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Abstract. In this work, we study privacy-preserving storage primitives
that are suitable for use in data analysis on outsourced databases within
the differential privacy framework. The goal in differentially private data
analysis is to disclose global properties of a group without compromis-
ing any individual’s privacy. Typically, differentially private adversaries
only ever learn global properties. For the case of outsourced databases,
the adversary also views the patterns of access to data. Oblivious RAM
(ORAM) can be used to hide access patterns but ORAM might be ex-
cessive as in some settings it could be sufficient to be compatible with
differential privacy and only protect the privacy of individual accesses.
We consider (ε, δ)-Differentially Private RAM, a weakening of ORAM
that only protects individual operations and seems better suited for use
in data analysis on outsourced databases. As differentially private RAM
has weaker security than ORAM, there is hope that we can bypass the
Ω(log(n/c)) bandwidth lower bounds for ORAM by Larsen and Nielsen
[CRYPTO ’18] for storing an array of n entries and a client with c bits
of memory. We answer in the negative and present an Ω(log(n/c)) band-
width lower bound for privacy budgets of ε = O(1) and δ ≤ 1/3.
The information transfer technique used for ORAM lower bounds does
not seem adaptable for use with the weaker security guarantees of dif-
ferential privacy. Instead, we prove our lower bounds by adapting the
chronogram technique to our setting. To our knowledge, this is the first
work that uses the chronogram technique for lower bounds on privacy-
preserving storage primitives.

1 Introduction

In this work, we study privacy-preserving storage schemes involving a client and
an untrusted server. The goal is to enable the client to outsource the storage of
data to the server such that the client may still perform operations on the stored
data (e.g. retrieving and updating data). For privacy, the client wishes to keep
the stored data hidden from server. One way to ensure the contents of the data
remain hidden is for the client to encrypt all data before uploading to the server.
However, the server can still view how the encrypted data is accessed as the client
performs operations. Previous works such as [19, 3] have shown that the leakage
of patterns of access to encrypted data can be used to compromise the privacy
of the encrypted data. Therefore, a very important privacy requirement is also
to protect the access patterns.
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The traditional way to define the privacy of access pattern is obliviousness. An
oblivious storage primitive ensures that any adversary that is given two sequences
of operations of equal length and observes the patterns of data access performed
by one of the two sequences cannot determine which of the two sequences induced
the observed access pattern. The most famous oblivious storage primitive is
Oblivious RAM (ORAM) that outsources the storage of an array and allows
clients to retrieve and update array entries. ORAM was first introduced by
Goldreich [15] who presented an ORAM with sublinear amortized bandwidth per
operation for clients with constant size memory. Goldreich and Ostrovsky [16]
give the first ORAM construction with polylogarithmic amortized bandwidth
per operation. In the past decade, ORAM has been the subject of extensive
research [27, 17, 30, 18, 20, 31, 26] as well as variants such as statistically secure
ORAMs [7, 6], parallel ORAMs [1, 5, 4] and garbled RAMs [14, 13, 24]. The above
references are just a small subset of all the results for ORAM constructions.

Instead, we focus on a different definition of privacy using differential pri-
vacy [10, 9, 11]. The representative scenario for differential privacy is privacy-
preserving data analysis which considers the problem of disclosing properties
about an entire database while maintaining the privacy of individual database
records. A mechanism or algorithm is considered differentially private if any fixed
disclosure is almost as likely to be outputted for two different input databases
that only differ in exactly one record. As a result, an adversary that views the
disclosure is unable to determine whether an individual record was part of the
input used to compute the disclosure. We consider the scenario of performing
privacy-preserving data analysis on data outsourced to an untrusted server. By
viewing the patterns of access to the outsourced data, the adversarial server
might be able to determine which individual records were used to compute the
disclosure compromising differential privacy.

One way to protect the patterns of data access is to outsource the data using
an ORAM. However, in many cases, it turns out that the obliviousness guaran-
tees of ORAM may be stronger than required. For example, let’s suppose that
we wish to disclose a differentially private regression model over a sample of the
outsourced data. ORAM guarantees that the identity of all sampled database
records will remain hidden from the adversary. On the other hand, the differen-
tially private regression model only provides privacy about whether an individual
record was sampled or not. Instead of obliviousness, we want a weaker notion
of privacy for access patterns suitable for use with differentially private data
analytics. With a weaker notion of privacy, there is hope for a construction with
better efficiency than ORAM.

With this in mind, we turn to the notion of differentially private access which
provides privacy for individual operations but might reveal information about a
sequence of many operations. Differentially private access has been previously
considered in [32, 33]. In particular, this privacy notion ensures that the pat-
terns of data access caused by a fixed sequence of operations is almost as likely
to be induced by another sequence of operations of the same length with a
single different operation. We define (ε, δ)-differentially private RAM as a stor-
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age primitive that outsources the storage of an array in a manner that allows
a client to retrieve and update array entries while providing differentially pri-
vate access. As this privacy notion is weaker than obliviousness, the Ω(log(n/c))
lower bounds for ORAMs that store n array entries and clients with c bits of
storage by Larsen and Nielsen [22] do not apply. There is hope to achieve a dif-
ferentially private RAM construction with smaller bandwidth. In this work, we
answer in the negative and show that an Ω(log(n/c)) bandwidth lower bound
also exists for differentially private RAM for typical privacy budgets of ε = O(1)
and δ ≤ 1/3. As differential privacy with budgets of ε = O(1) and δ ≤ 1/3
provide weaker security than obliviousness, any ORAM is also a differentially
private RAM. Therefore, our lower bounds show that the ORAM construction
by Patel et al. [26] is an asymptotically optimal, up to an O(log log n) factor,
differentially private RAM with ε = O(1) and δ ≤ 1/3.

1.1 Our Results

In this section, we will present our contributions. We first describe the scenarios
where our lower bounds apply. Our lower bounds apply to differentially private
RAMs that process operations in an online fashion. The RAM must be both
read-and-write, that is, the set of permitted operations include both reading
and writing array entries. The server that stores the array is assumed to be
passive in that the server may not perform any computation beyond retrieving
and overwriting cells but no assumptions are made on the storage encoding of
the array. Finally, we assume that the adversary is computationally bounded. We
now go into detail about each of these requirements.

Differential Privacy. The goal of differential privacy is to ensure that the removal
or replacement of an individual in a large population does not significantly affect
the view of the adversary. Differential privacy is parameterized by two values
0 ≤ ε, δ ≤ 1. The value ε is typically referred to as the privacy budget. When
δ = 0, the notion is known as pure differential privacy while, if δ > 0, the notion
is known as approximate differential privacy. In our context, an individual is a
single operation in a sequence (the population) of read (also called queries) and
write (also called updates) operations over an array of n entries stored on a,
potentially adversarial, remote server. For any implementation DS and for any
sequence Q, we define VDS(Q) to be the view of the server when sequence Q
is executed by DS. A differentially private RAM, DS, is defined to ensure that
the adversary’s view on one sequence of operations should not be significantly
different when DS executes another sequence of operations which differs for only
one operation. We assume that our adversaries are computationally bounded.

Formally, if DS is (ε, δ)-differentially private, then for any two sequences Q1

and Q2 that differ in exactly one operation, it must be that Pr[A(VDS(Q1)) =
1] ≤ eε Pr[A(VDS(Q2)) = 1]+δ for any probabilistically polynomial time (PPT)
algorithm A. The notion of computational differential privacy was studied by
Mironov et al. [25] where various classes of privacy were described. Our lower
bounds consider the weakest privacy class and, thus, apply to all privacy classes
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in [25]. In the majority of scenarios, differential privacy is only considered use-
ful for the cases when ε = O(1) and δ is negligible. This is exactly the scenario
where our lower bounds will hold. In fact, our lower bounds hold for any δ ≤ 1/3.
We note that differential privacy with ε = O(1) and δ ≤ 1/3 is a weaker secu-
rity notion than obliviousness. Obliviousness is equivalent to differential privacy
when ε = 0 and δ is negligible. Therefore, our lower bounds also hold for ORAM
and match the lower bounds of Larsen and Nielsen [22]. We refer the reader to
Section 2 for a formal definition of differential privacy.

Online RAMs. It is important that we discuss the notion of online vs. offline
processing of operations by RAMs. In the offline scenario, it is assumed that
all operations are given before the RAM must start processing updates and an-
swering queries. The first ORAM lower bound by Goldreich and Ostrovsky [16]
considered offline ORAMs with “balls-and-bins” encoding and security against
an all-powerful adversary. “Balls-and-bins” refers to the encoding where array
entries are immutable balls and the only valid operation is to move array entries
into various memory locations referred to as bins. Boyle and Naor [2] show that
proving an offline ORAM lower bound for non-restricted encodings is equivalent
to showing lower bounds in sorting circuits, which is a long-standing problem
in complexity. Instead, we consider online RAMs where operations arrive one
at a time and must be processed before receiving the next operation. The as-
sumption of online operations is realistic as the majority of RAM constructions
consider online operations and almost all applications of RAMs consider online
operations. Our lower bounds only apply for online differentially private RAMs.

Read-and-Write RAMs. Traditionally, all ORAM results consider the scenario
where the set of valid operations include both reading and writing array entries.
A natural relaxation would be to consider read-only RAMs where the only valid
operation is reading array entries. Any lower bound on read-only RAMs would
also apply to read-and-write RAMs. However, in a recent work by Weiss and
Wichs [35], it is shown that any lower bounds for read-only ORAMs would imply
very strong lower bounds for either sorting circuits and/or locally decodable
codes (LDCs). Proving lower bounds for LDCs has, like sorting circuits, been
an open problem in the world of complexity theory for more than a decade. As
differential privacy is weaker than obliviousness, any lower bounds on read-only,
differentially private RAMs also imply lower bounds on read-only ORAMs. To
get around these obstacles, our work focuses only on proving lower bounds for
read-and-write differentially private RAMs.

Passive Server. In our work, we will assume that the server storing the array is
passive, which means that the server will not any perform computation beyond
retrieving and overwriting the contents of a cell as the request of the client.
This assumption is necessary as there are ORAM constructions that use server
computation to achieve constant bandwidth operations [8]. Therefore, our lower
bounds on bandwidth only apply to differentially private RAMs with a passive
server. For scenarios with differentially private RAMs and servers with no bounds
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on computation, we can reinterpret our results as lower bounds on the amount
of server computation required.

We now informally present our main contribution.

Theorem 1 (informal). Let DS be any online, read-and-write RAM that stores
n array entries each of size b bits on a passive server without any restrictions on
storage encodings. Suppose that the client has c bits of storage. Assume that DS
provides (ε, δ)-differential privacy against a computational adversary that views
all cell probes performed by the server. If ε = O(1) and 0 ≤ δ ≤ 1/3, then the
expected amortized bandwidth of both reading and writing array entries by DS
is Ω(b log(n/c)) bits or Ω(log(n/c)) array entries. In the natural scenario where
c ≤ nα where 0 ≤ α < 1, then Ω(log n) array entries of bandwidth are required.

We note that our lower bounds are tight up to an O(log log n) factor since
PanORAMa [26] requires onlyO(log n log log n) array entries of bandwidth when-
ever b = Ω(log n) and any ORAM is also a differentially private RAM with ε = 0
and negligible δ. Furthermore, when b = Ω(log2 n), Path ORAM [31] is tight.

1.2 Previous Works

In this section, we present a small survey of previous works on data structure
lower bounds. We also describe the first lower bound for data structures that
provide privacy guarantees.

The majority of data structure lower bounds are proved using the cell probe
model introduced by Yao [36], which only charges for accessing memory and
allows unlimited computation. In the case for passive servers that only retrieve
and overwrite memory, the costs of the cell probe model directly imply costs in
bandwidth. The chronogram technique was introduced by Fredman and Saks [12]
which can be used to prove Ω(log n/ log log n) lower bounds. Pǎtraşcu and De-
maine [29] presented the information transfer techinque which could be used to
prove Ω(log n) lower bounds. Larsen [21] presented an Ω̃(log2 n) lower bound
for two-dimensional dynamic range counting, which remains the highest lower
bound proven for any log n output data structures. Recently, Larsen et al. [23]
presented an Ω̃(log1.5 n) lower bound for data structures with single bit outputs
which is the highest lower bound for decision query data structures.

For ORAM, Goldreich and Ostrovsky [16] presented anΩ(logc n) lower bound
for clients with storage of c array entries. However, Boyle and Naor [2] showed
that this lower bound came with the cavaets that the lower bound only for
statistical adversaries and constructions in “balls-and-bins“ model where array
entries could only be moved between memory and not encoded in a more com-
plex manner. Furthermore, Boyle and Naor [2] show that proving lower bounds
for offline ORAMs and arbitrary storage encodings imply sorting circuit lower
bounds. In their seminal work, Larsen and Nielsen [22] presented an Ω(log(n/c))
bandwidth lower bound removing the cavaets such that lower bounds applies to
any types of storage encodings and computational adversaries. Recently, Weiss
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and Wichs [35] show that lower bounds for online, read-only ORAMs would
imply lower bounds for either sorting circuits and/or locally decodable codes.

We present a brief overview of the techniques used by Larsen and Nielsen [22],
which uses the information transfer technique. We also describe why information
transfer does not seem to be of use for differentially private RAM lower bounds.
Information transfer first builds a binary tree over Θ(n) operations where the
first operation is assigned to the leftmost leaf, the second operation is assigned
to the second leftmost leaf and so forth. Each cell probe is assigned to at most
one node of the tree as follows. For a cell probe, we identify the operation that is
performing the probe as well as the most recent operation that overwrote the cell
that is being probed. The cell probe is assigned to the lowest common ancestor
of the leaves associated with the most recent operation to overwrite the cell and
the operation performing the probe. Let us fix any node of the tree and consider
the subtree rooted at the fixed node. It can be shown that the probes assigned to
the root is the entirety of information that can be transferred from the updates
of the left subtree to be used to answer queries in right subtree. Consider the
sequence of operations where all leaves in the left subtree write a randomly
chosen b-bit string to unique array entries and all leaves in the right subtree
read an unique, updated array entry. For any DS to return the correct b-bit
strings asked by the queries in the right subtree, a large amount of information
must be transferred from the left subtree to the right subtree. Thus, many probes
should be assigned to the root of this subtree. Suppose that for another sequence
of operations, DS assigns significantly less probes to the root of this subtree.
Then, a computational adversary can count the probes and distinguish between
the worst case sequence and any other sequence contradicting obliviousness. As
a result, there must be many probes assigned to each node of the information
transfer tree. Each cell probe is assigned to at most one node. So, summing up
the tree provides a lower bound on the number of cell probes required.

Unfortunately, we are unable to use the information transfer technique to
prove lower bounds for differentially private RAMs. The main issue comes from
the fact that differentially private RAMs have significantly weaker privacy guar-
antees compared to ORAMs. When ε = Θ(1), the probabilistic requirements of
the adversary’s view when DS processes two sequences Q1 and Q2 degrade ex-
ponentially in the number of operations that Q1 and Q2 differ in. On the other
hand, the privacy requirements of obliviousness do not degrade when consider-
ing two sequences that differ in many operations. Larsen and Nielsen [22] use
obliviousness to argue that the adversary’s view for the worst case sequence of
any subtree cannot differ significantly from any other sequence. However, for any
fixed sequence of operations, the worst case sequence for the majority of subtrees
differ in many operations (on the order of the number of leaves of the subtree).
Applying differential privacy will not yield strong requirements for the number
of cell probes assigned to the majority of the nodes in the information transfer
binary tree. As a result, we could not adapt the information transfer technique
for differentially private RAM lower bounds and resort to other techniques.
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1.3 Overview of our Proofs

In this section, we present an overview of the proof techniques used in Sections 3
and 4. Our lower bounds use ideas from works by Pǎtraşcu and Demaine [29] and
Pǎtraşcu [28]. However, we begin by reviewing the original chronogram technique
of Fredman and Saks [12]. Let us suppose that tw is the running time of an update
(write) and tr is the running time of a query (read). Consider a sequence of
operations with Θ(n) updates followed by a single query. Starting from the
query and going backwards in time, updates are partitioned into exponentially
increasing epochs at some rate r. Epochs are indexed in reverse time, so the
smallest epoch closest to the query is epoch 1. The i-th epoch will have `i = ri

update operations. The goal of the chronogram is to prove that there exists a
query that requires information from many of the epochs simultaneously. To do
this, we first observe that if each update writes a randomly and independently
chosen b-bit entry, an update operation preceding epoch i cannot encode any
information about epoch i. Therefore, all information about epoch i can only be
found in cells that have been written as part of the update operations of epoch
i or any following epochs. Since each update stores b random bits, any epoch
i encodes at least `i · b bits in total. If we denote by w the number of bits in
a cell and set r = (tww)2, it is easy to see that the write operations of epochs
i− 1, i− 2, . . . , 1 can probe at most tw(ri−1 + . . .+ r) = O(`i/(tww

2)) cells and
write at most O(`i/(tww)) bits. As a result, the majority of the bits encoded by
updates in epoch i remain in cells last written in epoch i. Finally, the goal is
to construct a random query such that Ω(b) bits must be transferred from each
epoch. If such a query exists, we can prove that max{tw, tr} = Ω((b/w) logr n) =
Ω((b/w) log n/ log log n).

This lower bound can be improved to Ω((b/w) log n) by using an improve-
ment of the chronogram technique by Pǎtraşcu [28]. In the original chronogram
technique, the epochs are fixed since the query’s location and the number of
updates are fixed. An algorithm may attempt to target an epoch i by having
all future update operations encode information only about epoch i. To coun-
teract this, we consider a harder update sequence where epoch locations cannot
be predicted by the algorithm. Specifically, we consider a sequence that consists
of a random number of update operations followed by a single query opera-
tion. For such a sequence, even if an algorithm attempts to target epoch i, it
cannot pinpoint the location of epoch i and may only prepare over all possi-
ble query locations. We show that any update operation may now only encode
O(tww/ logr n) about epoch i where logr n is the number of epochs. As a result,
future update operations can only encode a O(1/ logr n) fraction as much infor-
mation about epoch i as the previous lower bound attempt. This allows us to
fix r = 2 which increases the number of epochs log n. If we can find a query that
requires Ω(b) bits of information transfer from the majority of epochs, we can
prove that max{tw, tr} = Ω((b/w) log n).

Recall that for differentially private RAM, the update operations enable over-
writing a b-bit array entry while the query operations allows retrieving an array
entry. We choose our update operations to overwrite unique array entries where
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the updated array entry is chosen independently and uniformly at random from
{0, 1}b. Focus on an epoch i and consider picking a random query from the `i
array indices updated in epoch i. The majority of these queries must read Ω(b)
bits from cells last written in epoch i as future operations cannot encode all `i · b
bits encoded by epoch i. As a result, there exists some query such that Ω(b) bits
must be transferred from epoch i for all sufficiently large epochs. We use differ-
ential privacy to show that Ω(b) bits must be transferred from all sufficiently
large epochs. Consider two sequences of operations that only differ in the final
query operation where one query requires Ω(b) bits from epoch i for correctness
while the other query does not need any information from epoch i. If the latter
query transfers o(b) bits from epoch i, the adversary can distinguish between the
two sequences with high probability contradicting differential privacy. Note, our
privacy guarantees do not degrade significantly as the two sequences only differ
at the final query operation. Therefore, we can prove that Ω(b) bits have to be
transferred from most epochs and that max{tw, tr} = Ω((b/w) log n). The proof
of this lower bound is found in Section 3.

A stronger lower bound is presented in Section 4 using more complex epoch
constructions. We now describe our main result presented in Section 4. The
lower bound outlined above shows that max{tw, tr} = Ω((b/w) log n) but does
not preclude the case where tw = Θ((b/w) log n) and tr = O(1), for example.
We show this cannot be the case. In particular, we show that if max{tw, tr} =
O((b/w) log n), then it must be the case that tw = Θ((b/w) log n) and tr =
Θ((b/w) log n). The idea is to construct different epoch constructions for the
cases when tw and tr are small respectively. When tw = o((b/w) log n), we know
that operations in future epochs cannot encode too much information. We con-
sider an epoch construction where epochs grow by a rate of r = ω(1) every
r epochs increasing the number of epochs to ω(log n). In exchange, there are
many operations after an epoch i. Since tw is small, the future operations may
not encode too much information about epoch i ensuring most of the informa-
tion about epoch i remain in cells last written during epoch i. As a result, it
can be shown again that Ω(b) bits must be read from many epochs implying an
tr = ω((b/w) log n) lower bound.

On the other hand, consider the case when tr = o((b/w) log n). We con-
sider epoch constructions that increase exponentially with rate r = ω(1). As
a result, the number of operations after epoch i is a factor of O(1/r) smaller
than the `i operations in epoch i and there are Θ(logr n) epochs. If tr =
o((b/w) logr n), then a query operation may not read Ω(b) from each of the
epochs. Instead, update operations must encode a large amount of informa-
tion about previous epochs to compensate for tr being so small. As a result,
it can be shown that tw = ω((b/w) log n). Combining the above two state-
ments implies that if max{tw, tr} = O((b/w) log n), then tw = Θ((b/w) log n)
and tr = Θ((b/w) log n).
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2 Differentially Private Cell Probe Model

We start by formalizing the model for which we prove our lower bounds. We rely
on the cell probe model, first described by Yao [36], and typically used to prove
lower bounds for data structures without any requirements for privacy of the
stored data and/or the operations performed. In a recent work by Larsen and
Nielsen [22], the oblivious cell probe model was introduced and used to prove a
lower bound for oblivious RAM. The oblivious cell probe model was defined for
any data structures where the patterns of access to memory should not reveal
any information about the operations performed. We generalize the oblivious
cell probe model and present the (ε, δ)-differentially private cell probe model. In
this new model, all data structures are assumed to provide differential privacy
for the operations performed with respect to memory accesses viewed by the
adversary. The differentially private cell probe model is a generalization of the
oblivious cell probe model as obliviousness is equivalent to differential privacy
with ε = 0 and δ = negl(n), that is, any function negligible in the number of
items stored in the data structure.

The cell probe model is an abstraction of the interaction between CPUs and
word-RAM memory architectures. Memory is defined as an array of cells such
that each cell contains exactly w bits. Any operation of a data structure is allowed
to probe cells where a probe can consist of either reading the contents of a cell
or overwriting the contents of a cell. The running time or cost for any operation
of a data structure is measured by the number of cell probes performed. An
algorithm is free to do unlimited amounts of computation based on the contents
of probed cells.

The cell probe model does not effectively capture the correct scenario for
data structures that provide privacy of the operations performed such as obliv-
ious RAM. The typical scenario considered involves two parties denoted the
client and the server. The client outsources the storage of data to the server
while maintaining the ability to perform some set of operations over the data
efficiently. In addition, the client wishes to hide the operations performed from
the adversarial server that views the contents of all cells in memory as well as the
sequence of cells probed in memory. We importantly note that the server does
not learn about the contents and sequence of accesses to the client’s storage.
For this reason, Larsen and Nielsen [22] defined the oblivious cell probe model
to prove lower bounds for oblivious RAMs. We note that the differentially pri-
vate cell probe model is identical to the oblivious cell probe model except for
the simple replacement of obliviousness with differential privacy as the privacy
requirement. For a full description of the oblivious cell probe model, we refer the
reader to Section 2 of [22].

To define the differentially private cell probe model, we first describe a data
structure problem as well as a differentially private cell probe data structure for
any data structure problem.

Definition 1. A data structure problem P is defined by a tuple (U,Q,O, f)
where
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1. U is the universe of all update operations;

2. Q is the universe of all query operations;

3. O is domain of all possible outputs for all queries;

4. f : U∗ ×Q→ O is a function that describes the desired output of any query
q ∈ Q given the history of all updates, (u1, u2, . . . , um) ∈ U∗.

A differentially private cell probe data structure DS for the data structure
problem P consists of a randomized algorithm implementing update and query
operations for P . DS is parameterized by the integers c and w denoting the client
storage and cell size in bits respectively. Additionally, DS is given a random
string R of finite length r containing all randomness that DS will use. Note that
R can be arbitrarily large and, thus, contain all the randomness of a random
oracle. Given the random string, our algorithms can be viewed as deterministic.
Each algorithm is viewed as a finite decision tree executed by the client that
probes (read or overwrite) memory cells owned by the server. For each q ∈ Q
and u ∈ U , there exists a (possibly) different decision tree. Each node in the
decision tree is labelled by an index indicating the location of the server-held
memory cell to be probed. For convenience, we will assume that a probe may
both read and overwrite cell contents. This only reduces the number of cell
probes by a factor of at most 2. Additionally, all leaf nodes are labelled with an
element of O indicating the output of DS after execution.

Each edge in the tree is labelled by four bit strings. The first bit-string
of length w represents the contents of the cell probed. The next w-bit string
represents the new cell contents after overwriting. There are two c-bit strings
representing the current client storage and the new client storage after perform-
ing the probe. Finally, there is a r-bit string representing the random string.
The client executes DS by traversing the decision tree starting from the root.
At each node, the client reads the indicated cell’s contents. Using the random
string, the current client storage and the cell contents, it finds the edge to the
next node and updates the probed cell’s contents and client storage accordingly.
When reaching a leaf, DS outputs the element of O denoted at the leaf.

Note, DS is only permitted to use the contents of the previously probed cell,
current client storage and the random string as input to generate the next cell
probe or produce an output. The running time of DS is related to the depth
of the decision tree as each edge corresponds to a cell probe. Furthermore, as
the servers are passive, the server can only either update or retrieve a cell for
the client. As a result, the running time (number of cell probes) multiplied by
w (the cell size) gives us the bandwidth of the algorithm in bits. We now define
the failure probability of DS.

Definition 2. A DS has failure probability 0 ≤ α ≤ 1 for a problem P =
(U,Q,O, f) if for any sequence of updates u1, . . . , um ∈ U∗ and query q ∈ Q:

Pr[DS(u1, . . . , um, q) 6= f(u1, . . . , um, q)] ≤ α

where randomness is over the choice of R.
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As R is finite, it might seem that we do not consider algorithms whose failure
probability decreases in the running time but may never terminate. Instead, we
can consider a variant of the algorithm that may run for an arbitrary long
time but must provide an answer once its failure probability is small enough
(for example, negligible in the number of item stored). Therefore, by sacrificing
failure probability, we can convert such possibly infinitely running algorithms
into finite algorithms with slightly larger failure probabilities. As we will prove
our lower bounds for DS with failure probabilities at most 1/3, we may also
consider these kind of algorithms with vanishing failure probabilities and no
termination guarantees.

We now move to privacy requirements and define the random variable VDS(Q)
as the adversary’s view of DS processing a sequence of operations Q where ran-
domness is over the choice of the random stringR. The adversary’s view contains
the sequence of probes performed by DS to server-held memory cells. We stress
that the view does not include the accesses performed by DS to client storage.
We now define differentially private access.

Definition 3. DS provides (ε, δ)-differentially private access against compu-
tational adversaries if for any two sequences Q = (op1, . . . , opm) and Q′ =
(op′1, . . . , op

′
m) such that |{i ∈ {1, . . . ,m} | opi 6= op′i}| = 1 and any PPT algo-

rithm A, then

Pr[A(VDS(Q)) = 1] ≤ eε Pr[A(VDS(Q′)) = 1] + δ.

Our results focus on online data structures where each cell probe may be
assigned to a unique operation.

Definition 4. A DS is online if for any sequence Q = (op1, . . . , opm), the ad-
versary’s view can be split up as:

VDS(Q) = (VDS(op1), . . . ,VDS(opm))

where each cell probe in VDS(opi) is performed after receiving opi and before
receiving opi+1.

Finally, we present the definition of an (ε, δ)-differentially private cell probe
data structure. We present a diagram of the model in Figure 1.

Definition 5. A DS is an (ε, δ)-differentially private cell probe data structure
if DS has failure probability 1/3, provides (ε, δ)-differentially private access and
is online.

We comment that the failure probability of 1/3 does not seem to be rea-
sonable for any scenario. However, proving a lower bound for DS with failure
probability 1/3 results in stronger lower bounds as they also hold for more rea-
sonable situations with zero or negligibly small failure probabilities.

We now present the array maintenance problem introduced by Wang et
al. [34], which crisply defines the online RAM problem.

11



Fig. 1: Diagram of differentially private cell probe model.

Definition 6. The array maintenance problem AM is parameterized by two in-
tegers n, b > 0 and defined by the tuple (UAM, QAM, OAM, fAM) where

– UAM = {write(i, B) : i ∈ [n], B ∈ {0, 1}b};
– QAM = {read(i) : i ∈ [n]};
– OAM = {0, 1}b;

and, for a sequence Q = (u1, . . . , um) where u1, . . . , um ∈ U∗, fAM is:

fAM(Q, read(i)) =

{
B, where j is largest index such that qj = write(i, B);

0b, if there exists no such j.

In words, the array maintenance problem requires that a data structure to store
an array of n entries each of b bits. Each array location is uniquely identified by
a number in [n]. Typically, it is assumed that a cell is large enough to contain
an index. In this case, w = Ω(log n). However, in our lower bounds, we will only
assume that w = Ω(log log n) to achieve a stronger lower bound. An update
operation (also called a write) takes as input an integer i ∈ [n] and a b-bit
string B and overwrites the array entry associated with i with the string B. For
convenience, we denote a write operation with inputs i and B as write(i, B). A
query operation (also called a read) takes as input an integer i ∈ [n] and returns
the current b-bit string of the array entry associated with i. We denote a read
operation with input i as read(i). We will prove lower bounds for differentially
private RAMs which are differentially private cell probe data structures for the
array maintenance problem.

3 First Lower Bound

Let DS be a (ε, δ)-differentially private RAM storing n b-bit entries. For any
sequence of operations Q = (op1, . . . , opm), we denote tw(Q) as the expected

12



amortized number of cell probes on a write operation and tr(Q) as the expected
amortized number of cell probes on a read operation. Both expectations are over
the choice of the random string R used by DS. We write tw and tr as the largest
value of tw(Q) and tr(Q) respectively over all sequences Q. We assume that
cells are of size w bits and the client has c bits of storage. In this section, we
will prove the following preliminary result. The result will be strengthened in
Section 4 where we present the main result of this paper.

Theorem 2. Let ε > 0 and 0 ≤ δ ≤ 1/3 be constants and let DS be an (ε, δ)-
differentially private RAM for n b-bit entries implemented over w-bit cells that
uses c bits of local storage. If DS has failure probability at most 1/3 and w =
Ω(log log n) then

tw + tr = Ω((b/w) log(n/c)).

In terms of block bandwidth, this implies that at least one of read and write has
an expected amortized Ω(log(n/c)) block bandwidth overhead. The above theo-
rem will be shown when DS has to process a sequence Q distributed according
to distribution Q(0), where, for index idx ∈ {0, . . . , n − 1}, distribution Q(idx)
is defined by the following probabilistic procedure:

1. Pick m uniformly at random from {n/2, n/2 + 1, . . . , n− 1}.
2. Draw each B1, . . . ,Bm independently and uniformly at random from {0, 1}b.
3. Construct the sequence U = write(1,B1), . . . , write(m,Bm).
4. Output Q = (U , read(idx)).

Thus Q(idx) assigns positive probability to sequences Q that write independent
and uniformly at random chosen b-bit blocks to indices 1, 2, . . . ,m each for m
chosen uniformly at random from {n/2, n/2+1, . . . , n−1} followed with a single
read to idx.

In particular, we prove the above theorem using Q(0). For convenience, we
denote Q = Q(0) from now on. Without privacy, the above sequence does not
seem to require many probes as index 0 is not overwritten. However, the lower
bound will, critically, use the fact that the view of any computational adversary
cannot differ significantly from read operations where the last operation attempts
to read a previously overwritten index idx ∈ {1, . . . ,m}.

We prove the lower bound using the chronogram technique first introduced
by Fredman and Saks [12] along with the modifications by Pǎtraşcu [28]. The
strategy employed by the chronogram technique when applied to a sequence
sampled according to Q(0) goes as follows. For any choice of m, we consider the
n/2 write operations that immediately precede the read(0) operation and we
split them into consecutive and disjoint partitions, which we denote as epochs.
The epochs will grow exponentially in size and are indexed going backwards in
time (order of operations performed). That is, the epoch consisting of the write

operations immediately preceding the read operation will have the smallest in-
dex, while the epoch furthest in the past will have the largest index. Note that,
when the sequence of operations is chosen according to distribution Q(idx), the
set of blocks overwritten by the write operations that fall into epoch i is a
random variable which we denote by U i and depend on the value of m.

13



To prove Theorem 2, we consider a simple epoch construction. Epoch i con-
sists of `i = 2i write operations and thus there will be k = log2(n/2) epochs.
We also define si to be the total size of epochs 1, . . . , i. In the epoch construction
of this section, we have si = 2i+1−1. See Figure 2 for a diagram of the layout of
the epochs with regards to a sequence of operations. In Section 4, we will derive
stronger lower bounds by considering more complex epoch constructions with
different parameters.

Fig. 2: Diagram of epoch construction of Section 3.

Defining random variables. Since we are considering online data structures, each
cell probe performed by DS while processing a sequence Q can be uniquely
associated to a read or write operation of Q. Random variable Tw(Q) is defined
as the set of cell probes performed by DS while processing the write operations
of the sequence Q. Similarly, we define Tr(Q) as the random variable of the set
of cell probes performed by DS when processing the read operations of Q. The
probability spaces of the two variables are taken over the randommess R used
by DS.

The following random variables are specifically defined for sequences Q in the
support distribution Q(idx), for some idx. These sequences first perform m write

operations for m chosen uniformly at random from {n/2, . . . , n− 1} followed by
a single read(idx) operation. The m write operations overwrite entries 1, . . . ,m
with random b-bit strings. We denote by T jw(Q) the random variable of the cells
that are probed during the execution of a write operation of epoch j in Q. We
further partition the cells probes in T jw(Q) according to the epoch they were last
overwritten. Specifically, for i ≥ j, we define T i,jw (Q) as the random variable of
the set of probes T jw(Q) performed when executing write operations in epoch j
of Q to a cell that was last overwritten by an operation in epoch i. Note that the
sets T i,jw (Q) for all i ≤ j constitute a partition of Tw(Q). It will be convenient
in the proof to define T <iw (Q) = T i,1w (Q) ∪ . . . ∪ T i,i−1w (Q) as the set of probes
that are performed by an operation in any of epochs {1, . . . , i− 1} to a cell that
was last overwritten by an operation in epoch i. Similarly, we denote the random
variable T ir (Q) as the set of probes performed by the read operation to cells that
were last overwritten by an operation in epoch i. In Figure 3, we show a diagram
of T <iw (Q) and T ir (Q). We extend the definitions above to random distributions
of sequences Q in a natural way. For example, Tw(Q) is defined by first picking
sequence Q according to Q and then sampling a set according to Tw(Q).
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Fig. 3: Diagram of T <iw (Q) and T ir (Q).

3.1 A Tradeoff between T <i
w (Q) and T i

r (Q)

From a high level, the proof of Theorem 2 is based on the fact that T <iw (Q) and
T ir (Q) cannot be both small for all epochs i. To see why this must be intuitively
true consider distribution Qi over query sequences where the last read operation
to the 0-th index is replaced with an index chosen uniformly at random from
U i (remember U i are the indices of the array entries that are overwritten by
write operations in epoch i). Since each write operation overwrites a distinct
entry with a uniformly chosen b-bit string, a sufficiently large number of bits
that were encoded by write operations in epoch i must be retrieved by the read
operation. There are only three ways that these bits can be retrieved by the read
operation. The first way is to probe cells that were last overwritten by any write

operation of epoch i which corresponds to T ir (Qi). Another way is to probe cells
that were last overwritten by operations that occurred after epoch i; that is, in
any epoch 1 ≤ j < i. However, the total number of bits encoded by operations in
epochs 1 ≤ j < i is upper bounded by the number of probes performed in epochs
1 ≤ j < i to cells that were last overwritten by an operation in epoch i, which
corresponds to T <iw (Qi). The final way to retrieve information from the write

operations of epoch i is to encode information in the client’s storage of c bits.
However, if we consider the case when the number of entries overwritten in epoch
i, `i, is significantly larger than c, then the client’s storage is too small to encode
any significantly large amount of information compared to the total number of
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write operations of epoch i. As a result, the total combined size of T <iw (Qi)
and T ir (Qi) or, better, a function of the two quantities, can be lower bounded.
However, recall that we wish to lower bound the values when processing the
random sequence Q and not Qi. The only difference between Q and Qi is the
index of the read operation performed at the end. By computational differential
privacy, any random event that can be verified by a PPT adversary cannot occur
with significantly different probabilities when DS processes Q as opposed to Qi.
Since the sets of cell probes can easily be computed in polynomial time, a lower
bound on the sum of |T <iw (Qi)| + |T ir (Qi)| also implies a lower bound on the
|T <iw (Q)|+ |T ir (Q)| for a differentially private DS.

As explained above, the technical crux of the lower bound on |T <iw (Qi)| +
|T ir (Qi)| is an encoding argument that is captured by the following lemma that
shows that a certain random variable Zi(Q(j)) is “large” with probability at
least 1/2.

Lemma 1. Assume that DS has failure probability at most 1/3. Then, for any
epoch i ∈ {1, . . . , k} such that `i ≥

√
n, there exists an index j ∈ {1, . . . , n− 1}

such that
Pr[Zi(Q(j)) ≥ b/8)] ≥ 1/2

where Zi(Q(j)) is

1

`i

(
|T <iw (Q(j))|w + log

(
twsi−1

|T <iw (Q(j))|

))
+ |T ir (Q(j))|w+log

(
tr

|T ir (Q(j))|

)
+
c

`i
.

The proof of Lemma 1 is found in Section 3.4. Zi(Q(j)) can be viewed as the
total average information retrieved from the write operations of epoch i by the
read(j) operation at the end of Q(j). More precisely, let us explain the meaning
of each term of the value Zi(Q(j)) before showing how running DS on the
random sequence Qi eventually leads to finding a fixed index j. The first term
of Zi(Q(j)) measures the average amount of information pertaining to each of
the `i write operations of epoch i that are read by cell probes performed in
epochs following epoch i. Each of the cell probes in T <iw (Q(j)) reads exactly w
bits in a cell. In addition, the choice of which cell probes performed in epochs
following epoch i actually belong to T <iw (Q(j)) also encodes some information.
As there are si−1 write operations epochs following epoch i, there are at most
twsi−1 cell probes and at most

( twsi−1

|T <i
w (Q(j))|

)
choices of the cells to probe leading

to log
( twsi−1

|T <i
w (Q(j))|

)
bits. Similarly, each probe in T ir (Q(j)) reads w bits in each

cell and there are at most
(

tr
|T i

r (Q(j))

)
choices of probes when performing read(j)

that belong to T ir (Q(j)). The last term of Zi(Q(j)) considers the average amount
of information for each of the `i operations in epoch i that are encoded in
the client’s storage of c bits. Having explained the meaning of Zi(Q(j)), let us
explain why there must exist such an index j. The total amount of information
(in expectation) transferred if all `i possible read operations of Qi are performed
requires retrieving all `i random b bit blocks which has `i · b bits of entropy. As
a result, j considers the worst case of the `i possible read operations leading us
to the above lemma. A formal proof of these ideas are presented in Section 3.4.
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3.2 Using Differential Privacy

We note that Lemma 1 does not suffice to prove an tw + tr = ω(1) lower bound
for DS directly. Typically, chronogram lower bounds will find a single sequence
that forces a large amount of information transfer from all epochs simultane-
ously. Instead, Lemma 1 states there exists some sequence that forces a large
information transfer for each epoch and that the sequences are possibly different
for each epoch. In fact, without assuming privacy about a data structure, there
can be no single sequence that requires large information from many epochs as
there are trivial Θ(1) data structures that solve the array maintenance problem
without any privacy guarantees. As Lemma 1 does not assume privacy for DS,
we will need to incorporate the fact that DS is differentially private to achieve
a statement that there exists a single sequence that forces large information
transfer from many epochs simultaneously.

Let us now assume that DS provides differential privacy against compu-
tational adversaries with parameters ε = O(1) and 0 ≤ δ ≤ 1/3. For any fixed
sequence Q, we consider any probabilistic event E(Q) over the randomness of the
choice of the random string R such that there exists a probabilistic polynomial
time algorithm that can verify E(Q) being true or false. Then, computational
differential privacy implies that for any fixed sequence Q1 and Q2 that differ in
exactly one operation, then Pr[E(Q1) is true] ≤ eε Pr[E(Q2) is true] + δ. In par-
ticular, we can consider the event when E(Q) = Zi(Q) ≥ b/8. Note that Zi(Q)
can be computed by any computational adversary by simply assigning each cell
probe performed by DS over Q into one of {T <iw (Q)}i=1,...,k or {T ir (Q)}i=1,...,k

where assigning a cell probe depends only on the last time the cell was overwrit-
ten and the current operation of Q. As a result, we know that for any two fixed
sequences Q1 and Q2 that differ in exactly one operation, then

Pr[Zi(Q1) ≥ b/8] ≤ eε Pr[Zi(Q2) ≥ b/8] + δ.

Note that Q and Q(idx) only differ in the input index to the read operation
at the end of the sequence. We use this fact to prove the following lemma that
Zi(Q) cannot differ significantly from Zi(Q(idx)) for any idx.

Lemma 2. Assume that DS is differentially private with 0 ≤ δ ≤ 1/3 and has
failure probability at most 1/3. Then, for all epochs i ∈ {1, . . . , k} such that
`i ≥

√
n,

Pr[Zi(Q) ≥ b/8] ≥ 1/(6eε).

Proof. Consider any epoch i ∈ {1, . . . , k}. By Lemma 3.4, there exists an index
idxi such that Pr[Zi(Q(idxi)) ≥ b/8] ≥ 1/2. We define Q(idx, B1, . . . , Bm) =
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write(1, B1), . . . , write(m,Bm), read(idx). Then,

Pr[Zi(Q) ≥ b/8] =

n−1∑
m=n/2

∑
B1,...,Bm∈{0,1}b

1

m2rm
Pr[Zi(Q(0, B1, . . . , Bm)) ≥ b/8]

≥
n−1∑

m=n/2

∑
B1,...,Bm∈{0,1}b

1

m2rm

(
Pr[Zi(Q(idxi, B1, . . . , Bm)) ≥ b/8]− δ

eε

)

=
Pr[Zi(Q(idxi)) ≥ b/8]− δ

eε
≥ 1/2− 1/3

eε
=

1

6eε
.

3.3 Completing the proof of Theorem 2

Lemma 2 resembles the typical desired statement for data structure lower bounds
as it guarantees existence of a distribution of query sequences, Q, that forces a
large amount of information transfer from all epochs in expectation.

Recall that we consider epoch i consisting of `i = 2i write operation for a
total of si = 2i+1 − 1 write operation in epochs 1, . . . , i. We refer the reader to
Figure 2 for a visual reminder of our epoch construction. Using Lemma 2, we will
show that Ω(b/w) bits must be transferred from the majority of large epochs. In
particular, we focus on epochs whose number of write operations, `i, is much
larger than c. For otherwise, the write operations in epoch i may be entirely
encoded into client’s storage of c bits and thus no information from epoch i is
required to be transferred by cell probes of future operations. Concretely, we say
that an epoch is large if `i ≥ max{

√
n, c2} and note that, for our definition of

epochs, we have k̂ := Θ(log(n/c)) large epochs. We will show that for many large
epochs Ω(b/w) bits must be transferred by cell probes of either write operations
of future epochs or the read operation.

To achieve our lower bound, we will analyze the expectation of Zi(Q) based
on our epoch construction. We will provide a high-level overview of the steps of
our analysis in this paragraph before performing a formal analysis. Recall that
tw and tr are an upper bound on the expected amortized number of cells probed
per write and read operation for any sequence. For the majority of epochs i, we
cannot expect the read operation of Q to probe more than tr/k̂ cells containing
information about the write operations of epoch i. This provides an upper bound
on |T ir (Q)| for the majority of epochs. We want a similar upper bound on the
value of |T <iw (Q)|. Recall that this number corresponds to the number of probes
performed by write operations that read cells that encode information about
the write operations of epoch i. Our argument will critically use the fact that
the sequence Q is chosen at random. Recall that Q is chosen to have m write

operations where m is chosen uniformly at random from {n/2, n/2+1, . . . , n−1}.
The data structure DS is unable to predict the point in time when the read

operation will occur. Instead, the best that DS can achieve is to prepare for
all possible epoch configurations. Since there are k̂ epochs with size at least
max{

√
n, c2}, each update should be only able to encode tw·w

k̂
about each of
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these epochs. As a result, we can prove the majority of epochs cannot have very
large values of |T <iw (Q)| in expectation.

As the two bounds above hold for the majority of epochs, we can show there
exists at least one large epoch i such that both the values of |T <iw (Q)| and
|T ir (Q)| are small. In particular, we show the following:

Lemma 3. There exists i ∈ {1, . . . , k} such that `i ≥ max{c2,
√
n} and

E
[
|T <iw (Q)|/`i

]
= O (tw/ log(n/c)) and E

[
|T ir (Q)|

]
= O (tr/ log(n/c)) .

Proof. The lemma is derived from the following two statements:

1. There exists k̂/2 + 1 large epochs i such that E[|T <iw (Q)|] = O(si−1tw).

2. There exists k̂/2 + 1 large epochs i such that E[|T ir (Q)|] = O(tr/ log(n/c)).

Since there are only k̂ large epochs, there must exist at least one large epoch
where both inequalities hold. We now show the two statements are true.

Let us pick epoch i uniformly at random amongst the k̂ large epochs and
fix the random string R as well as the n − 1 block values B1, . . . ,Bn−1. We
now fix a cell probe probe of the execution of DS over the write operations
write(1,B1), . . . , write(n − 1,Bn−1) and consider the probability that probe

contributes to T <iw (Q) from which we derive a bound on E[|T <iw (Q)|/`i]. Note
that, having fixed R and the values Bj ’s, the probability space is over the choice
of m from {n/2, n/2 + 1, . . . , n − 1} and of i. We denote pr as the index of the
write operation in U when probe is performed. The value pw is denoted as the
index of the write operation in U when the cell of probe was last overwritten.
Using pr and pw, we can attempt to upper bound the probability that the probe
belongs to T <iw (Q). First, let e be the smallest integer such that pr − pw ≤ se.
Note that probe cannot contribute to T <jw (Q) for any epoch j ≤ e − 1, since
there are only sj operations between the beginning of epoch k and the read

operation. Since sj ≤ se−1 < pr − pw, either the read operation has to occur
after the read operation or the last operation to overwrite the cell probe occurs
before the j-th epoch. We remind the reader that the exact locations of epochs
is determined by m. The boundary denoting the end of epoch j has to occur
after pw and before pr meaning there are at most se choices from the position of
the read operation such that this cell probe contributes to T <jw (Q). There are
n/2 choices for m, so the probability is at most 2se/n. We now compute

E[|T <iw (Q)|/`i] =
1

k̂

∑
j:`j≥max{

√
n,c2}

E[|T <jw (Q)|/`j ].

The probe only contributes to epochs j ≥ e. Note, there are at most (in expec-
tation) tw · (n− 1) cell probes performed when processing the write operations
of Q. By linearity of expectation,∑
j:`j≥max{

√
n,c2}

E

[
|T <jw (Q)|

`j

]
≤ tw ·n

∑
j≥e

2 · se
n · lj

≤ 2tw ·
(
se
le

+
se
le+1

+ . . .

)
≤ 4tw.
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As a result, there exists k̂/2 + 1 fixed epochs i such that their expectation over
the m is at most 12tw.

We know that
∑
i E[|T ir (Q)|] ≤ tr. Therefore, there exists k̂/2 + 1 epochs i

with `i ≥ max{
√
n, c2} such that E[|T ir (Q)|] ≤ 3tr completing the proof.

We can now achieve our goal of proving Theorem 2 that gives a lower bound
on the sum tw + tr by plugging the inequalities in Lemma 3 into the expectation
of Zi(Q) and then using the bound from Lemma 2.

Proof (Theorem 2). First, we analyze the expectation of Zi(Q). Note that, for
every x, y, log

(
y
x

)
= O(x log(y/x)). Moreover, for every y, x log(y/x) is a convex

function over x, so we can write the E[x log(y/x)] ≤ E[x] log(y/E[x]) where the
expectation is over the choice of x. We now apply this observation to E[Zi(Q)]
and get:

O

(
E[|T <iw (Q)|]

`i

(
w + log

twsi−1
E[|T <iw (Q)|]

)
+ E[|T ir (Q)|]

(
w + log

tr
E[|T ir (Q)|]

)
+
c

`i

)
.

By Lemma 2, we know that E[Zi(Q)] = Ω(b). We now pick our epoch i as the
one chosen by Lemma 3 and plug in the inequalities to get

si−1tw
`i log(n/c)

(
w + log

twsi−1
si−1tw/ log(n/c)

)
+

tr
log(n/c)

(
w + log

tr
tr/ log(n/c)

)
= Ω(b).

Here we have used the fact that epoch i is large and thus c
`i

= O(1), since

`i ≥ c2. Also, note that si−1 = Θ(`i). Therefore, we can simplify and get that
tw + tr = Ω ((b/(w + log log n)) log(n/c)). If we assume that w = Ω(log log n),
we can simplify and get the following result tw + tr = Ω ((b/w) log(n/c)) which
completes the proof.

Therefore, the lower bound of tw + tr described in Theorem 2 can be entirely
derived from Lemma 1. It remains to prove Lemma 1, which we do next.

3.4 An Encoding Argument using T <i
w (Q) and T i

r (Q)

In this section, we formally present the encoding argument that underlies the
proof of Lemma 1. We first give a high level description of the proof. The main
idea involves converting any DS that solves the array maintenance problem into
a one-way communication problem between two parties, for which we have a
lower bound on the number of bits that must be sent.

Specifically, we consider the case in which for a fixed epoch i ∈ {1, . . . , k}
and for a sequence drawn according to Q, one party, Alice, receives the m values
B1, . . . ,Bm and a random string R and the other party, Bob, receives the same
random string R as well as m − `i values; that is, all of B1, . . . ,Bm except for
the `i values updated in epoch i of sequence Q. The goal of the protocol is to
send Bob the missing `i values.

As the `i b-bit values are generated uniformly and independently at random,
Alice’s input has `i · b bits of entropy conditioned on Bob’s input. By Shannon’s
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Source Coding Theorem, any protocol for the above problem must have expected
communication of at least `i · b bits. We show that if Lemma 1 does not hold,
then Shannon’s Theorem is contradicted by giving an encoding constructed by
simulating DS that beats Shannon’s bound.

Recall that, for any idx, Q(idx) is constructed by picking m uniformly at ran-
dom from {n/2, n/2 + 1, . . . , n− 1} and constructing the sequence of m updates
U = write(1,B1), . . . , write(m,Bm) where each B1, . . . ,Bm is drawn indepen-
dently and uniformly at random from {0, 1}b. We also denote by U i the set of
write of epoch i, for i = 1, . . . , k.

Consider the following protocol. Alice and Bob locally execute all write

operations in epochs k, k − 1, . . . , i + 1 using the random string R. Bob keeps
a snapshot snapB of DS at this point. Now Bob can learn each of the `i values
Bidx for idx ∈ U i written during epoch i, by simulating epoch j, for j = i, i −
1, . . . , 1 followed by the read(idx) operation. For this to be possible, Bob uses
the snapshot snapB , that gives the state of DS before any write operations of
epoch i are executed, and the following information that can be transferred by
Alice.

1. The c bits of client storage of DS after the write operations of epoch i have
been processed.

2. The location and contents of the cells that are probed by the write opera-
tions of epochs j = i− 1, . . . , 1 and by the read(idx) operation.

Given this information as well as the random string R, Bob can simulate DS
by starting from snapB and executing all the write operations of U occurring
after epoch i as well as read(idx) and thus recover Bidx. To encode all `i block
values updated in epoch i, Alice and Bob can repeat the simulation of the read

operation `i times with idx ranging over the set of the `i indices that are updated
in epoch i. The number of bits that need to be transferred to Bob by Alice
depends on the following three values:

1. The number of bits of the client storage, c.
2. The number of probes performed in epochs j = i − 1, . . . , 1 to cells last

written in epoch i.
3. The number of probes performed by the `i read operations to the `i indices

updated in epoch i.

By Shannon’s source coding theorem, we have a lower bound on the number of
bits that can be transferred and, consequently, a lower bound on the number of
probes performed by DS. The rough description above only works for DS that
never fails but it only requires some small changes to work for failure probability
1/3. In particular, Alice can indicate the indices idx for which DS fails to return
Bidx and explicitly transfer the b bits of Bidx to Bob in addition to the above
protocol. We now present the formal proof of Lemma 1.

Proof (Lemma 1). In our proof, we consider DS that have failure probability at
most 1/512. Note that any DS with failure probability 1/3 implies the existence
of a DS with failure probability 1/512 as one can execute DS a constant number
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of times with independently chosen randomness and return the most popular
result to answer any read operation. In fact, proving a lower bound for DS
with failure probability 1/512 implies any DS with failure probability that is a
constant greater than 1/2 using the above method.

Recall that U i denotes the set of all `i indices that are updated by write oper-
ations in epoch i. It suffices to prove that Pr[

∑
idx∈Ui Zi(Q(idx)) ≥ `ib/8] ≥ 1/2.

Since U i contains `i indices, the previous statement implies that there must exist
some idx ∈ U i such that Pr[Zi(Q(idx)) ≥ b/8] ≥ 1/2 which would complete the
proof. Therefore, towards a contradiction, assume that Pr[

∑
idx∈Ui Zi(Q(idx)) ≥

`ib/8] < 1/2 for some data structure DS that solves the array maintenance
problem with failure probability at most 1/512. We will present an encoding of
`i · b random bits from Alice and Bob using DS that uses strictly less than `i · b
bits in expectation contradicting Shannon’s source coding theorem.

In computing the encoding, Alice receives the m b-bit random values used
by the sequence of write operations, U , and a random string R.

Alice’s Encoding

1. Alice executes DS on the sequence U using the random string R up to the
final write operation of epoch i. The content of the c bits of client storage
after epoch i is completed are added to the encoding.

2. Alice then executes the remaining si−1 write operations of U of epochs
i−1, i−2, . . . , 1. While processing these write operations, Alice records the
subset T <iw (U) of probes to cells that were last written in epoch i as well as
their contents. This information is encoded as follows. First the size |T <iw (U)|
(at most log(tw · si−1) bits) is added to the encoding. Then Alice adds an
encoding of which |T <iw (U)| probes of the at most tw(n− 1) probes over the

entire sequence belong to T <iw (this costs log
(tw·(n−1)
|T <i

w (U)|

)
bits). Finally, for each

such probe, w bits are added to the encoding to specify the content of the
cell probed (for additional |T <iw (U)| · w bits).

3. Alice stores a snapshot snapA of the DS after processing all write operations
of U . Alice will use this snapshot to simulate the read operations for the `i
entries written in epoch i.

4. For each of the `i indices idx ∈ U i, Alice executes read(idx) on snapA. Let
F be the number of read(idx) operations that return a wrong value (that is,
they return a value other than Bidx). Alice adds the value F to the encoding
costing log n bits and an encoding of the subset of the F failing indices
costing log

(
`i
F

)
expected bits.

5. For each of the F failing indices idx ∈ U i, Alice adds Bidx to the encoding
costing a total of F · b bits.

6. For each non-failing index idx ∈ U i (that is, for which read(idx) executed
on snapA with R successfully returns Bidx), Alice adds the subset of probes
performed during read(idx) to the cells in T ir (Q(idx)) (these are the cells
last written in epoch i) as well as their content to the encoding. This costs
w bits for each cell in T ir (Q(idx)) as well as log

(
tr

|T i
r (Q(idx))|

)
bits to encode

the subset T ir (Q(idx)) of the at most tr probes in read(idx).
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7. Alice checks whether either of
∑

idx∈Ui Zi(Q(idx)) > `ib/8 or F > `i/64. If
either are true, Alice stops and returns an encoding consisting of a 0 bit
followed by `i · b bits of the `i blocks updated by the write operations in U i.

8. Otherwise, when both
∑

idx∈Ui Zi(Q(idx)) ≤ `ib/8 and F ≤ `i/64, Alice
prepends a 1 bit to the encoding computed in Steps 1-6 and returns it.

In decoding the message sent by Alice, Bob receives the random string R
but does not receive the entirety of U . Instead, Bob receives U except all block
values that are updated in epoch i.

Bob’s Decoding

1. Bob checks the first bit of Alice’s encoding. If the first bit is a 0, then Bob
parses the next `i · b bits as the contents of the `i block values updated in U
completing the decoding.

2. If the encoding begins with a 1, Bob will execute the write operations
in epochs j = k, k − 1, . . . , i − 1 using random string R. Note that this is
straightforward as Bob received all the needed values as input and the indices
of the write are fixed.

3. Note that Bob does not have access to the updated array entries of epoch i,
and thus will skip it.

4. Next, Bob sets the client storage as specified in the encoding and starts
simulating the write operations for epochs j = i − 1, . . . , 1. As long as the
write operations do not require probing a cell that was last written in epoch
i, Bob can simulate DS in the exact same way as done by Alice to compute
the encoding (note Bob has access to the same R). Whenever DS requires
probing a cell last written in epoch i, Bob will use the encoding of the cell
contents found in the encoding to continue simulation. As a result, Bob can
simulate all write operations of U after epoch i identically to Alice. Bob will
now take a (partial) snapshot of DS including all cell locations and contents
that Bob is aware of.

5. Next, Bob obtains F , the number of failing read, from the encoding along
with the indices idx ∈ U i where read(idx) fails to return Bidx. For each of
these F indices, Bob obtains the corresponding value Bidx from the encoding.

6. For the remaining `i−F indices idx ∈ U i such that read(idx) returns Bidx, Bob
will execute read(idx) on the snapshot of DS. From the encoding, Bob knows
which of the (at most, in expectation) tr probes performed by read(idx) are
to cells last written in epoch i. Bob simulates read(idx) on his snapshot with
R using the cell contents encoded by Alice to retrieve Bidx.

Analysis. It remains to analyze the expected length of Alice’s encoding. Recall
that we know from Shannon’s source coding theorem that Alice’s encoding has
to be at least `i · b bits long in expectation.

There are two cases to consider. In the first case, when the first bit is a 0,
the encoding will be 1+`i ·b bits long. Let us now consider the case in which the
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first bit is 1 and thus F ≤ li/64 and
∑

idx∈Ui Zi(Q(idx)) ≤ `ib/8. The encoding
of the failed indices has expected length

log n+ E

[
log

(
`i
F

)]
+ b · E[F ] ≤ log n+ E

[
log

(
`i
`i
64

)]
+ b · `i

64

≤ log n+
`i
64
· (b+ log(64 · e)) ≤ log n+

9

64
(`i · b).

The second inequality uses Stirling’s approximation which states that
(
x
y

)
≤

(ex/y)y. We know Alice’s encoding of client storage will always be c bits. We
know the expected bits of encoding T <iw (U) is

log(tw · si−1) + E

[
log

(
tw · si−1
|T <iw (U)|

)
+ |T <iw (U)| · w

]
.

Note, log(tw · si−1) ≤ 2 log n. Similarly, for all idx ∈ U i that successfully return
Bidx, we know that the encoding requires

E

[
|T ir (Q(idx))|w + log

(
tr

|T ir (Q(idx))|

)]
.

Note that

E

[
log

(
tw · si−1
|T <iw (U)|

)
+ |T <iw (U)|w +

∑
idx∈Ui

|T ir (Q(idx))|w + log

(
tr

|T ir (Q(idx))|

)]
+ c

≤
∑

idx∈Ui

Zi(Q(idx)) ≤ 1

8
(`i · b).

Summing over all parts of the encoding, we get that

3 log n+
9

64
(`i · b) +

∑
idx∈Ui

Zi(Q(idx)) ≤ 3 log n+
17

64
(`i · b).

The final step of the analysis is to compute the probabilities that Alice places
a 0 or a 1 as the first bit of the encoding. By Markov’s inequality, Pr[F ≥
`i/64] ≤ 1/8 and we know that Pr[

∑
idx∈Ui Zi(Q(idx)) ≥ `ib/8] < 1/2 by our

initial assumption towards a contradiction. As a result, we know that Pr[F ≥
`i/64 or

∑
idx∈Ui Zi(Q(idx)) ≥ b/8] < 5/8. So, Alice’s expected encoding size is

at most

1 + 3 log n+
5

8
(`i · b) +

17

64
(`i · b) < `i · b

contradicting Shannon’s source coding theorem when `i ≥
√
n.

4 Main Result

In Section 3, we presented a lower bound on the sum of tw, the worst case
expected amortized bandwidth for write operations, and tr, the worst case ex-
pected amortized bandwidth for read operations that implies that max{tw, tr} =
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Ω((b/w) log(n/c)). However, this lower bound does not preclude the existence of
a differentially private RAM with tw = Θ((b/w) log(n/c)) and tr = o((b/w) log(n/c))
or tr = Θ((b/w) log(n/c)) and tw = o((b/w) log(n/c)). In this section, we strenghten
our lower bound and prove the following two statements, for (ε, δ)-differentially
private RAM, for any constant ε and δ ≤ 1/3,

1. If tw = o((b/w) log(n/c)), then tr = ω((b/w) log(n/c));
2. If tr = o((b/w) log(n/c)), then tw = ω((b/w) log(n/c)).

Therefore, since max{tw, tr} = O((b/w) log(n/c)), then it must be the case that
both tw = Θ((b/w) log(n/c)) and tr = Θ((b/w) log(n/c)) showing that imbal-
anced running times for write and read operations cannot improve the asymp-
totic efficiency of differentially private RAMs constructions.

To achieve these tradeoffs, we revisit our epoch construction of Section 3.
Let us, first, focus our attention on the first statement where we show that
tr = ω((b/w) log(n/c)) when tw = o((b/w) log(n/c)). Recall that we constructed
epochs that grew exponentially by a factor of 2 for a total of Θ(log n) epochs and
the number of large epochs (that is with at least max{

√
n, c2} write operations)

is Θ(log(n/c)). In the techniques used in Section 3, we are only able to show that
Ω(b/w) cells must be probed from the majority of the epochs. As there are only
Θ(log(n/c)) epochs, there is no hope for us to prove a stronger lower bound tr
with this epoch construction.

Instead, we will use a different epoch construction that is suitable for the
scenario where we know that tw is small. In Lemma 3, we show that, on average,
for any large epoch i (that is with `i ≥ max{

√
n, c2}) any write operations of

future epochs j ∈ {1, . . . , i − 1} can only encode O(tww/k̂) bits about epoch

i where k̂ is the number of large epochs. It is important that future write

operations cannot encode a lot of information about epoch i as it forces the final
read operation to read sufficient information from epoch i directly. However,
as we are assuming that tw is already small, we may increase the number of
future operations after epoch i while simultaneously ensuring that future epochs
cannot encode too much information about epoch i. With this observation, we
hope that we can increase the number of total epochs which allows us to prove
ω((b/w) log(n/c)) lower bounds on tr as desired. We now materialize these ideas
in the next section.

4.1 First Epoch Construction

We will fix r = ω(1) where r = O(log n) as the rate at which epochs will increase.
In this section, we consider an epoch construction where epochs grow by the rate
r every r epochs. That is, the first r epochs will each have r write operations.
The next r epochs will each have r2 write operations, the next r epochs will
each have r3 write operations and so forth. See Figure 4 for a diagram of this
epoch construction. Once again, we define `i to be the size of the i-th epoch and
si to be the total size of epochs 1, . . . , i. We note that

si−1 ≤ (r − 1)`i + r(`i−1 + `i−2 + . . .) ≤ 2r`i.
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In other words, for epoch i, there will be potentially r times more future opera-
tions in comparison to the previous epoch construction of Section 3. On the other
hand, we note that the number of epochs with at least max{

√
n, c2} write op-

erations is k̂ = Θ(r logr(n/(rc
2))) = Θ(r logr(n/c)), which is Θ(r/ log r) = ω(1)

times larger than the number of epochs in the construction of Section 3. As a
result, this epoch construction matches exactly the requirements that we wanted
there to be more epochs which are required to be read by the read operation
while only sacrificing that there are more future write operations for any epoch
i. We now present a generalization of Lemma 3 which can be applied for the new
epoch constructions that are introduced here and in Section 4.2.

Fig. 4: Diagram of epoch construction of Section 4.1.

Lemma 4. There exists an epoch i such that `i ≥ max{
√
n, c2} and both the

following inequalities hold:

E[|T <iw (Q)|] = O

max
e

∑
j≥e

se
lj

 · tw
k̂

 and E[|T ir (Q)|] = O(tr/k̂).

Proof. Using the same ideas of Lemma 3, we will show that there exists k̂/2 + 1

epochs that satisfy the first statement and k̂/2+1 epochs that satisfy the second
statement. As a result, there exists at least one epoch satisfying both statements.

Pick an epoch i uniformly at random from all k̂ epochs with at least max{
√
n, c2}

write operations. Fix B1, . . . ,Bn−1 and R arbitrarily. We will prove an upper
bound on E[|T <iw (Q)|] over the randomness of the location of the read opera-
tion and the randomly chosen i. As a result, the expectation’s upper bound will
hold over any distribution of B1, . . . ,Bn−1 and R. Fix any cell probe performed
by DS when processing write(1,B1), . . . , write(n− 1,Bn−1) and suppose that
probe occurs when processing the pr-th write operation to a cell that was last
written by the pw-th write operation. Once again, we pick the smallest e such
that pr − pw ≤ se. Consider any epoch j where j ≤ e − 1. Note that there are
only sj operations between the read operation and the beginning of epoch j.
But, since j ≤ e− 1, we know that sj ≤ se−1 < pr − pw meaning that either the
probe occurs after the read operation or the cell was last written before epoch j.
When we fix the location of the read operation, we fix the epoch construction.
As the boundary of the j-th epoch must occur after the pw-th operation and
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before the pr-th operation, there are at most se good locations for the read out
of n/2 total locations. For any j ≥ e, this cell probe has probability 2se/n of
contributing to T <jw (Q). Therefore, by linearity of expectation over the (n−1)tw
expected cell probes:

E

[
|T <iw (Q)|

`i

]
=

1

k̂

∑
j:`j≥max{

√
n,c2}

E

[
|T <jw (Q)|

`j

]
≤ tw

k̂

max
e

∑
j≥e

2se
`j

 .

Therefore, there exists k̂/2 + 1 fixed epochs i such that E[|T <iw (Q)|/`i] over the
choice of the read location is at most 3 times the above bound.

As
∑
i E[|T ir (Q)|] ≤ tr, there exists k̂/2 + 1 epochs i where E[|T ir (Q)|] ≤ 3tr

completing the proof.

We can now plug the upper bounds of Lemma 4 into Lemma 2.

Theorem 3. Let DS be an (ε, δ)-differentially private RAM for n b-bit values
implemented over w-bit cells. Assuming that ε = O(1) and 0 ≤ δ ≤ 1/3, DS has
failure probability at most 1/3 and w = Ω(log log n), then

tw = o((b/w) log(n/c)) =⇒ tr = ω((b/w) log(n/c)).

Proof. Recall we get the following inequality by applying convexity to the in-
equality of Lemma 2 and noting that c/`i = O(1) for our choices i:

E[|T <iw (Q)|]
`i

(
w + log

twsi−1
E[|T <iw (Q)|]

)
+ E[|T ir (Q)|]

(
w + log

tr
E[|T ir (Q)|]

)
= Ω(b).

By applying Lemma 4, we get that E[|T ir (Q)|] = O(tr log r/(r log(n/c))) and
E[|T <iw (Q)|/`i] = O(tw log r/ log(n/c)) since(

sj
`j

+
sj
`j+1

+ . . .

)
≤ 2r

∑
j≥0

1

rj
= O(r).

Plugging into the inequality above and assuming that w = Ω(log log n),

tw + (tr/r) = Ω((b/w) log(n/c)/ log r) =⇒ tr = Ω((b/w) log(n/c)r/ log r)

as tw = o((b/w) log(n/c). Since r/ log r = ω(1), we complete the proof.

4.2 Second Epoch Construction

In this section, we deal with the opposite scenario when we assume that tr =
o((b/w) log(n/c)) and want to show that tw = ω((b/w) log(n/c)). The same
intuition from the previous section can be used for this situation. To show that
tw has to be very large, we will need to require that for any epoch i, the total
number of future write operations in epochs j ∈ {1, . . . , i − 1} is small. If for
any epoch i, the number of future write operations after epoch i is small and
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the read operation also cannot perform many cell probes into epoch i, then each
future write operation must encode a large amount of information about epoch
i which will be used by the read operation. As a result, we can prove a large
lower bound on tw. We now describe the epoch construction which enables us
to prove such strong lower bounds on tw.

Fix the r = ω(1) where r = O(log n) as the rate at which epochs will increase
once again. This epoch construction will increase each epoch’s number of write
operations by r. So, the first epoch will have r write operations, the second
epoch will have r2 write operations and so forth. In this case,

si−1 = `i−1 + `i−2 + . . . ≤ 1

r
(`i + `i−1 + . . .) ≤ 2`i/r.

As a result, the number of future operations is Θ(1/r) times smaller than the
epoch construction of Section 3. The number of epochs with at least max{

√
n, c2}

write operations is k̂ = Θ(logr n).

Theorem 4. Let DS be an (ε, δ)-differentially private RAM for n b-bit values
implemented over w-bit cells. Assuming that ε = O(1) and 0 ≤ δ ≤ 1/3, DS has
failure probability at most 1/3 and w = Ω(log log n), then

tr = o((b/w) log(n/c)) =⇒ tw = ω((b/w) log(n/c)).

Proof. By applying Lemma 4, we get that E[|T ir (Q)|] = O(tr log r/ log(n/c)) and
E[|T <iw (Q)|/`i] = O(tw log r/r log(n/c)) since(

sj
`j

+
sj
`j+1

+ . . .

)
≤ 2

∑
j≥0

1

rj
= O(1).

Plugging into the inequality of Lemma 2 after applying convexity and noting
that c/`i = O(1) and w = Ω(log log n),

(tw/r) + tr = Ω((b/w) log(n/c)/ log r) =⇒ tw = Ω((b/w) log(n/c)r/ log r)

since tr = o((b/w) log(n/c)). Noting that r/ log r = ω(1) completes our proof.

5 Discussion

In this section, we discuss two extensions that follow from our lower bound
techniques.

Privacy only for read operations. Our techniques only enforce the requirements
of differential privacy for a single read operation. Therefore, our lower bounds
would also apply differentially private-read RAMs where differential privacy is
guaranteed only sequences of operations that differ in exactly one read operation.
This might be important in scenarios where the indices of write operations are
not sensitive (or may be public) but only the indices of read operations need
to be protected. Once again, this weakening of security does not suffice to get
around the Ω(log(n/c)) bandwidth overhead lower bounds.
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Larger Values of δ. In the proofs of Section 3 and 4, it is assumed that δ ≤ 1/3.
Most practical scenarios require δ must be negligible in n, so the above results
suffice. For theoretical exploration, we note that the proofs can be extended for
any constant δ that is strictly smaller than 1. In particular, for any constant ρ
such that δ < ρ < 1 and by picking a sufficiently large enough constant C, we
can prove that Pr[Zi(Q(idx)) ≥ b/C] ≥ ρ which is a variation of Lemma 1 that
suffices to prove a lower bound for δ.

6 Conclusion

In this work, we show that the Ω(log(n/c)) bandwidth overhead lower bound
for the array maintenance problem with obliviousness extends to the weaker
notion of differential privacy with reasonable privacy budgets of ε = O(1) and
δ ≤ 1/3. The result is surprising as differentially private RAM seems, at first, to
provide significantly weaker privacy compared to the obliviousness guarantees of
ORAM. Yet, differential privacy does not allow any asymptotic improvements in
efficiency. This leads to the following natural open question: Does there exist a
natural, weaker notion of privacy that enables o(log(n/c)) bandwidth overhead
for the array maintenance problem?
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