [α(u)]
, where α is an

assignment to the rightmost universal variable u in Lj . Lj [α(u)] is a circuit in C using only



variables on the left of u, and Lj [α(u)] = Li. Let xv denote the variables with lower level than
universal v in the quantifier prefix of Qφ. Then we define

σi−1v (xv) =


σiv(xv) if v 6= u,

α(v) if v = u and Lj [α(u)](xu) = 0,

σiv(xv) if v = u and Lj [α(u)](xu) = 1.

Moreover we set Di−1
u′ = Di

u′ and we set Di−1
u as follows:

if ¬Lj [α](xu) then u← α(u);
else Du

i (xu).

We now check that for each universal v, σi−1v respects all the properties of the inductive
claim.

By the argument in [8] σi−1v and Di−1
v are well defined and constructed in linear time w.r.t.

|πi−1|. Di−1
v computes σi−1v .

σi−1 is a winning strategy for Πφi−1. Fix an assignment ρ to the existential variables of
φ. Let τi be the complete assignment to existential and universal variables, constructed in
response to ρ under the strategy σi. By induction hypothesis τi falsifies φi. We need to show
that τi−1 falsifies φi−1. For propositional rules and ∀red it has already been argued in [8].

If Li is derived by some NP derivation rule, then σi−1 = σi and τi−1 = τi. Hence by
induction hypothesis, τi falsifies a conjunct from φi. To argue that τi−1 also falsifies a conjunct
from φi−1 we only need to look at the case when the falsified conjunct is Li. As Li is false
under τi and Li is derived by a sound NP derivation, one of the parent formulas of Li in the
application of the NP derivation rule is falsified as well. Hence τi−1 falsifies φi−1.

We now have a strategy extracted from our proof. The theorem states that the circuit
classes of these strategies depend on the proof system. This is because of the line structure
of the proof systems, but this is not argued here (it is in [8] when dealing with reduction).
In QU-Resolution the lines are depth-1 circuits, so the terms on the decision list are depth-1
circuits. Likewise in cutting planes the lines are all LTF circuits so the decision list has LTF
terms. For C-Frege systems the lines are circuits from the class C, so the terms in the decision
list are in C. ut

Example 8. Let f(X) be a Boolean function in variables X which is computable in PSPACE.
Due to the PSPACE completeness of QBF, f(X) and ¬f(X) can be written as a QBFs with
free variables. The closed QBF Q-f = ∃X∀z(z ∨ f(X)) ∧ (¬z ∨ f(X)) is false and has the
unique winning strategy of playing z as f(X). The Q-f formulas where f(X) is a Boolean
function in PSPACE\C is a lower bound in any proof system with strategy extraction in class
C. We can use any appropriate circuit lower bound.

1. Q-Parity is an exponential lower bound in QU-Res NP and AC0[p]-Frege ∀red NP (see [8]).
2. Q-IP is a superpolynomial lower bound in CP+∀red NP (see [14]).

3.2 Cost Capacity

A lower bound technique that is specific to QBF is the Cost-Capacity theorem from [7]. It
works on P +∀red systems. It shares some similarities to strategy extraction in the sense that
it bounds the number of universal reductions from below and that the type of lower bounds



that work depend on the circuit class of the line being reduced. However it differs where
strategy extraction cares about circuit hardness for the universal player, cost-capacity cares
about the explicit number of varying responses a universal player has to make.

Definition 9 (Cost).

Let Φ = ∀U1∃E1 . . . ∀Uk∃Ekφ be a QBF.

Let Si be the strategy function that maps existential assignments from
⋃i−1
j=1Ej to an

assignment in block Ui for a winning strategy S.

cost(Φ) = min(max(rng(Si) : i ∈ [k]) : S is a winning strategy)

A response set is a set of all assignments to the universal variables in a line that is consistent
with some winning strategy.

Definition 10 (Response Map). Let L be a propositional proof line and Π be QBF prefix,
and U defines the set of universal variables from Π that appear in L that are quantified
rightmost amongst the variables in L (U variables are in the same block, meaning they have
equal quantifier level). And let X denote the set of Π variables in L not in U . We use the
notation 2X and 2U to denote the sets of total assignments on X and U respectively. A response
map R : 2X → 2U on a line L under prefix Π satisfies the following, for α ∈ 2X

L(α) not a tautology⇒ L(α)(R(α)) is false.

The range of a response map, measures the number of potential falsifying universal
assignments. This gets formalised in the notion of capacity.

Definition 11 (Capacity). Let π be a refutation of QBF with prefix Π and matrix φ in a
proof system P+∀red with lines L1 . . . Lm.

capacity(π) = max(min(rng(R) : R is a response map of Li) : i ∈ [m])

The capacity for a QU-Res derivation turns out to be 1, because the number of useful
universal assignments in each clause is 1, in a refutation you only ever wish to falsify a literal.

Theorem 12 (Beyersdorff, Blinkhorn, Hinde 18 [7]). For a proof system P+∀red which
has axiomatic equivalence, inferential equivalence and restrictive closure (see [7] for an expla-

nation). Then for a P + ∀redNP refutation π for QBF Φ we have that |π| ≥ cost(Φ)
capacity(π) .

In previous work [12,13,15,16] lower bound techniques from propositional logic are lifted to
QBF. These cannot translate when NP oracles are in place. In [12] a QBF version of Feasible
Interpolation was shown to work on QBF resolution systems. The feasible interpolation
property fails when the rules allow inferences that can subsume Frege rules (which does not
have feasible interpolation). However the lower bound using the Clique-CoClique formulas
would now be a conditional lower bound due to strategy extraction.

Definition 13 (Clique-CoClique family).

Fix positive integers n (indicating the number of vertices of the graph) and k ≤ n (indicating
the size of the clique queried) and let p be the set of variables {puv | 1 ≤ u < v ≤ n}. An
assignment to p picks a set of edges, and thus an n-vertex graph that we denote Gp.



The formula Qq. An,k(p, q) should express the property Clique(n, k), that Gp has a clique
of size k, and Qr. Bn,k(p, r) should express the property co-Clique(n, k), that Gp has no
clique of size k.

Let q be the set of variables {qiu | i ∈ [k], u ∈ [n]}. We use the following clauses

Ci = qi1 ∨ · · · ∨ qin for i ∈ [k]
Di,j,u = ¬qiu ∨ ¬qju for i, j ∈ [k], i < j and u ∈ [n]
Ei,u,v = ¬qiu ∨ ¬qiv for i ∈ [k] and u, v ∈ [n], u < v
Fi,j,u,v = ¬qiu ∨ ¬qjv ∨ puv for i, j ∈ [k], i < j and u 6= v ∈ [n].

An,k(p, q) is the conjunction of these clauses.
Let r be the set of variables {riu | i ∈ [k], u ∈ [n]}. We use the following clauses Let t be

the set of variables {tK | K ∈ An, k(p, q)}

Kt
Ci

= ¬tCi ∨ ri1 ∨ · · · ∨ rin for i ∈ [k]

K
rij
Ci

= tCi ∨ ¬rij for i ∈ [k], j ∈ [n]

Kt
Di,j,u

= ¬tDi,j,u ∨ ¬riu ∨ ¬rju for i, j ∈ [k], i < j and u ∈ [n]

Kriu
Di,j,u

= tDi,j,u ∨ riu for i, j ∈ [k], i < j and u ∈ [n]

K
rju
Di,j,u

= tDi,j,u ∨ rju for i, j ∈ [k], i < j and u ∈ [n]

Kt
Ei,u,v

= ¬tEi,u,v ∨ ¬riu ∨ ¬riv for i ∈ [k] and u, v ∈ [n], u < v

Kriu
Ei,u,v

= tEi,u,v ∨ riu for i ∈ [k] and u, v ∈ [n], u < v

Kriv
Ei,u,v

= tEi,u,v ∨ riv for i ∈ [k] and u, v ∈ [n], u < v

Kt
Fi,j,u,v

= ¬tFi,j,u,v ∨ ¬riu ∨ ¬rjv ∨ puv for i, j ∈ [k], i < j and u 6= v ∈ [n].

Kriu
Fi,j,u,v

= tFi,j,u,v ∨ riu for i, j ∈ [k], i < j and u 6= v ∈ [n].

K
rjv
Fi,j,u,v

= tFi,j,u,v ∨ rjv for i, j ∈ [k], i < j and u 6= v ∈ [n].

Kpuv
Fi,j,u,v

= tFi,j,u,v ∨ ¬puv for i, j ∈ [k], i < j and u 6= v ∈ [n].

Kclauses =
∨
i∈[k] ¬tCi ∨

∨i<j
i,j∈[k],u∈[n] ¬tDi,j,u ∨

∨u<v
i∈[k],u,v∈[n] ¬tEi,u,v ∨

∨i<j,u6=v
i,j∈[k],u,v∈[n] ¬tFi,j,u,v

Bn,k(p, r) is the conjunction of these clauses.
The QBF CliquecoClique(n, k) is given by ∃p∃q∀r∃tAn,k(p, q) ∧Bn,k(p, r)

As feasible interpolation can be used to show propositional lower bounds it cannot work in
a QBF setting where we have NP derivations. In [12] it was discussed that feasible interpolation
can be seen as a special case of strategy extraction though we have to add a universal variable.
If we are concerned only with the original formula we might again think that strategy extraction
might be a good approach, indeed universal R variables must compute a clique if one exists.
It would seem that coupled with the fact that k-clique problems have large bounded depth
circuits in the P variables [39] we would get a lower bound for Q-ResNP via strategy extraction,
except for the fact that the way we write the Clique-coClique formulas quantify the Q
variables before the R variables. This means that one winning strategy for the universal
player is fairly straightforward, play the R variables exactly the same as the corresponding
Q variables. Strangely enough this strategy is only an artefact of the way we chose to order
the two parts. Were we to quantify the other way round (let us call it the coClique-Clique
formulas), we can get the lower bound via strategy extraction. This is peculiar as the order
was never important for the feasible interpolation lower bound. This still leaves the question
of whether the original Clique-coClique formulas are hard, this can be done using the other
technique that works for NP derivation QBF systems- the cost-capacity theorem.



Theorem 14. Clique-coClique QBFs are exponentially hard for QU-ResNP.

Proof. We use the cost-capacity theorem. The capacity of QU-Res and CP+∀red is 1 and this
does not change under an NP derivation [7]. We now have to argue for cost, we argue the cost
is above a certain threshold by looking at a selection of important assignments. These are
assignments to P that details the edges of a clique and where Q correctly identifies a clique.
We define this formally.

V (H) is a subset of [n] of size k. H is a complete graph. Gp is the graph on n vertices
such that u v if and only if u, v ∈ V (H). Hence

puv =

{
1 u, v ∈ V (H),

0 otherwise.

We define some bijection σH : [k]←→ V (H).

qi,u =

{
1 σH(i) = u,

0 otherwise.

This will satisfy all the clauses in An,k: Ei,u,v will be satisfied because σH is a well-defined
partial function. Ci will be satisfied because σH is a total function. Di,j,u will be satisfied
because σH is an injection. Fi,j,u,v will be satisfied by puv when u, v ∈ V (H). And when ,
without loss of generality u is not in V (H), σH is bijective with V (H) so qiu must be false,
satisfying the clause.

Under this assignment the clauses that can be falsified appear in Bn,k. These also depend
of the universal r variables and the existential t variables after it in the prefix. In general the
existential player can make any response in t, but since every clause in Bn,k except Kclauses is
part of a Tseitin definition, the existential player satisfies all of Bn,k\{Kclauses} if and only if
they play all t variables according to their definitions. We will assume that the existential
player will play according to this strategy.

We have to show that in order to falsify Kclauses, the universal player requires a particular
kind of response in r.

Suppose first that for some i ∈ [k] the universal player plays riu = riv = 1 for some u < v.
Then the existential player’s response would be to set tEi,u,v to 0 satisfying Kclauses.

Hence for a falsifying universal response we can define a partial function τH : [k] ⇁ [n]
such that

riu =

{
1 τH(i) = u

0 otherwise

τH is a total function: Suppose there is some i ∈ [k] such that τH(i) 6= 1 . . . τH(i) 6= n.
Then ¬ri1 . . .¬rin is played by the universal player. This means that tCi is false and thus
satisfies Kclauses.

τH is an injection: Suppose that for some u ∈ [n], u = τH(i) = τH(j) for some i < j.
That means the universal player plays riu = rju = 1. Then the existential players response
would be to set tDi,j,u to 0 satisfying Kclauses.

τH : [n] ←→ V (H) is a bijection: Suppose that there is some w ∈ V (H) such that no
value in [k] maps to w under τH , then by injectivity there is some u /∈ V (H) such that there is
some i ∈ [k] so that τH(i) = u. Let us take any j ∈ [k], j 6= i. τH(j) = v by totality and since



u /∈ V (H) puv must be false. Without loss of generality we assume i < j. In that case riu and
rjv are true so tFi,j,u,v is set to false by the existential player satisfying Kclauses.

We have shown each isolated clique H requires a response determined by some τH . τH = τH′

is impossible if V (H) 6= V (H ′). This is because if τH = τH′ then V (H) = rng(τH) = rng(τH′) =
V (H ′). Hence the universal player needs

(
n
k

)
responses indicating the cost and indeed the

proof size is at least exponential when k = n
2 . ut

3.3 Semantic Lower Bounds

∀Exp+Res gives us another approach. We can show that the total number of instances of the
axiom rule we need is exponential. Specifically this can be done in this system because axioms
can be instantiated in exponentially-many different ways. This was originally used in [30].
This means, even with an NP derivation rule ∀Exp+Res still has the semantic lower bound
from [30] which is easy for Q-Res. We can use this technique for Clique-coClique.

Theorem 15. The Clique-coClique QBFs are exponentially hard for ∀Exp+Res NP.

Proof. We expand our CNF in our universal variables. To argue for the lower bound we must
argue that at least

(
n
k

)
many clauses are required to even be unsatisfiable, hence a ∀Exp+Res

NP proof would still require exponentially many lines.
Like before we concentrate only on counting the B(n, k) clauses. Similarly to Theorem 14

we only look at the models that assign puv according to some clique H and set qiu to order
the vertices of the clique.

For each of these cliques assignments to p and q, we require an assignment α in r that
makes the formula unsatisfiable in the remaining tα variables. This, as argued before in the
proof of Theorem 14, must correspond to a bijection between our k clique slot values to the
vertices of H. We require at least one set of clauses with some annotation corresponding to
one of these bijection. For any two different cliques H,H ′ we need two different bijections and
hence two different annotations. Therefore our unsatisfiable expanded CNF requires at least(
n
k

)
different annotations.

ut

4 Simulations and equivalences

We can use the power of NP oracles to give new simulations. In these cases we are showing
that any previously existing separations were contingent on propositional hardness. We look
at Resolution-based systems, and systems with extension variables.

4.1 Resolution

Theorem 16. Tree-like ∀Exp+Res ≡NP ∀Exp+ Ext. Res.

Proof. (≤) ∀Exp+ Ext. Res has all the rules of ∀Exp+Res.
(≥) Suppose FQBF φ has a ∀Exp+Ext. ResNP refutation π. We take all axiom clauses that

are used in π. Our refutation in ∀Exp+Res NP uses these same axioms and a single instance of
an NP derivation on all the axioms to derive the empty clause. ut

Theorem 17. Q-Res ≡NP QU-Res.



Proof. (≤) QU-Res NP has every rule from Q-Res NP.
(≥) The NP derivation rule derives a propositional implicant from a finite number of

clauses. This means it subsumes the resolution rule for universal variables. ut

Though ∀Exp+Res NP cannot simulate Q-Res, the reverse is not possible either.

Theorem 18. For odd prime p, tree-like ∀Exp+Res � AC0[p]Frege +∀redNP.

Proof. We use the family of formulas QParityn from [10]. These false formulas each have a
unique winning strategy for the universal player namely the parity function on n variables.
Because the parity function is asymptotically an exponential lower bound [28,40] in bounded
depth circuits with odd mod p gates and we have strategy extraction from Theorem 7, we
know this gives an exponential lower bound to AC0[p]Frege +∀redNP. For the short proofs in
tree-like ∀Exp+Res see Theorem 2 in [9]. ut

4.2 Cutting planes

Theorem 19. CP+∀red NP does not simulate Frege +∀red.

Proof. We use the Q-IP formulas from Corollary 10 in [14], these formulas express that the
inner product of two bit-vectors cannot be both odd and even. In [42] it is shown that any
LTF-decision list for IPn must have length greater than 2n/2 − 1. It follows that any CP+∀red
proof for Q-IPn must have length greater than 2n/2 − 1 due to Theorem 7. ut

4.3 Weak Extension Variables

We will find that between Q-Res, QU-Res, Weak Ext. Q-Res and Weak Ext QU-Res there are
only the five trivial simulations and the rest are separations. However by using NP derivations
we find that all these separations rely on propositional hardness.

The separation between Q-Res and QU-Res comes from the formulas from Kleine Büning,
Karpinski and Flögel [33,43]. QU-Res cannot simulate weak extended Q-Res due to propositional
lower bounds like the pigeonhole principle [27], we are only left to show one more separation
and we get the complete picture.

Proposition 20. Weak extended Q-Res does not simulate QU-Res.

We can use the alternative proof from [7] to the lower bound of the formulas from Kleine
Büning, Karpinski and Flögel [33] for Q-Res.

Lemma 21. Weak extended Q-Res and weak extended QU-Res have capacity 1.

Proof. All reduction steps in weak extended Q-Res and weak extended QU-Res are reduction
steps that do not include extension variables, as these variables must appear existentially at
the end of the prefix. The minimum response map in a clause is to refute the universal literals,
no matter the input. Since our output is 1 assignment, the capacity here is 1. ut

KBKF(t) has prefix ∃d1, e1 ∀x1 ∃d2, e2 ∀x2 . . . ∃dt, et ∀xt ∃f1 . . . ft and matrix clauses

C0 = ¬d1 ∨ ¬e1
Di = di ∨ xi ∨ ¬di+1 ∨ ¬ei+1 Ei = ei ∨ ¬xi ∨ ¬di+1 ∨ ¬ei+1 for i ∈ [t− 1],
Dt = dt ∨ xt ∨ ¬f1 ∨ · · · ∨ ¬ft Et = dt ∨ ¬xt ∨ ¬f1 ∨ · · · ∨ ¬ft
F 0
i = xi ∨ fi F 1

i = ¬xi ∨ fi for i ∈ [t].



KBKFu(t) [5] has prefix ∃d1, e1 ∀x1, z1 ∃d2, e2 ∀x2, z2 . . . ∃dt, et ∀xt, zt ∃f1 . . . ft and matrix
clauses

C0 = ¬d1 ∨ ¬e1
Di = di ∨ xi ∨ zi ∨ ¬di+1 ∨ ¬ei+1 Ei = ei ∨ ¬xi ∨ ¬zi ∨ ¬di+1 ∨ ¬ei+1 for i ∈ [t− 1]
Dt = dt ∨ xt ∨ zt ∨ ¬f1 ∨ · · · ∨ ¬ft Et = dt ∨ ¬xt ∨ ¬zt ∨ ¬f1 ∨ · · · ∨ ¬ft
F 0
i = xi ∨ zi ∨ fi F 1

i = ¬xi ∨ ¬zi ∨ fi for i ∈ [t].

Finally the QBF λ′(t) [7] has the same clauses as KBKFu(t) but its prefix is

∃d1, e1 ∀x1 ∃d2, e2 ∀x2 . . . ∃dt, et ∀xt ∀z1 . . . zt∃f1 . . . ft.

We first show that Weak extended QU-Res requires an exponential refutations for KBKFu

using the cost-capacity method. We then argue that any proof in Weak extended Q-Res of
KBKF can give a similar size proof in QU-Res. Thus Weak extended Q-Res requires exponential
lower bounds for KBKFand thus cannot simulate QU-Res.

Lemma 22. Weak extended QU-Res requires 2t-size refutations for λ′(t).

Proof (Sketch Proof). The easiest way to make this argument is to recall that the extension
variables are all quantified to the right of all the zi variables and thus have not come into
play in the two player game until after the zi variables have been dealt with. In addition, the
extension clauses need not to be considered by the universal player, the existential player
can always satisfy them by playing the extension variables consistent to the functions they
represent. This means the cost-capacity argument from [7] still works in much the same way.

Consider the two-player game on the λ′(t). Suppose the existential player has played
dj 6= ej for every j ≤ k. Now suppose the universal player sets xk 6= ek then Dk, Ek are
satisfied, the existential player can satisfy the remaining Di, Ei, for i > k by setting both di
and ei to 1 and satisfy F ci by setting all the fi variables positive, all that remains is to set the
extension variables accordingly.

We consider A the set of assignments α to existential variables {d1, e1 . . . dn, en} such that
α(dk) 6= α(ek). We will show the only winning strategy is to play zk = xk = ek.

We have already argued that the universal player will set xk = ek, we now have to argue
that zk must be set to xk. If some xk 6= zk then fk can be set to 0 by the existential player,
while satisfying both F 0

k and F 1
k . This means both Dt and Et can be satisfied by ¬fk and all

other fi, i 6= k variables can be set to 1 satisfying all F 1
k and F 0

k .

Thus we show the cost for this block of zk variables is 2t. By the Cost-Capacity theorem
we show an exponential lower bound on the number of reduction steps. ut

Lemma 23. Weak extended QU-Res requires 2t-size refutations for KBKFu(t).

Proof. λ′(t) is a relaxation of KBKFu(t). Therefore if weak extended QU-Res requires 2O(t)

size refutations of λ′(t), then it also requires 2O(t) size refutations of λ′(t). ut

Lemma 24. Weak extended Q-Res refutations of KBKF(t) can be transformed into weak
extended QU-Res refutations for KBKFu(t) in linear time.



The clauses in our KBKFu(t) refutation will be the same except for an additional zi literal.
We keep an invariant in our constructed weak extended QU-Res proof that whenever variables
xi and zi appear in the same clause they appear in the same polarity. This will allow us to
prove that the resolution steps we perform in QU-Res to remain valid whenever they were
valid in the Q-Res proofs.

Proof. Each extension step is replicated exactly, every extension clause in the original proof is
in the new proof. Each axiom clause in KBKF(t) is replaced by the corresponding clause in
KBKFu(t) which adds zi literals whenever xi literals appear and ¬zi literals whenever ¬xi
literals appear. Any reduction step that appears in KBKF(t) that reduces xi is copied exactly
except it will also reduce zi in the same polarity as xi (if it exists). Any resolution step is
copied with the same existential pivot. We actually will not need to use universal resolution
steps. In order for these steps to be valid we need to ensure there are no conflicting universal
literals. Inductively, we show that zi,¬zi literals only appear in clauses where xi,¬xi literals
appear, respectively and all other literals are the same as in the original proof. This is true in
our axioms steps, in our extension clauses zi,¬zi literals do not appear. In reduction steps we
remove both xi and zi variables simultaneously. Finally in resolution steps, since we do not
resolve on universal variables we keep the invariant. Since xi and ¬xi literals were present in
the original proof these would not cause a conflict and neither will zi,¬zi. This means that
resolution steps are valid in KBKFu(t) whenever they were before since all clauses will just be
the same apart from an extra universal literal. This also means when we arrive at the empty
clause, we at most have an extra zi (or ¬zi) literal, however this would have been reduced
with xi (or ¬xi). Hence we refute KBKFu(t) in the same number of lines. ut

The corollary of this is Proposition 20. Thus we prove the following complete simulation
structure in Figure 6. The opposite, however, is true when using NP derivations

Q-Res

QU-Res Weak Ext. Q-Res

Weak Ext. QU-Res

Fig. 6. The simulation structure of four variants of Q-Res, all pairwise simulations are given and are strictly
one-way and other pairs do not yield a simulation

Theorem 25. Q-Res ≡NP QU-Res ≡NP Weak Ext.Q-Res ≡NP Weak Ext.QU-Res.

Proof. Q-Res ≡NP QU-Res and Weak Ext.Q-Res ≡NP Weak Ext.QU-Res because NP deriva-
tions can be used to simulate universal resolution steps directly. We are left to show Q-Res ≡NP

Weak Ext.Q-Res, in other words, that we can simulate what we can do with weak extension
using NP derivations.



The first observation is that in every universal reduction step in Weak Ext. Q-Res has
no extension variables, since these would always be quantified to the right of every universal
variable (and thus block their reduction). This means the first lines we perform universal
reduction on are just propositional implications of axioms. Likewise any later lines we perform
universal reduction on are propositional implications of the axioms plus the clauses that
result from universal reduction (which are not inferred propositionally). So what we can do in
Q-ResNP to simulate Weak Ext. Q-ResNP proofs is to use NP derivations to get to the lines that
need universal reduction and then just do universal reduction on these clauses and continue to
alternate between NP derivations steps and universal reduction steps. ut

5 Optimality in QBF proof systems

In the previous sections we have examined the simulation structure of QBF proof systems
under NP oracles, this complements previous work [5,10,11,24,30,43] which undertook the
same task without NP derivations. In this section we undertake a task that is more specific to
the NP derivation situation- optimality.

Optimality has proven difficult to show in propositional proof complexity, so factoring out
propositional difficulty via the NP derivation might help us gain optimality results. In this
work we do not show an optimal QBF proof system, instead we look at all QBF proof systems
with strategy extraction and find something optimal among them.

We first prove the following, which does not rely on NP oracles:

Theorem 26. For every QBF Proof System P that has P/poly-strategy extraction there is a
set of polynomial-time verifiable propositional tautologies ‖Φ‖ such that eFrege +∀red +‖Φ‖
p-simulates P .

Proof. Let P be our TQBF proof system. Let Πφ be a closed QBF where Π is a quantifier
prefix and φ is purely propositional. The strategy extraction means that from a proof π of QBF
we can extract in polynomial-time circuits σe that are Skolem functions for each existential
variable e. Let φσ,Π be the propositional formula that results from replacing every existential
variable e with σe in φ. Since the strategy is correct, (φ)σ,Π must be a propositional tautology.

We can use this observation to design a propositional proof system Sko(P ). Using the
Cook-Reckhow definition of a proof system as a checking function we define it as follows:

Sko(P )(π) =

{
φσ,Π , π is a P proof of Πφ and σ is the strategy extracted from it,

eFrege(π), otherwise.

Sko(P ) is simulated by eFrege +‖refl(Sko(P ))‖ [34], where ‖refl(Sko(P ))‖ is a polynomial-
time recognition set of propositions that encode an arithmetic statement of the correctness of
Sko(P ). We show that eFrege +∀red +‖refl(Sko(P ))‖ simulates P , so we let π be a proof of
Πφ in P with strategy extracted σ. Note that π is also a Sko(P ) proof.

We let π′1 be the eFrege +‖refl(Sko(P ))‖ proof that simulates π in Sko(P ). We know this
can be of polynomial size in π. Likewise as we know the σy are polynomial size, this means
that the circuit ¬φ ∧ φσ,Π →

∨n
i=1(yi 6= σyi) has a polynomial size proof π′2, where yi are the

existential variables in Π in order (yn being the innermost existential variable). π′2 simply
involves the eFrege proof that when the substitutions

∧n
i=1(yi = σyi) are assumed then φ and

φσ,Π are interchangeable.
In order to show eFrege +∀red +‖refl(Sko(P ))‖ can prove Πφ, we refute Π̄¬φ (where Π̄

swaps ∃ and ∀ quantifiers) since eFrege +∀red +‖refl(Sko(P ))‖ is a refutational system.



¬φ φσ,Π
¬φ ∧ φσ,Π ¬φ ∧ φσ,Π →

∨n
i=1(yi 6= σyi)∨n

i=1(yi 6= σyi)

We show an inductive proof of
∨n−k
i=1 (yi 6= σyi) for increasing k eventually leaving us with

the empty clause. This essentially is where we use the ∀-Red rule.∨n+1−k
i=1 (yi 6= σyi)

(0 6= σyn+1−k) ∨
∨n−k
i=1 (yi 6= σyi) (1 6= σyn+1−k) ∨

∨n−k
i=1 (yi 6= σyi)

(0 = σyn+1−k) ∨ (1 = σyn+1−k)

(1 = σyn+1−k) ∨
∨n−k
i=1 (yi 6= σyi)

∨n−k
i=1 (yi 6= σyi)

ut

This result tells us how important eFrege +∀red is, although it is conditional on adding
the propositional tautologies of ‖refl(Sko(P ))‖ if they cannot already be derived in eFrege. We
are now going to remove this condition and replace it with an NP-oracle rule, however first we
will do something to make this result stronger, we show that eFrege (the circuit version) and
Extended QU-Res are equivalent systems. This will mean our optimality result will hold for
both Extended QU-Res and eFrege +∀red.

Theorem 27. Extended QU-Res and eFrege +∀red are p-equivalent.

Proof. First we show extended QU-Res p-simulates eFrege +∀red. Let π be a refutation in
eFrege +∀red of Πφ. Π is a prefix where every universal is yi for some 1 ≤ i ≤ n and
lv(yi) < lv(yi+1). We can change π into a normal form eFrege +∀red proof π′ as in [19]. This
normal form contains an eFrege proof of

∨n
i=1(yi 6= σyi),where yi are the universal variables

in index order and σyi are the extracted strategies from π. Since extended resolution (with
weakening) simulates eFrege. We can find short derivations of a CNF version of

∨n
i=1(yi 6= σyi)

with extension variables involved. This can be written as:

n∧
i=1

Def (si = σyi) ∧ tn ∧ ¬t0 ∧
n∧
i=1

(¬ti ∨ yi ∨ si ∨ ti−1) ∧
n∧
i=1

(¬ti ∨ ¬yi ∨ ¬si ∨ ti−1)

si are extensions variables that are defined as σyi in Def (si = σyi) possibly using more
extension variables for the gates. ti are extra variables that allow us to split our large disjunction
up, for j ≥ 0, tj can be seen as an extension variable defining

∨j
i=1(yi 6= si).



Since the gates in σyi and the si variables only depend on variables to the left of yi we can
place them in the quantifier prefix before yi which will make it easier to ∀-reduce yi, which is
what we do inductively to get the refutation.

We next remove all weakening steps and end up with a Extended QU-Res proof.

We now show the converse, that eFrege +∀red p-simulates Extended QU-Res. We take a
proof π in extended QU-Res. In order to convert it into a proof of eFrege +∀red we first have
to convert between the clausal line in π to circuits without extension variables.

We replace every extension variable with the circuit it is describing (using the full circuit
when an extension variable is based on other extension variables). The circuits introduced are
only as large as π because they have to be defined using extension clauses. Hence the new
proof is polynomial

A resolution rule can be easy copied by eFrege steps. The extension rules are now tautologies
that can be easily inferred (or taken as axioms in fact). The reduction rules can be copied
but we have to verify that the reduction rules are allowed. The new clauses now have circuits
in place of extension variables, however the variables of the circuits are left of the extension
variables, by definition of extended QU-Res. A clause C ∨ u in π where the variables in C are
quantified before u is transformed into a circuit D ∨ u where the circuit D is in variables that
are quantified before u. Hence reduction is valid. ut

Theorem 28. Extended Q-Res NP is optimal among all QBF proof systems with strategy
extraction

By ”optimal among all QBF proof systems with strategy extraction” we mean that it
simulates all QBF proof systems with (P/poly-)strategy extraction and has strategy extraction
itself. The caveat is that Extended QU-Res NP is not a proof system due to the NP oracle.

Proof. Extended Q-Res NP simulates Extended QU-Res NP since universal resolution is sub-
sumed by the NP-derivation rule. We know that Extended QU-Res NP has strategy extraction
by Theorem 7.

Suppose we have QBF proof system P , that has strategy extraction. We know from
Theorem 26 we can simulate this by system eFrege ∀red +‖refl(Sko(P ))‖, we can simulate this
by Ext. QU-Res NP, because ‖refl(Sko(P ))‖ can be derived directly from the NP derivation and
eFrege +∀red rules can be simulated by Extended QU-Res rules. Note that it does not matter
here if P uses an NP derivation rule as this can be directed simulated by the NP derivation
rule in Extended QU-Res NP. ut

5.1 Proof systems without strategy extraction

In the previous section we showed that Ext. Q-Res NP is optimal among all QBF proof systems
with strategy extraction and any proof system simulated by Ext. Q-Res NP must also have
strategy extraction. But what about proof systems without strategy extraction?

It is not easy to show that a proof system does not have strategy extraction as it is tied to
unsolved problems in complexity theory. We prove the following:

Theorem 29. P=PSPACE if and only if every QBF proof system has strategy extraction.

Proof. We assume P=PSPACE first. Suppose we are using QBF proof system f . Let χ =
∀y1∃x1 . . . ∀yn∃xnΦ where Φ is propositional and χ is a closed QBF that we want to refute



(any QBF can be converted to this form with dummy variables). Suppose we have f refutation
π of χ. π is only relevant in so far that we can get χ from it in polynomial time (we can do so
using f), and that it is valid.

Now we want to show a strategy for variable yi, we will informally construct a program
that allows us to get a response for yi and show that it will produce a correct response. We do
it inductively increasing i.

Induction Hypothesis: Suppose we are the universal player in our i-th round of the
two-player semantic game on χ. We can find in polynomial time (in χ) a value of yi, that still
allows us to win the game later.

Base Case: Either ∃x1 . . . ∀yn∃xnφi[0/yi] or ∃x1 . . . ∀yn∃xnφi[1/y1] is false. Since P =
PSPACE there is a polynomial-time algorithm that tells us the truth value of QBFs. This we
use to find a value of y1 that allows us to continue with a falsifiable QBF.

Inductive Step: We assume we have a {0, 1} assignment α(Zi) to all the variables
Zi =

⋃i−1
j=1 Yj ∪Xj .

Let φi = φ[α(Zi)/Zi], ∀yi∃xi . . . ∀yn∃xnφi is also a QBF which is false assuming the yj
variables have been played correctly for j < i. That means either ∃xi . . . ∀yn∃xnφi[0/yi] or
∃xi . . . ∀yn∃xnφi[1/yi] is false. We can check which one is false in polynomial time when we
assume P = PSPACE (since QBF is now in polynomial time) and we play yi to that value. If
we do this for increasing values of i we never exceed our polynomial time (in size of χ) for
extracting this.

For the reverse we assume P 6= PSPACE, since QBF is PSPACE-complete problem, there
will be no polynomial time algorithm that decides the truth of a QBF.

Suppose we have a closed QBF ∆. We can create a QBF ∀z(z ↔ ∆) which is always false
because ∆ is either equivalent to 0 or 1, and create a QBF proof system f that recognises this
fact in a single line for every QBF ∆ (this can be done in polynomial time). However, now we
assume f has strategy extraction, then we can, in polynomial time, extract circuits from a
vacuous proof that chooses the value of z, essentially providing a truth value for ∆. This gives
us a polynomial time algorithm for QBF. ut

6 Conclusion

The optimality result of Extended QU-Res has two caveats. Firstly, it only simulates systems
with strategy extraction, and secondly it relies on an NP oracle. We can argue that these
caveats are not incongruous with the state of QBF in practice. For some QBF applications,
like chess, not only is the existence of a solution interesting but one would also want to know
which chess moves ought to be played in order to reach that solution. Indeed many solvers do
indeed allows strategies to be extracted from them.

In regards to the NP oracle, we see this as in line with QBF algorithms that use SAT
algorithms as black boxes. Nonetheless, Theorem 26 allows us to remove the NP oracle and be
in a proper proof system.

This result may have implications for other proof systems. QRAT [29] is a proof system
that can simulate extended QU-Res and it is currently being proposed as a proof checking
format for QBF solvers. If all these solvers have strategy extraction then QRATNP would
indeed be sufficient to check these solvers. Furthermore, we can remove the NP oracle and
just assume that DRAT, the propositional version of QRAT, is sufficient for checking the
propositional component of these solvers.



There is now reason to be cautious about QBF proof systems that simulate Ext. QU-Res or
eFrege +∀red. Either they are equivalent to Ext. QU-Res, do not have strategy extraction, or
create a propositional system that is strictly stronger than eFrege (a long term open problem
in propositional proof complexity). We suspect that QRAT may not have (Herbrand) strategy
extraction or may be equivalent to Ext. QU-Res.

And finally we can assume (conditionally on P 6= PSPACE) that we do have proof systems
and solvers without strategy extraction. This creates a potential trade-off, strategy extraction
is a nice property related to what we might want in practice, but it could inflate the sizes of
our proofs and the running times of our algorithms.
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