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Abstract6

The Minimum Circuit Size Problem (MCSP) asks whether a (given) Boolean function has a circuit7

of at most a (given) size. Despite over a half-century of study, we know relatively little about the8

computational complexity of MCSP. We do know that questions about the complexity of MCSP9

have significant ramifications on longstanding open problems. In a recent development, Golovnev et10

al. [11] improve the status of unconditional lower bounds for MCSP, showing that MCSP 6∈ AC0[p]11

for any prime p. While their results generalize to most “typical” circuit classes, it fails to generalize12

to the circuit minimization problem for depth-d formulas, denoted (AC0
d)-MCSP. In particular, their13

result relies on a Lipchitz hypothesis that is unknown (and possibly false) in the case of (AC0
d)-MCSP.14

Despite this, we show that (AC0
d)-MCSP 6∈ AC0[p] by proving even the failure of the Lipchitzness for15

AC0
d formulas implies that MAJORITY ≤AC0

tt (AC0
d)-MCSP. Somewhat remarkably, our proof (in the16

case of non-Lipchitzness) uses completely different techniques than [11]. To our knowledge, this is17

the first MCSP reduction that uses modular properties of a function’s circuit complexity.18

We also define MOCSP, an oracle version of MCSP that takes as input a Boolean function f , a19

size threshold s, and oracle Boolean functions f1, . . . , ft, and determines whether there is an oracle20

circuit of size at most s that computes f when given access to f1, . . . , ft. We prove that MOCSP21

is NP-complete under non-uniform AC0 many-one reductions as well as (uniform) ZPP truth table22

reductions. We also observe that improving this ZPP reduction to a deterministic polynomial-time23

reduction requires showing EXP 6= ZPP (using theorems of Hitchcock and Pavan [17] and Murray and24

Williams [22]). Optimistically, these MOCSP results could be a first step towards NP-hardness results25

for MCSP. At the very least, we believe MOCSP clarifies the barriers towards proving hardness for26

MCSP and provides a useful “testing ground” for questions about MCSP.27
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1 Introduction40

The Minimum Circuit Size Problem (MCSP) takes as input a Boolean function f (represented41

by its truth table) and a size parameter s and asks if there is a circuit of size at most s42

computing f . Study of this problem began in the 1950s by complexity theorists in the43

Soviet Union [30], where MCSP was of such great interest that Levin is said to have delayed44
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2 AC0[p] Lower Bounds and NP-Hardness for Variants of MCSP

publishing his initial NP-completeness results in hope of showing that MCSP is NP-complete.145

Interest in MCSP was revitalized when Kabanets and Cai [19] connected the problem with46

the natural proofs framework of Razborov and Rudich [27]. Since then, MCSP has been the47

subject of intense research. We begin by reviewing some of this work.48

1.1 Known lower bounds, hardness, and non-hardness for MCSP49

It is easy to see that MCSP is in NP (the circuit of size at most s can be used as a witness),50

but, despite work by numerous researchers, the exact complexity of MCSP remains unknown.51

Lower bounds and hardness results. We believe MCSP is not easy to compute. Kabanets52

and Cai [19] show that MCSP 6∈ P conditioned on a widely-believed cryptographic hypothesis,53

and Allender and Das [2] show that MCSP is hard for SZK under BPP-Turing reductions.54

Unconditionally, we know lower bounds against MCSP for restricted classes of circuits.55

Hirahara and Santhanam [15] show that MCSP requires nearly quadratic sized DeMorgan56

formulas, and Allender et al. [1] prove that MCSP 6∈ AC0. In a recent paper, Golovnev et al.57

[11] improve the latter result, showing that MCSP requires exponential-sized AC0[p] circuits58

by proving MAJORITY ∈ (AC0)MCSP. The MAJORITY hardness result of [11] generalizes to59

the circuit minimization problem for many circuit classes, however, the techniques fail in the60

case of constant depth formulas.61

Under weak reductions, we know MCSP is hard for some subclasses of P. Oliveira and62

Santhanam [25] prove that MCSP is hard for DET under TC0 truth table reductions, and63

Golovnev et al. [11] use the results of [25] to show that NC1 ⊆ (AC0)MCSP. Surprisingly, we64

know stronger results for the “program” variant of MCSP, MKTP. Allender and Hirahara65

[3] show that MKTP is hard for DET under NC0 many-one reductions, and Hirahara and66

Santhanam [15] show average-case lower bounds for MKTP against AC0[p].67

The most natural question is whether MCSP is NP-complete. As of yet, we have not68

managed to uncover even strong supporting evidence for, or against, MCSP being NP-69

complete. We do know that the circuit minimization problem is NP-complete for some70

restricted classes of circuits: DNF circuits by Masek [20] and OR ◦ AND ◦MODm circuits71

by Hirahara, Oliveira, and Santhanam [14]. Impagliazzo, Kabanets, and Volkovich [18]72

show that if there exist Indistinguishability Obfuscators against randomized polynomial-time73

algorithms, then MCSP ∈ ZPP ⇐⇒ NP = ZPP.74

Known non-hardness results. The unconditional non-hardness results for MCSP rule out75

NP-hardness under certain types of reductions. For example, Hirahara and Watanabe [16]76

show that “oracle-independent reductions” cannot show that MCSP is hard for either a class77

larger than P under polynomial-time Turing reductions or a class larger than AM ∩ coAM78

under BPP reductions with one query to MCSP. Moreover, while most NP-complete problems79

are complete under rather weak reductions such as TIME[no(1)] or AC0 many-one reductions,80

Murray and Williams [22] prove that MCSP is not NP-hard under TIME[n.49] reductions,81

and Allender, Ilango, and Vafa [5] show that a super-linear approximations of MCSP cannot82

be NP-hard under even non-uniform AC0 many-one reductions.83

Conditioned on a widely-believed cryptographic hypothesis, Allender and Hirahara [3]84

show that a very weak approximation of MCSP is NP-intermediate.85

1 [6] cites a personal communication from Levin regarding this story.
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1.2 Implications of lower bounds and hardness for MCSP86

While we have not managed to establish the complexity of MCSP, a series of works, beginning87

with Kabanets and Cai [19], connect the computational complexity of MCSP and its variants88

to longstanding open questions in the field.89

Separations of complexity classes. Several works ([17], [22], [2], [19]) show that MCSP90

being NP-hard, under various notions of reducibility, implies unknown class separations. For91

example, Hitchcock and Pavan [17] and Murray and Williams [22] show that if MCSP is92

NP-hard under polynomial-time truth-table reductions, then ZPP 6= EXP, a major open93

problem.294

Worst-case versus average-case complexity for NP. Using tools developed by Nisan and95

Wigderson [23] and Carmosino, Impagliazzo, Kabanets, and Kolokova [9], Hirahara [13] gives96

a “worst-case to average-case” reduction for NP conditioned on a certain approximation to97

MCSP being NP-hard. Thus, if one could show this approximation to MCSP is NP-hard, the98

worst-case and average-case complexity of NP would be equivalent.99

Circuit Lower Bounds. Recent work by Oliveira, Pich, and Santhanam ([26] and [24])3
100

explores a phenomenon they term “hardness magnification,” whereby even weak circuit lower101

bounds on certain computational problems imply strong lower bounds on other problems. For102

example, [26] shows that if MCSP cannot be solved on average with no error by linear-size103

formulas, then NP does not have polynomial-size formulas. [24] shows that if a certain104

approximation to MCSP cannot be computed by circuits of size n1+ε, then NP does not have105

polynomial-sized circuits.106

1.3 Our Contributions107

In this work, we focus on hardness results for variants of MCSP, in particular establishing an108

AC0[p] lower bound and an NP-hardness result.109

MAJORITY-hardness for (AC0
d)-MCSP110

As mentioned previously, Golovnev et al. [11] proves that MAJORITY ∈ (AC0)MCSP. Using111

similar techniques, they also show that, for restricted classes of circuits C such as formulas112

and constant depth circuits, the C-circuit minimization problem, denoted (C)-MCSP, is hard113

for MAJORITY under AC0 reductions. For these MAJORITY reductions to work, [11] requires114

that the size of the minimum C-circuit on truth tables of length n is roughly (n.49)-Lipchitz.115

This Lipchitzness hypothesis is unknown (and perhaps even false) in the class of116

depth-d formulas, which we denote AC0
d.4 Despite this, we prove MAJORITY-hardness117

for (AC0
d)-MCSP by giving a MAJORITY reduction that works in the case that Lipchitzness118

fails. Applying the lower bounds of Razborov [27] and Smolensky [29] then gives an AC0[p]119

lower bound for (AC0
d)-MCSP.120

2 [22] only shows the result under many-one reductions, but their techniques easily generalize to the truth
table case. [17] explicitly proves the truth table result using a different approach than [22].

3 Pich is an author on [24] but not [26]
4 We will always use the notation AC0

d to refer to depth-d formulas and never depth-d circuits.
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I Theorem 1.1. Let d ≥ 2. Then MAJORITY ≤AC0

tt (AC0
d)-MCSP. Consequently, (AC0

d)-MCSP 6∈121

AC0[p] for any prime p.122

Remarkably, the techniques used for this MAJORITY reduction (in the case of non-123

Lipchitzness) are entirely different than the ones used by [11] for general MCSP. Indeed, the124

non-Lipchitz case reduction we present is of a very different flavor than, to our knowledge,125

all known MCSP hardness results. As far as the author knows, it is the only MCSP hardness126

result that does not easily generalize to an approximation of MCSP. This is because the key127

step in the reduction is determining, exactly, a Boolean function’s circuit complexity modulo128

a certain prime.129

I Open Question 1.2. Can one extend Theorem 1.1 to an approximation of MCSP?130

We also remark that our notion of size for AC0
d formulas is critical for Theorem 1.1. We131

define the size of an AC0
d formula to be the number of input leaves. While this is the standard132

definition of formula size, we make heavy use of elementary direct product theorems known,133

specifically, for this notion of formula size. It is not clear to us how to generalize Theorem134

1.1 to the case when the size of an AC0
d formula is, say, the number of gates or the number of135

wires.136

NP-Hardness of oracle MCSP (MOCSP)137

Some work has been done trying to approach the NP-hardness of MCSP “from below,” that138

is, proving that the circuit minimization problem is NP-hard for restricted classes of circuits.139

As mentioned previously, we know that (DNF)-MCSP [20] and (OR ◦ AND ◦MODm)-MCSP140

[14] are NP-hard.141

Instead, we attempt to approach MCSP from “above.” We formulate the Minimum Oracle142

Circuit Size Problem, denoted MOCSP, that takes as input a truth table T , a size parameter143

s ∈ N, and auxiliary truth tables T1, . . . , Tt and asks whether there is an oracle circuit144

of size at most s that computes T when given access to T1, . . . , Tt. It is easy to see that145

MOCSP ∈ NP (the oracle circuit of size s acts as a witness).146

We note that this is not the first time someone has considered an “oracle version” of147

MCSP. Allender et al. [1] and Allender, Holden, and Kabanets [4] consider the problem of148

minimizing oracle circuits for a fixed oracle A. We will denote this problem MCSPA. An149

important result for this problem that [1] proves is that MCSPQBF is complete for PSPACE150

under ZPP reductions. MOCSP differs from MCSPA in that the oracle circuit gets access to151

a finite number of Boolean functions, not a language, and the functions the oracle circuit has152

access to are inputs to the problem.153

In our view, MOCSP has two advantages over MCSPA. First, MOCSP ∈ NP while the154

complexity of MCSPA depends on the oracle A. Second, there is an easy reduction from155

MCSP to MOCSP, simply provide no oracle truth tables. Therefore, we can use MOCSP as a156

testing ground for hardness results we conjecture for MCSP. Thus, the most natural question157

is whether we can prove that MOCSP is NP-hard. We prove that MOCSP is indeed NP-hard158

under non-uniform AC0 reductions and under uniform randomized reductions.159

I Theorem 1.3. NP ≤AC0

m MOCSP160

NP ≤RP
m MOCSP161

NP ≤ZPP
tt MOCSP162

These NP-hardness results are all proved by giving a reduction from approximating r-163

bounded set cover to MOCSP. It is worth noting that the NP-hardness results of (DNF)-MCSP164

[20] and (OR ◦ AND ◦MODm)-MCSP [14] are also proved via set cover problems.165
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Given that we can show MOCSP is NP-hard under randomized reductions, one might even166

begin to hope that we can prove hardness under, say, polynomial-time truth table reductions.167

Unfortunately, this seems difficult. Essentially the same proofs Murray and Williams [22]168

or Hitchcock and Pavan [17] use to show that MCSP being NP-hard under polynomial-time169

truth table reductions implies EXP 6= ZPP also works for MOCSP.170

I Theorem 1.4 (Essentially proven in [17] and [22]). If NP ≤P
tt MOCSP, then EXP 6= ZPP.171

Thus, improving our ZPP reduction to a P reduction requires separating EXP from ZPP, a172

longstanding open problem. For completeness, we give the MOCSP version of Murray and173

Williams’ proof in Appendix B.174

Even so, we expect that the ground truth is that MOCSP is NP-hard under, at least,175

polynomial-time Turing reductions.176

I Conjecture 1.5. NP ≤P
T MOCSP.177

We give some details on why we believe Conjecture 1.5 near the end of Section 4. Even so,178

we believe proving such a hardness result is beyond current techniques. Perhaps one could179

even prove there are some barriers.180

A perspective on MOCSP and some questions.181

In light of the fact that hardness for MCSP beyond SZK under even non-uniform reductions182

is unknown, we found these MOCSP hardness results to be quite surprising. To an optimist,183

NP-hardness results for MOCSP could even be a first step towards proving hardness for184

MCSP. Indeed, a PSPACE-hardness result was first proved by Buhrman and Torenvliet [8]185

for an “oracle” version of space-bounded Kolmogorov complexity before Allender et al. [1]186

showed PSPACE-hardness for the non-oracle version about four years later.5187

Even if stronger hardness results for MCSP remain out of reach, MOCSP could still yield188

valuable insights about MCSP. For instance, it would be interesting to see which of the189

barriers and non-hardness results known for MCSP carry over to MOCSP.190

I Open Question 1.6. Can one show that other barriers or non-hardness results that hold191

for MCSP also hold for MOCSP?192

As an example of the insight given by answers to this question, consider Murray and Williams’193

[22] result that proving MCSP is NP-hard under polynomial-time many-one reductions implies194

EXP 6= ZPP. A natural question one might ask is whether we can improve this theorem195

to show that MCSP being NP-hard under randomized reductions implies unknown class196

separations. As we note in Theorem 1.4, however, Murray and Williams’ proof carries over197

to MOCSP, and Theorem 1.3 shows MOCSP is indeed NP-hard under randomized reductions.198

Thus, any improvement of Murray and Williams’ result to randomized reductions likely199

requires a fact about MCSP that we do not know for MOCSP.200

In another direction, our results seem to imply that proving hardness for MOCSP is easier201

than proving hardness for MCSP. Indeed, since MCSP easily reduces to MOCSP, any hardness202

result that is true for MCSP must also be true for MOCSP. Therefore, we can use MOCSP203

as a testing ground for hardness results we conjecture about MCSP. For example, Hirahara’s204

[13] worst-case to average-case reduction for NP can be based on a certain approximation205

of MCSP being NP-hard, which would imply that a certain approximation of MOCSP is206

5 The conference versions of [8] and [1] are four years apart.



6 AC0[p] Lower Bounds and NP-Hardness for Variants of MCSP

also NP-hard. Given that we can prove the NP-hardness of MOCSP under uniform ZPP207

reductions and non-uniform AC0 reductions, we ask if one can prove something similar for208

the approximation version of MOCSP.209

I Open Question 1.7. Can one prove that, for some ε > 0, approximating MOCSP on210

n-inputs to a factor of nε is NP-hard under, say, P/poly reductions? Conversely, can one211

prove that there is any barrier to showing such a hardness result?212

We note that the techniques we use to prove NP-hardness results for MOCSP seem to break213

down completely in the case of even super-constant approximation, so answering this question214

will likely require new ideas.215

1.4 Proof Overviews216

In this section, we give fairly detailed overviews of our proofs. In doing this, we will often217

state results without filling in low-level details. To make clear to the reader when we are218

doing this, we mark such sentences with an italicized we observe.219

Majority Hardness for (AC0
d)-MCSP220

Recall, AC0
d is the class of depth-d formulas. We also define AND ◦ AC0

d−1 and OR ◦ AC0
d−1221

be the classes of AC0
d formulas with a top AND and top OR gate respectively. For F ∈222

{AC0
d, AND ◦AC0

d−1, OR ◦AC0
d−1} and a truth table T , we let CCF (T ) denote the size of the223

minimum F -formula computing T where the size of a formula is the number of input leaves.224

Our analysis proceeds by considering each n ∈ N and splitting into cases depending on225

whether CCAC0
d
is Lipchitz on truth tables of length around n. In more detail, fix some226

sufficiently large n. Let q = Θ(n2) be a power of two. We divide into cases depending on227

whether there exists an m ∈ {q10, q50} such that CCAC0
d
is (m.25)-Lipchitz on truth tables of228

length m.229

Case 1: Lipchitzness holds for some m.230

If there does exist an m ∈ {q10, q50} such that CCAC0
d
is (m.25)-Lipchitz on truth tables of231

length m, then the techniques of [11] yield an AC0 truth table reduction from MAJORITY232

on n-bits to (AC0
d)-MCSP on m-bits. For completeness, we include a self-contained proof of233

this case in Appendix A.234

Case 2: Lipchitzness fails.235

Assume that for all m ∈ {q10, q50} CCAC0
d
is not (m.25)-Lipchitz on truth tables of length m.236

Let u = q10 and v = q50.237

Lipchitzness failing =⇒ functions easier to compute with a top AND gate. We observe,238

as a straight forward consequence of Lipchitzness failing, that there exists a truth table of239

length u that has an optimal formula with large top fan-in and and a truth table of length v240

that is easier to compute with a top AND gate:241

1. There exists a Boolean function fu that takes log u inputs and an AC0
d formula φu such242

that φu is an optimal AC0
d formula for fu and φu = φu1 ∧ · · · ∧ φut for some t ≥ n and243

some φu1 , . . . , φut ∈ AC0
d−1.244
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2. There exists a Boolean function fv that takes log v inputs such that CCOR◦AC0
d−1

(fv) >245

CCAND◦AC0
d−1

(fv) + u log u.246

We will make use of fu and φu to reduce MAJORITY to CCAND◦AC0
d−1

and we will use fv to247

reduce CCAND◦AC0
d−1

to CCAC0
d
.248

Using CCAND◦AC0
d−1

and optimal subformulas of φu to compute a dot product. The heart249

of our MAJORITY reduction is a fairly elementary observation about optimal (AND ◦AC0
d−1)250

formulas. Recall, φu = φu1 ∧ · · · ∧ φut is an optimal (AC0
d) formula for fu and, hence, also an251

optimal (AND ◦AC0
d−1) formula for fu. We observe that for any A ⊆ [t], the (AND ◦AC0

d−1)-252

optimality of φu implies that
∧
i∈A φ

u
i is also an optimal (AND ◦ AC0

d−1) formula for the253

function it computes.254

Introducing some notation, for a string x ∈ {0, 1}n, we let fux be the function given255

by
∧
i∈Ox

φui where Ox ⊆ [n] are the bits in x that are one. Using the above observation256

about subformulas being optimal, we have that CCAND◦AC0
d−1

(fux ) =
∑
i∈Ox

|φui |.6 Thus,257

one can think of CCAND◦AC0
d−1

(fux ) as computing the dot product between x and the vector258

〈|φu1 |, . . . , |φun|〉.259

Note that that the definition of fux depends on the labeling of φu1 , . . . , φut , in particular the260

choice of which φui have i ≤ n. We will later choose an labeling of the φui that is convenient.261

Computing MAJORITY (non-uniformly) using CCAND◦AC0
d−1

. Our goal is to compute262

MAJORITY on a string x ∈ {0, 1}n using the above “dot product” observation. Before263

we show how to do this, we give some intuition on how we came up with the idea.264

Instead of trying to compute MAJORITY, suppose we relaxed the problem to computing265

PARITY given access to the integer produced by the dot product x · 〈|φu1 |, . . . , |φun|〉. Well,266

if it so happened that all the entries in the vector 〈|φu1 |, . . . , |φun|〉 were odd, then it is clear267

that the integer produced by x · 〈|φu1 |, . . . , |φun|〉 is odd if and only if x has an odd number of268

ones. Our approach for MAJORITY is a generalization of this.269

Let p = O(n) be prime greater than n. We observe, via an averaging argument, that270

there exists integers k ≥ 0 and 1 ≤ r ≤ p− 1 such that (after relabeling the φui )271

|φu1 |/pk ≡ · · · ≡ |φun|/pk ≡ r mod p.272

Thus, we can determine the weight w of x (and hence compute MAJORITY of x) by computing273

the value of274

CCAND◦AC0
d−1

(fux )/pk =
∑
i∈Ox

|φui |/pk ≡ rw mod p275

and multiplying by the inverse of r modulo p. 7
276

Reducing computing CCAND◦AC0
d−1

to computing CCAC0
d
. Ultimately, we want to compute277

MAJORITY using CCAC0
d
not CCAND◦AC0

d−1
. By the above procedure, it suffices to show how278

to compute CCAND◦AC0
d−1

(fux ) using CCAC0
d
.279

6 Recall, our notion of formula size is the number of input leaves.
7 In case the reader is unsure of whether the last parts of this procedure are implementable in AC0, realize

that the output of CCAND◦AC0
d−1

(fu
x ) is a binary string of length O(log n) and that any function on a

string of length O(log n) can be computed by a polynomial-sized DNF. See the proof in Section 3 for
more details.
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We can make such a computation as follows. Recall that fv is a function satisfying280

CCOR◦AC0
d−1

(fv) > CCAND◦AC0
d−1

(fv) + u log u281

whose existence is guaranteed by the failure of Lipchitzness. Take the direct product of fux282

with fv to obtain a function gx(y, z) = fux (y)∧fv(z). Since the difference between computing283

fv with a top AND gate and a top OR gate is larger than u log u (which is the maximum284

complexity of fux ), we observe8 any optimal AC0
d formula for gx must have a top AND gate,285

so286

CCAC0
d
(gx) = CCAND◦AC0

d−1
(gx).287

Then, we observe that288

CCAND◦AC0
d−1

(gx) = CCAND◦AC0
d−1

(fux ) + CCAND◦AC0
d−1

(fv).289

Hence, if we are non-uniformly given the value of CCAND◦AC0
d−1

(fv), we can subtract290

CCAND◦AC0
d−1

(fv) from CCAC0
d
(gx) to find CCAND◦AC0

d−1
(fux ).291

NP-hardness of Oracle MCSP (MOCSP)292

We define the size of an oracle circuit to be the total number of AND, OR, and oracle gates.293

The Minimum Oracle Circuit Size Problem, MOCSP, takes as input a truth table T , a294

threshold s ∈ N, and auxiliary truth tables T1, . . . Tt and outputs whether there is an oracle295

circuit of size at most s that computes T when given oracle access to T1, . . . , Tt. We denote296

the output of MOCSP on such an input as MOCSP(T, s;T1, . . . , Tt). We denote the minimum297

size of any oracle circuit computing T when given access to T1, . . . , Tt as CCT1,...,Tt(T ).298

We prove that MOCSP is NP-hard under various reductions by giving a reduction from299

4-approximating r-bounded set cover, denoted 4-SetCoverr, to MOCSP. As a reminder,300

4-SetCoverr is the promise problem takes as input sets S1, . . . , St ⊆ [n] of cardinality at most301

r whose union is [n] as well as an integer c ∈ [n] and requires outputting YES when c ≥ `302

and NO when c < `/4 where ` is the optimal cover size, i.e.303

` = min{|I| : I ⊆ [t] and
⋃
i∈I

Si = [n]}.304

For sufficiently large r, 4-SetCoverr is known to be NP-hard (see Theorem 2.6).305

Informal idea. We begin by giving a high-level overview of the reduction to orient the306

reader. (It will be very informal, but we are building to a more detailed description.) Say307

we are given sets S1, . . . , St ⊆ [n] of cardinality at most r whose union is [n]. One can308

think of each of these sets Si as “seeing” a small portion of the ground set [n]. For some309

carefully chosen truth table T of length m ≥ n, we let each set S1, . . . , St induce truth tables310

TS1 , . . . , TSt
respectively where each truth table TSi

“sees” roughly the same part of T as Si311

“sees” of [n]. Finally, we ask how hard it is for a circuit to compute T given oracle access to312

T1, . . . , Tt, and we show that, if T has a certain property, then the answer to this question is313

the answer to the set cover problem up to a constant factor.314

We now illustrate the algorithm in more detail. Fix sets S1, . . . , St ⊆ [n] of cardinality at315

most r whose union is [n] and fix a truth table T of length m. Assume the optimal cover316

size of [n] by S1, . . . , St is `.317

8 both the “we observe” statements in this paragraph are consequences of standard direct product theorems
for formulas.
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The truth tables induced by S1, . . . , St and T . We rigorously define the truth tables318

TS1 , . . . , TSt
of length m induced by S1, . . . , St and T . First, we fix a partition of [m] into n319

sets. It does not really matter what partition we choose as long as the sets are roughly the320

same size and the partition is easily computable, but, for concreteness, let P1, . . . , Pn ⊆ [m]321

be the partition of [m] given by Pi = {j ∈ [m] : j ≡ i mod n}.322

We can then use this partition to “lift” any subset of [n] into a subset of [m] as follows.323

For a subset S of [n], let Sm denote the subset of [m] given by Sm =
⋃
i∈S Pi.324

Next, for a subset P ⊆ [m], we let TP be the truth table of length m that “sees” T on325

the elements of P and zeroes everywhere else, that is the ith bit of TP is326 {
the ith bit of T , if i ∈ P
0 , otherwise.

327

Finally, we define the truth table TSi
induced by Si to be the truth table TSP

i
given by328

the above notation (we are dropping the m superscript for concision).329

CCTS1 ,...,TSt (T ) is at most 2`. Suppose, without loss of generality, that S1 ∪ · · · ∪ S` is an330

optimal cover of [n]. Then, by construction, the function computed by TS1 ∨ · · · ∨ TS`
is T .331

This is an oracle circuit of size 2`− 1, so CCTS1 ,...,TSt (T ) ≤ 2`.332

If T is (rn)-irritable, then CCTS1 ,...,TSt (T ) > `/2. Recall the notation defined previously333

that, for a set P ⊆ [m], TP denotes the string of length m that equals T on the bits in P334

and is zero everywhere else. Also recall that we fixed a partition P1, . . . , Pn of [m]. We say335

that T is (s)-irritable if for all i ∈ [n] we have that336

CCTP1 ,...,TPi−1 ,TPi+1 ,...,TPn (T ) > s.337

Informally, T being (rn)-irritable means that if you take away access to any particular338

TPi
oracle, then computing T requires an oracle circuit of size greater than rn, which is a339

(r/2)-factor jump over the trivial 2n-sized oracle circuit given by TP1 ∨ · · · ∨ TPn if one had340

full oracle access.341

Now assume T is (rn)-irritable. We need to show that CCTS1 ,...,TSt (T ) > `/2. For342

contradiction, suppose that C is an oracle circuit computing T with at most `/2 gates. Then343

C uses at most q ≤ `/2 unique oracle gates. Without loss of generality, assume C uses344

as oracles only TS1 , . . . , TSq
. Next, note that for any i ∈ [q], TSi

can, by construction, be345

computed by the oracle circuit
∨
j∈Si

TPj . Moreover, this is an oracle circuit for TSi of size346

at most 2r since |Si| ≤ r. Thus, replacing each TSi
oracle gate in C with the oracle circuit347 ∨

j∈Si
TPj , we can transform C into an oracle circuit D of size at most r · |C| ≤ r` such that348

D computes T when given access to the oracles in the set O = {TPj
: j ∈ S1 ∪ · · · ∪ Sq}.349

However, since q ≤ `/2 is less than the optimal cover size, |S1 ∪ · · · ∪ Sq| < n and so |O| < n,350

so O is missing TPi? for some i? ∈ [n]. But then D is an oracle circuit of size at most r` ≤ rn351

that computes T when given access to TP1 , . . . , TPn
without using TP?

i
as an oracle gate,352

which contradicts that T is (rn)-irritable.353

RP,ZPP and AC0 reductions. At this point, we have shown that one can compute whether354

S1, . . . , St admits a c-cover (up to a 4-approximation) by outputting MOCSP(T, 2c;TS1 , . . . , TSt)355

for some T that is (rn)-irritable.356

We observe by a counting argument that a truth table T of lengthm ≥ n3 picked uniformly357

at random is (rn)-irritable with high probability. Thus, picking a random truth table T of358
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length Θ(n3) and outputting MOCSP(T, 2c;TS1 , . . . , TSt) gives an RP many-one reduction359

from 4-SetCoverr to MOCSP (note that we get one-sided error because irritability was only360

required for the `/2 lower bound and not required for the 2` upper bound). Additionally,361

since we can check if a random T is (rn)-irritable using an oracle to MOCSP, we observe362

that 4-SetCoverr ≤ZPP
tt MOCSP. Finally, we observe that there is an AC0 circuit C such363

that C(T, c, S1, . . . , St) = (T, 2c;TS1 , . . . , TSt). Therefore, by non-uniformly hardcoding364

an (rn)-irritable truth table T into C, we get that 4-SetCoverr reduces to MOCSP under365

(non-uniform) AC0 many-one reductions.366

1.5 Paper Organization367

In Section 2 we fix notation and review precise definitions. In Section 3 we prove that368

MAJORITY reduces to (AC0
d)-MCSP, and in Section 4 we prove our MOCSP results.369

2 Preliminaries370

For an integer n, we let [n] denote the set {1, . . . , n}. For a binary string x ∈ {0, 1}∗,371

the weight of x, denoted wt(x), is the number ones in x. We identify a Boolean function372

f : {0, 1}n → {0, 1} with its truth table T ∈ {0, 1}2n and often use them interchangeably.373

We let log denote the base-2 logarithm and ln represent the base-e logarithm. For374

functions f and g, we say f = Õ(g) if there exists a c such that f(x) ≤ logc(g(x))g(x) for all375

sufficiently large x. We say that f = Ω̃(g) if g = Õ(f).376

We say a function f : {0, 1}n → R is c-Lipchitz if for all x, y ∈ {0, 1}n that differ in at377

most one bit, |f(x)− f(y)| ≤ c.378

Complexity classes and reductions379

We assume the reader is familiar with the standard complexity classes such as AC0,P,ZPP,RP,NP,E380

and the notion of Turing machines. For background on these, we refer to Arora and Barak’s381

excellent textbook [7]. For us, AC0 always refers to non-uniform AC0.382

We review the types of reductions we use in case the reader is not familiar with randomized383

reductions, truth table reductions, or our notation.384

Many-one reductions. We will make use of the follow notions of many-one reduction.385

L ≤AC0

m L′ if there is a non-uniform (polynomial-sized) AC0 circuit C such that x ∈386

L ⇐⇒ C(x) ∈ L′.387

L ≤P
m L′ if there is a polynomial-time Turing machine M such that x ∈ L ⇐⇒ M(x) ∈388

L′.389

L ≤RP
m L′ if there is a polynomial-time probabilistic Turing machine M taking in a390

“random” auxiliary input r such that391

x ∈ L =⇒ ∀rM(x, r) ∈ L′, and392

393

x 6∈ L =⇒ Pr
r

[M(x, r) ∈ L′] ≥ 2/3,394

and |r| is polynomial in the length of x.395
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Truth table reductions. We will also make use of the following notions of truth table396

reductions.397

We say an oracle circuit C is a truth table oracle circuit if there is no directed path398

between oracle gates in C.399

L ≤AC0

tt L′ if there is a non-uniform (polynomial-sized) AC0 truth table oracle circuit C400

such that C computes L when given oracle access to L′.401

L ≤ZPP
tt L′ if L can be computed with zero-error by a polynomial-time probabilistic oracle402

Turing machine M with oracle access to L′ with the caveat that all of M ’s oracle queries403

must be answered simultaneously (i.e. so no oracle query can depend on another oracle404

query). On any single input, M is allowed to output “don’t know” with probability at405

most 1/2.406

AC0
d formulas, (AC0

d)-MCSP, and CCAC0
d

407

For an integer d ≥ 2, we let AC0
d denote the class of depth-d formulas that use AND and OR408

gates with unbounded fan-in and fan-out 1 and that takes as “input leaves” the bits of a409

binary string and the negation of each of those bits.410

For an AC0
d formula φ, we define the size of φ, denoted |φ|, to be the total number of411

input leaves φ uses. For a Boolean function f , we let CCAC0
d
(f) be the size of the smallest412

AC0
d formula computing f .413

I Definition 2.1 (Minimum Circuit Size Problem for constant depth formulas). (AC0
d)-MCSP,414

is the language given by415

{(T, s) ∈ {0, 1}? × N : T is the truth table of a Boolean function, and CCAC0
d
(T ) ≤ s}.416

We will also make use of the classes of formulas OR ◦ AC0
d−1 and AND ◦ AC0

d−1, defined417

as the subclasses of AC0
d formulas with a top OR gate and a top AND gate respectively. For418

C ∈ {OR◦AC0
d−1,AND◦AC0

d−1}, we define We define CCC and (C)-MCSP analogous to CCAC0
d

419

and (AC0
d)-MCSP.420

We also require the following elementary lemmas regarding AC0
d formulas.421

I Lemma 2.2. Let f be a Boolean function. Then CCAC0
d
(f) = CCAC0

d
(¬f).422

Proof. One can use DeMorgan’s laws to turn any AC0
d formula for f of size s into an AC0

d423

formula for ¬f of size s. J424

We note that our specific notion of AC0
d formula size is crucial for the next lemma.425

I Lemma 2.3 (Direct product theorem for formulas). Let f : {0, 1}n → {0, 1} and g :426

{0, 1}m → {0, 1} be Boolean functions that are both not the constant zero function. Define427

h : {0, 1}n × {0, 1}m → {0, 1} by h(x, y) = f(x) ∧ g(y). Then428

CCAND◦AC0
d−1

(h) = CCAND◦AC0
d−1

(f) + CCAND◦AC0
d−1

(g), and429

430
CCOR◦AC0

d−1
(h) ≥ CCOR◦AC0

d−1
(f) + CCOR◦AC0

d−1
(g).431

Proof. It is easy to see that432

CCAND◦AC0
d−1

(h) ≤ CCAND◦AC0
d−1

(f) + CCAND◦AC0
d−1

(g).433

On the other hand, since f is not the constant 0 function, it has a 1-valued input x0.434

Then, h(x0, y) computes g(y). Thus, if φ is an OR ◦AC0
d−1 formula for h, then φ has at least435
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CCAND◦AC0
d−1

(g) y-input leaves. A similar argument shows that φ has at least CCAND◦AC0
d−1

(f)436

x-input leaves. Hence437

CCAND◦AC0
d−1

(h) ≥ CCAND◦AC0
d−1

(f) + CCAND◦AC0
d−1

(g).438

A similar argument shows that439

CCOR◦AC0
d−1

(h) ≥ CCOR◦AC0
d−1

(f) + CCOR◦AC0
d−1

(g).440

J441

Oracle Circuits and Oracle MCSP: MOCSP442

An oracle circuit C is made up of NOT gates, fan-in two AND and OR gates, and oracle443

gates g1, . . . , gt with fan-in i1, . . . , it respectively for some integers t, i1, . . . , it ≥ 1. When444

given functions f1 : {0, 1}i1 → {0, 1}, . . . , ft : {0, 1}it → {0, 1}, we let Cf1,...,ft(x) be the445

value obtained when evaluating C on input x by using the f1, . . . , ft functions as the outputs446

of the g1, . . . , gt gates respectively.447

We define the size of an oracle circuit C, denoted |C|, to be the sum of the number of448

OR gates, the number of AND gates, and the number of oracle gates in C.449

For Boolean functions f, f1, . . . , ft, we let CCf1,...,ft(f) be the size of the smallest oracle450

circuit that computes f when given access to f1, . . . , ft. Analogous to MCSP, we define the451

following.452

I Definition 2.4 (The Minimum Oracle Circuit Size Problem). The Minimum Oracle Circuit453

Size Problem, denoted MOCSP, takes as as input a truth table T , a threshold s ∈ N, and454

oracle truth tables T1, . . . , Tt and outputs whether CCT1,...,Tt(T ) ≤ s. The output of MOCSP455

on such an input is written as MOCSP(T, s;T1, . . . , Tt).456

r-Bounded Set Cover457

We will make use of the following well known NP-complete problem.458

I Definition 2.5 (r-Bounded Set Cover). r-Bounded Set Cover, denoted SetCoverr, is the459

problem that takes as input a tuple (n, c, S1, . . . , St), where n ∈ N is a universe size, c ∈ N is460

a proposed cover size 1 ≤ c ≤ n, and S1, . . . , St ⊆ [n] are sets of cardinality at most r whose461

union is [n], and outputs whether c ≥ ` where ` is the optimal cover size given by462

` = min{|I| : I ⊆ [t] and ∪i∈I Si = [n]}.463

We will also make use of the following restricted version of set cover. Let SetCoverr,n,t464

denote r-bounded set cover on t subsets of [n]. We encode inputs to SetCoverr,n,t as the465

tuple (c, S1, . . . , St) (with n implicit) where c is represented in binary and the set Si, for each466

i ∈ [t], is represented by a bit string of length rdlog(n+ 1)e that is a concatenated list of the467

elements of Si in binary, padded with zeroes if |Si| < r (note that zero is not an element of468

[n], so padding with zeroes is not ambiguous).469

We will use that SetCoverr is NP-hard even to approximate to a roughly ln r factor.470

I Theorem 2.6 (Feige [10] and Trevisan [31]). Let r be a sufficiently large constant, and let471

L be a language. If for every instance x = (n, c, S1, . . . , St) of SetCoverr, we have that both472

that473

c ≥ ` implies x ∈ L, and474

c ≤ `/(ln r −O(ln ln r)) implies x 6∈ L,475

where ` is the optimal cover size, then L is NP-hard under polynomial-time many-one476

reductions.477
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3 MAJORITY ≤AC0

tt (AC0
d)-MCSP478

Let d ≥ 2. Our goal in this section is to prove the following theorem.479

I Theorem 3.1. MAJORITY ≤AC0

tt (AC0
d)-MCSP.480

We will do this by showing that for all sufficiently large n ∈ N, there exists an AC0 truth481

table oracle circuit that computes MAJORITY on n-bits when given access to (AC0
d)-MCSP.482

Fix some n, and let q be the least power of two such that n ≤ √q/2. We will split our483

analysis into cases depending on whether there exists an m ∈ {q10, q50} such that CCAC0
d
is484

(m.25)-Lipchitz on inputs of length m.485

3.1 Case 1: Lipchitzness Holds486

If Lipchitzness holds, then the desired (AC0
d)-MCSP oracle circuit C exists for computing487

MAJORITY on n-inputs by the work of Golovnev et al. [11]. At a high-level, C works488

by using the input string to sample a random variable whose circuit complexity spikes (in489

expectation) depending on the weight of the input and using Lipchitzness to show that this490

spike happens with such high probability that it can be derandomized using non-uniformity.491

For completeness, we give a self-contained proof of this case in Appendix A.492

3.2 Case 2: Lipchitzness fails493

Assume that for all m ∈ {q10, q50}, CCAC0
d
is not (m.25)-Lipchitz on inputs of length m. Thus,494

for all m ∈ {q10, q50} there exist functions fm, hm : {0, 1}logm → {0, 1} that differ only on a495

single input zm ∈ {0, 1}logm such that CCAC0
d
(hm)− CCAC0

d
(fm) > m.25.496

We assume, without loss of generality, that for all m ∈ {q10, q50}, fm(zm) = 0 and497

hm(zm) = 1. (If this is not the case, then replace fm and hm by ¬fm and ¬hm respectively498

and apply Lemma 2.2.)499

First, we show that the failure of Lipchitzness implies the existence of functions that500

are much easier to compute by formulas with an AND gate on top. For m ∈ {q10, q50} let501

1zm : {0, 1}logm → {0, 1} denote the indicator function that accepts just the string zm.502

I Proposition 3.2. Let m ∈ {q10, q50}. For sufficiently large n, CCOR◦AC0
d−1

(fm) ≥503

CCAC0
d
(fm) +m.24, and so any optimal AC0

d formula for fm has an AND gate on top.504

Proof. Suppose φ is an OR ◦ AC0
d−1 formula computing fm, that is, fm is computed by505

φ = φ1 ∨ · · · ∨ φt for some AC0
d−1 formulas φ1, . . . , φt. Then506

1zm ∨ φ1 ∨ · · · ∨ φt507

computes hm. Since 1zm can be computed by a single AND gate of formula size logm,508

this shows that CCAC0
d
(hm) ≤ |φ|+ logm. Combining this with the fact that CCAC0

d
(hm)−509

CCAC0
d
(fm) ≥ m.25 gives the desired result. J510

At this point, we will need to refer to both q10 and q50 individually, so for convenience511

let u = q10 and v = q50.512

Let φu be an optimal AC0
d formula for fu. By Proposition 3.2, for sufficiently large n,513

we know that φu = φu1 ∧ · · · ∧ φut for some AC0
d−1 formulas φu1 , . . . , φut . Moreover, we can514

assume, without loss of generality, that the top gate of φui is OR for all i ∈ [t]. (If some φui515

has an AND gate on top, then this AND can be carried out by the AND gate on top of φu516

without increasing the size of the formula.)517

Our next Proposition shows that φu has high top fan-in.518



14 AC0[p] Lower Bounds and NP-Hardness for Variants of MCSP

I Proposition 3.3. For sufficiently large n,519

t ≥ u.24.520

Proof. We divide into cases depending on d.521

Case 1: d ≥ 3. Realize that522

(φu1 ∨ 1zu) ∧ · · · ∧ (φut ∨ 1zu)523

computes hu. Since 1zu can be computed by a single AND gate of formula size log u and524

the top gate of each φui is an OR gate and d ≥ 3, this yields a depth-d formula for hu of size525

CCAC0
d
(fu) + t log u. Since CCAC0

d
(hu)− CCAC0

d
(fu) ≥ u.25, the desired bound on t follows.526

Case 2: d = 2. Let 1zu, j : {0, 1}logu → {0, 1} be the function that accepts a string x if527

and only if the jth bit of x equals the jth bit of zu. Observe that, since
∧
i∈[t] φ

u
i computes528

fu, we have that529 ∧
i∈[t]

∧
j∈[logu]

(φui ∨ 1zu, j)530

computes hu. Since 1zu, j is computed by a single input leaf and φui has an OR gate on top,531

this yields a depth-2 formula for hu of size (|φu| + 1) log u. Since φu is an optimal CNF,532

each clause φui of φu is the OR of at most log u input leaves. In other words, |φui | ≤ log u.533

Therefore, we have that534

CCAC0
d
(hu) ≤ (|φu|+ 1) log u ≤ (

∑
i∈[t]

|φui |+ 1) log u ≤ (t log u+ 1) log u = t log2 u+ log u.535

On the other hand, we know by assumption that536

CCAC0
d
(hu) > CCAC0

d
(fu) + u.25 ≥ u.25.537

Combining these two inequalities gives us the desired bound on t.538

J539

Let p be smallest prime greater than n. (Note that p ≤ 2n by Betrand’s postulate,540

also known as Chebyshev’s theorem. See [12] for a proof.) We say that an integer j is541

(k, r)-good for integers k ≥ 0 and 1 ≤ r ≤ p− 1 if pk divides j and j/pk ≡ r mod p. In other542

words, an integer j is (k, r)-good for k ≥ 0 and r ∈ [p − 1] if the kth largest entry of the543

base-p representation of the integer j equals r and all previous entries equal zero. From this544

“base-p” perspective, it is clear that all positive integers j are (k, r)-good for some k ≥ 0 and545

r ∈ [p− 1].546

We show that, for some k and r, a large subset of the |φui | are (k, r)-good.547

I Proposition 3.4. For all sufficiently large n, there exist integers k ≥ 0 and 1 ≤ r ≤ p− 1548

and a set S ⊆ [t] of cardinality n such that, for all i ∈ S, the integer |φui | is (k, r)-good.549

Proof. We do this by an averaging argument. First, we show that each |φui | is (k, r)-good550

for a k not too large.551

B Claim 3.5. For all i ∈ [t], |φui | is (k, r)-good for some 0 ≤ k ≤ log(u log u) + 1 and some552

r ∈ [p− 1].553
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Proof. Fix some i ∈ [t]. |φui | is a positive integer, so |φui | is (k, r)-good for some k ≥ 0 and554

some r ∈ [p− 1]. We still need to upper bound this k. Note that the size of |φui | is at most555

by u log u since φu is optimal for fu and fu can be computed by a DNF of size u log u. Thus,556

for pk to divide |φui |, we must have that k ≤ logp(u log u) + 1 ≤ log(u log u) + 1. C557

Since for all i ∈ [t] we have shown that |φui | is (k, r) good for some 0 ≤ k ≤ log(u log u) + 1558

and some r ∈ [p− 1], a standard averaging argument implies that there exists a set S ⊆ [t]559

of cardinality at least560

t

(log(u log u) + 1)(p− 1)561

such that for all i ∈ S, |φui | is (k, r)-good for some fixed k ≥ 0 and 1 ≤ r ≤ p − 1. For562

sufficiently large n, we have that563

t

(log(u log u) + 1)(p− 1) ≥
u.24

4n log u ≥ n564

using that u = q10 ≥ n10. We then can truncate S so that it has only n elements as565

desired. J566

Assume that n is large enough that all the sufficiently large hypotheses in Propositions567

3.2, 3.3, and 3.4 apply. For convenience, relabel φ1, . . . , φt so that the set S guaranteed by568

Proposition 3.4 is just S = [n]. Fix k ≥ 0 and r ∈ [p− 1] to be the values such that for all569

i ∈ S = [n], |φui | is (k, r)-good.570

Introducing notation, for a set A ⊆ [n], let fuA be the function computed by
∧
i∈A φ

u
i .571

I Lemma 3.6. Let A ⊆ [n]. Then CCAND◦AC0
d−1

(fuA) =
∑
i∈A |φui |.572

Proof. By construction, we have that CCAND◦AC0
d−1

(fuA) ≤
∑
i∈A |φi|. Suppose for contradic-573

tion that CCAND◦AC0
d−1

(fuA) <
∑
i∈A |φui |.574

Let θ1 ∧ · · · ∧ θ` be a minimum-sized (AND ◦ AC0
d−1) formula for fuA. By assumption, we575

have that
∑`
j=1 |θj | <

∑
i∈A |φui |. We can thus replace the

∧
i∈A φ

u
i in the optimal formula576

for fu with θ1 ∧ · · · ∧ θ` and get a smaller formula. In more detail, we have that577

fu = fuA ∧ (
∧

i∈[t]\A

φui ) = (θ1 ∧ · · · ∧ θ`) ∧ (
∧

i∈[t]\A

φui )578

which is a formula of size579 ∑̀
j=1
|θj |+

∑
i∈[t]\A

|φui | <
∑
i∈A
|φui |+

∑
i∈[t]\A

|φui | =
t∑
i=1
|φui | = |φu|580

which contradicts the optimality of φu for fu. J581

For a string x ∈ {0, 1}n, let fux be shorthand for fuAx
where Ax ⊆ [n] is the set of indices582

where x is one.583

I Proposition 3.7. Let x ∈ {0, 1}n. Then x has weight w if and only if the integer584

CCAND◦AC0
d−1

(fux ) is (k, rw)-good.585

Proof. By Lemma 3.6 and the fact that |φui | is (k, r)-good for all i ∈ [n], we have that586

CCAND◦AC0
d−1

(fux )
pk

=
∑
i∈Ax

|φui |
pk

≡ w · r mod p587

where Ax ⊆ [n] are bits of x that are ones. The “only if” part of the statement is guaranteed588

by the fact that 1 ≤ r ≤ p− 1 has a multiplicative inverse modulo p since p is prime. J589
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I Theorem 3.8. Assume n is sufficiently large. Then there is a depth-8 AC0 truth table590

oracle circuit C with O(n250) wires such that C(AC0
d)-MCSP computes MAJORITY on n-bits.591

Proof. It suffices to show that for every w ∈ [n], there exists a depth-7 AC0 oracle circuit Cw592

with O(n249) wires such that C(AC0
d)-MCSP

w (x) = 1 ⇐⇒ wt(x) = w. Then MAJORITY(x) =593 ∨
w≥n/2 Cw(x).594

Fix some w ∈ [n]. The circuit Cw works as follows. On input x ∈ {0, 1}n, first check595

if x is the all zeroes string. If so, then reject. Otherwise, compute the truth table of the596

direct product function gx : {0, 1}logu×{0, 1}log v → {0, 1} given by gx(y, z) = fux (y)∧ fv(z).597

Compute s = CCAC0
d
(gx) in binary using oracle access to (AC0

d)-MCSP. Finally accept if the598

integer s has the property that s− CCAC0
d
(fv) is (k, rw)-good. Reject otherwise.599

We now verify this yields a (non-uniform) AC0 truth table oracle circuit. We can check if600

x is the all zeroes string with a single OR gate. This requires one level of depth and O(n)601

wires. Next, realize the jth bit in the truth table of gx is either zero for all x or equal to602

fux (j) =
∨

i∈[n]:φu
i

(j)=1

xi603

where xi denotes the ith bit of x. Thus, using non-uniformity, we can compute the truth table604

of gx with O(nuv) = O(nq60) = O(n121) wires and depth-one. Next, we can compute s =605

CCAC0
d
(gx) in binary with O(uv log(uv)) calls to (AC0

d)-MCSP using the fact that CCAC0
d
(gx) ≤606

uv log(uv) by the DNF bound and the fact that607

CCAC0
d
(gx) = s ⇐⇒ (AC0

d)-MCSP(gx, s) = 1 and (AC0
d)-MCSP(gx, s− 1) = 0.608

This takes at most Õ((uv)2) = O(n241) wires, an additional three layers of depth, and609

2uv log(uv) oracle calls that all do not depend on each other. Finally, the DNF upper bound610

guarantees that CCAC0
d
(gx) ≤ uv log(uv) ≤ n61, so the length of the integer s = CCAC0

d
(gx) in611

binary is at most 61 logn. Therefore we can check if s has the property that s− CCAC0
d
(fv)612

is (k, rw)-good using a DNF with at most n62 wires and at most an additional two layers of613

depth. Combining all this yields a AC0 circuit of depth-7 with at most O(n241) wires and no614

directed path between oracle gates.615

Next, we argue for correctness. Clearly, Cw rejects the all zero string, so assume x 6= 0n.616

By Proposition 3.7, it suffices to show that, for s = CCAC0
d
(gx),617

s− CCAC0
d
(fv) = CCAND◦AC0

d−1
(fux ).618

We confirm that neither fux nor fv is the constant zero function, so that we can use the619

direct product theorems in Lemma 2.3.620

B Claim 3.9. Neither fux nor fv is the constant zero function.621

Proof. If fv were the constant zero function, then CCAC0
d
(hv) ≤ log v by DNF computation622

which contradicts that623

CCAC0
d
(hv)− CCAC0

d
(fv) ≥ v.25.624

Next, let i ∈ [n] be a bit of x that is not zero. (Recall, we assumed that x 6= 0n.) Then625

fux has accepts every input that that φui accepts. For contradiction, suppose that φui had no626

ones. Then we can remove φui from the optimal formula φu = φu1 ∧ . . . φut for fu and get a627

smaller formula for fu which contradicts the optimality of φu. J628
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Next we show that the optimal AC0
d formula for gx has an AND gate on top.629

B Claim 3.10. CCOR◦AC0
d−1

(gx) > CCAND◦AC0
d−1

(gx). Consequently, CCAC0
d
(gx) = CCAND◦AC0

d−1
(gx).630

Proof. Let ∆ = CCOR◦AC0
d−1

(gx)− CCAND◦AC0
d−1

(gx). We need to show ∆ > 0.631

∆ ≥ CCOR◦AC0
d−1

(fv)− CCAND◦AC0
d−1

(fv) + CCOR◦AC0
d−1

(fux ) (by Lemma 2.3)632

− CCAND◦AC0
d−1

(fux )633

≥ (v).24 + CCOR◦AC0
d−1

(fux )− CCAND◦AC0
d−1

(fux ) ≥ (by Proposition 3.2)634

≥ (v).24 − u log u (by DNF bound on fux )635

≥ n50·.24 − n10 log(n10) (by definition of u and v)636

> 0 (for sufficiently large n)637
638

C639

Using the claim we have that640

s− CCAC0
d
(fv) = CCAC0

d
(gx)− CCAC0

d
(fv) (by definition)641

= CCAND◦AC0
d−1

(gx)− CCAC0
d
(fv) (by Claim 3.10)642

= CCAND◦AC0
d−1

(fux ) + CCAND◦AC0
d−1

(fv)− CCAC0
d
(fv) (by Lemma 2.3)643

= CCAND◦AC0
d−1

(fux ) + CCAND◦AC0
d−1

(fv)− CCAND◦AC0
d−1

(fv) (by Proposition 3.2)644

= CCAND◦AC0
d−1

(fux )645646

as desired. J647

I Remark 3.11. We remark that the only time we use the failure of Lipchitzness in Case648

2 is to show the existence of functions like fu with high top fan-in and functions like fv649

with a large difference between top AND gate and top OR gate complexity. Using known650

PARITY lower bounds and depth-hierarchy theorems for AC0 circuits, we can unconditionally651

prove the existence of fu and fv respectively but with slightly worse parameters that would652

yield a quasi-polynomial reduction (at least in the d ≥ 3 case) rather than the polynomial653

reduction we present.654

4 On the NP-hardness of MOCSP655

First, we introduce some useful notation and definitions. For a truth table T of length m656

and a set P ⊆ [m], let TP be the truth table of length m where the jth bit of TP equals657 {
the jth bit of T , if j ∈ P
0 , otherwise.

658

Next, we say a truth table T of length m is (s)-irritable on a partition P = (P1, . . . , Pn) of659

[m] if for all i ∈ [n]660

CCTP1 , ... , TPi−1 , TPi+1 , ... , TPn (T ) > s.661

Finally, for a partition P = (P1, . . . , Pn) of [m] and any set S ⊆ [n], we define the P-lift662

of S, denoted SP , to be the subset of [m] given by663

SP =
⋃
i∈S

Pi.664
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Our first theorem shows that one can use an irritable truth table and MOCSP to approx-665

imate r-bounded set cover.666

I Theorem 4.1. Let S1, . . . , St ⊆ [n] be sets of cardinality at most r that cover [n]. Let T667

be a truth table of length m, and let P = (P1, . . . , Pn) be a partition of [m]. Then668

CCTSP1
,...,T

SP
t (T ) ≤ 2`, and669

CCTSP1
,...,T

SP
t (T ) > `/2 if T is (rn)-irritable on P670

where ` is size of the optimal cover of [n] by S1, . . . , St.671

Proof. We split this proof into two claims to make clear that our two “without loss of672

generality” assumptions do not conflict with each other.673

B Claim 4.2. CCTSP1
,...,T

SP
t (T ) ≤ 2`674

Proof. Without loss of generality, assume that the optimal cover size ` is witnessed by S1 ∪675

· · ·∪S` = [n]. Then, by construction, the function computed by oracle circuit TSP1 ∨· · ·∨TSP`676

of size 2`− 1 is T . In more detail,677 ∨
i∈[`]

TSP
i

=
∨
i∈[`]

∨
j∈Si

TPj =
∨

j∈S1∪···∪S`

TPj =
∨
j∈[n]

TPj = T.678

Therefore CCTSP1
,...,T

SP
t (T ) ≤ 2`. C679

B Claim 4.3. If T is (rn)-irritable on P, then CCTSP1
,...,T

SP
t > `/2.680

Proof. For contradiction, suppose there is an oracle circuit D with at most `/2 gates such681

that DT
SP1

,...,T
SP

t computes T . Since D has at most q ≤ `/2 unique oracle gates, assume,682

without loss of generality, that DT
SP1

,...,T
SPq computes T .683

Recall, by the definition of TSP
i
, we have that TSP

i
=

∨
j∈Si

TPj
. Note that

∨
j∈Si

TPj
684

is an oracle circuit of size at most 2r since |Si| ≤ r. Thus, by replacing each TSP
i

oracle685

gate in D with the oracle circuit
∨
j∈Si

TPj
, we can transform D into an oracle circuit E686

of size at most 2r|C| ≤ r` that computes T when given access to the oracles in the set687

O = {TPj
: j ∈ S1 ∪ · · · ∪ Sq}. However, since the optimal cover of n is of size ` and688

q ≤ `/2 < `, it follows that |S1 ∪ · · · ∪ Sq| < n and hence |O| < n. Thus, there is an element689

i? ∈ [n] such that TPi? 6∈ O. Therefore, the circuit E witnesses that690

CCTP1 ,...,TPi?−1 ,TPi?+1 ,...,TPn (T ) ≤ r` ≤ rn691

which contradicts that T is (rn)-irritable on P. C692

J693

Moreover, given a truth table T and the partition P on which T is sufficiently irritable,694

we show it is easy to build a constant-depth circuit that approximates r-bounded set cover695

using MOCSP.696

I Theorem 4.4. Let r ∈ N. There exists an polynomial-time algorithm A such that if697

P = (P1, . . . , Pn) is a partition of [m], and T is a truth table of length m, then698

1. A(0n, 0t, T,P) outputs a depth-2 AC0 circuit Cn,t,T,P with O(mnrt) wires,699

2. MOCSP ◦ Cn,t,T,P accepts all YES instances of SetCoverr,n,t , and700

3. MOCSP ◦ Cn,t,T,P computes a 4-approximation to SetCoverr,n,t if T is (rn)-irritable on701

P.702
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Proof. First, we show that there is a polynomial-time algorithm A that outputs a small703

depth-2 circuit computing a specific function. Then we show that this specific function is704

helpful in computing SetCoverr,n,t.705

B Claim 4.5. There is a polynomial-time algorithm A such that A(0n, 0t, T,P) outputs a706

depth-2 AC0 circuit Cn,t,T,P with O(mnrt) wires satisfying707

Cn,t,T,P(c, S1, . . . , St) = (T, 2c;TSP1 , . . . , TSPt )708

for any instance (c, S1, . . . , St) of SetCoverr,n,t.709

Proof. On input (0n, 0t, T,P), A builds the circuit Cn,t,T,P as follows. First, A will hardwire710

Cn,t,T,P to output T . This requires O(m) wires and depth one. Next, A adds circuitry to711

Cn,t,T,P that outputs 2c by adding an extra zero to the binary expansion of c. This uses712

O(logn) wires and depth one.713

Finally, A adds circuitry to Cn,t,T,P that outputs TSP1 , . . . , TSPt as follows. Observe that714

for any i ∈ [t] and j ∈ [m], the jth bit of TSP
i

is one if and only if Si contains the unique715

element kj ∈ [n] such that j ∈ Pkj
. Thus, since A has access to P , A can calculate kj for all716

j ∈ [m] and then add circuitry to Cn,t,T,P that calculates the jth bit of TSP
i

by ORing over717

all the elements of Si and using an AND to check if any one of those elements is kj . This718

requires O(mnrt) wires and depth-two.719

Therefore, Cn,t,T,P is a depth-2 AC0 circuit with O(mnrt) wires as desired. Moreover, it720

is clear from this description that A runs in polynomial-time. C721

It remains to show that the algorithm A given in Claim 4.5 satisfies (2) and (3). Let722

(c, S1, . . . , St) be an instance of SetCoverr,n,t. Let ` be the minimum size of any cover of [n]723

by S1, . . . , St.724

First, we show (2) holds. Suppose c ≥ `. Then Theorem 4.1 implies that725

CC
T

SP1
,...,T

SP
t (T ) ≤ 2` ≤ 2c726

so727

MOCSP(Cn,t,T,P(c, S1, . . . , St)) = MOCSP(T, 2c;TSP1 , . . . , TSPt ) = YES728

as desired.729

Finally, we show (3) holds. Suppose c < `/4 and T is (rn)-irritable. Then Theorem 4.1730

implies that731

CC
T

SP1
,...,T

SP
t (T ) > `/2 ≥ 2c732

so733

MOCSP(Cn,t,T,P(c, S1, . . . , St)) = MOCSP(T, 2c;TSP1 , . . . , TSPt ) = NO.734

Hence (3) holds. J735

Of course to make use of Theorem 4.4, we need to actually find truth tables T and736

partitions P on which T is sufficiently irritable. Fortunately, such T and P are abundant.737

We show that, with high probability, any choice of P and a random choice of a truth table T738

suffices.739
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I Lemma 4.6. Let n, r ∈ N. Let m be the least power of two greater than n3. Let P =740

(P1, . . . , Pn) be any partition of [m] such that |Pi| ≥ m/n − 1 for all i ∈ [n]. Pick a truth741

table T ∈ {0, 1}m uniformly at random. Then T is (rn)-irritable on P except with probability742

2−Ω(n2).743

Proof. We prove this by bounding the probability that, for some fixed i? and some fixed744

oracle circuit C,745

CTP1 ,...,TPi?−1 ,TPi?+1 ,...,TPn computes T746

and then union bounding over all i? and all oracle circuits of size at most rn.747

Realize that the function computed by CTP1 ,...,TPi?−1 ,TPi?+1 ,...,TPn does not depend on748

any of the bits in T that lie in Pi? . Therefore, since |Pi? | ≥ m/n− 1, this means that the749

probability that CTP1 ,...,TPi?−1 ,TPi?+1 ,...,TPn computes T is at most 2−m/n+1 ≤ 2−n2+1.750

Now, we union bound. Clearly, there are at most n choices of i?. Next, we need to count751

the number of C of size at most rn. For concision, let s = rn. We bound the number of752

oracle circuits of size s, allowing for identity gates to catch circuits of smaller size. For each753

of the s gates, there are 4 + n gate types to chose from (AND, OR, NOT, identity, and the n754

oracle gates). Then, for each of the s gates, we have to choose the at most log(m) wires that755

feed into that gate and there are at most (s+ log(m)) choices for where each of these wires756

comes from. Hence, we get a bound of757

(4 + n)s(s+ log(m))s log(m)
758

whose logarithm is759

s log(4 + n) + s log(m) log(s+ log(m)) = Õ(rn).760

Thus, probability that T fails to be (rn)-irritable on P is at most761

n2−n
2+Õ(rn) ≤ 2−Ω(n2).762

J763

Thus, using a random choice of T gives us an NP-hardness result under RP-reductions.764

I Corollary 4.7. NP ≤RP
m MOCSP.765

Proof. Let r be sufficiently large that computing a 4-approximation to r-bounded set cover766

is NP-hard (such an r exists by Theorem 2.6). We will reduce giving a 4-approximation of767

r-bounded set cover to MOCSP.768

The reduction R works as follows. On an instance (c, S1, . . . , St) of SetCoverr,n,t, R first769

computes the integer m that is the least power of two greater than n3. Next, R computes770

the partition P = (P1, . . . , Pn) of [m] where for all i ∈ [n]771

Pi = {j ∈ [m] : j ≡ i mod n}.772

Then, R picks a truth table T of length m uniformly at random. After that, R runs the773

algorithm A from Theorem 4.4 on the input (0n, 0t, T,P) to obtain the circuit Cn,t,T,P .774

Finally, R outputs MOCSP(Cn,t,T,P(c, S1, . . . , St)).775

Now, we argue for correctness. Theorem 4.4 guarantees that Cn,t,T,P correctly answers all776

YES instances of SetCoverr,n,t, so R also correctly answers all YES instances of SetCoverr,n,t.777

On the other hand, observe that our construction of P guarantees that |Pi| ≥ m/n− 1778

for all i ∈ [n], so Lemma 4.6 implies that T is (rn)-irritable on P with high probability.779

Therefore, Theorem 4.1 further implies that with high probability Cn,t,T,P (and hence R)780

computes a 4-approximation to r-bounded set cover. J781
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Using more queries to MOCSP, we can improve the RP reduction to a ZPP reduction by782

checking if the randomly chosen T is indeed (rn)-irritable on P.783

I Corollary 4.8. NP ≤ZPP
tt MOCSP.784

Proof. Run the same reduction as in the proof of Corollary 4.7 except check whether T785

is (rn)-irritable on P using the MOCSP oracle. This can be done at the same time the786

as the MOCSP oracle answers MOCSP(Cn,t,T,P(c, S1, . . . , St)). If T is indeed (rn)-irritable787

on P, then we know the output given by MOCSP(Cn,t,T,P(c, S1, . . . , St)) is correct using788

Theorem 4.1. Otherwise, output “don’t know.” J789

We can also use non-uniform bits to provide the reduction with a truth table T and a790

partition P such that T is sufficiently irritable on P. This yields an AC0 many-one reduction.791

I Corollary 4.9. MOCSP is NP-hard under (non-uniform) AC0 many-one reductions.792

Proof. Let r be large enough that computing a 4-approximation to r-bounded set cover is793

NP-hard. It suffices to show that for all sufficiently large n and t, there is an AC0 circuit C794

such that MOCSP ◦ C computes a 4-approximation to SetCoverr,n,t.795

By Lemma 4.6 for sufficiently large n, there exists a truth table T of length O(n3) and796

a partition P = (P1, . . . , Pn) of [m] such that T is (rn)-irritable on P. Thus, letting A be797

the algorithm from Theorem 4.4, A(0n, 0t, T,P) outputs a depth-2 AC0 circuit C such that798

MOCSP ◦ C computes a 4-approximation to SetCoverr,n,t, as desired. J799

At this point, one might begin to speculate whether we can prove that MOCSP is NP-800

hard under deterministic polynomial-time reductions. Unfortunately, this seems difficult.801

This is because Murray and Williams’ [22] and Hitchcock and Pavan’s [17] result that802

NP ≤P
tt MCSP =⇒ EXP 6= ZPP also holds for MOCSP with essentially the same proof. For803

completeness, we give the MOCSP version of Murray and Williams’ proof in Appendix B.804

I Theorem 4.10 (Essentially proved in [22] and [17]). If NP ≤P
tt MOCSP, then EXP 6= ZPP.805

Still, it seems plausible to us that MOCSP is hard for NP under Turing reductions. Indeed,806

Theorem 4.4 implies that, to prove a P-Turing reduction, it suffices to show that that there is807

a polynomial time algorithm B, with oracle access to MOCSP, such that for all large n, B(0n)808

outputs a truth table T and a partition P = (P1, . . . , Pn) such that T is (rn)-irritable on P.809

We stress that B has access to MOCSP, so B can actually check whether T is (rn)-irritable810

on P and make adjustments accordingly.811

I Conjecture 4.11. NP ≤P
T MOCSP.812

Maybe it is even possible to prove that such a B exists if E 6⊆ i.o-SIZE[2O(n)].813

I Open Question 4.12. Can one show that E 6⊆ i.o-SIZE[2O(n)] implies NP ≤P
T MOCSP?814
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A MAJORITY reduces to (AC0
d)-MCSP when Lipchitzness holds886

Our goal in this section is to find a small (AC0
d)-MCSP-oracle circuit that computes MAJORITY887

on n-bits for sufficiently large n. We can do this using the techniques of Golovnev et al. [11].888

In order to make our proof relatively self-contained, we differ slightly from the presentation889

in [11]. In particular, our presentation follows a method for computing MAJORITY that is890

described in Shaltiel and Viola [28].891

At a high-level, this procedure works by using the input string to sample a random892

variable whose circuit complexity spikes depending on the weight of the input and then893

using Lipchitzness to prove that this spike occurs with high enough probability that we can894

derandomize using non-uniformity.895

Continuing the notation from Section 3, assume that there is an m ∈ {q10, q50} such that896

CCAC0
d
is (m.25)-Lipchitz on inputs of length m.897

We define the random variable Tp,m ∈ {0, 1}m where each bit in Tp,m is independently898

chosen to be one with probability p and zero with probability 1− p.899

I Lemma A.1. E[CCAC0
d
(Tp,m)] = Õ(pm) if p ≥ m−1/3

900

Proof. By Hoeffding’s inequality we have that the probability that Tp,m has greater than901

k ones is at most exp(−2ε2m). Via computation by DNF, if a truth table T ∈ {0, 1}m has902

at most k ones, CCAC0
d
(T ) = k logm = Õ(k). Similarly, we have that max{C(T ) : T ∈903

{0, 1}m} = Õ(m). Hence, we get that904

E[CCAC0
d
(Tp,m)] = Õ(k) + Õ(exp(−2ε2m)m) = Õ(pm+ pmε+ exp(−2ε2m)m).905

If we set ε =
√

lnm
2m , then we have906

E[CCAC0
d
(Tp,m)] ≤ Õ(pm+ p

√
m lnm+ 1) ≤ Õ(pm+

√
m lnm)907

Finally, if p ≥ 1/m1/3, we have E[Tp,m] = Õ(pm) as desired J908

We will make use of the following concentration inequality.909

I Theorem A.2 (McDiarmid’s “bounded differences inequality” [21]). Let f : {0, 1}n → R910

be c-Lipchitz. Let X1, . . . , Xn be independent random variables with values in {0, 1}. Let911

µ = EX1,...,Xn
[f(X1, . . . , Xn)]. Then912

Pr[|f(X1, . . . , Xn)− µ| ≥ ε] ≤ 2exp(− ε2

nc2
).913
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For t ∈ N and w1 6= w2 ∈ [t], we say a Boolean function f : {0, 1}t → {0, 1} computes914

WTDISt[w1, w2] if wt(x) = w1 implies f(x) = 1 and wt(x) = w2 implies f(x) = 0. (WTDIS915

is short for weight distinguishing.)916

I Theorem A.3. If n is sufficiently large, then for all 1 ≤ b ≤ √q/2, there exists a (non-917

uniform) NC0 oracle circuit C with at most O(n100) wires such that C(AC0
d)-MCSP computes918

WTDISq[w1, w1 + b] for some w1 ≥
√
q/2. Moreover, C has a single gate.919

Proof. For w ∈ [q], let pw = w
2q . Let w0 be the largest integer less than √q such that q −w0920

is a multiple of b. (Note that w0 ≥
√
q − b ≥ √q/2).921

By Lemma A.1, we have that922

E[CCAC0
d
(Tpw0 ,m

)] = Õ(
√
q

q
m) = Õ(m/√q).923

On the other hand, since pq = 1/2, Tpq,m is just a binary string of length m picked uniformly924

at random, so the formula size lower bounds of Shannon and Riordan imply925

E[CCAC0
d
(Tpq,m)] = E

x∈{0,1}m
[C(x)] = Ω̃(m)926

(note that an AC0
d formula of size s implies an unrestricted formula of size s). Hence, by an927

averaging argument there exists a w1 ≥ w0 ≥
√
q/2 such that928

E[CCAC0
d
(Tpw1+b,m)]− E[CC(Tpw1 ,m

)] ≥
Ω̃(m)− Õ(m/√q)

q
= Ω̃(m/q).929

Let t =
E[Tpw1+b,m]+E[Tpw1 ,m]

2 . Then we have that E[Tpw1+b,m] − t = Ω̃(m/q) and t −930

E[Tpw1 ,m
] = Ω̃(m/q).931

We now outline a probabilistic oracle circuit D that we will later make into a deterministic932

NC0 circuit. D takes as input a string x ∈ {0, 1}n and takes as its random “inputs” strings933

u1, . . . , um ∈ {0, 1}log q and v1, . . . , vm ∈ {0, 1}. The reduction then computes the string934

y := y1 . . . ym where yi is zero if vi is zero and yi is the uith bit of x if vi is one (recall, q is a935

power of two). D then outputs (AC0
d)-MCSP(y, t).936

We now argue for correctness with high probability. Realize each yi is independent with937

probability wt(x)
2n of being 1. Hence, y is just the random variable Tpw,m where w = wt(x).938

Hence, if wt(x) = w1, then939

Pr[R(x) 6= 1] = Pr[C(Tpw1 ,m
) > t]940

Recall that t − E[Tpw1 ,m
] = Ω̃(m/q) and, by assumption, CCAC0

d
on inputs of length m is941

(m.25)-Lipchitz, so by Theorem A.2, we have that this probability is bounded by942

2exp(−2 Ω̃(m2)
Õ(q2m1.5)

) ≤ exp(−2Ω̃(q.5·10)
Õ(q2)

) = O(exp(−q3))943

using the fact that m ≥ q10. A similar analysis shows that the probability D errs if944

wt(x) = w1 + b is at most O(exp(−q3)). This completes the analysis of D.945

We now argue that this reduction can be derandomized using non-uniformity. For each946

input of weight either w1 or w1 + b, we have shown the fraction of random strings which err947

on that input is O(exp(−q3)). Hence, the fraction of random seeds which err on at least one948

input of weight w1 or w1 + b is at most949

2qO(exp(−q3)) < 1950
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for large enough n. Thus, there exists some fixed u1, . . . , um and v1, . . . , vm which work on all951

inputs of length q. Once we are (non-uniformly) given these u1, . . . , um and v1, . . . , vm which952

work on all inputs, we can turn D into an NC0 oracle circuit C which has just a single gate953

(an oracle gate) whose inputs are the fixed number t and the string y where each bit of y is954

either a fixed bit of x or zero. This yields a NC0 oracle circuit with O(m) = O(q50) = O(n100)955

wires. J956

I Corollary A.4. If n is sufficiently large, then for all distinct w1, w2 ∈ [n] there is an NC0
957

oracle circuit C with at most two gates and O(n100) wires such that C(AC0
d)-MCSP computes958

WTDISn[w1, w2].959

Proof. Fix some w1 6= w2. Without loss of generality assume w1 < w2 (if this is not the case,960

then swap the names of w1 and w2 in this proof and add a NOT gate to the top of C). Let961

b = w2 − w1. Recall q is the least power of two such that n ≤ √q/2. Note that q = Θ(n2)962

and b ≤ n ≤ √q/2. Theorem A.3 guarantees there exists an NC0 oracle circuit D of size963

O(n20) such that DMCSP computes WTDISq[w3, w3 + b] for some w3 ≥
√
q/2 ≥ n. Finally, let964

C be the oracle circuit that on input x outputs D(y) where y = 1w3−w10q−n−w3+w1x. The965

correctness of this output is guaranteed by the fact that wt(y) = w3 if and only if wt(x) = w1966

and wt(y) = w3 + b if and only if wt(x) = w2. J967

I Corollary A.5. If n is sufficiently large, then there exists a depth-4 AC0 truth table oracle968

circuit C with O(n102) wires such that C(AC0
d)-MCSP computes MAJORITY on strings on length969

n.970

Proof. It suffices to show that, for all w ∈ [n], one can check if a string x ∈ {0, 1}n has971

weight w using a depth-3 AC0 truth-table oracle circuit Cw of size O(n101). If one is able to972

do this, then MAJORITY is computed by
∨
w≥n/2 Cw(x).973

For w ∈ [n], let wtw : {0, 1}n → {0, 1} be the Boolean function that outputs one if and974

only if its input is a string of weight w. Now fix some w ∈ [n]. We claim that975

wtw(x) =
∧

w′∈[n]:w 6=w′
WTDISn[w,w′]976

If x has weight w, then WTDISn[w,w′](x) = 1 for all w′ 6= w, so977

wtw′(x) = 1 =
∧

w′∈[n]:w 6=w′
WTDISn[w,w′].978

On the other hand, if x has weight w′ 6= w,then WTDISn[w,w′](x) = 0, so979

wtw(x) = 0 =
∧

w′∈[n]:w 6=w′
WTDISn[w,w′].980

Finally, by Corollary A.4 we have that
∧
w∈[n]:w 6=w′ WTDISn[w′, w] is computable by a981

depth-3 AC0 truth table oracle circuit with O(n101) wires. J982

B NP ≤P
tt MOCSP implies EXP 6= ZPP983

The proof of this result follows essentially exactly from Murray and Williams’s [22] proof for984

MCSP. For completeness, we replicate the proof here (even using their words and structure).985

I Proposition B.1. If NP ≤P
tt MOCSP, then EXP ⊆ P/poly implies EXP = NEXP.986
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Proof. Assume NP ≤P
tt MOCSP and EXP ⊆ P/poly. Let L ∈ NTIME(2nc) for some c ≥ 1. It987

suffices to show that L ∈ EXP.988

We pad L into the L′ = {x012|x|
c

: x ∈ L}. Note that L′ ∈ NP. Hence there is a989

polynomial-time truth table reduction from L′ to MOCSP. Composing the reduction from L990

to L′ with the reduction from L′ to MOCSP, we get a 2c′nc-time truth table reduction R991

from n-bit instances of L to 2c′nc-bit instances of MOCSP for some constant c′.992

Let Q(x) denote the concatenated string of all MOCSP queries produced by R in order993

on input x. Define the language994

BITSQ := {(x, i) : the ith bit of Q(x) is 1}995

BITSQ is clearly in EXP. Since EXP ⊆ P/poly, for some d ≥ 1 there is a circuit family Cn996

of size at most nd + d computing BITSQ on n-bit inputs.997

Thus, on a given instance x, we have CC(Q(x)) ≤ s(|x|) where s(|x|) := (|x|+2c′|x|c)d+d.998

Therefore, every MOCSP query (T, s′, T1, . . . , Tt) produced by the reduction R on input x999

satisfies1000

CCT1,...,Tt(T ) ≤ CC(T ) ≤ e · CC(Q(x)) ≤ e · s(|x|)1001

for some constant e since T is a substring of Q(x) (see Lemma 2.2 in [22] for a proof of this1002

substring fact). This leads to the following exponential time algorithm for L:1003

On input x, run the exponential-time reduction R(x) by using the following procedure1004

for answering each MOCSP oracle query (T, s′;T1, . . . , Tt). If s′ > e · s(|x|), then1005

respond YES to the query. Otherwise, cycle through every oracle circuit E of size1006

at most s′. If ET1,...,Tt computes T , then respond YES. If no such E is found, then1007

respond NO.1008

It suffices to show the procedure for answering MOCSP oracle queries runs in exponential time.1009

Let n = |x|. First, we need to count the number of oracle circuits E on (log |T | ≤ c′nc)-inputs1010

with size at most s(n) As shown in Lemma 4.6, the logarithm of the number of oracle circuit1011

of size at most s(|x|) on (c′nc)-inputs with t oracle functions is at most1012

O(s(n) log(4 + t) + s(|x|) log(c′nc) log(s(|x|) + log(c′nc))).1013

Since t ≤ 2c′nc and s is polynomial in n, it is easy to see that the number of such circuits1014

E is at most exponential. Second, one can check if an oracle circuit E satisfies ET1,...,Tt1015

computes T in time polynomial in (|E|+ |T |+ |T1|+ · · ·+ |Tt|) and hence exponential in n.1016

As a result, L ∈ EXP, completing the proof. J1017

I Theorem B.2. If NP ≤P
tt MOCSP, then EXP 6= NP ∩ P/poly. Consequently, EXP 6= ZPP.1018

Proof. For contradiction, suppose NP ≤P
tt MOCSP and EXP = NP ∩ P/poly. Then by1019

Proposition B.1 NEXP ⊆ EXP ⊆ NP contradicting the nondeterministic time hierarchy1020

theorem [32]. J1021
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