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Abstract. For quantified Boolean formulas (QBF), a resolution system with a symmetry
rule was recently introduced by Kauers and Seidl (Inf. Process. Lett. 2018). In this system,
many formulas hard for QBF resolution admit short proofs.
Kauers and Seidl apply the symmetry rule on symmetries of the original formula. Here we
propose a new formalism where symmetries are dynamically recomputed during the proof
on restrictions of the original QBF. This presents a theoretical model for the potential use
of symmetry learning as an inprocessing rule in QCDCL solving.
We demonstrate the power of symmetry learning by proving an exponential separation be-
tween Q-resolution with the symmetry rule and Q-resolution with our new symmetry learning
rule. In fact, we show that bounding the number of symmetry recomputations gives rise to
a hierarchy of QBF resolution systems of strictly increasing strength.

1 Introduction

The last decade has seen tremendous advances in our understanding and algorithmic handling of
quantified Boolean formulas (QBF), both theoretically and practically. QBF solving has emerged as
a powerful technique to apply to hard problems from many application domains (e.g. [6,14,15]). To
theoretically model and analyse the success of QBF solving, a number of QBF proof systems have
been developed and analysed, yielding a surge in QBF proof complexity research (e.g. [4, 7, 8]).
Ideally, this interaction works in both directions: QBF resolution systems aim to model central
solving features and lower bounds to proof size in these systems translate to lower bounds for solver
running time. Conversely, new theoretical models can also stimulate practical improvements.

This paper explores the power of symmetry learning for QBF from a theoretical proof-complexity
perspective. It is well known that many combinatorial principles exhibit symmetry properties [22],
both propositionally and in QBF. Breaking these symmetries is an effective technique for SAT and
QBF that can significantly reduce the search space and speed up search.

In SAT solving, symmetry breaking is done both statically [12] – as a preprocessing technique
– as well as dynamically during the search [1,13,23]. Part of the work on static symmetry breaking
was lifted to the more complex setting of QBF [2, 3], while dynamic symmetry breaking has not
yet been realised in the QBF domain (cf. [17] for a recent overview of symmetry breaking in QBF).

On the proof-theoretic side, the propositional resolution system – underlying CDCL solving
[5, 21] – has been augmented with symmetry rules of different strengths [19, 24, 25]. In the most
basic setting of [19], a symmetry rule is added that from a clause C allows to derive σ(C) for each
symmetry σ of the input CNF. Already this yields a quite powerful proof system, which e.g. admits
short proofs of the pigeonhole principle [25].

Recently, the system of [19] was generalised to QBF by Kauers and Seidl [16]. This proof
system Q-Res+S builds on Q-resolution (Q-Res [18]) and again augments it with a symmetry rule
for symmetries of the original formula. In [16] the power of this proof system was demonstrated
by the construction of short proofs for the formulas of Kleine Büning et al. [18] and of the parity
formulas [8], two notorious examples of QBFs hard for Q-resolution.

In this paper we continue the proof-theoretic study of proof systems exploiting QBF symmetries.
Our contributions can be summarised as follows.

1. QBF resolution systems for symmetry learning. We introduce a framework for symmetry
learning during proof search. While the system Q-Res+S only allows to use symmetries of the
input CNF, our new system Q-Res+SL additionally exploits symmetries of restrictions of the input
formula. These restrictions correspond to certain partial assignments (called linear assignments
here, Definition 5) that arise during runs of QCDCL algorithms. During such a run of QCDCL,
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we allow to recompute symmetries for the restricted formula currently considered by the solver.
These ‘newly learned’ symmetries then replace the existing set of symmetries. When the QCDCL
solver backtracks and unassigns variables, symmetries based on the corresponding restrictions of
these variables are discarded as well.

We proof-theoretically model this algorithmic approach using the framework of Lonsing, Egly,
and Seidl [20], who propose a general approach with additional axioms (corresponding to learned
clauses) for a proof-theoretic modelling of inprocessing techniques in QCDCL. This framework has
also been previously used for dependency learning in QBF [10]. This gives rise to our new QBF
resolution system Q-Res+SL, where at each point in the proof, the current symmetries are made
available to the symmetry rule. Using the approach of [10, 20] we show soundness of the system
(Theorem 9); completeness follows as the calculus extends Q-Res.

We can parameterise the system Q-Res+SL by keeping track of the maximal number d of
symmetry recomputations on a QCDCL branch without any backtracking. We call this number d
the degree of the Q-Res+SL proof. Restricting proofs in Q-Res+SL to degree 0 yields the system
Q-Res+S.

2. Exponential separations. Our main results assess the proof complexity of the new calculi for
symmetry learning. We show that Q-Res+SL is exponentially stronger than Q-Res+S, and in fact,
the subsystem of Q-Res+SL restricted to degree d proofs is exponentially stronger than Q-Res+SL
restricted to degree d−1 proofs (Theorem 18). Thus allowing to successively learn more symmetries
corresponds to a hierarchy of proof systems of strictly increasing strength.

To show this result we start by noticing that also the equality formulas – known to be hard in
Q-Res and even stronger systems such as QBF cutting planes and polynomial calculus [7] – admit
short proofs in Q-Res+S (Theorem 4).

We then devise a symmetry blocker (Definition 11): a simple gadget that when applied to an
arbitrary QBF yields a ‘blocked’ QBF without any symmetries (Proposition 12). Such blocking can
also be repeated, and applying it d times results in the d-blocked version of the formula. However,
the symmetries can be unlocked again with symmetry learning, and in particular the d-blocked
versions of the equality formulas have short proofs in Q-Res+SL of degree d (Lemma 17).

The main technical difficulty lies in showing that lower bounds for QBFs Φn for Q-Res lift to
lower bounds for the d-blocked versions of Φn in the subsystem of Q-Res+SL restricted to degree
d− 1 proofs (Lemma 13). In combination, these upper and lower bounds yield the strictness of the
hierarchy for symmetry learning proof system (Theorem 18).

To ease the technical presentation, our model of QCDCL assignments used to define the system
Q-Res+SL does neither incorporate unit propagation nor pure literal elimination (in contrast to
the model of [20]). However, we argue (Section 6) that all our hardness results can be lifted to the
practically more realistic setting where unit propagation and pure literal elimination is by default
built into the proof system.

2 Preliminaries

Conjunctive normal form. A literal is a Boolean variable z or its negation z̄. The complement
ā of a literal a is z if a = z̄, and z̄ if a = z. A clause is a finite disjunction of literals, and a
conjunctive normal form formula (CNF) is a finite conjunction of clauses. We denote clauses as
sets of literals and CNFs as sets of clauses. A clause is tautological if it contains some literal and
its complement, otherwise it is non-tautological.

The variable of a literal a = z or a = z̄ is var(a) := z. The variable set of a clause is vars(C) :=
{var(a) : a ∈ C}, and the variable set of a CNF is vars(f), the union of the variable sets of the
clauses in f .

An assignment to a set Z ⊆ vars(f) of variables is a mapping α : Z → {0, 1}, typically repre-
sented as a set of literals {a1, . . . , ak}, where literals z̄ and z represent the respective assignments
z 7→ 0 and z 7→ 1. The restriction of f by α, denoted f [α], is obtained from f by removing
any clause containing a literal in α, and removing the complementary literals ā1, . . . , āk from the
remaining clauses.
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Quantified Boolean formulas. A quantified Boolean formula (QBF) F := Q · f consists of a
quantifier prefix Q = Q1z1 · · ·Qnzn, in which each Qi is a quantifier in {∃,∀}, and a CNF f called
the matrix, for which vars(f) = {z1, . . . , zn}. The variable set of a QBF is vars(F ) := vars(f). The
prefix Q defines a total order <Q on vars(F ) such that zi <Q zj holds whenever i < j, in which
case we say that zi is left of zj and zj is right of zi. Variables in the first and last blocks are
termed leftmost and rightmost, respectively.

The restriction of F by an assignment α is F [α] := Q[α] · f [α], where Q[α] is obtained from Q
by removing the variables vars(f) \ vars(f [α]) along with their associated quantifiers.

A model g for a QBF F := Q · f is a set {Gx : x ∈ vars∃(F )} for which (a) each Gx is a Boolean
circuit over the universla variables left of x, and (b) the simultaneous substitution of each Gx for
x in f is a tautology, i.e. a circuit computing the constant function 1. A QBF is true iff it has a
model, otherwise it is false.

Proof systems. Given any literal p, a clause C = C1 ∪ C2 is called a resolvent of C1 ∪ {p} and
C2 ∪ {p̄}. Given any prefix Q, a clause C is a Q-reduction of a clause C ∪R if every variable in R
is universally quantified and right of every variable in C (with respect to Q).

A Q-resolution (Q-Res) [18] refutation of a QBFQ·f is a sequence C1, . . . , Ck of non-tautological
clauses in which (a) Ck is the empty clause, and (b) each clause either belongs to f , or is a resolvent
or Q-reduction of preceding clauses.

A proof system P p-simulates a proof system Q if there exists a polynomial-time computable
function that takes a Q-proof to a P-proof of the same formula [11].

3 Static Symmetries in Q-resolution

In this section, we provide the necessary background on Q-Res+S and its proof complexity.

Definition 1 (symmetry). A symmetry σ for a QBF Q · f is a bijection on its literals for which
(a) applying σ to every literal in every clause preserves f , and (b) for each literal a ∈ dom(σ),
σ(a), σ(ā) are complementary literals and var(a), var(σ(a)) belong to the same block of Q.

The set of all symmetries of a QBF forms a group under composition, and is denoted S(F ).
Symmetries are incorporated into Q-Res with the addition of a single inference rule: any sym-

metry of the input QBF can be applied to a derived clause. This rule is labelled ‘S’ in the following
definition.

Definition 2 (Kauers and Seidl [17]). A Q-Res+S refutation of a QBF Q · f is a sequence of
non-tautological clauses π := C1, . . . , Ck in which Ck is the empty clause and one of the following
holds for each i ∈ [k]:

A axiom: Ci is a clause in the matrix f ;
R resolution: Ci is the resolvent of two preceding clauses;
U universal reduction: Ci is a Q-reduction of a preceding clause;

W weakening: Ci is subsumed by a preceding clause;
S symmetry: Ci is the image of a preceding clause under a symmetry of Q · f .

The size of π is |π| = k.

It was shown in [16] that Q-Res+S is exponentially stronger than Q-Res, the separation was
demonstrated by two different QBF families. Here, we briefly point out that the separation is
also performed by another QBF family, namely the equality formulas [7]. The particulars of the
linear-size Q-Res+S refutations of equality are used later on in Section 5.

Definition 3 (equality family [7]). The equality family is the QBF family whose nth instance
is EQn := ∃x1 · · ·xn∀u1 · · ·un∃z1 · · · zn · eqn, where

eqn :=
(⋃

i∈[n]{{x̄iūiz̄i}, {xiuiz̄i}}
)
∪ {{z1 · · · zn}} .

Theorem 4. The equality family has linear-size refutations in Q-Res+S.
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Proof. For i ∈ [n], let σi be the bijection on the literals of EQn that sends literals in xi and ui to
their complements, and is the identity everywhere else. It is easy to see that each σi is a symmetry
of EQn. In n resolution steps, resolving {z1 · · · zn} against each {x̄iūiz̄i} over pivot variable zi,
we obtain the clause {x̄1 · · · x̄nū1 · · · ūn}. By universal reduction, we then obtain {x̄1 · · · x̄n}. From
any {x̄1 · · · x̄i}, we obtain {x̄1 · · · x̄i−1} by application of σi and resolution over xi. ut

4 A Theoretical Model of Symmetry Learning

In this section we introduce the proof system Q-Res+SL, a theoretical model for QBF symmetry
learning.

Our model is built on the foundation of ‘Q-Resolution with Generalised Axioms’ due to Lonsing
et al. [20], whose primary motivation was to model the integration of preprocessing techniques into
the QCDCL search process itself; in other words, to reformulate preprocessing as inprocessing. The
authors, however, noted that their setup offers a more general ‘interface to Q-resolution’ capable
of modelling ‘the direct combination of orthogonal solving techniques’ [20].

This direction was subsequently taken up in the paper [10]. The setup was reformulated to in-
terface with QBF dependency schemes, thereby modelling the integration of dependency-awareness
into QCDCL search. An important development there was the introduction of proof referencing.
A refutation becomes a nested structure of ‘subrefutations’ of restrictions of the instance, allowing
the work behind the interface to contribute to the overall proof size. This addition is key for proof
complexity, since without it, every QBF has a trivial refutation (cf. [20]).

Here, in much the same spirit, we propose to interface with the computation of symmetries,
thereby modelling the integration of symmetry techniques into QCDCL search. This offers a new
possibility: otherwise unidentified symmetries of the current formula can be learned at arbitrary
search nodes. Learned symmetries can be applied to learned clauses, thereby strengthening the
knowledge base.

The trail. Central to the model of Lonsing et al. is a particular kind of QBF assignment (QCDCL
assignment [20, p. 437]), intended to represent the current assignment, or trail, of the solver at an
arbitrary search node. Here, we have chosen to omit constraint propagation, and work instead with
linear assignments. Propagation can be safely detached from the proof complexity discussion, with
considerable simplification of technical content – this is explained in greater detail in Section 6.

Definition 5 (linear assignment). A partial assignment {a1, . . . , an} to a QBF F is linear if,
for each i in [n], var(ai) is in the first block of F [{a1, . . . , ai−1}].

The proof system Q-Res+SL. Derivations in Q-Res+SL are defined recursively by degree, using
the proof referencing method of [10].

Definition 6 (Q-Res+SL). Given a QBF F , Q-Res+SL refutations of F are defined inductively
by degree:

• a degree-0 refutation is a Q-Res+S refutation of F ;
• for d ∈ N, a degree-d refutation is a sequence π0 ◦ ρ1 ◦ · · · ◦ ρk satisfying
• π0 is a Q-Res+S refutation of F with extra axioms A1, . . . , Ak;
• each Ai is the negation of a linear assignment αi to F ;
• each ρi is a Q-Res+SL refutation of F [αi];
• the maximum degree of the ρi is d− 1.

The size of a Q-Res+SL refutation is the number of clauses in the sequence.

The extra axioms A1, . . . , Ak are said to reference the lower-degree refutations ρ1, . . . , ρk. We
illustrate the system, and the use of proof referencing, with the following example.

Example 7. The QBF

F := ∃ax1∀u1∃z1 · {{ax1u1z1}{ax̄1ū1z1}{az̄1}{ā1}}
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has a degree-1 Q-Res+SL refutation π ◦ ρ, where π and ρ are the sequences:

π := 1 {a} extra axiom ρ := 1 {x1u1z1} axiom
2 {ā} axiom 2 {z̄1} axiom
3 � resolution 3 {x1u1} resolution

4 {x1} universal reduction
5 {x̄1} symmetry
6 � resolution

Consider the linear assignment α := {ā} to F . Notice that F [α] = EQ1, and that the sequence ρ
is the Q-Res+S refutation of EQ1 described in the proof of Theorem 4. In line 1 of π, the clause {a},
being the negation of α, can be introduced as an extra axiom, referencing the degree-0 refutation
ρ. The refutation is concluded in π by resolution against the unit clause {ā}.

Notice that the application of the symmetry rule in line 5 of ρ would not be allowed in π, since
σ1, which is a symmetry of the restricted formula EQ1, is not a symmetry of F itself. ut

Modelling symmetry learning. We provide some high-level intuition on how symmetry learning
would work in practice, and its connection to proof referencing in Q-Res+SL.

In our model, we consider the symmetry groups of the input formula and its restrictions;
derived clauses and free axioms do not contribute to these symmetry groups. This is analogous
to the solving approach in which learned clauses are the target of the new learned symmetries,
and not the source. While there are other possibilities, the current approach is perhaps the most
straightforward for a first theoretical model.

The degree of a refutation can be understood as the maximum depth of nested symmetry
recomputations. When recomputation takes place, a pointer to the new set of symmetries is placed
on the trail. The current symmetry set can be applied to any newly learned clauses until it is either
replaced by recomputation, or it is removed from the trail by backtracking step. In the latter case,
the solver reverts to an earlier set of symmetries, following the highest level pointer that remains
on the trail. In this way, higher degree refutations are associated with symmetries learned deeper
into the search, under increasingly larger restrictions of the input formula. Degree-0 refutations,
which coincide with Q-Res+S, represent the traditional setting in which no recomputation takes
place.

One might ask whether the symmetries of the parent formula should be available to refer-
enced refutations. However, a simple example demonstrates that this is not sound, even at the
propositional level. Consider the true QBF

F := ∃ax · {{ax}{āx̄}} ,

and the symmetry σ that sends both literals a and x to their complements. Applying σ to either
of

F [{ā}] = ∃x · {{x}} , F [{a}] = ∃x · {{x̄}}

permits a refutation, but F [{ā}] and F [{a}] are both true QBFs. Moreover, the unit clauses {a}, {ā}
can be introduced as extra axioms, refuting F itself.

There is a subtle point here: application and restriction of clauses do not associate. In practice,
symmetries must be applied to the whole learned clause, not merely to its restriction under the
current trail assignment. The restriction, if performed first, may remove literals which would have
been satisfied under the symmetry – this is exactly the issue with the foregoing example.

Soundness. It is already known from [10, 20] that the method of proof referencing admits a
soundness proof by induction on degree. We follow this method to prove the soundness of Q-Res+SL.
The following lemma constitutes the chief observation. It is the analogue of [20, Theorem 2] and [10,
Lemma 14].

Lemma 8. Let A be the negation of a linear assignment α to a QBF Q · f . If Q · f is false under
α, then Q · f � Q · {A}.
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It is known that the rules of Q-Res+S preserve the models of the input QBF [16]. Therefore,
we are given the soundness of degree-0 refutations for free. Moreover, if we can show that models
of the input QBF also satisfy the extra axioms, then we prove the soundness of refutations at the
next degree. This is merely the contrapositive statement of Lemma 8, since extra axioms reference
refutations of lower degree, which refute false formulas by the inductive hypothesis.

Theorem 9. If a QBF has a Q-Res+SL refutation, then it is false.

Since our setting differs at the technical level from both [20] and [10], we provide a full proof
of the core lemma.

Proof (of Lemma 8). The lemma is trivially true if F is false, so we assume otherwise.
Let A := {a1 · · · ak} be the negation of a linear assignment α to F := Q · f . For each 0 ≤ i ≤ k,

let Ai be the first i literals of A, let αi be its negation, and define

Ei := vars∃(F [αi−1]) \ vars∃(F [αi]) ,
Ui := vars∀(F [αi−1]) \ vars∀(F [αi]) .

Now, let g be a model for F . Set g0 := g, and for each i in [k], obtain gi from gi−1 by discarding
the circuits for variables in Ei and restricting the rest by the assignment

βi := {āi} ∪ {z̄ : z ∈ Ui \ {var(ak)}} .

Lastly, let Ti be the circuit obtained by substituting the circuits in gi for the existential variables
in the CNF f [αi].

By induction on k, we prove the following: if g models F but not Q ·Ak, then gk models F [αk].
The base case k = 0 is trivial. For the inductive step, let k ≥ 1. Suppose that g models F but not
Q · {Ak}. Then g does not model Q · {Ak−1}, so gk−1 models F [αk−1] by the inductive hypothesis,
as the negation of Ak−1 is a linear assignment. Hence Tk−1 is a tautology.

On the other hand, Tk = Tk−1[βi], so Tk is a tautology, and gk models F [αk]. Indeed, given
f [αk−1], applying the substitution based on gk−1 followed the restriction βk has the same effect
as applying the restriction βk first, followed by substitution of the restricted circuits gk. To see
this, one must note the following: if {āk} represents an existential assignment, say x 7→ b, then
the circuit for x in gk−1 computes the constant b, so substituting that circuit for x is the same as
applying the assignment {āk}. ut

5 Proof Complexity of Symmetry Learning Systems

In this section we show that degree-d Q-Res+SL refutations may be exponentially shorter than
refutations of degree d− 1, for each natural number d.

We make use of the product operation [9] on CNFs and QBFs. The product of two CNFs f
and g is f ⊗ g := {C ∪D : C ∈ f,D ∈ g}, and the product of two QBFs F := Q · f,G := R · g is
F ⊗G := QR · f ⊗ g.

Provided that the concatenation of prefixes does not create a longer block in the middle, taking
a product has the natural effect on the symmetry groups.

Proposition 10. Let F and G be variable-disjoint QBFs. If the rightmost block of F and the
leftmost block of G are oppositely quantified, then

S(F ⊗G) = {σ ∪ τ : σ ∈ S(F ), τ ∈ S(G)} .

Proof. It is clear that σ ∪ τ is a symmetry of F ⊗ G whenever σ, τ are respective symmetries of
F,G. For the reverse direction, suppose that σ ∪ τ is a symmetry of F ⊗G, where the respective
domains of σ, τ are the literals of F,G. Let C be a clause in f ⊗ g, and let Cf , Cg be the respective
intersections of C with the literals of F,G. Since each block of F ⊗G is either a block of F or of
G, we have

Cf ∈ f and Cg ∈ g ⇔ C ∈ f ⊗ g
⇔ (σ ∪ τ)(C) ∈ f ⊗ g
⇔ σ(Cf ) ∈ f and τ(Cg) ∈ g ,

where the last equivalence is due to the fact that both σ, τ are bijections. ut
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Symmetry blocking. In [10], a technique for obfuscating the independencies of a particular QBF
family was introduced. Here, we devise a similar general method for blocking QBF symmetries.
The main idea is to add literals in fresh variables, such that only the identity symmetry survives;
meanwhile, an assignment to the fresh variables returns the original instance with the symmetries
intact.

Definition 11 (blocker). Given any QBF F := Q · f over variables Z = {z1, . . . , zk}, the sym-
metry blocker for F is

A(F ) := ∃ab1 · · · bkQ∀c ·
(
{{ā}} ⊗ f ⊗ {{c}}

)
∪ {{a}} ∪ {{b1 · · · bizi} : i ∈ [k]} ,

where a, b1, . . . , bk, c are fresh variables not in Z. For each natural number d, the d-blocker of F is

Dd(F ) := Ad(F )⊗ · · · ⊗ A1(F ) ,

where Ai(F ) is obtained from A(F ) by adding the superscript i to each occurrence of a variable.

Proposition 12. For any QBF F and natural number d, the only symmetry of Dd(F ) is the
identity.

Proof. By Proposition 10, every symmetry of Dd(F ) is of the form σ1 ∪ · · · ∪ σd, where each σi is
a symmetry of Ai(F ). Hence, by syntactic equivalence, it suffices to show that the identity is the
only symmetry of A(F ).

Let the variables of F be Z = {z1, . . . , zk}, and let σ be a symmetry of A(F ). The only unit
clause in the matrix of A(F ) is {a}, hence we must have σ(a) = a. For each i ∈ k, the positive
literal bi occurs only in a clause of size i+1, and the negative literal does not occur, hence we must
have σ(bi) = bi. For each i ∈ k, the only literal ` for which {b1, . . . , bi, `} is a clause in the matrix
of A(F ) is ` = zi, hence we must have σ(zi) = zi. The remainder of σ is defined by the property
σ(a) = σ(ā); hence σ is the identity. ut

Lower bound. We use symmetry blocking to prove the following lemma.

Lemma 13. If a QBF family requires T (n)-size Q-Res refutations, then its d-blocker requires T (n)-
size Q-Res+SL refutations of degree d− 1.

Our argument uses three low-level propositions. Each of them details a situation in which a
refutation-size lower bound can be inferred from that of a simpler QBF. The first is well known,
and states the closure of Q-Res under existential restrictions.

Proposition 14. Given a Q-Res refutation π of a QBF F and an assignment ε to its existentials,
π[ε] is a Q-Res refutation of F [ε] whose size is at most |π|.

For the second proposition, we say that a QBF F := Q · f subsumes another G := R · g if the
following two conditions hold:

• each clause in f is a subset of some clause in g;
• vars(F ) ⊆ vars(G), and, for each x, y ∈ vars(F ), x <Q y ⇒ x <R y.

It is easy to see that QBFs cannot have smaller Q-Res refutations than those which subsume them.

Proposition 15. Let F and G be false QBFs. If F subsumes G, then the shortest Q-Res refutation
of G is no smaller than that of F .

The third proposition is rather more specific to Q-Res+SL and symmetry blockers; therefore
we include a proof.

Proposition 16. Let F and G be variable-disjoint QBFs satisfying:

(a) the rightmost block of F and the leftmost block of G are oppositely quantified;
(b) a rightmost variable appears in every clause of F ;
(c) a leftmost variable appears in every clause of F ;
(d) the only symmetry of G is the identity.
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Then the shortest degree-d Q-Res+SL refutation of F ⊗G is no smaller than that of G.

Proof. Let π := π0 ◦ ρ1 ◦ · · · ◦ ρk be a degree d Q-Res+SL derivation from F ⊗G, and suppose that
the identity is the only symmetry of G. Let π′ := π′0 ◦ ρ′1 ◦ · · · ◦ ρ′k be the sequence obtained from π
by removing all literals in variables of F ; in particular, let π0 = C1, . . . , Cn and π′0 = C ′1, . . . , C

′
n.

By induction on n and d, we show that π′ is a valid degree d Q-Res+SL derivation from G.
The base case n = 0 is trivial, since the derivation is empty. For the inductive step, we branch

on the inference rule with which Cn was derived.

(a) Suppose that Cn was derived as a standard axiom. Then C ′n belongs to the matrix of G, and
can be derived as an axiom.

(b) Suppose that Cn was derived as the resolvent of Ca and Cb over a pivot variable p. If p is in
vars(G), then C ′n can be derived as a resolvent of C ′a and C ′b. On the other hand, if p is in
vars(F ), then C ′n can be derived from one of C ′a and C ′b by weakening.

(c) Suppose that Cn was derived by universal reduction from Ca. Then C ′n may be derived by
universal reduction from C ′a.

(d) Suppose that Cn was derived by weakening from Ca. Then C ′n may be derived by weakening
from C ′a.

(e) Suppose that Cn was derived by application of the symmetry σ to Ca. Then, by Proposition 10,
σ is the identity on G, and C ′n = C ′a can be derived by application of the identity symmetry.

(f) Suppose that Cn was introduced as an extra axiom, let αi be its negation and let ρi be the
corresponding referenced refutation.

If vars(F ) ⊆ vars(Cn), then ρ′i is identical to ρi; that is, it is a valid refutation of F ⊗G[αi]
of degree at most d− 1. Let αFi and αGi be the subassignments of αi on the variables of F and
G, respectively. It is easy to see that, since F ⊗G[αi] is false by the soundness of Q-Res+SL,
αFi falsifies every clause in the matrix of F . It follows that G[αGi ] = F ⊗G[αi]. Therefore C ′n
can be introduced as an extra axiom, referencing ρ′i.

On the other hand, if vars(F ) * vars(Cn), then we must have vars(Cn) ⊂ vars(F ), by
conditions (a), (b) and (c), and the fact that the negation of Cn is a linear assignment to
F ⊗G. Hence ρi is a refutation of F [αi]⊗G of degree at most d−1. By induction on degree, ρ′i
is a valid degree d− 1 refutation of G. Thus C ′n, which is the empty clause, may be introduced
as an extra axiom, referencing ρ′i. ut

With these three propositions, we are ready to prove Lemma 13.

Proof (of Lemma 13). Let {Fn}n∈N be QBFs requiring T (n)-size Q-Res refutations, and let {πn}n∈N
be degree d − 1 Q-Res+SL refutations of {Dd(Fn)}n∈N. We prove that |πn| ≥ T (n) by induction
on the degree d.

For the base case d = 1, recall that the only symmetry of D1(F ) is the identity, by Proposi-
tion 12. It follows that each πn is a valid Q-Res refutation of D1(Fn). Now, let α be the assignment
{a, c̄}. It is easy to see that D1(Fn)[α] is syntactically equivalent to Fn. Moreover, by the monotonic
existential closure of Q-Res (Proposition 14), restriction of πn by α yields a valid Q-Res refutation
of D1(Fn)[α], whose size is no larger than |πn|. Thus |πn| ≥ T (n).

For the inductive step, let d ≥ 2. We call an extra axiomA in πn short if vars(A) ⊆ vars(Ad(Fn)).
We consider two cases.

(a) Suppose that πn uses a short extra axiom. Observe that a short extra axiom A in πn references
some refutation ρ, whose degree is at most d− 1, of the QBF

Ad(Fn)[β]⊗Ad−1(Fn)⊗ · · · ⊗ A1(Fn) ,

where β is the negation of A. Observe that this QBF is syntactically equivalent to

A1(Fn)[β]⊗Dd−1(Fn) .

Thus, by Proposition 16 and the inductive hypothesis, the size of |πn| ≥ |ρ| ≥ T (n).
(b) On the other hand, suppose that πn uses no short extra axiom. By definition, πn is of the form

π′ ◦ ρ1 ◦ · · · ◦ ρk
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where π is a Q-Res+S refutation of Dd(Fn) using k ≥ 0 extra axioms A1, . . . , Ak, referencing the
refutations ρ1, . . . , ρk. By Proposition 12, the only symmetry of Dd(Fn) is the identity; therefore
π′ is in fact a Q-Res refutation of Dd(Fn) with the same extra axioms. We claim that every
extra axiom in πn is subsumed by some clause in Ad(Fn), in which case π′ is a Q-Res refutation
of a QBF that is subsumed by Ad(Fn). Since Ad(Fn) and D1(Fn) are syntactically equivalent,
and the latter requires T (n)-size Q-Res refutations, we have |πn| ≥ T (n) by Proposition 15.

It remains to show that every extra axiom in π′ is subsumed by some clause in Ad(Fn).
To that end, let Ai be an extra axiom in πn, and let αi be its negation. Now, a rightmost
variable of Ad(Fn) appears in every clause, namely cd; the same is true of a leftmost variable
of Ad−1(Fn), namely ad−1. Since cd and ad−1 are oppositely quantified, and αi is a linear
assignment to Dd(Fn), variable cd must be absent from the variables of Dd(Fn)[αi]. On the
one hand, this implies that Ad(Fn)[αi] has no variables. On the other hand, Ad(Fn)[αi] cannot
be true, for otherwise Dd(Fn)[αi], which is refuted by ρi, would also be true, contradicting the
soundness of Q-Res+SL. It follows that the matrix of Ad(Fn)[αi] contains the empty clause.
Thus some clause of Ad(Fn) subsumes the negation of αi, and the claim follows. ut

Upper bound. For the corresponding upper bound, we construct short degree-d refutations of
the d-blocker for the equality family. A general construction, matching the upper-bound argument,
is not possible here; to prove the correctness of our construction, we need to use the specifics of
the formulas inside the d-blocker.

We give a brief description of the construction. The central idea is that restriction of A(EQn)
by the assignment a 7→ 1 yields EQn ⊗ ∀c · {{c}}, whose symmetries are (essentially) those of
equality itself. This establishes a short refutation for d = 1.

For larger d, the construction is iterated. Restriction of A1(EQn) by a1 7→ 1 unlocks new
symmetries (again, essentially those of EQn), which are used in conjunction with extra axioms
that reference short proofs in a repeated, nested fashion.

Lemma 17. For each d in N, the d-blocker of the equality family has O(n)-size Q-Res+SL refuta-
tions of degree d.

Proof. Let d be a fixed natural number. For each i in [d], we let EQi
n be the QBF obtained from

EQn by adding the superscript i to each variable occurrence, and let eqin be its matrix; further,
we define a set of clauses

f in := {{xi1 · · ·xinui1 · · ·uin}} ⊗ {{z̄i1} · · · {z̄in}{zi1 · · · zin}} ⊗ {{ci}} ,

and a sequence πin, read as two columns:

{xi1 · · ·xinui1 · · ·uinzi1 · · · zin} {xi1 · · ·xin}
{xi1 · · ·xinui1 · · ·uinz̄in} {xi1 · · · x̄in}
{xi1 · · ·xinui1 · · ·uinzi1 · · · zin−1} {xi1 · · ·xin−1}
{xi1 · · ·xinui1 · · ·uinz̄in−1} {xi1 · · · x̄in−1}
...

...
{xi1 · · ·xinui1 · · ·uinz11} {xi1}
{xi1 · · ·xinui1 · · ·uinz̄11} {x̄i1}
{xi1 · · ·xinui1 · · ·uin} �

Based on the proof of Theorem 4, it is easy to see that seq(f in) ◦ πin is a Q-Res+S refutation of
EQi

n ⊗ F ic using extra axioms f in, where F ic := ∀ci · {{ci}} and seq() denotes the clauses of a CNF
written in an arbitrary fixed sequence.

Now we build short degree-d refutations ζdn of Dd(EQn). We define

ζ1n := {a1}, {ā1},� ◦ ρ1n and ρ1n := seq(eq1
n) ◦ π1

n ;

further, for each 2 ≤ i ≤ d, we define ζin := {ai}, {āi},� ◦ ζi−1n ◦ ρin, where

ρin := seq(f in ⊗ {{ai−1}}) ◦ seq(f in ⊗ {{āi−1}}) ◦ πin ◦ ζi−2n ◦ ρi−1n .
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Here, we take ζ0n := ∅.
We observe that |ζdn| = O(n). To see this, observe that there exists constant c1, c2 such that

|ζ1n| ≤ c1 · n and, for each i in [d], |ζin| ≤ c2|ζi−1n |. Hence |ζdn| ≤ c1cd−12 · n.
To finish the proof, we show two invariants by induction on d:

(1) ρd−1n is a refutation of Dd(EQn)[αd] of degree d− 1;
(2) ζdn is a refutation of Dd(EQn) of degree d.

We make use of αd : ad 7→ 1 and ᾱd : ad 7→ 0, which are both linear assignments to Dd(EQn).
For the base case d = 1, observe that ζ1n is a degree-0 refutation of D1(EQn) using a single

extra axiom {ād} whose negation is α1. Since eq1
n⊗{{c1}} subsumes f1n, ρ1n is a degree 0 refutation

of EQ1
n ⊗ F 1

c . This establishes invariant (1), since D1(EQn)[α1] = EQ1
n ⊗ F 1

c . It follows that ζ1n is
indeed a degree-1 refutation of D1(EQn), establishing invariant (2).

For the inductive step, let d ≥ 2. Every symmetry of EQd
n⊗F dc , when extended by the identity

on the variables of Ad−1(EQn)⊗ · · · ⊗ A1(EQn), is a symmetry of

Dd(EQn)[αd] = EQd
n ⊗ F dc ⊗Ad−1(EQn)⊗ · · · ⊗ A1(EQn)

by Proposition 10. It follows that

seq(fdn ⊗ {{ad−1}}) ◦ seq(fdn ⊗ {{ād−1}}) ◦ πdn

is a degree-0 refutation of Dd(EQn)[αd], given the first two terms as extra axioms. Let β1 and
β2 be the negations of any clause in seq(fdn ⊗ {{ad−1}}) and seq(fdn ⊗ {{ād−1}}), respectively. It
is readily verified that both β1 and β2 are a linear assignments to (Dd(EQn)⊗ F dc )[αd]. By the
inductive hypothesis, ζd−2n is a refutation of

Dd(EQn)[αd][β1] = Dd−2(EQn)

of degree d − 2, where D0(EQn) is the QBF on the empty set of variables whose matrix contains
only the empty clause. Also by the inductive hypothesis, ρd−1n is a refutation of

Dd(EQn)[αd][β2] = Dd−1(EQn)[αd−1]

of degree d− 1. This establishes invariant (1).
Now, observe that ζdn is a degree-0 refutation of Dd(EQn) using two extra axioms {ad} and

{ād}, whose respective negations are ᾱd and αd. By the inductive hypothesis, ζd−1n is a refutation
of Dd−1(EQn) of degree d− 1, and that QBF is equal to Dd(EQn)[ᾱd]. Hence, by invariant (1), ζdn
is indeed a degree-d refutation of Dd(EQn), which establishes invariant (2). ut

Our main result is an immediate consequence of Lemmata 13 and 17, and the fact that the
equality family requires 2n-size Q-Res refutations [7].

Theorem 18. For each d in N, there exists a QBF family that has O(n)-size Q-Res+SL refutations
of degree d and requires 2Ω(n)-size refutations of degree d− 1.

6 Constraint Propagation

From a practical point of view, the following observation could be made: linear assignments do not
cover constraint propagation (i.e. unit propagation and pure literal elimination, cf. [20]), whereas
our lower bound formulas contain both unit clauses and pure literals.

However, as we show below, any lower bounds are easily adapted to hold in the presence of
constraint propagation; in fact, one can easily modify a formula in such a way that propagation
is rendered ineffective. Moreover, the current setup shows tighter upper bounds, since the sys-
tem without constraint propagation is certainly no stronger. Thus, as far as proof complexity is
concerned, including propagation in the system merely introduces unnecessary complications.

Indeed, with a simple addition, one can block all propagation, while (essentially) preserving
the symmetry group. Given a QBF F := Q · f whose last block is universal, add a fresh block of
existential variables p1, p2, q1, q2 to the end of the prefix Q, and replace the matrix f with

(f ⊗ {{p̄1, p̄2}, {p̄1, p2}, {p1, p̄2}, {p1, p2}}) ∪ (g ⊗ {{q1, q̄2}, {q̄1, q2}}) ,
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where g consists of the full set of unit clauses for F :

g := {{z̄} : z ∈ vars(F )} ∪ {{z} : z ∈ vars(F )} .

Let us call the result of this modification F ′.

It is easy to see that no unit propagation or pure literal elimination can take place until all the
variables of F are assigned, leaving only the fresh variables in the final block. Hence, propagation
cannot enlarge the set of linear assignments. Notice also that {{q1, q̄2}, {q̄1, q2}} is a satisfiable
CNF. As a result, the clauses in g⊗{{q1, q̄2}, {q̄1, q2}} never contribute positively to a refutation,
and one can assume without loss of generality that they never appear. Thus, Q-Res+SL hardness
for F lifts straightforwardly to F ′, even if propagation is built into the proof system (viz. [20]).

On the other hand, the modified formulas are certainly no harder to refute; the symmetries
of F are preserved when extended by the identity to the fresh variables, and every clause of the
original matrix can be recovered in three resolution steps.

If the final block of F is existential, the same effect is achieved by inserting a fresh universal
variable v directly before p1, and taking a further matrix product with {{v}, {v̄}}.

7 Conclusions

We introduced a theoretical model of QBF symmetry learning, which forms a hierarchy of proof
systems of strictly increasing strength when the degree is bounded by a constant. Bounding the
degree of a refutation corresponds to bounding the number of recomputations allowed on any single
search branch of runs of QCDCL algorithms.

Since the number of paths explored correlates approximately with total running time of solvers,
a sensible bound on degree – some fraction of the number of variables, for example – limits the
total number of recomputations in terms of the length of the search. Our strict hierarchy shows
the best possible separations for bounds of this type.

Our investigation of QBF here also applies to SAT as a special case. Considering purely existen-
tially quantified formulas, the system Q-Res+S coincides with resolution with the symmetry rule
as introduced by Krishnamurthy [19]. Similarly, when only allowing existential formulas, we obtain
a propositional version of Q-Res+SL for symmetry learning in SAT. The methods we employed
for QBF are sufficient to show that propositional symmetry learning is exponentially stronger
than Krishnamurthy’s system. We need only apply our symmetry blocking technique to formulas
separating the latter from resolution (e.g. the pigeonhole formulas [25]).
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