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Abstract

Sign-rank and discrepancy are two central notions in communication complexity. The seminal
work of Babai, Frankl, and Simon from 1986 initiated an active line of research that investigates
the gap between these two notions. In this article, we establish the strongest possible separation
by constructing a boolean matrix whose sign-rank is only 3, and yet its discrepancy is 2−Ω(n).
We note that every matrix of sign-rank 2 has discrepancy n−O(1).

In connection to learning theory, our result implies the existence of Boolean matrices whose
entries are represented by points and half-spaces in dimension 3, and yet, the normalized margin
of any such representation, even in higher dimensions, is bound to be very small.

In the context of communication complexity, our result in particular implies that there
are boolean functions with O(1) unbounded-error randomized communication complexity while
having Ω(n) weakly unbounded-error randomized communication complexity.

1 Introduction

Sign-rank and discrepancy are arguably the most important analytic notions in the area of com-
munication complexity. Let AX×Y be a matrix with {−1, 1} entries (we refer to these matrices as
boolean matrices in this paper). The discrepancy of A is the minimum over all input distributions
of the maximum correlation that A has with a rectangle. More formally,

Disc(A) := min
ν

max
S⊆X
T⊆Y

∣∣E(x,y)∼ν [Ax,y1S(x)1T (y)]
∣∣ , (1)

where the minimum is over all probability distributions ν on X ×Y. The notion of discrepancy was
introduced by Chor and Goldreich [8], and has become one of the most commonly used measures
in communication complexity to prove lower bounds for randomized protocols.

The sign-rank of A, denoted by rk±(A), is the minimal rank of a real matrix whose entries
have the same sign pattern as A. This natural and fundamental notion was first introduced by
Paturi and Simon [16] in the context of the unbounded-error communication complexity. Since
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then, its applications have extended beyond communication complexity to areas such as circuit
complexity [6, 17], learning theory [12–14], and even connections to algebraic geometry [23].

Boolean matrices in communication complexity correspond to boolean functions: given an n-
bits two player function f : {0, 1}n × {0, 1}n → {−1, 1}, it corresponds to the 2n × 2n matrix
Ax,y = f(x, y). The notions of discrepancy and sign-rank for f correspond to its respective matrix.
The main informal question motivating this work is:

Problem 1.1. Does every function of low sign-rank have an efficient randomized protocol?

If the answer is negative, then the next question is, does it at least have large discrepancy (small
discrepancy is one technique to prove randomized communication complexity lower bounds, but
there are functions showing separations between the two measures, for example set-disjointness [7]).

Problem 1.2. Does every function of low sign-rank have large discrepancy?

In order to build some intuition towards more quantitative questions, let us consider some
well-known examples:

• Greater-than: we interpret x, y as integers in {1, . . . , 2n} and define f(x, y) = 1 if x ≤
y and f(x, y) = −1 otherwise. This function has sign-rank 2 and requires Θ(log n) bits
of randomized communication [15]. Moreover, its discrepancy is n−Θ(1), which proves the
communication lower bound.

• Set-disjointness: we interpret x, y as subsets of [n], and define f(x, y) = 1 if x, y are disjoint
and f(x, y) = −1 otherwise. This function has sign-rank O(n) and requires communication
complexity of Θ(n) bits. However, this cannot be shown using discrepancy, as the discrepancy
of set-disjointness is n−O(1) [7].

• Sherstov [21] constructed a function with sign-rank O(n) and discrepancy 2−Ω(n).

Thus, it seems that functions with logarithmic sign-rank can already be very complicated, both
in terms of their randomized communication complexity and also in terms of their discrepancy.
However, the situation is less clear for functions of constant sign-rank.

Problem 1.3. Does every function of constant sign-rank have an efficient randomized protocol?
In particular, does it have large discrepancy?

Our main result is a resounding no, already for sign-rank 3.

Theorem 1.4 (Main Theorem). There exists a function f : {0, 1}n×{0, 1}n → {−1, 1} of sign-rank
3 and discrepancy O(n · 2−n/8) = 2−Ω(n).

Note that, it follows from the bound on discrepancy that the function f in Theorem 1.4 has
Ω(n) randomized communication complexity.

The sign-rank 3 in Theorem 1.4 is tight. We show in Section 3 that functions of sign-rank 1
or 2 are very simple combinatorially, and in particular have discrepancy n−O(1) and randomized
communication complexity O(log n).

The function f in Theorem 1.4 is simple to define: the sign on an inner product in dimension 3.
Concretely, let M ≈ 2n/3. Alice gets a vector a ∈ [−M,M ]3 and Bob gets a vector b ∈ [−M,M ]3.
Define

f(a,b) = sign〈a,b〉,
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where sign : R → {−1, 1} is the sign function, mapping positive inputs to 1 and zero or negative
inputs to −1; and 〈·, ·〉 is inner product over the integers. It is obvious from the definition that
f has sign-rank 3. We prove that its discrepancy is exponentially small. The actual function we
study is a mild restriction of this function, convenient for the proof. See Theorem 1.9 for details.

1.1 Connections to learning theory

Note that the sign-rank of an N ×N boolean matrix A is the smallest d such that there exist unit
vectors ui, vj ∈ Rd with Ai,j = sign(〈ui, vj〉) for all i, j ∈ [N ]. These unit vectors ui, vj represent
A as points and half-spaces in the d-dimensional space: Ai,j = 1 iff the point ui belongs to the
half-space {z : 〈z, vj〉 > 0}.

The geometric representations of boolean matrices as points and half-spaces is central to the
theory of learning. In this context, every column j of A corresponds to an object in some domain.
The vectors vj ∈ Rd, which are called feature vectors, represent each object by d numerical features.
A classification algorithm receives as input a sample (j1, Ai,j1), . . . , (jm, Ai,jm) for an unknown i,
and its task is to predict Ai,j for other values of j. For example, linear classifiers, such as support
vector machines, aim to produce from the samples a vector u such that sign(〈u, vj〉) is a good
predictor of Ai,j = sign(〈ui, vj〉).

While sign-rank optimizes the dimension (i.e., the number of features), there is a second natural
parameter that is associated with such representations. The quantity mini,j |〈ui, vj〉| is called the
margin; it measures the smallest distance between the points ui and the hyperplanes defined by vj .

The margin of an N × N boolean matrix A, denoted by m(A), is the largest possible margin
attainable by such representations. More formally,

m(A) := sup min
i,j
|〈ui, vj〉| ,

where the supremum is over all d ∈ N and unit vectors ui, vj ∈ Rd with Ai,j = sign(〈ui, vj〉).
Dimension and margin are two important parameters that impact the performance of these

algorithms. It is desirable to represent the matrix A in a smaller dimension and with a large
margin. Therefore, the problem of understanding the relation between sign-rank and margin is
an important one. Note that sign-rank minimizes the dimension while allowing the margin to be
arbitrarily small, and in contrast, margin maximizes the margin of the representation while allowing
the dimension to be arbitrarily large.

Due to the mentioned connections to the theory of learning, the notion of margin had been
mainly studied in that context, but Linial and Shraibman [14] proved that margin is essentially
equivalent to discrepancy:

Disc(A) ≤ m(A) ≤ 8Disc(A).

In light of this equivalence, our main result (Theorem 1.4) can be reformulated as the following.

Theorem 1.5 (Reformulation of Theorem 1.4). There exists N ×N matrices A with sign-rank 3
and margin O(log(N)/N1/8).

In other words, even though it is possible to represent A in dimension 3, any representation of
A in any dimension will have a very small margin.

It is worthwhile to contrast Theorem 1.5 with Forster’s seminal lower bound for sign-rank [9].
Forster proved that in the representation Ai,j = sign(〈ui, vj〉) by unit vectors ui, vj ∈ Rd, it is
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possible to transform the vectors so that the vectors vj are in a so-called isotropic position. This
in particular implies

Ei,j∈[N ]|〈ui, vj〉| ≥ Ei,j∈[N ]|〈ui, vj〉|2 =
1

d
.

In other words, when sign-rank is small, there are representations with large “average” margin.
In the specific case of the matrix A in Theorem 1.5, there exists a representation of A with unit
vectors ui, vj ∈ R3 such that

Ei,j∈[N ]|〈ui, vj〉| ≥
1

3
,

while Theorem 1.5 shows that in any representation (in any dimension), we have

min
i,j∈[N ]

|〈ui, vj〉| ≤ O(log(N)/N1/8).

Finally, let us mention that regarding the converse direction of the relation between sign-rank
and margin, Linial, Mendelson, Schechtman, and Shraibman [13, Corollary 3.2, Lemma 4.2, and
Section 8] proved the inequality rk±(A) ≤ m(A)−2 · log(N), and asked whether the log factor in
this inequality is necessary. In fact the following question remains open.

Question 1.6. Is there a function η such that for every boolean matrix A, we have rk±(A) ≤
η(m(A)−1)?

1.2 Connections to communication complexity

Theorem 1.4 is motivated by its applications in communication complexity. Consider a communi-
cation problem f : {0, 1}n×{0, 1}n → {−1, 1} in Yao’s two party model. Given an error parameter
ε ∈ [0, 1/2], let Rε(f) be the smallest communication cost of a private-coin randomized communica-
tion protocol that on every input produces the correct answer with probability at least 1− ε. Here
private-coin refers to the assumption that players each have their own unlimited private source of
randomness. Three natural complexity measures arise from Rε(f).

1. The quantity R1/3(f) is called the bounded-error randomized communication complexity of f .
The particular choice of 1/3 is not important as long as one is concerned with an error that
is bounded away from both 0 and 1/2 since in this case the error can be reduced by running
the protocol constantly many times and outputting the majority answer.

2. The weakly unbounded-error randomized communication complexity of f is defined as

PP(f) = inf
0≤ε≤1/2

{
Rε(f) + log

1

1− 2ε

}
,

that includes an additional penalty term, which increases as ε approaches 1
2 . The purpose of

this error term is to capture the range where ε is “moderately” bounded away from 1
2 .

3. Finally the unbounded-error communication complexity of f is defined as the smallest commu-
nication cost of a private-coin randomized communication protocol that computes every entry
of f with an error probability that is strictly smaller than 1

2 . In other words, the protocol
only needs to outdo a random guess, which is always correct with probability 1

2 . We have

UPP(f) = lim
ε↗ 1

2

Rε(f).
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In their seminal paper, Babai, Frankl and Simon [2] associated a complexity class to each
measure of communication complexity. While in the theory of Turing machines, a complexity
that is polynomial in the size of input bits is considered efficient, in the realm of communication
complexity, poly-logarithmic complexity plays this role, and communication complexity classes
are defined accordingly. Here, the communication complexity classes BPPcc, PPcc, and UPPcc

correspond to the class of communication problems {fn}∞n=0 with polylogarithmic R1/3(fn), PP(fn),
and UPP(fn), respectively.

Note that while BPPcc requires a strong bound on the error probability, and UPPcc only requires
an error that beats the random guess, PPcc corresponds to the natural requirement that the protocol
beats the 1

2 bound by a margin that is quasi-polynomially large. That is, PPcc is the class of
communication problems fn that satisfy R 1

2
−2− logc(n)(fn) ≤ logc(n) for some positive constant c.

We have the containment BPPcc ⊆ PPcc ⊆ UPPcc.
It turns out that both UPP(f) and PP(f) have elegant algebraic formulations. Paturi and

Simon [16] proved that UPP essentially coincides with the sign-rank of f :

log rk±(f) ≤ UPP(f) ≤ log rk±(f) + 2.

Similar to the way that sign-rank captures the complexity measure UPP(f), discrepancy cap-
tures PP(f). The classical result relating randomized communication complexity and discrepancy,
due to Chor and Goldreich [8], is the inequality

Rε(f) ≥ log
1− 2ε

Disc(f)
.

This in particular implies PP(f) ≥ − log Disc(f). Klauck [11] showed that the opposite is also true;
more precisely, that

PP(f) = O (− log Disc(f) + log(n)) .

Thus, a direct corollary of Theorem 1.4 is the following separation between unbounded-error and
weakly bounded-error communication complexity.

Corollary 1.7. There exists a function f : {0, 1}n × {0, 1}n → {−1, 1} with UPP(f) = O(1) and
PP(f) = Ω(n).

1.3 Implications regarding approximate rank

Another closely related notion to sign-rank is approximate rank. Given α > 1, the α-approximate
rank of a boolean matrix A is the minimal rank of a real matrix B, of the same dimensions as
A, that satisfies 1 ≤ Ai,jBi,j ≤ α for all i, j. The α-approximate rank of a boolean function
f : {0, 1}n×{0, 1}n → {−1, 1} is the α-approximate rank of the associated 2n×2n boolean matrix.
Observe that

rk±(f) = lim
α→∞

rkα(f).

Given this, a natural question is whether sign-rank can be separated from α-approximate rank.
This is also a consequence of Theorem 1.4.

Corollary 1.8. There exists a function f : {0, 1}n × {0, 1}n → {−1, 1} with rk±(f) = 3 and
rkα(f) = Ω(2n/4/(αn)2) for any α > 1.
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Corollary 1.8 follows from Theorem 1.4 and the fact that

rkα(f) ≥ Ω
(
α−2Disc(f)−2

)
,

which is established in [10, Equation (1)].

1.4 Related work

The question of separating sign-rank from discrepancy (or equivalently, separating unbounded-error
from weakly-unbounded-error communication complexity) has been studied in a number of papers.

When Babai et al. [2] introduced the complexity classes BPPcc ⊆ PPcc ⊆ UPPcc, they no-
ticed that the set-disjointness problem separates BPPcc from PPcc, but they left open the ques-
tion of separating UPPcc from PPcc, or equivalently sign-rank from discrepancy. This question
remained unanswered for more than two decades until finally Buhrman et al. [5] and indepen-
dently Sherstov [18] showed that there are n-bit boolean function f such that UPP(f) = O(log n)
but PP(f) = Ω(n1/3) and PP(f) = Ω(

√
n), respectively. The bounds on PP(f) were strength-

ened in subsequent works [19–22] with the final recent separation from [21] giving a function f
with UPP(f) = O(log n) and maximal possible PP(f) = Ω(n). Despite this line of work, no
improvement was made on the O(log(n)) bound on UPP(f). In fact, to the best of our knowl-
edge, prior to this work, it was not even known whether there are functions with UPP(f) = O(1)
and R1/3(f) = ω(log(n)). To recall, Corollary 1.7 gives a function f with UPP(f) = O(1) and
PP(f) = Ω(n).

A different aspect is the study of sign-rank of matrices. Matrices of sign-rank 1 and 2 are simple
combinatorially, while matrices with sign-rank 3 seem to be much more complex. First, it turns
out that deciding whether a matrix has sign-rank 3 is NP-hard, a result that was shown by Basri et
al. [3] and independently by Bhangale and Kopparty [4]. In fact, deciding if a matrix has sign-rank
3 is ∃R-complete, where ∃R is the existential first-order theory of the reals, a complexity class lying
between NP and PSPACE. This ∃R-completeness result is implicit in both [3] and [4], as observed
by [1].

1.5 Proof overview

We give a proof overview of Theorem 1.4. Let us first slightly modify f in a way that will be
convenient for the proof.

Let N ≈ 2n/4. Alice gets three integers x1, x2, z and Bob gets two integers y1, y2, where
x1, x2, y1, y2 ∈ [N ] and z ∈ [−3N2, 3N2]. We shorthand x = (x1;x2) and y = (y1; y2), so that
Alice’s input is (x; z) and Bob’s input is y. Note that x, y ∈ [N ]2. Define

f([x, z], y) = sign(z − 〈x, y〉) = sign(z − x1y1 − x2y2).

The following is our main technical result.

Theorem 1.9 (Main result; technical version). Let f be as above. Then Disc(f) = O(n · 2−n/8).

We remark that the function f here is a restriction of the function f described after Theorem 1.4,
and therefore, Theorem 1.9 implies Theorem 1.4.

To prove Theorem 1.9, it is useful to think about our discrepancy bound in the language of
communication complexity. We prove Theorem 1.9 in two steps. Below we denote random variables
with bold letters.
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Step 1: constructing a hard distribution First, we define a hard distribution ν. Alice
and Bob receive uniformly random integers x,y ∈ [N ]2 respectively where N ≈ 2n/4. The inner
product 〈x,y〉 is a random variable over [2N2]. Alice also receives another random variable z
over [−3N2, 3N2], whose distribution we will explain shortly. The players want to decide whether
〈x,y〉 ≥ z. We define z in such a way that

• 〈x,y〉 − z ∈ [−2N, 2N),

• 〈x,y〉 ≥ z happens with probability 1
2 ,

• The distribution of z conditioned on 〈x,y〉 ≥ z is extremely close in total variation distance
to the distribution of z conditioned on 〈x,y〉 < z, even when restricted to arbitrary large
combinatorial rectangles. This is formalized in Lemma 4.1 and calculations preceding it. See
step 2 bellow for more discussion.

To construct z, we first define another independent random variable k and then let z = 〈x,y〉+ k,
or z = 〈x,y〉 + k − 2N , with equal probabilities. We choose k = k1 + k2 for k1,k2 independent
uniform elements from [N ] so that k is smooth enough for the analysis to go through. Note that
the range of z is really just [−2N, 2N2 + 2N ], and we picked the range of z in the definition of f
as z ∈ [−3N2, 3N2] for its simpler shape.

Step 2: translation invariance of 〈x,y〉 + k We bound the discrepancy Discν(f) as follows.
Fix a combinatorial rectangle A×B ⊂ ([N ]2 × [−3N2, 3N2])× [N ]2. We bound the correlation of
f with 1A1B under the distribution ν. In other words, we show under the distribution ν, restricted
to the rectangle A × B, we have ν(f−1(1)) ≈ ν(f−1(−1)). This boils down to showing that after
conditioning on the input being in A × B, the distribution of (〈x,y〉 + k)|A,B has small total
variation distance with (〈x,y〉 + k − 2N)|A,B. We prove a stronger statement, and show that in
fact this is true even if we fix x = x to a typical x (and therefore choosing A ⊂ {x}× [−3N2, 3N2]),
namely, after conditioning x = x, and y ∈ B, the distribution of (〈x,y〉 + k)|y∈B has small total
variation distance with its translation by 2N . To prove the claim we appeal to Fourier analysis and
estimate the Fourier coefficients of the random variable, and verify that the only potentially large
Fourier coefficients correspond to Fourier characters that are almost invariant under translations by
2N . Computing these Fourier coefficients involves computing some partial exponential sums whose
details may be seen in Lemma 4.3 and Lemma 4.4. At a high level, these boil down to showing
that if x,y ∈ Z2

p are two random independent variables, uniform over large sets, then their inner
product 〈x,y〉 has well-behaved spectral properties.

Paper organization. We give preliminary definitions needed for the proof in Section 2. We
discuss the structure of matrices of sign-rank 1 and 2 in Section 3. We prove our main result,
Theorem 1.9, in Section 4.

2 Preliminaries

Notations. To simplify the presentation, we often use . or ≈ instead of the big-O notation.
That is, x . y means x = O(y), and x ≈ y means x = Θ(y). For integers N ≤ M we denote
[N,M ] = {N, . . . ,M}, and we shorthand [N ] = [1, N ].
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Discrepancy. Let X ,Y be finite sets, and ν be a probability distribution on X × Y. The dis-
crepancy of a function f : X × Y → {−1, 1} with respect to ν and a combinatorial rectangle
A×B ⊆ X × Y is defined as

DiscA×Bν (f) = E(x,y)∼ν [f(x,y)1A(x)1B(y)] .

The discrepancy of f with respect to ν is defined as

Discν(f) = max
A,B

DiscA×Bν (f),

and finally the discrepancy of f is defined as

Disc(f) = min
ν

Discν(f).

Probability. We denote random variables with bold letters. Given a random variable r, let
µ = µr denote its distribution. The conditional distribution of r, conditioned on r ∈ S for some
set S, is denoted by µ|S . Given a finite set S, we denote the uniform measure on S by µS . If r is
uniformly sampled from S, we denote it by r ∼ S.

Fourier analysis. The proof of Theorem 1.9 is based on Fourier analysis over cyclic groups. We
introduce the relevant notation in the following. Let p be a prime. For f, g : Zp → C define

〈f, g〉 =
1

p

∑
x∈Zp

f(x)g(x),

and

f ∗ g(z) =
1

p

∑
x∈Zp

f(x)g(z − x).

Let ep : Zp → C denote the function ep : x 7→ e2πix/p. For a ∈ Zp define the character χa : x 7→
ep(−ax). The Fourier expansion of f : Zp → C is the sum

f(x) =
∑
a∈Zp

f̂(a)χa(x),

where f̂(a) = 〈f, χa〉. Note that by definition,

f̂(a) =
1

p

∑
x∈Zp

f(x)ep(ax).

It follows from the properties of the characters that

f ∗ g(z) =
∑
a∈Zp

f̂(a)ĝ(a)χa(z),

showing that f̂ ∗ g(a) = f̂(a)ĝ(a). In particular, if x1, . . . ,xk are independent random variables
taking values in Zp, and if x = x1 + . . .+ xk, then

µ̂x(a) = pk−1
k∏
i=1

µ̂xi(a).
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Number theory estimates. Fix a prime p. Given an integer x, we denote the distance of x to
the closest multiple of p (and abusing standard notation) by

‖x‖p = min{|x− zp| : z ∈ Z}.

We will often use the estimate

|ep(x)− 1| ≈
‖x‖p
p

,

which follows from the easy estimate that 4|y| ≤ |e2πiy − 1| ≤ 8|y| for y ∈ [−1/2, 1/2], and taking

y =
sign(x)‖x‖p

p .

3 Sign-rank 1 and 2

In this section we demonstrate that boolean matrices with sign-rank 1 or 2 are very simple com-
binatorially. Let A be an N × N boolean matrix for N = 2n. If A has sign-rank 1, then there
exist nonzero numbers a1, . . . , aN , b1, . . . , bN ∈ R such that Ai,j = sign(aibj). In particular, if we
partition the ai and the bj to the positive and negative numbers, we see that A can be partitioned
into 4 monochromatic sub-matrices. This implies that Disc(A) = Ω(1).

Assume next that A has sign-rank 2. Then there exist vectors u1, . . . , uN , v1, . . . , vN ∈ R2

such that Ai,j = sign(〈ui, vj〉). By applying a rotation to the vectors, we may assume that their
coordinates are all nonzero. Next, by scaling the vectors, we may assume that ui = (±1, ai) and
vj = (bj ,±1) for all i, j. Next, partition the ai and the bj to the positive and negative numbers.
Consider without loss of generality the sub-matrix in which ui = (−1, ai) and vj = (bj , 1) for all
i, j (the other three cases are equivalent). In this sub-matrix, Ai,j = sign(ai − bj). By removing
repeated rows and columns, we get that the sub-matrix is an upper triangular matrix, with 1 on
or above the diagonal and −1 below the diagonal. That is, the sub-matrix is equivalent to the
matrix corresponding to the Greater-Than boolean function on at most n bits. Nisan [15] showed
that the bounded-error communication complexity of this matrix is O(log n), which in particular
implies that the discrepancy is at least n−O(1). This implies that also Disc(A) ≥ n−O(1).

4 Sign-rank 3 vs. discrepancy

We now turn to prove Theorem 1.9. To recall, Alice’s input is the pair (x; z) with x ∈ [N ]2, z ∈
[−3N2, 3N2], and Bob’s input is y ∈ [N ]2. The hard distribution ν is defined as follows. First,
sample x,y uniformly and independently from [N ]2. Next, sample k1,k2 ∈ [N ] uniformly and
independently, and let k = k1+k2. Define z as follows: choose z = 〈x,y〉+k or z = 〈x,y〉+k−2N ,
each with probability 1/2. Observe that in the former case 〈x,y〉 < z and hence f((x; z),y) = 1;
and in the latter case 〈x,y〉 ≥ z and hence f([x, z],y) = −1. Thus f is balanced:

Pr[f((x; z),y) = 1] = Pr[f((x; z),y) = −1] = 1/2.

In order to prove the theorem, we bound the correlation of f with a rectangle A × B, where
A ⊆ [N ]2 × [−3N2, 3N2] and B ⊆ [N ]2. For x ∈ [N ]2, let

Ax = {z : [x, z] ∈ A}.
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We have

DiscA×Bν (f) = E([x,z],y)∼ν [f([x, z],y)1A(x, z)1B(y)]

= Ex,y∼[N ]21B(y)Ez|x,y [f([x, z],y)1Ax(z)] .

Recall the definition of f and that z = 〈x,y〉+ k or z = 〈x,y〉+ k− 2N with equal probabilities.
In the former case f evaluates to 1, and it the latter case it evaluates to −1. We thus have

DiscA×Bν (f) =
1

2
Ex,y,k [f([x, 〈x,y〉+ k],y)1B(y)1Ax(〈x,y〉+ k)]

+
1

2
Ex,y,k [f([x, 〈x,y〉+ k− 2N ],y))1B(y)1Ax(〈x,y〉+ k− 2N)]

=
1

2
Ex,y,k [1B(y)1Ax(〈x,y〉+ k)− 1B(y)1Ax(〈x,y〉+ k− 2N)]

=
|B|
2N2

ExEy∼BEk [1Ax(〈x,y〉+ k)− 1Ax(〈x,y〉+ k− 2N)] .

For x ∈ [N ]2 let νBx denote the distribution of 〈x,y〉 + k conditioned on x = x,y ∈ B. With this
notation,

DiscA×Bν (f) =
|B|
2N2

ExEw∼νBx [1Ax(w)− 1Ax(w − 2N)]

=
|B|
2N2

Ex

∑
w∈Z

1Ax(w)νBx (w)− 1Ax(w − 2N)νBx (w)

=
|B|
2N2

Ex

∑
w∈Z

1Ax(w)νBx (w)− 1Ax(w)νBx (w + 2N)

≤ |B|
2N2

Ex

∑
w∈Z

∣∣νBx (w)− νBx (w + 2N)
∣∣ ,

which no longer depends on A. The random variable 〈x,y〉+ k is in the range [−3N2, 3N2] so we
embed [−3N2, 3N2] into Zp for some prime p ∈ [6N2 + 1, 12N2]. We consider νBx as a distribution
over Zp, and thus we can rewrite

DiscA×Bν (f) ≤ p|B|
2N2

ExEw∼Zp |νBx (w)− νBx (w + 2N)|

. |B| · ExEw∼Zp |νBx (w)− νBx (w + 2N)|.

The following lemma, whose proof is deferred to the next section, completes the proof.

Lemma 4.1. For all Ñ such that Ñ ≈ N ,

ExEw∼Zp |νBx (w)− νBx (w + Ñ)| . logN√
|B|N3

.

By invoking Lemma 4.1 for Ñ = 2N we obtain

Disc(f) ≤ DiscA×Bν (f) . |B| logN√
|B|N3

≤
√
|B|
N3

logN ≤ N−
1
2 logN . n2−n/8.
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4.1 Invariance of νBx under translation

The goal of this section is to prove Lemma 4.1. We will prove that for a typical x, the measure νBx
is almost invariant under the translations by Ñ ≈ N . First we compute the Fourier expansion of
this measure.

Lemma 4.2. For all x ∈ [N ]2 and a ∈ Zp, we have

ν̂Bx (a) =
1

p
ep(2a)

(
1

N

ep(Na)− 1

ep(a)− 1

)2

Ey∼B [ep(a〈x,y〉)] .

Proof. Recall that νBx is the distribution of 〈x,y〉+k1+k2 where y ∼ B and k1,k2 ∼ [N ]. Therefore
for all a ∈ Zp,

ν̂Bx (a) = p2µ̂〈x,y〉(a)µ̂k1(a)µ̂k2(a) = p2µ̂〈x,y〉(a)µ̂[N ](a)2,

where to recall µ[N ] is the uniform distribution on [N ]. First, we compute the Fourier coefficients
of µ〈x,y〉:

µ̂〈x,y〉(a) =
1

p

∑
t∈Zp

µ〈x,y〉(t)ep(at) =
1

p
Ey∼B [ep(a〈x, y〉)] .

Next, we compute the Fourier coefficients of µ[N ]:

µ̂[N ](a) =
1

p

N∑
t=1

1

N
ep(at) =

ep(a)

pN
· ep(Na)− 1

ep(a)− 1
,

where we have computed the partial sum of the geometric series {ep(at)}t=1,...,N . The lemma
follows.

With the Fourier coefficients ν̂Bx (a) computed in Lemma 4.2, we can analyze the distance from
νBx to its translation by Ñ ≈ N .

Proof of Lemma 4.1. Let w ∼ Zp. Recall that x ∼ [N ]2 and that Ñ ≈ N . Using the Fourier
expansion of νBx we can write

s := Ex,w|νBx (w)− νBx (w + Ñ)| = Ex,w

∣∣∣∣∣∣
∑
a∈Zp

ν̂Bx (a)
(
χa(w)− χa(w + Ñ)

)∣∣∣∣∣∣ .
We may now use Lemma 4.2 and substitute the Fourier coefficient ν̂Bx (a),

s =
1

p
Ex,w

∣∣∣∣∣∣
∑
a∈Zp

ep(2a)

(
1

N

ep(Na)− 1

ep(a)− 1

)2

Ey∼B [ep(a〈x,y〉)] (1− ep(−Ña))χa(w)

∣∣∣∣∣∣ .

11



Squaring both sides, and applying Cauchy-Schwarz and then Parseval’s identity, we get

s2p2 ≤ Ex,w

∣∣∣∣∣∣
∑
a∈Zp

ep(2a)Ey∼B [ep(a〈x,y〉)]
(

1

N

ep(Na)− 1

ep(a)− 1

)2

(1− ep(−Ña))χa(w)

∣∣∣∣∣∣
2

= Ex

∑
a∈Zp

|Ey∼B [ep(a〈x,y〉)]|2
∣∣∣∣ 1

N

ep(Na)− 1

ep(a)− 1

∣∣∣∣4 |1− ep(−Ña)|2

=
∑
a∈Zp

(
Ex |Ey∼B [ep(a〈x,y〉)]|2

) ∣∣∣∣ 1

N

ep(Na)− 1

ep(a)− 1

∣∣∣∣4 |1− ep(Ña)|2.

Recalling that p ≈ N2, note that for a 6= 0 it holds that∣∣∣∣ 1

N

ep(Na)− 1

ep(a)− 1

∣∣∣∣ ≈ ‖Na‖pN ‖a‖p
. min

(
1,

N

‖a‖p

)

and

|ep(Ña)− 1| ≈

∥∥∥Ña∥∥∥
p

p
. min

(
1,
‖a‖p
N

)
,

both of which follow from trivial upper bounds ‖Na‖p ≤ N ‖a‖p and ‖x‖p ≤ p ≈ N2. Let us

denote Ea(B) := Ex |Ey∼B [ep(a〈x,y〉)]|2. We break the sum into two parts and for each part use
a different estimate for Ea(B) using Lemma 4.3 below.

s2 .
1

p2

∑
‖a‖p<N

Ea(B)|ep(Ña)− 1|2 +
1

p2

∑
‖a‖p≥N

Ea(B)

∣∣∣∣ 1

N

ep(Na)− 1

ep(a)− 1

∣∣∣∣4

.
1

p2

∑
‖a‖p<N

Ea(B)

(‖a‖p
N

)2

+
1

p2

∑
‖a‖p≥N

Ea(B)

(
N

‖a‖p

)4

.
1

p2

∑
‖a‖p<N

N2

‖a‖2p
· log2N

|B|

(‖a‖p
N

)2

+
1

p2

∑
‖a‖p≥N

‖a‖2p
N2
· log2N

|B|

(
N

‖a‖p

)4

.
log2N

N2|B|

 ∑
‖a‖p<N

1

N2
+

∑
‖a‖p≥N

1

‖a‖2p


.

log2N

N2|B|

N · 1

N2
+
∑
t≥N

1

t2


.

log2N

N2|B|
1

N
=

log2N

|B|N3
.
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4.2 Uniformity of product sets over Zp
Recall that Ea(B) := Ex∼[N ]2 |Ey∼B [χa(〈x,y〉)]|2. The following lemma provides estimates for it.

Lemma 4.3. Ea(B) . max

(
‖a‖2p
N2 ,

N2

‖a‖2p

)
· log2N
|B| .

Proof. We have

Ea(B) =
1

|B|2
Ex∼[N ]2

∣∣∣∣∣∣
∑
y∈B

χa(〈x, y〉)

∣∣∣∣∣∣
2

=
1

|B|2
∑

y′,y′′∈B
Ex∼[N ]2χa(〈x, y′ − y′′〉)

≤ 1

|B|2
∑

y′,y′′∈B

∣∣Ex∼[N ]2χa(〈x, y′ − y′′〉)
∣∣ .

Let B −B = {y′ − y′′ : y′, y′′ ∈ B} ⊂ Z2
p. Any element y ∈ B −B can be expressed as y = y′ − y′′

for y′, y′′ ∈ B in at most |B| ways. Thus we can bound

Ea(B) ≤ 1

|B|
∑

y∈B−B

∣∣Ex∼[N ]2χa(〈x, y〉)
∣∣ .

Since B −B ⊆ [N ]2 − [N ]2 ⊆ [−N,N ]2, we can simplify the above to

Ea(B) ≤ 1

N2|B|
∑

y∈[−N,N ]2

∣∣∣∣∣∣
∑

x∈[N ]2

χa(〈x, y〉)

∣∣∣∣∣∣
=

1

N2|B|
∑

y1,y2∈[−N,N ]

∣∣∣∣∣∣
∑

x1,x2∈[N ]

χa(x1y1) · χa(x2y2)

∣∣∣∣∣∣
=

1

N2|B|
∑

y1,y2∈[−N,N ]

∣∣∣∣∣∣
∑

x1∈[N ]

χa(x1y1)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

x2∈[N ]

χa(x2y2)

∣∣∣∣∣∣
=

1

N2|B|

 ∑
y∈[−N,N ]

∣∣∣∣∣∣
∑
x∈[N ]

χa(xy)

∣∣∣∣∣∣
2

.
1

N2|B|

 ∑
y∈[0,N ]

∣∣∣∣∣∣
∑
x∈[N ]

χa(xy)

∣∣∣∣∣∣
2

.

Note that for a fixed y 6= 0,
∑

x∈[N ] χa(xy) is a partial sum of a geometric series which satisfies∣∣∣∑x∈[N ] χa(xy)
∣∣∣ =

∣∣∣ ep(Nay)−1
ep(ay)−1

∣∣∣, and hence

∑
y∈[0,N ]

∣∣∣∣∣∣
∑
x∈[N ]

χa(xy)

∣∣∣∣∣∣ ≤ N +
∑
y∈[N ]

∣∣∣∣ep(Nay)− 1

ep(ay)− 1

∣∣∣∣ . N +
∑
y∈[N ]

‖Nay‖p
‖ay‖p

.
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Invoking Lemma 4.4 below finishes the proof.

Lemma 4.4. Let p ≥ N2 be prime and let a ∈ Zp \ {0}. Then

∑
y∈[N ]

‖Nay‖p
‖ay‖p

.
p log p

min(N, ‖a‖p)
.

We need the following simple claim in the proof of Lemma 4.4.

Claim 4.5. Let r be a random variable which takes values in [K]. Let g : [K]→ R. Then

Erg(r) = g(K) +
K−1∑
i=1

(g(i)− g(i+ 1)) Pr[r ≤ i].

Proof.

Erg(r) =

K∑
i=1

g(i)Pr[r = i]

=

K∑
i=1

g(i) (Pr[r ≤ i]− Pr[r ≤ i− 1])

= g(K) +
K−1∑
i=1

(g(i)− g(i+ 1)) Pr[r ≤ i].

Proof of Lemma 4.4. We separate the proof to two cases of ‖a‖p < N and ‖a‖p ≥ N . Consider an
integer k with ‖a‖p ≤ k ≤ p. We start by estimating the size of the set

Sk = {y ∈ [N ] : ‖ya‖p ≤ k}.

Note that if y ∈ Sk, then ya ∈ ph + [−k, k] for some integer h ≥ 0. Since y ∈ [N ], we have

h ≤ N‖a‖p+k

p , and hence there are at most
N‖a‖p
p + 1 such values of h. Fixing h, we have y ∈

ph
‖a‖p

+ [−k/ ‖a‖p , k/ ‖a‖p], and there are at most 2k
‖a‖p

+ 1 ≤ 3k
‖a‖p

such values of y. We conclude

that

|Sk| ≤
(
N ‖a‖p
p

+ 1

)
× 3k

‖a‖p
≤ 3Nk

p
+

3k

‖a‖p
.

k

N
+

k

‖a‖p
.

Note that this bound obviously holds also for k ≥ p.
Now to compute

∑
y∈[N ]

‖Nay‖p
‖ay‖p

we separate to two cases depending on whether ‖a‖p ≥ N or

not, and then use Claim 4.5.
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The case ‖a‖p ≥ N : First, note that in this case we can bound |Sk| . k
N . Also to bound

‖Nay‖p
‖ay‖p

,

for y ∈ S‖a‖p , we use the bound ‖Nay‖p ≤ p. We get

∑
y∈[N ]

‖Nay‖p
‖ay‖p

≤ p
∑
y∈[N ]

1

‖ay‖p
.

To compute
∑

y∈[N ]
1

‖ay‖p
we use Claim 4.5. Let u ∼ [N ] be uniformly chosen, and set the random

variable r to be r = ‖au‖p. Set g(x) = 1
x . Then we have

1

N

∑
y∈[N ]

1

‖ay‖p
= Erg(r)

= g(p) +

p−1∑
i=1

(g(i)− g(i+ 1)) Pr[r ≤ i]

=
1

p
+

p−1∑
i=1

(
1

i
− 1

i+ 1

)
|Si|
N

.
1

p
+

p−1∑
i=1

1

i2
· i

N2

.
log p

N2
.

Overall we get

∑
y∈[N ]

‖Nay‖p
‖ay‖p

≤ p
∑
y∈[N ]

1

‖ay‖p
.
p log p

N
.

The case ‖a‖p < N : Here we use the estimate |Sk| . k
‖a‖p

. Also similar to the previous case, we

bound
‖Nay‖p
‖ay‖p

≤ p
‖ay‖p

. We get

1

N

∑
y∈[N ]

1

‖ay‖p
= g(p) +

p−1∑
i=1

(g(i)− g(i+ 1)) Pr[r ≤ i]

=
1

p
+

p−1∑
i=1

(
1

i
− 1

i+ 1

)
|Si|
N

.
1

p
+

p−1∑
i=1

1

i2
· i

‖a‖pN

.
log p

‖a‖pN
.
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So we have ∑
y∈[N ]

‖Nay‖p
‖ay‖p

≤ p
∑
y∈[N ]

1

‖ay‖p

.
p log p

‖a‖p
.

The lemma follows.

We remark that the following more general statement regarding uniformity of product sets
follows by a similar proof to Lemma 4.3 which we record here as it may be of independent interest.

Lemma 4.6. Let p ≥ N2 be prime, and let B ⊆ [N ]d for some positive integer d. Then

Ex∼[N ]d |Ey∼Bχa(〈x,y〉)|2 . max

(
‖a‖dp ,

pd

‖a‖dp

)
· logd p

|B|Nd
.
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