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Abstract

Recently, Bravyi, Gosset, and König (Science, 2018) exhibited a search problem called the
2D Hidden Linear Function (2D HLF) problem that can be solved exactly by a constant-depth
quantum circuit using bounded fan-in gates (or QNC0 circuits), but cannot be solved by any
constant-depth classical circuit using bounded fan-in AND, OR, and NOT gates (or NC0 circuits).
In other words, they exhibited a search problem in QNC0 that is not in NC0.

We strengthen their result by proving that the 2D HLF problem is not contained in AC0, the
class of classical, polynomial-size, constant-depth circuits over the gate set of unbounded fan-in
AND and OR gates, and NOT gates. We also supplement this worst-case lower bound with
an average-case result: There exists a simple distribution under which any AC0 circuit (even
of nearly exponential size) has exponentially small correlation with the 2D HLF problem. Our
results are shown by constructing a new problem in QNC0, which we call the Relaxed Parity
Halving Problem, which is easier to work with. We prove our AC0 lower bounds for this problem,
and then show that it reduces to the 2D HLF problem.

As a step towards even stronger lower bounds, we present a search problem that we call the
Parity Bending Problem, which is in QNC0/qpoly (QNC0 circuits that are allowed to start with
a quantum state of their choice that is independent of the input), but is not even in AC0[2] (the
class AC0 with unbounded fan-in XOR gates).

All the quantum circuits in our paper are simple, and the main difficulty lies in proving
the classical lower bounds. For this we employ a host of techniques, including a refinement of
H̊astad’s switching lemmas for multi-output circuits that may be of independent interest, the
Razborov-Smolensky AC0[2] lower bound, Vazirani’s XOR lemma, and lower bounds for non-local
games.
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1 Introduction

One of the basic goals of quantum computing research is to identify problems that quantum
computers can solve more efficiently than classical computers. We now know several such problems,
such as the integer factorization problem, which we believe can be solved exponentially faster on
a quantum computer [Sho97]. However, running this algorithm requires a large general-purpose
quantum computer, which we do not yet have. Hence it is interesting to find examples of quantum
speedup using weaker models of quantum computation, such as models with limited space or time,
limited gate sets, or limited geometry of interactions.

Shallow quantum circuits. One such model of quantum computation that has been studied for
over 20 years is the class of shallow or constant-depth quantum circuits [MN02, Moo99, GHMP02,
TD04, FGHZ05, HŠ05, FFG+06, TT16]. Such circuits may be viewed as parallel quantum computers
with a constant running time bound. Several variations on this theme have been studied (see [BGH07]
for a survey of older results), and in recent years there has been a resurgence of interest [TT18,
BVHS+18, BGK18, CSV18, LG18] in constant-depth quantum circuits, for at least two reasons.

First, shallow quantum circuits are well motivated from a practical perspective, as we might
actually be able to implement such circuits on near-term quantum computers! In the current era of
Noisy Intermediate-Scale Quantum (NISQ) computers, due to high error rates of quantum gates,
we are limited to running quantum algorithms for a short amount of time before errors accumulate
and noise overwhelms the signal. Hence we seek interesting problems that can still be implemented
by limited quantum hardware.

Second, constant-depth circuits (either classical or quantum) are very interesting to theoretical
computer scientists, as it is possible to prove unconditional impossibility results about constant-depth
circuits. For example, while we strongly believe that the factoring problem mentioned above requires
exponential time on a classical computer, we cannot prove this. On the other hand, many of the early
successes of complexity theory involved exhibiting explicit functions that could not be computed
by constant-depth classical circuits [Ajt83, FSS84, Yao85, H̊as86]. Indeed, constant-depth circuits
remain the frontier of circuit lower bounds and an active area of research in classical complexity
theory today [Wil14, MW18].

This motivates the search for problems that can be solved by constant-depth quantum circuits,
while being hard for constant-depth (or even more powerful) classical circuits.

Prior work. While there has been prior work on establishing the power of shallow quantum
circuits assuming complexity theoretic conjectures [TD04, BVHS+18], this work is not directly
related to our work as we prove unconditional lower bounds.

In this realm the most relevant result is the recent exciting result of Bravyi, Gosset, and
König [BGK18], who defined a search or relational problem1 called the 2D Hidden Linear Function
(2D HLF) problem. (We define this problem in Section 5.) The 2D HLF problem can be solved by
a constant-depth quantum circuit that uses bounded fan-in quantum gates. Indeed, the quantum
circuit solving 2D HLF can be implemented on a 2-dimensional grid of qubits with spatially local
quantum gates.

Furthermore, Bravyi, Gosset, and König [BGK18] show that the 2D HLF problem cannot be
solved by any constant-depth classical circuit using unbounded fan-out and bounded fan-in gates.
Their lower bound even holds when the classical circuit is allowed to sample from an arbitrary
probability distribution on polynomially many bits that does not depend on the input. (In complexity

1A search or relational problem can have many valid outputs for a given input, unlike a function problem that has
exactly one valid output. A decision problem is a function problem with a 1-bit output.
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theory, this resource is called “randomized advice.”) More formally, the class of classical circuits of
polynomial-size, constant-depth, unbounded fan-out, and bounded fan-in gates is called NC0.2 An
NC0 circuit with the additional ability to sample from any probability distribution on polynomially
many bits that is independent of the input, but that can depend on the input size, is called an
NC0/rpoly circuit. The class of polynomial-size, constant-depth quantum circuits with bounded
fan-in gates is called QNC0. Note that because quantum gates have the same number of inputs
and outputs, QNC0 circuits also have bounded fan-out, unlike classical NC0 circuits, which have
unbounded fan-out.

With this notation, we can now summarize the Bravyi et al. result as follows [BGK18].

Theorem (Bravyi, Gosset, and König). The 2D HLF problem can be solved exactly by a QNC0

circuit on a 2D grid, but no NC0/rpoly circuit can solve the problem with probability greater than
7/8 on every input.

The fact that the separating problem in [BGK18] is a search problem and not a function (or
decision) problem is unavoidable, since any function in QNC0 has output bits that only depend on a
constant number of input bits, due to the bounded fan-in gates, and hence such a function would
also be in NC0.

This result was also recently improved by Coudron, Stark, and Vidick [CSV18], and (indepen-
dently) Le Gall [LG18], who extended the lower bound to an average-case lower bound. As opposed
to saying that no NC0 circuit can solve the problem on all inputs, an average-case hardness result
says that no NC0 circuit can solve the problem even on some fraction of the inputs.3 These results
show that no NC0 circuit can solve the problem with input size n on an exp(−nα) fraction of the
inputs for some α > 0.

Main result. In this work, we strengthen these results and prove a strong average-case lower
bound for the 2D HLF problem against the class AC0. AC0 is a natural and well-studied class that
generalizes NC0 by allowing the circuit to use unbounded fan-in AND and OR gates. Note that
NC0 ( AC0 because AC0 can compute functions that depend on all bits, such as the logical OR of
all its inputs, whereas NC0 cannot. Our main result is the following.

Theorem 1 (2D HLF). The 2D HLF problem on n bits cannot be solved by an AC0 circuit of
depth d and size at most exp

(
n1/10d

)
. Furthermore, there exists an (efficiently sampleable) input

distribution on which any AC0 circuit (or AC0/rpoly circuit) of depth d and size at most exp
(
n1/10d

)
only solves the 2D HLF problem with probability at most exp(−nα) for some α > 0.

Thus our result proves a separation against a larger complexity class and implies the worst-case
lower bound of Bravyi, Gosset, and König [BGK18]. It also implies the average-case lower bounds
of Coudron, Stark, and Vidick [CSV18] and Le Gall [LG18].

1.1 High-level overview of the main result

We now describe the problems we study en route to proving Theorem 1 and give a high-level
overview of the proof.

2In this paper, we will employ a common abuse of notation and use class names like NC0 and AC0 to generally
talk about a type of circuit, as opposed to decision problems solved by such circuits. Hence, for example, we speak
of “decision problems in AC0” and “search problems in AC0” although formally AC0 would be the class of decision
problems solved by such circuits, and FAC0 would be the class of search problems solved by such circuits.

3Note that [BGK18, Appendix C.3] already shows mild average-case hardness for this problem.
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Theorem 1 is proved via a sequence of increasingly stronger results. We first introduce a problem
we call the Parity Halving Problem (PHP). PHP is not in QNC0, but it can be solved exactly by a
QNC0/qpoly circuit, which is a QNC0 circuit with quantum advice. Similar to randomized advice, a
circuit class with quantum advice is allowed to start with any polynomial-size quantum state that is
independent of the input, but can depend on the input length. For the Parity Halving Problem
(and other problems introduced later), the quantum advice state is a very simple state called the cat
state, which we denote by | n〉 := 1√

2
(|0n〉+ |1n〉). We denote the subclass of QNC0/qpoly where

the advice state is the cat state QNC0/ .
Here’s a bird’s eye view of our proof: Our first result establishes that PHP is in QNC0/ , but any

nearly exponential-size AC0 circuit only solves the problem with probability exponentially close to 1/2.
Next we define a new problem called the Relaxed Parity Halving Problem on a grid (Grid-RPHP),
which is indeed in QNC0, but any nearly exponential-size AC0 circuit only solves the problem with
probability exponentially close to 1/2. We then define parallel versions of these two problems,
which we call Parallel-PHP and Parallel Grid-RPHP. We show that Parallel-PHP ∈ QNC0/qpoly
and Parallel Grid-RPHP ∈ QNC0, but any nearly exponential-size AC0 circuit only solves these
problems with exponentially small probability. Finally we show that Parallel Grid-RPHP can be
reduced to 2D HLF, and hence our lower bound applies to 2D HLF as well. We now describe these
problems and our proof techniques in more detail.

Parity Halving Problem. In the Parity Halving Problem on n bits, which we denote by PHPn,
we are given an input string x ∈ {0, 1}n promised to have even parity: i.e., the Hamming weight of
x, denoted |x|, satisfies |x| ≡ 0 (mod 2). The goal is to output a string y ∈ {0, 1}n that satisfies

|y| ≡ |x|/2 (mod 2). (1)

In other words, the output string’s Hamming weight (mod 2) is half of that of the input string. Note
that |x|/2 is well defined above because |x| is promised to be even. An alternate way of expressing
this condition is that |y| ≡ 0 (mod 2) if |x| ≡ 0 (mod 4) and |y| ≡ 1 (mod 2) if |x| ≡ 2 (mod 4).

We show in Section 2 that PHP can be solved with certainty on every input by a simple depth-2
QNC0/ circuit. A quantum circuit solving PHP3 is shown in Figure 1. The circuit has one layer of
controlled phase gates followed by Hadamard gates on the output qubits, followed by measurement.

Although the problem is easy for constant-depth quantum circuits, we show that even an
exponential-size AC0/rpoly circuit cannot solve the problem on the uniform distribution (over valid
inputs) with probability considerably better than 1/2, which is trivially achieved by the circuit that
outputs the all-zeros string on all inputs.

Theorem 2 (PHP). The Parity Halving Problem (PHPn) can be solved exactly by a QNC0/
circuit. But on the uniform distribution over all valid inputs (even parity strings), any AC0/rpoly

circuit of depth d and size at most exp
(
n

1
10d

)
only solves the problem with probability 1

2 + exp(−nα)
for some α > 0.
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Figure 1: Quantum circuit for the Parity Halving Problem on 3 bits, PHP3.
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Note that the parameters of the AC0 lower bound in this theorem are essentially optimal, since

the parity function on n bits can be computed by a depth-d AC0 circuit of size exp
(
n

1
d−1
)

[H̊as86,
Theorem 2.2]. Once we can compute the parity of the input bits, it is easy to solve PHP.

Since the quantum circuit for PHP is simple, it is clear that the difficult part of Theorem 2
is the AC0 lower bound. One reason for this difficulty is that if we allowed the output string y in
PHP to be of quadratic size, then there is a simple depth-1 NC0 circuit that solves this problem!
The circuit simply computes the AND of every pair of input bits and outputs this string of size(
n
2

)
. A simple calculation shows that the Hamming weight of this string will be

(|x|
2

)
, which satisfies

the conditions of the problem. Hence to prove the AC0 lower bound, the technique used has to
be sensitive to the output size of the problem. However, traditional AC0 lower bound techniques
were developed for decision problems, and do not explicitly take the output size of the problem into
account. Hence we modify some known techniques and establish the this lower bound in three steps.

First, we use H̊astad’s switching lemmas [H̊as86, H̊as14], or more precisely a recent refinement
of it due to Rossman [Ros17]. However, directly using the result of Rossman off the shelf gives us a
weaker result than Theorem 2; we are only able to establish the theorem with a quasi-polynomially
small correlation instead of the exponentially small correlation in Theorem 2. To obtain the result
we want, we refine Rossman’s result to work better for multi-output functions (Lemma 14). This
result is quite technical, but the conceptual ideas already appear in the works of H̊astad [H̊as14] and
Rossman [Ros17]. Applying this switching lemma reduces the problem of proving an average-case
AC0 lower bound to that of showing an average-case NC0 lower bound for a modified version of the
Parity Halving Problem. This modified version of the problem is similar to PHP, except it has n
inputs and slightly more (say, n1.01) outputs.

Our second step is to use a combinatorial argument to reduce this question to showing an
average-case lower bound against NC0 circuits with locality 1 (i.e., where each output only depends
on a single input) for a further modified version of PHP.

The third and final step is to show that NC0 circuits with locality 1 cannot solve this modifed
PHP on a random input. We prove this by generalizing known lower bounds in the literature on
quantum non-local games. Specifically we generalize lower bounds present in the work of Mermin
[Mer90], and Brassard, Broadbent, and Tapp [BBT05].

This proof is presented in Section 2. We first prove the lower bound against NC0 circuits of
locality 1 in Section 2.2, then show the lower bound against general NC0 circuits in Section 2.3, and
finally introduce the switching lemma and conclude the proof of Theorem 2 in Section 2.4. The
switching lemma itself is proved in Appendix A.

Now Theorem 2 is weaker than what we want (Theorem 1) in two ways. Aside from the fact that
the lower bound is for a problem different from the 2D HLF problem, the problem in Theorem 2
is in QNC0/ and not QNC0, and the correlation lower bound is close to 1/2 instead of being
exponentially small. We now tackle the first problem and get rid of the cat state.

Relaxed Parity Halving Problem. Since the cat state cannot be constructed in QNC0 (proved
in Theorem 16), we have to modify the Parity Halving Problem to get by without a cat state.

Although we cannot create the cat state in QNC0, we can construct a state we call a “poor
man’s cat state,” which is the state

1√
2

(
|z〉+ |z̄〉

)
, (2)

where z ∈ {0, 1}n is a bit string and z̄ denotes its complement. When z = 0n, this is indeed the cat
state, but in general this is some entangled state that can be converted to the cat state by applying
the X gate to some subset of the qubits.
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Interestingly, we can create a poor man’s cat state in QNC0 for a uniformly random z. Here
is one simple construction. First arrange the n qubits on a line and set them all to be in the |+〉
state. Then in a separate set of n− 1 qubits, compute the pairwise parities of adjacent qubits. In
other words, we store the parity of qubit 1 and 2, 2 and 3, 3 and 4, and so on until qubit n− 1 and
n. And then we measure these n− 1 qubits, and denote the measurement outcomes d1, . . . , dn−1,
which we will call the “difference string.” It is easy to verify that if all the di = 0, then the resulting
state is indeed the cat state. In general, for any d ∈ {0, 1}n−1, the resulting state is a poor man’s
cat state, and z can be determined from the string d up to the symmetry between z and z̄. Since
z and z̄ are symmetric in the definition of the poor man’s cat state, let us choose the convention
that z1 = 0. Now we can determine the remaining zi from d using the fact that d1 = z1 ⊕ z2 = z2,
d2 = z2 ⊕ z3, and so on until dn−1 = zn−1 ⊕ zn. Note that because of this construction, some zi
depend on many bits of di. For example, zn is the parity of all the bits in d.

This construction of the poor man’s cat state easily generalizes to graphs other than the 1D
line. We could place the n qubits on a balanced binary tree and measure the parity of all adjacent
qubits, and hence get one di for every edge in the tree. If we call the root node z1 = 0, then the
value of any zi will be the parity of all di on edges between vertex i and the root. In this case each
zi depends on at most log n bits of di. Similarly, we can choose a 2D grid instead of a balanced
binary tree, and set the top left qubit to be z1 = 0. Then each zi will depend on at most 2

√
n bits

of d. This grid construction is described more formally in Section 3.1.
Now there’s an obvious strategy to try: Simply use a poor man’s cat in our quantum circuit

for PHP instead of using an actual cat state, and redefine the problem to match the output of this
quantum circuit! So we simply run the circuit in Figure 1 on a poor man’s cat state 1√

2

(
|z〉+ |z̄〉

)
and

see what the quantum circuit outputs. Unfortunately the output depends on z, but the poor man’s
cat state has been destroyed by the circuit and we do not have a copy of z around. But we do still
have the string d from which it is possible to recover z, although this may not be computationally
easy since a single bit of z may depend on a large number of bits of d. More subtly, a single bit of d
may be involved in specifying many bits of z, which is also a problem for circuits without fan-out,
such as QNC0 circuits. Instead of trying to recover z, we can just modify the problem to include d
as an output. The problem will now have two outputs, one original output y, and a second output
string d, which is the difference string of the z in the poor man’s cat state. This is the Relaxed
Parity Halving Problem, which is more formally defined in Section 3.2.

More precisely, the Relaxed Parity Halving Problem, or RPHP, depends on the choice of the
underlying graph, and is well defined for any graph. We choose the 2D grid to get a problem that
reduces to 2D HLF.4 We call this problem Grid-RPHP.

We show in Section 3.2 that Grid-RPHP can be solved by the 2D QNC0 circuit we described, but
even a nearly exponentially large AC0 circuit cannot solve the problem with probability significantly
larger than 1/2 on the uniform distribution over valid inputs.

Theorem 3 (Grid-RPHP). Grid-RPHPn can be solved exactly by a QNC0 circuit on a 2D grid.
But on the uniform distribution over all valid inputs (even parity strings), any AC0 circuit (or
AC0/rpoly circuit) of depth d and size at most exp

(
n1/10d

)
can solve the problem with probability at

most 1
2 + exp(−nα) for some α > 0.

Note that just like Theorem 2, the lower bound here is essentially optimal, since the parity

function itself can be computed by a depth-d AC0 circuit of size exp
(
n

1
d−1
)

[H̊as86, Theorem 2.2].
Our separation essentially works for any graph with sublinear diameter, such as the grid or the

4Picking the balanced binary tree would give better parameters, but qualitatively similar results. We choose the
2D grid so that our problem can be solved by a constant-depth quantum circuit acting on qubits laid out in 2D.
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balanced binary tree, but not the 1D line. In fact, when the underlying graph is the 1D line, RPHP
becomes easy to solve, even for NC0 circuits.5

We prove Theorem 3 by showing a reduction from the Parity Halving Problem with input size n
and output size O(n3/2) to Grid-RPHP. This version of PHP is indeed hard for AC0 circuits and
this result follows from the work done in Section 2. This reduction and theorem are proved formally
in Section 3.2.

Now Theorem 3 is still weaker than what we want (Theorem 1). The correlation lower bound is
still close to 1/2 and not exponentially small. We now fix this issue using a simple idea.

Parallel Grid-RPHP. Let Parallel Grid-RPHP be the problem where we are given many in-
stances of Grid-RPHP in parallel and are required to solve all of them correctly. For this problem
the quantum circuit is obvious: Simply use the quantum circuit for Grid-RPHP for each instance
of the problem. Clearly if the quantum circuit solves each instance correctly, it solves all of them
correctly. But since a classical circuit only solves an instance with some probability close to 1/2, we
expect that solving many copies of the problem gets much harder.

Theorem 4 (Parallel Grid-RPHP). Parallel Grid-RPHPn can be solved exactly by a QNC0 circuit
on a 2D grid. But on the uniform distribution over all valid inputs (even parity strings for
each instance of Grid-RPHP), any AC0 circuit (or AC0/rpoly circuit) of depth d and size at most
exp
(
n1/10d

)
can solve the problem with probability at most exp(−nα) for some α > 0.

As before, the difficult part of Theorem 4 is proving the classical lower bound. While it seems
intuitive that repeating the problem (in parallel) several times reduces the success probability,
similarly intuitive statements can be false or difficult to prove [Raz98]. More precisely, what we
need is a direct product theorem, which also may not hold in some models of computation [Sha04].

We consider the parallel version of the standard PHP, denoted Parallel-PHP, and reduce
Parallel-PHP to Parallel Grid-RPHP as above. We then establish a lower bound for Parallel-PHP
by using Vazirani’s XOR lemma [Vaz86]. Vazirani’s XOR lemma is an intuitive statement about
how a probability distribution that is “balanced” in a certain sense must be close to the uniform
distribution. The implication for our problem is the following: To understand the probability
that a circuit solves all the instances of PHP in Parallel-PHP, or equivalently that it fails to solve
0 instances, it is enough to understand the probability that it fails to solve an even number of
instances. This task turns out to be similar to the original PHP with larger input and output size,
but with some additional constraints on the input. The techniques we have developed allow us to
upper bound this probability, and hence (using the XOR lemma) upper bound the probability that
a circuit solves all instances correctly.

Now we are almost done, since Theorem 4 looks very similar to Theorem 1, except that the
hardness is shown for Parallel Grid-RPHP and not the 2D HLF problem.

Reduction to the Hidden Linear Function problem. The final step of our program is carried
out in Section 5. First we show via a simple reduction in Theorem 27 that the Relaxed Parity
Halving Problem (for any graph G) can be reduced to the Hidden Linear Function problem (not
necessarily the 2D HLF). In particular, our reduction reduces Grid-RPHP reduces to the 2D HLF
problem, as we describe in Corollary 30. So far this shows that one instance of Grid-RPHP reduces
to the 2D HLF problem. We then show, in Lemma 29, that we can embed multiple instances of 2D
HLF in parallel into one instance of 2D HLF. Hence Parallel Grid-RPHP reduces to 2D HLF as
well, and hence Theorem 4 implies Theorem 1.

5One can output y = 0n and di = xi for all i ∈ {1, . . . , n− 1} to solve the Relaxed Parity Halving Problem on the
1D line.
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1.2 Additional results

We also consider the question of showing a separation between QNC0 and AC0[2], where AC0[2] is
AC0 with unbounded fan-in XOR gates. We implement the first two steps of the strategy above,
where we come up with a problem in QNC0/ that cannot be solved by an AC0[2] circuit, even on
a o(1) fraction of the inputs. But we do not know how to remove the reliance on the cat state in
this setting.

Parity Bending Problem. In the Parity Bending Problem, which we denote PBPn, we are
given a string x ∈ {0, 1}n, and our goal is to output a string y ∈ {0, 1}n such that if |x| ≡ 0
(mod 3) then |y| ≡ 0 (mod 2), and if |x| ∈ {1, 2} (mod 3) then |y| ≡ 1 (mod 2). Our main result is
Theorem 5, which says that PBP can be solved with high probability by a QNC0/ circuit, but
needs exponential-size AC0[2] circuits to solve with probability significantly greater than half.

Theorem 5 (PBP). There exists a QNC0/ circuit that solves the Parity Bending Problem (PBPn)
on any input with probability ≥ 3

4 . But there exists an input distribution on which any AC0[2]/rpoly

of depth d and size at most exp
(
n

1
10d

)
only solves the problem with probability 1

2 + 1
nΩ(1) .

As with the Parity Halving Problem, the quantum circuit that solves this problem with bounded
error is very simple as shown in Section 6. For this problem, the classical lower bound is easier to
show than before, and follows from the work of Razborov and Smolensky [Raz87, Smo87], which
shows that AC0[2] circuits correlate poorly with the Mod 3 function.

As before, we can strengthen the separation to make the quantum circuit’s success probability
arbitrarily close to 1 and the classical circuit’s success probability arbitrarily close to 0 by defining
a new version of the Parity Bending Problem that we call the Parallel Parity Bending Problem. In
this problem, we are given many instances of the Parity Bending Problem, and required to solve at
least 2/3 of them. Since QNC0/ can solve this problem with probability 3/4, it can solve more
than 2/3 of the instances with high probability.

Theorem 6 (Parallel PBP). The Parallel Parity Bending Problem can be solved with probability
1 − o(1) by a QNC/qpoly circuit, but any AC0[2]/rpoly circuit can only solve the problem with
probability 1

nΩ(1) .

At a high level this lower bound proceeds similar to Theorem 4, again employing Vazirani’s
XOR lemma [Vaz86], but there are technical difficulties caused by the fact that the Boolean version
of the Mod 3 function is unbalanced and easy to compute on a 2/3 fraction of the inputs.

1.3 Discussion and open problems

Our main results show that there is a search problem (either the 2D HLF problem or the
Parallel Grid-RPHP) in QNC0 that is not in AC0, and that there is a search problem (Parallel PBP)
in QNC0/ that is not in AC0[2]. One open problem is to generalize both separations and show that
there is a search problem in QNC0 that is not in AC0[2], or more generally AC0[p] for any prime p.
This is essentially the frontier of circuit lower bounds, and it will be difficult to go further without
radically new techniques.

One could try to achieve a quantum advantage using even weaker classes than QNC0 or classes
incomparable to QNC0. The recent result of Raz and Tal [RT19] exhibits a decision problem in
BQLOGTIME (bounded-error quantum logarithmic time) that is not in AC0. Note that as classes of
search problems, BQLOGTIME and QNC0 are incomparable, since both can solve search problems
the other cannot.
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2 Parity Halving Problem

Recall the Parity Halving Problem from the introduction. We now define a more general version of
the problem with n input bits and m output bits.

Problem 1 (Parity Halving Problem, PHPn,m). Given an input x ∈ {0, 1}n of even parity, output
a string y ∈ {0, 1}m such that

|y| ≡ 1

2
|x| (mod 2). (3)

Alternately, y must have even parity if |x| ≡ 0 (mod 4) and odd parity if |x| ≡ 2 (mod 4). We also
define PHPn to be PHPn,n.

The main result of this section is to show this problem is in QNC0/ , but not AC0/rpoly. We
now restate this result (Theorem 2) more formally:

Theorem 2 (formal). The Parity Halving Problem (PHPn) can be solved exactly by a depth-2,
linear-size quantum circuit starting with the

∣∣
n

〉
state. But on the uniform distribution over all

valid inputs (even parity strings), any AC0/rpoly circuit of depth d and size s ≤ exp
(
n

1
2d

)
only solves

the problem with probability 1
2 + exp

(
−n1−o(1)

/
O(log s)2(d−1)

)
.

We prove this theorem in several parts. First we prove the quantum upper bound in Section 2.1
(Theorem 7). The lower bound on AC0 circuits via a sequence of incrementally stronger lower
bounds, culminating in the claimed lower bound. We start in Section 2.2 by showing a lower bound
(Theorem 8) for a very simple class of circuits, NC0 circuits of locality 1, i.e., NC0 circuits where
every output is an arbitrary function of exactly one input bit. We then extend the lower bound to
arbitrary NC0 circuits in Section 2.3 (Theorem 10), and to AC0 circuits in Section 2.4 culminating in
the AC0 lower bound for PHPn,m in Theorem 15, from which the lower bound in Theorem 2 follows
straightforwardly by setting m = n.

2.1 Quantum upper bound

Before we get into the details of the proof, let us motivate the problem. Observe that the problem
naturally defines an interesting n-player cooperative non-local game, which we call the Parity
Halving Game. In this game, there are n players, and each player gets one of the n input bits
and outputs a single bit, with no communication with the other players. The input and output
conditions are the same as in PHPn: The input is promised to be of even Hamming weight, and the
players win the game if their output’s parity satisfies the condition in Problem 1.

Because the players are not allowed to communicate, the strategies permitted in the non-local
game are far more restricted than an AC0 circuit or even an NC0 circuit for PHPn since each output
bit is only allowed to depend on one input bit. We will call this model NC0 with locality 1.

Now that we have defined a game, we can study the probability of success for classical players
versus the probability of success for quantum players who share entanglement before the game
begins. In fact, when n = 3, the Parity Halving Game coincides with the well-known Greenberger–
Horne–Zeilinger (GHZ) game [GHZ89]. It is known that quantum players sharing entanglement,
and specifically the state | 3〉 = 1√

2
(|000〉+ |111〉), can always win the GHZ game with certainty,

but classical players can win the GHZ game with probability at most 3/4.
This n-player generalization of the GHZ game is very natural and quantum players can win

the Parity Halving Game exactly using a | n〉 state. This game has been studied before, and we
are aware of two other works that analyze this game: the first by Mermin [Mer90], and the second
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by Brassard, Broadbent, and Tapp [BBT05]. Both papers exhibit the quantum strategy that wins
perfectly and argue that classical strategies fail (as we do in the next section).

The strategy for winning the 3-player GHZ game generalizes to yield a perfect strategy for
winning the n-player game as well, which yields a depth-2 linear-size quantum circuit for PHPn.
We now describe the quantum strategy and the corresponding constant-depth quantum circuit.

Theorem 7 (Quantum circuit for PHPn). The Parity Halving Problem (PHPn) can be solved
exactly by a depth-2, linear-size quantum circuit starting with the

∣∣
n

〉
state.

Proof. We describe this circuit in the language of the n-player Parity Halving Game described
above. The circuit is depicted in Figure 1 (on page 3). Let the input to the ith player in the Parity
Halving Game be called xi, and their output be called yi. In our protocol, the players will share an
n-qubit cat state

∣∣
n

〉
= 1√

2
(|0n〉+ |1n〉), and each player receives one qubit of the cat state at the

beginning.
Each player starts by applying a phase gate, S =

(
1 0
0 i

)
, to their qubit of the cat state if their

input bit is 1. If their input bit is 0, they do nothing. In other words, the player applies a control-S
gate with xi as the source and their qubit of the cat state as the target. After this step, the cat
state has been transformed to

1√
2

(
|0n〉+ i|x| |1n〉

)
. (4)

But since x has even parity, this state is either
∣∣

n

〉
or the “minus cat state” 1√

2
(|0n〉 − |1n〉). We

will denote this state by Z
∣∣

n

〉
since this is the state one obtains by applying the Z =

(
1 0
0 −1

)
gate

to any one qubit of the cat state. When |x| ≡ 0 (mod 4), this state will be | n〉 and when |x| ≡ 2
(mod 4), this will be Z

∣∣
n

〉
. Note that

∣∣
n

〉
and Z

∣∣
n

〉
are orthogonal states.

Finally, each player applies the Hadamard gate H = 1√
2

(
1 1
1 −1

)
to their qubit of the cat state,

measures the qubit, and outputs that as yi. The operator H⊗n maps the cat state | n〉 to a uniform
superposition over even parity strings, and maps Z| n〉 to a uniform superposition over odd parity
strings. This follows from the following equations:

H⊗n|0n〉 =
1√
2n

∑
x∈{0,1}n

|x〉, and H⊗n|1n〉 =
1√
2n

∑
x∈{0,1}n

(−1)|x||x〉. (5)

Thus, when the players measure their qubits, they will get either a random even parity string
when |x| ≡ 0 (mod 4) or a random odd parity string when |x| ≡ 2 (mod 4), as desired.

Note that the idea of inducing a relative phase proportional to the Hamming weight of a string
is studied more generally and called “rotation by Hamming weight” in [HŠ05].

2.2 Lower bound for NC0 circuits of locality 1

We now discuss the success probability of classical strategies for the Parity Halving Game. This was
already studied by Mermin [Mer90], and Brassard, Broadbent, and Tapp [BBT05]. Both papers
argue that classical strategies only succeed with probability exponentially close to 1/2 on the uniform
distribution over even-parity inputs.

We reprove these lower bounds on the Parity Halving Game and also prove lower bounds for
a restricted version of the game. In the restricted version of the game we only consider inputs
consistent with some restriction of the input bits, i.e., where the values of some input bits have been
fixed and are known to all the players, and we only consider all even-parity inputs consistent with
this fixing of input bits. We need this generalization later on in the proof since some input bits will
be fixed by a random restriction in the AC0 lower bound argument.
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Theorem 8 (Classical lower bound for Parity Halving Game). On the uniform distribution over
even-parity strings, the success probability of any classical strategy for the Parity Halving Game with
n players is at most 1

2 + 2−dn/2e.
Now consider the restricted Parity Halving Game with n players, where d of the input bits have

fixed values known to all players. On the uniform distribution over even-parity strings consistent
with the fixed input bits, the success probability of any classical strategy is at most 1

2 + 2−d(n−d)/2e.

Proof. We start with the lower bound for the unrestricted Parity Halving Game. Since we consider
classical strategies against a fixed input distribution, we can without loss of generality only consider
deterministic strategies. This is because a randomized strategy is simply a probability distribution
over deterministic strategies, and we can pick the strategy that does the best against the chosen
input distribution. (This is the easy direction of Yao’s minimax principle.)

Since each player only has one input bit xi, and one output bit yi, there are only four deterministic
strategies: output yi = 0, yi = 1, yi = xi, or yi = xi⊕1. In any case, each yi is a degree-1 polynomial
(over F2) in xi. It follows that the parity of the outputs,

⊕n
i=1 yi, can be expressed as multivariate

linear polynomial in x1, . . . , xn, say a+ b · x for some a ∈ F2 and b ∈ Fn2 . We want to upper bound
the success probability of any such strategy.

Now consider the function f(x) = Re(i|x|). We have

f(x) =


1 if |x| ≡ 0 (mod 4)

−1 if |x| ≡ 2 (mod 4)

0 otherwise.

(6)

The function f(x) matches the parity of the output bits (as ±1) of the PHPn function on an input
x. More precisely, f(x) gives the correct parity (as ±1) when x satisfies the promise of PHPn, and
evaluates to 0 for inputs outside the promise.

It follows that the product (−1)a+b·xf(x) is 1 if the strategy corresponding to a+ b · x is correct,
−1 if it is incorrect, and 0 on inputs that are outside the promise. We define the correlation χ of a
classical strategy as the absolute value of the fraction of valid inputs on which it is correct minus
the fraction of valid inputs on which it is incorrect. We can compute this quantity as follows:

χ =

∣∣∣∣∣ E
x∈Fn2 :

∑
i xi=0

[
(−1)a+b·xf(x)

]∣∣∣∣∣ (7)

=

∣∣∣∣∣∣ 1

2n−1

∑
x∈Fn2

(−1)a+b·x Re(i|x|)

∣∣∣∣∣∣ (8)

≤ 1

2n−1

∣∣∣∣∣∣Re

∑
x∈Fn2

(−1)b1x1+···+bnxn · ix1+···+xn

∣∣∣∣∣∣ (9)

=
1

2n−1

∣∣∣∣∣∣Re

 ∑
x1∈F2

(−1)b1x1ix1 · · ·
∑
xn∈F2

(−1)bnxnixn

∣∣∣∣∣∣ (10)

=
1

2n−1

∣∣∣Re
(

(1 + i1+2b1) · · · (1 + i1+2bn)
)∣∣∣ . (11)

That is, we want to know the real part of a product of n terms, each of which is 1± i. Since 1± i is√
2 times a primitive eighth root of unity, the product is 2n/2 times an eighth root of unity. After

factoring out the
√

2 from each term, we have to determine the possible values of the product of n
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numbers of the form 1√
2
(1± i). When n is even, their product must lie in the set {±1,±i}, and

when n is odd it must lie in the set ±1±i√
2

. In both cases, we see that the real part of the product is

either 0 or ±2bn/2c, so the correlation is χ = 0 or χ = 2−dn/2e+1. Since the success probability is
(1 + χ)/2, this proves the first part of the theorem.

Now let us move on the to restricted version of the game and fix some of the inputs. If some
individual bit xj is restricted, then the term

∑
xj∈F2

(−1)bjxj ixj in the analysis above becomes either

1 or (−1)bj i. This term is a fourth root of unity, so it does not contribute to the magnitude of the
product, since the fourth roots of unity have magnitude 1. Furthermore, it does not change the set
of potential phases, since both the sets above are invariant under multiplication by a fourth root of
unity. Since the constraint also halves the number of possible inputs, the effect on the correlation is
the same as just removing that bit. In other words, χ is at most 2−d(n−d)/2e+1. It follows that the
success probability of a classical strategy is

1 + χ

2
=

1

2
+ 2−d(n−d)/2e. (12)

It is interesting to note that for the unrestricted game, Brassard, Broadbent, and Tapp [BBT05]
show that there are strategies matching this upper bound.

2.3 From NC0 circuits of locality 1 to general NC0 circuits

We can view NC0 circuits as a more powerful model of computation than the game considered in
the previous section. Now each player is allowed to look at the input bits of a constant number of
other players before deciding what to output. For example, the players could band together into
constant-sized groups and look at all the other bits in the group to make a slightly more informed
choice. However, intuitively it seems that the players cannot do much better than before. We will
show this formally by proving that NC0 circuits cannot solve PHPn.

First, we define some terms. Fix a circuit C and define the interaction graph of the circuit C to
be a bipartite graph on the input bits and output bits where there is an edge from an input bit xi
to an output bit yj if there is a path from xi to yj in the circuit C (i.e., if xi can affect yj in C).
The neighborhood of a vertex in this graph is sometimes called its light cone. That is, the light cone
of an output bit, LC(yi), is the set of input bits which can affect it, and the light cone of an input
bit, LC(xi) is the set of output bits which it can affect. For example, if all gates have fan-in 2, then
the light cone of any output bit in a circuit of depth d is of size at most 2d. In general, we say that
a circuit C has locality ` if the light cone of any output bit is of size at most `.

Note that while the fan-in of gates sets an upper bound on the light cone of an output bit, the
fan-out sets an upper bound for the light cone of input bits. In all the classical circuit classes we
study in this paper, fan-out is unbounded, hence even in a constant-depth circuit one input bit can
affect all output bits.

Proposition 9. Let C be a circuit with n inputs, m outputs, and locality `. There exists a subset of

inputs bits S of size Ω
(

min
{
n, n2

`2m

})
such that each output bit depends on at most one bit from S.

Proof. Since each output bit has a light cone of size at most `, the interaction graph has at most
`m edges. This implies that, on average, an input bit has a light cone of size `m

n . Our goal is to find
a set of input bits S such that their light cones are pairwise disjoint, since then the light cone of
any output contains at most one element of S.

Consider the intersection graph between input variables. That is, we consider the graph on
x1, . . . , xn, where xi is connected to xj if their light cones intersect. A variable xi that had
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degree d in the original graph has degree at most d` in the intersection graph, since each output
vertex has locality `. Hence the average degree in the intersection graph, denoted by D, is at
most `2m

n . By Turán’s theorem, in any graph on n vertices with average degree at most D there
exists an independent set of size at least n/(1 + D). Thus, we get a set S ⊆ {x1, . . . , xn} of size

Ω
(

min
{
n, n2

`2m

})
such that the light cones of every pair of input bits in S do not intersect.

We are now ready to prove a lower bound on NC0 circuits of locality ` solving PHPn,m.

Theorem 10 (PHP is not in NC0). Let C be an NC0 circuit with n inputs, m outputs, and locality `.

Then C solves PHPn,m on a random even-parity input with probability at most 1
2 + 2

−Ω
(

min
{
n, n

2

`2m

})
.

Proof. Let the circuit C solve PHPn,m on a random even-parity input with probability p. By the

previous theorem, there is a set of input bits with disjoint light cones, S, and |S| = Ω
(

min
{
n, n2

`2m

})
.

For the remainder of this proof fix any such S.
Now consider choosing an arbitrary assignment for the bits outside S and running the circuit C

on the distribution of random even-parity strings consistent with this arbitrary assignment. The
probability of success of circuit C may depend on the arbitrary assignment chosen, but since the
success probability for a random choice is p, there exists one assignment for which the success
probability is at least p. Let us fix this assignment of bits outside S. Now we have an assignment
for bits outside S such that C is correct with probability at least p on a random even-parity input
consistent with this assignment.

We will now argue that the circuit gives a strategy for the restricted Parity Halving Game on
n players with n − |S| restricted bits with probability of success at least p. To do so, we assign
a player for every input bit. Only the players assigned to bits in S will have unrestricted inputs.
Since the light cones of bits in S do not intersect, a player with input bit in S can compute the
values of all outputs in its light cone (since all the bits outside S are fixed and known to everyone).
This player can now output the parity of all these output bits. Some output bits may not appear in
any input light cone; we add the parity of these bits to an arbitrary player’s output. Now the the
parity of the players’ outputs is the same as the parity of the circuit’s output. This gives a classical
strategy for the restricted Parity Halving Game with n players and n − |S| restricted bits with

success probability at least p. Finally, from Theorem 8 we get that p ≤ 1
2 + 2

−Ω
(

min
{
n, n

2

`2m

})
.

Note that this theorem is essentially tight. It says that to achieve a high probability of success,
we need n2 = Θ(`2m). We can indeed achieve success probability 1 at both extremes: when
m = Θ(n2) and ` = 2, or when m = 1 and ` = n. For the first setting of parameters, as noted in
the introduction, there is a simple depth-1 NC0 circuit of locality 2 that solves the problem when
m =

(
n
2

)
. The second parameter regime is even simpler, since any Boolean function can be computed

by an NC0 circuit of locality ` = n.

2.4 From NC0 circuits to AC0 circuits

In this section we finally extend our lower bound to AC0 circuits as stated in Theorem 2.
To do this, we use a technical tool known as a switching lemma [FSS84, Ajt83, Yao85, H̊as86].

Informally, a switching lemma says that with high probability randomly restricting a large fraction
of the input bits to an AC0 circuit produces a circuit with small locality.

Average-case reductions from NC0 to AC0 have previously appeared in the literature (cf. [Vio14]),
based on the original switching lemma [H̊as86]. In this paper, we will use multi-switching lemmas,
which handle multiple output circuits much better, and were recently proved by H̊astad [H̊as14] and
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Rossman [Ros17]. Using the multi-switching lemmas instead of H̊astad’s original switching lemma
[H̊as86] allows us to improve the parameters dramatically.6

2.4.1 Preliminaries

We start with some definitions. In the following, we consider restrictions and random restrictions.
A restriction ρ ∈ {0, 1, ∗}n defines a partial assignment to the inputs of a Boolean string of length n.
For i = 1, . . . , n, when ρi ∈ {0, 1} we say that the restriction fixes the value of the i-th coordinate,
and when ρi = ∗ we say that the restriction keeps the i-th coordinate alive.

A p-random restriction is a restriction sampled according to the following process: for each
i = 1, . . . , n independently, sample ρi = ∗ with probability p, ρi = 0 with probability (1− p)/2 and
ρi = 1 with probability (1− p)/2. We denote by Rp the distribution of p-random restrictions.

For a Boolean function f : {0, 1}n → {0, 1}m we denote by f |ρ : {0, 1}n → {0, 1}m the restricted
function defined by

f |ρ(x) = f(y) where yi =

{
xi ρi = ∗ and

ρi otherwise.
(13)

Next, we give the standard definition of a decision tree. For an excellent survey on this topic,
please see [BdW02].

Definition 11 (Decision Tree). A decision tree is a rooted ordered binary tree T , where each internal
node of T is labeled with a variable xi and each leaf is labeled with a value 0 or 1. Given an input
x ∈ {0, 1}n, the tree is evaluated as follows. Start at the root. If this is a leaf then stop. Otherwise,
query the variable xi that labels the root. If xi = 0, then recursively evaluate the left subtree, if xi = 1
then recursively evaluate the right subtree. The output of the tree is the value (0 or 1) of the leaf that
is reached eventually. Note that an input x deterministically determines the leaf reached at the end,
and thus the output. We say a decision tree computes f if its output equals f(x), for all x ∈ {0, 1}n.
The complexity of such a tree is its depth, i.e., the number of queries made on the worst-case input.
We denote by DT(t) the class of functions computed by decision trees of depth at most t.

Note that the decision tree complexity of a function f is also called the deterministic query
complexity of f .

Definition 12 (F -Decision Tree). Suppose F is a class of functions mapping {0, 1}n to {0, 1}m. An
F-partial decision tree is a standard decision tree, except that the leaves are marked with functions
in F (instead of constants). Given an input x ∈ {0, 1}n, the F-Decision Tree is evaluated as follows.
Starting from the tree’s root, we go along the path defined by the input x until we reach a leaf. Then,
we evaluate the function fv ∈ F that labels the leaf v on the input x, and output its value, fv(x).
We denote by DT(t) ◦ F the class of functions computed by F-decision trees of depth at most t.

Note that F-decision trees compute functions from {0, 1}n → {0, 1}m where n and m are the
input and output lengths for the functions in F , respectively.

Definition 13 (Tuples of functions classes). Suppose F is a class of functions mapping {0, 1}n
to {0, 1}. We denote by Fm the class of functions F : {0, 1}n → {0, 1}m of the form F (x) =
(f1(x), f2(x), . . . , fm(x)), where each fi ∈ F . That is, Fm is the class of m-tuples of functions in F .

6Based on the original switching lemma, we can show that PHP is hard to compute by AC0 circuits on more than
1/2 + 1/nΩ(logn) of the inputs. On the other hand, based on the multi-switching lemmas, we will show that PHP is,
in fact, hard to compute on more than 1/2 + exp

(
−n1−o(1)

)
of the inputs.
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2.4.2 The multi-switching lemma

The main lemma that we are going to use is a slight adaption of Rossman’s lemma [Ros17], which
combines both switching lemmas of H̊astad [H̊as86, H̊as14]. The lemma claims that a multi-
output AC0 circuit mapping {0, 1}n → {0, 1}m would reduce under a random restriction, with high
probability, to a function in the class DT(2t) ◦DT(q)m (for some parameters t and q).

Let us pause for a second to spell out what is the class DT(2t) ◦DT(q)m. This is the class of
depth-2t decision trees, whose leaves are labeled by m-tuples of depth-q decision trees, one per
output bit. In other words, these are functions mapping {0, 1}n to {0, 1}m that can be evaluated by
adaptively querying at most 2t coordinates globally, after which each of the m output bits can be
evaluated by making at most q additional adaptive queries. Note that while the first 2t queries are
global, the last q queries could differ from one output bit to another. We would typically set the
parameters so that t is much larger than q (for example, t = n1−o(1) and q = o(log n)).

Lemma 14 (Multi-switching lemma). Let f : {0, 1}n → {0, 1}m be an AC0 circuit of size s, depth
d. Let q ∈ N be a parameter, and set p = 1/(m1/q ·O(log s)d−1). Then

∀t : Pr
ρ∼Rp

[f |ρ /∈ DT(2t) ◦DT(q)m] ≤ s · 2−t. (14)

We defer the proof of Lemma 14 to Appendix A as this is an adaptation of Rossman’s lemma
[Ros17].

We would use the lemma as follows. First, we apply a p-random restriction that reduces the
AC0 circuit to a DT(2t) ◦DT(q)m function with high probability. Then, we further query at most
2t coordinates, and fix their values, by following a path in the common partial decision tree. After
which, the restricted function would be an m-tuple of depth-q decision trees. Then, using the simple
fact that a depth-q decision tree is a function with locality at most 2q, we reduced an AC0 circuit to
an NC0 circuit with locality at most 2q with high probability.

On the choice of parameters. We have the freedom to choose q and t when applying Lemma 14
in Theorem 15. First, we discuss the choice of q. We would like the lemma to yield on one hand an
NC0 circuit with small locality, and on the other hand to keep many input variables alive. To get
small locality, q should be small, say q = o(log n). To keep many variables alive, pn should be large,
and since p = 1/O(m1/q(log s)d−1), we would like q to be large, say q = ω(1). Balancing these two
requirements leads to the choice q = Θ(

√
log n).

Once q is set, we would like to make t as large as possible, as it controls the failure probability in
Lemma 14, but on the same time we want the number of alive variables after the two-step restriction
process above to remain high. Since this number is roughly pn− t we would choose t to be a small
constant fraction of pn (which is n1−o(1)). With these choices, we would be left with at least Ω(pn)
variables alive and locality at most 2q with extremely high probability.

2.4.3 AC0 lower bound

Theorem 15 (PHP is not in AC0). Let n ≤ m ≤ n2. Any AC0/rpoly circuit F of depth d and size

s ≤ exp
(
n

1
2d

)
solves PHPn,m on the uniform distribution over valid inputs (even parity strings) with

probability at most 1
2 + exp

(
−n2

/(
m1+o(1) ·O(log s)2(d−1)

))
.

Proof. Since we have a fixed input distribution, we can without loss of generality prove the lower
bound against an AC0 circuit (instead of an AC0/rpoly circuit), since an AC0/rpoly circuit defines a
distribution over AC0 circuits and we can simply pick the one that does the best against our input
distribution.
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Suppose that F solves the Parity Halving Problem on a random even-parity input with probability
1
2 + ε. We shall show that ε ≤ exp

(
−n2/(m1+o(1) ·O(log s)2(d−1))

)
.

We defer the choice of q for later, to optimize the parameters. However, we will use the fact
that q = o(logm) and that q = ω(1). We set

p = 1/(m1/q ·O(log s)d−1), t = pn/8. (15)

Note that under this choice of parameters s ≤ 2t/2, by the following calculation: using the assumption
that s < exp

(
n1/2d

)
twice, we have

2t/2 = exp(Ω(pn)) = exp
(

Ω(m−o(1) · n(d+1)/2d)
)
� exp

(
n1/2d

)
> s. (16)

Let ρ be a p-random restriction. Denote by E the event that:

1. F |ρ ∈ DT(2t) ◦DT(q)m.

2. ρ keeps alive at least pn/2 variables.

Using Lemma 14 and Eq. (16), Item 1 holds with probability at least 1 − s · 2−t ≥ 1 − 2−t/2 ≥
1 − exp(−Ω(pn)). Item 2 holds with probability at least 1 − exp(−Ω(pn)) by Chernoff’s bound.
Thus, by a simple union bound

Pr[E ] ≥ 1− exp(−Ω(pn)). (17)

If Pr[E ] ≤ 1− ε/2, then we are done as Eq. (17) implies ε/2 ≤ exp(−Ω(pn)). Going forward, we
may assume that Pr[E ] > 1− ε/2. In such a case, we claim that there exists a fixed restriction ρ that
satisfies E , under which F |ρ solves the Parity Halving Problem on at least 1/2 + ε/2 fraction of the
even-parity inputs consistent with ρ. Assume by contradiction otherwise. Under our assumption:

• For restrictions satisfying E , the success probability of F on the even-parity inputs consistent
with ρ is at most 1/2 + ε/2.

• For other restrictions, the success probability of F on the even-parity inputs consistent with ρ
is at most 1.

The key idea is that sampling a p-random restriction, and then sampling an input with even
parity consistent with this restriction (if such an input exists), gives the uniform distribution over
even-parity inputs. Thus, under the above assumption, the probability that F solves the Parity
Halving Problem on a uniform input with even parity, is at most

Pr[E ] · (1/2 + ε/2) + Pr[¬E ] · 1 < 1 · (1/2 + ε/2) + (ε/2) · 1 = 1/2 + ε, (18)

yielding a contradiction.
We get that there exists a restriction ρ keeping at least pn/2 of the variables alive, under which

F |ρ ∈ DT(2t) ◦DT(q)m, such that the success probability of F on the even-parity inputs consistent
with ρ is at least 1/2 + ε/2.

In the next and final step, we will focus on a single leaf of the partial decision tree for F |ρ. For
each leaf λ consider the further restriction of F |ρ according to the path leading to λ. This yields
a new function, denoted Fρ,λ ∈ DT(q)m. That is, Fρ,λ is a tuple of m decision trees of depth q.
Moreover, for each λ, the number of variables left alive in Fρ,λ is at least pn/2− 2t ≥ pn/4.

We claim that there must exists a λ such that Fρ,λ solves the Parity Halving Problem on
even-parity inputs consistent with ρ and λ with probability at least 1/2 + ε/2. This follows by
an averaging argument similar to the one we performed above. Indeed, to uniformly sample an
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input with even-parity consistent with ρ, we can first uniformly sample a root-to-leaf path along the
partial decision tree resulting in a leaf λ, and then uniformly sample an even-parity input consistent
with (ρ, λ). Since we succeed with probability at least 1/2 + ε/2 on uniform inputs with even-parity
to Fρ, we also succeed with probability at least 1/2 + ε/2 on the inputs to some Fρ,λ.

We get that there exists a restriction defined by (ρ, λ), leaving at least pn/4 variables alive,
under which each output bit of F can be computed as a depth-q decision tree, and therefore depends
on at most 2q input bits. Furthermore, Fρ,λ solves the Parity Halving Problem on even-parity inputs
consistent with ρ and λ with probability at least 1/2 + ε/2. Applying Theorem 10 we get that

ε/2 ≤ exp

(
−Ω

(
(pn)2

m · 22q

))
, (19)

and by Eq. (15), plugging p = 1/(m1/q ·O(log s)d−1),

ε/2 ≤ exp

(
−n2

m · 22q ·O(log s)2(d−1) ·m2/q

)
. (20)

Recall that we have not set q yet. To minimize 22q ·m2/q we pick q =
√

logm. This gives

ε ≤ exp

(
−n2

m ·O(log s)2(d−1) · 24
√

logm

)
, (21)

which concludes the proof.

3 Relaxed Parity Halving Problem

In this section we deal with the issue that the QNC0 circuit for PHP (Problem 1) needs a cat state,
but QNC0 cannot create a cat state.

In Section 3.1, we first prove that a QNC0 circuit cannot create a cat state. But, as we show,
QNC0 circuits can construct what we call a “poor man’s cat state.” This is a state of the form

1√
2
(|z〉+ |z̄〉) for some uncontrolled z ∈ {0, 1}n alongside classical “side information” about z that

allows us to determine it. In Section 3.2 we show the poor man’s cat state lets us solve a relaxed
version of the Parity Halving Problem, which is nevertheless hard for AC0 circuits.

The goal of this section is to establish Theorem 3, which will follow from Theorem 19 and
Theorem 20.

3.1 A poor man’s cat state

We start by proving our claim that a QNC0 circuit cannot construct a cat state in constant depth.

Theorem 16 (Cat states cannot be created in QNC0). Let C be a depth-d QNC0 circuit over the
gates set of all 2-qubit gates that maps |0n+m〉 to

∣∣
n

〉
⊗ |0m〉. Then d ≥ (log n) /2.

Proof. Since C is a depth-d QNC0 circuit over the gate set of 2-qubit gates, each input and output
bit has a light cone of size 2d. Similar to Proposition 9, consider the intesection graph of the first n
output bits, which hold the cat state. In this graph, the n output bits are the vertices, and two
output bits are adjacent if their light cones contain a common input. Since the maximum number
of input bits in the light cone of an output bit is 2d, and each input bit can have at most 2d output
bits in its light cone, the maximum degree of an output bit in this intersection graph is 22d. Assume
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toward a contradiction that d < (log n) /2. Then the maximum degree of the graph is less then n,
and there must exist two disconnected vertices in the graph.

Let two such output qubits of
∣∣

n

〉
be called yi and yj . These qubits depend on disjoint sets of

input bits. Now we focus on the output of the the circuit C on these two qubits. Since they are part
of the cat state, on measuring these in the computational basis, we will see either 00 or 11, with
equal probability. Since the gates that are not in the light cones of these two qubits do not affect
this, let us delete all these gates. Since the light cones were disjoint, we are now left with a circuit
composed of two disjoint parts, one acting on a set of qubits that contains yi and another acting on
a set of qubits that contains yj . Consider the cut between these two sets of qubits. Observe that
the initial state, |0n+m〉, is separable across this cut, but the output state is correlated across this
cut although we have not performed any gates that cross the cut. This is impossible, and hence
d ≥ (log n) /2.

Now although QNC0 circuits cannot create the cat state, we show that QNC0 circuits are able to
construct states of the form 1√

2
(|z〉+ |z̄〉), where z is some string in {0, 1}n and z̄ the complement

of z. Note that this state is exactly the cat state when z = 0n or z = 1n. The circuits that create
this state also output an auxiliary classical string d such that z can be determined from d, up to
the symmetry between z and z̄. There is actually a family of QNC0 circuits which construct these
states, which we now describe.

Theorem 17 (Poor man’s cat state construction). For any connected graph G = (V,E) with
maximum degree ∆, there is a depth ∆+2 QNC0 circuit which outputs a |V | qubit state 1√

2
(|z〉+ |z̄〉),

along with a bit string d ∈ {0, 1}E. Indexing the bits of z by vertices of V and the bits of d by edges
of E, z and d satisfy the property that

zu + zv ≡
∑

e∈P (u,v)

de (mod 2) (22)

for any two vertices u, v ∈ V , and any path P (u, v) from u to v. Note that this condition also
implies that the sum of de along any cycle in the graph is 0 (mod 2).

Proof. We first describe the QNC0 circuit. Begin with |V |+ |E| qubits in the state |0〉, and identify
each of the qubits with either an edge or a vertex of the graph. Apply the Hadamard transform for
each vertex qubit. Now the state is |+〉|V | ⊗ |0〉|E|. Then, for every edge e = (u, v) in the graph,
XOR the qubits indexed by u and v onto the edge qubit indexed by e (i.e., let the edge qubit store
the parity of the two vertex qubits). Explicitly, this can be done by implementing CNOT gates
from qubits u, v onto qubit e. (As discussed below, this can be done in ∆ + 1 parallel local steps.)
Finally, measure all edge qubits in the standard basis.

To complete this proof we need to establish two claims: First, that the circuit leaves the
unmeasured vertex qubits in the state 1√

2
(|z〉+ |z̄〉), while the measured edge qubits give the

classical bitstring d. Second, that the circuit can be implemented in depth ∆ + 2.
We begin with the first claim. Imagine that we first only measure the n − 1 edges of some

spanning tree T . Before measurement, the vertex qubits were in a uniform superposition over all
possible 2n states. Each measurement on an edge qubit had two equally probable outcomes, and
observing the result of this measurement reduced the number of states in the superposition by half.
More precisely, measuring the qubit for edge e = (u, v) yields a bit de ∈ {0, 1}, which gives a linear
equation on the state: zu ⊕ zv = de. Thus, after all edges in the spanning tree are measured, the
vertex qubits must be left in some two state superposition. Furthermore, after the spanning tree is
measured any two vertex qubits u and v must differ by the parity of the observed measurements
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on edge qubits along the path from u to v. This shows the vertex qubits must be in the state
1√
2

(|z〉+ |z̄〉), with the measurements on the edge qubits so far consistent with the requirements of

Theorem 17. Now for any edge e = (v, w) not in the spanning tree, the XOR measurements on the
associated edge qubit is fixed to be equal to the XOR of edge qubit measurements along the path
in T from v to w. This shows this measurement must also be consistent with the requirements of
Theorem 17 and cannot affect the state of the vertex qubits. The establishes the first claim.

The second claim is more straightforward. The first layer of our QNC0 circuit consists of
Hadamard gates applied to all vertex qubits. It remains to show that we can implement all the
desired CNOT gates in depth ∆ + 1. To show this we introduce a new graph G′ with |V | + |E|
vertices, that is obtained from G by replacing each edge e = (a, b) in E with a vertex ve connected
to its two end-points, a and b. Note the edges of G′ are in one to one correspondence with the
CNOT gates we want to implement in our circuit. By our assumptions on G, G′ has degree at most
∆, and so Vizing’s theorem tells us the edges of G′ can be colored using at most ∆ + 1 colors. Since
the edges in each color class are non-overlapping we can apply all the CNOT gates in one color
class simultaneously, and thus apply all the CNOT gates in depth ∆ + 1.

In the remainder of this paper, we primarily apply Theorem 17 when G is a spanning tree of a 2D
grid, with diameter 2

√
n as depicted in Figure 2, which also describes the associated QNC0 circuit.

This QNC0 circuit has the nice feature that it is spatially local,7 while any bit of z is specified by
relatively few, O(

√
n), bits of d. This graph has constant degree ∆ = 3.

...
...

. . .

√
n

√
n

Figure 2: Grid Implementation of a Poor Man’s Cat State. Black vertices are “edge” qubits, and
are used to measure the parity of their neighbours. White vertices are “vertex” qubits. They are
initialized in the |+〉 state, and make up the poor man’s cat state after the edge qubits are measured.

It is worth mentioning that if we relax the requirement that our implementation be spatially
local, we can improve on the number of bits of d required to specify any bit of z. In particular,
applying Theorem 17 to a balanced binary tree gives an output string d with at most log n bits of d
required to specify any bit of z. This version of the problem would lead to slightly better parameters
in Theorem 3, but then our final problem would not longer be solved by a 2D quantum circuit and
would no longer reduce to the 2D HLF problem. Hence the construction illustrated in Figure 2 will
be sufficient for our purposes.

7Here spatially local means here that circuit may be implemented in hardware with the qubits placed on a 2D
grid and CNOT gates allowed only between neighbouring qubits.
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3.2 The Relaxed Parity Halving Problem

Having constructed a poor man’s cat state, a natural idea would be to try and use this state instead
of the cat state to solve the Parity Halving Problem. For example, we can feed the poor man’s cat
state into the quantum circuit (instead of a true cat state) and hope for the best. Unsurprisingly,
this does not solve the Parity Halving Problem.

However, we can define a new problem from this failed attempt, which has QNC0 circuits by
construction. We call this problem the Relaxed Parity Halving Problem, although we will see that
the precise definition of the problem depends on how the poor man’s cat state is constructed.

Theorem 18 (PHP circuit applied to a poor man’s cat state). The quantum circuit for PHPn
applied to the state |z〉+|z〉√

2
, where z ∈ {0, 1}n (instead of the cat state), and an input x ∈ {0, 1}n of

even parity, yields an output string y ∈ {0, 1}n such that

|y| ≡ 1

2
|x|+ 〈z, x〉 (mod 2), (23)

where 〈z, x〉 :=
∑

i∈[n] zi · xi. Note that this is the same condition as for PHPn (Problem 1) except
for the addition of the 〈z, x〉 term.

Proof. Let us apply the quantum circuit solving PHP (as depicted in Figure 1) to the poor man’s
cat state. We first apply a phase gate (S gate) to qubit i of the poor man’s cat state if xi = 1. This
yields the state

i〈z,x〉 |z〉+ i〈z̄,x〉 |z〉√
2

= i〈z,x〉 · |z〉+ i|x|−2〈z,x〉 |z〉√
2

= i〈z,x〉 · |z〉+ (−1)|x|/2−〈z,x〉 |z〉√
2

. (24)

Up to a global phase, which can be ignored, the state is 1√
2

(
|z〉+ (−1)|x|/2−〈z,x〉 |z̄〉

)
. The next stage

of the algorithm applies Hadamard gates to all input qubits. Thus we have

H⊗n

(
|z〉+ (−1)|x|/2−〈z,x〉 |z〉√

2

)
=

1√
2n+1

∑
y∈{0,1}n

(
(−1)〈y,z〉 + (−1)〈y,z̄〉(−1)|x|/2−〈z,x〉

)
|y〉 . (25)

On measuring this state in the computational basis, we get only those y whose coefficient is nonzero.
Hence we get a uniform distribution over all strings y satisfying 〈y, z〉 ≡ 〈y, z̄〉 + |x|/2 − 〈z, x〉
(mod 2) or equivalently,

|y| ≡ 1

2
|x|+ 〈z, x〉 (mod 2). (26)

We now define a new problem based on this observation.

Problem 2 (Relaxed Parity Halving Problem for graph G). Fix a connected graph G = (V,E).
Given an input x ∈ {0, 1}V promised to have even parity, the Relaxed Parity Halving Problem or
RPHP outputs y ∈ {0, 1}V and d ∈ {0, 1}E , such that there exists a z ∈ {0, 1}V with the property

∀(u, v) ∈ E, zu ⊕ zv = d(u,v), and (27)

|y| ≡ 1

2
|x|+ 〈z, x〉 (mod 2). (28)

Note that in the definition above, a string z satifying the first constraint exists if and only if the
parity of d along every cycle is 0. If there are no cycles, then there always exists a z. When z does
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exist, it is unique up to complement, which does not change the second condition in the problem
statement because 〈z, x〉 ≡ 〈z, x〉 (mod 2). To see this, recall that x has even parity, and hence
0 ≡ 〈1, x〉 ≡ 〈z, x〉+ 〈z, x〉 (mod 2).

To fully specify the problem, we need a family of graphs with |V | = n for infinitely many n. For
this paper, we are primarily interested in the 2D grid (so that the quantum circuit is specially local)
and some reasonable (say, diameter O(

√
n)) spanning tree of this graph. This gives us the Grid

Relaxed Parity Halving Problem below. We use a spanning tree rather than the grid graph itself
because deleting edges from G only makes the problem easier (since we can drop the corresponding
bits of the output string d), which makes our lower bounds stronger. Additionally, choosing a
spanning tree ensures that a string z satisfying the constraints of the problem always exists. It
turns out the upper bounds (i.e., QNC0 circuit we construct) can be easily modified to solve the
problem on the entire 2D grid without deleting edges.

Problem 3 (Grid Relaxed Parity Halving Problem). Consider the 2D grid of size
√
n×
√
n and fix

an n vertex spanning tree G = (V,E) of low diameter. For concreteness, fix the spanning tree which
takes the first row of edges and all columns (as depicted in Figure 2). Then the Grid Relaxed Parity
Halving Problem is the RPHP associated with G. That is, given x ∈ {0, 1}V , output y ∈ {0, 1}V
and d ∈ {0, 1}E such that

∀(u, v) ∈ E, zu ⊕ zv = d(u,v), and (29)

|y| ≡ 1

2
|x|+ 〈z, x〉 (mod 2). (30)

As discussed, we can use other graphs instead of the grid to define different variants of this
problem. For instance, a balanced binary tree has lower diameter, which leads to slightly better
parameters, but we use the grid to achieve a spatially local quantum circuit.

A path graph (sometimes called the line graph) is even simpler than the grid or tree. Unfortu-
nately, the Relaxed Parity Halving Problem corresponding to the path graph can be solved by an
NC0 circuit (see Footnote 5), which makes it unsuitable for proving a separation against NC0.

3.3 Quantum circuit and AC0 lower bound

In this section we establish Theorem 3, which states that Grid-RPHP can be solved in QNC0, but it
is average-case hard for AC0 circuits. We start by establishing the quantum upper bound.

Theorem 19 (Grid-RPHP is in QNC0). There exists a depth-5 spatially local QNC0 circuit that
exactly solves Grid-RPHP.

Proof. Let G = (V,E) be a O(
√
n)-diameter spanning tree of the

√
n×
√
n grid graph with |V | = n

and |E| = n − 1. This graph has degree ∆ = 3. As shown in Theorem 17, there is a spatially

local QNC0 circuit of depth ∆ + 2 to construct a random poor man’s cat state |z〉+|z〉√
2

(for some

z ∈ {0, 1}V ) and the associated string d ∈ {0, 1}E for graph G such that

d(u,v) = zu ⊕ zv (31)

for all (u, v) ∈ E. We run the QNC0 circuit for the Parity Halving Problem as per Theorem 18, and
get an output y ∈ {0, 1}V such that

|y| ≡ 1

2
|x|+ 〈z, x〉 (mod 2). (32)
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We have defined Grid-RPHP so that it is not necessary to compute z, just a vector d consistent
z, which we have from the construction of the poor man’s cat state. Hence, we return y and d
satisfying the condition, and we are done.

This result is not surprising, since the relaxed parity halving problem is a relaxation of the
parity halving problem explicitly constructed with the goal of having a QNC0 circuit.

The nontrivial direction of the argument is to show that AC0 cannot solve Grid-RPHP. We
accomplish this by exhibiting an NC0 reduction to Grid-RPHP from an instance of PHPn,m with
m = Θ(n3/2), which is still hard for AC0. Note that although our reduction is an NC0 reduction, it
cannot be carried out with a QNC0 circuit, so we are not showing that PHPn,m is in QNC0. While
this might seem mysterious, the reason is that NC0 has one ability that we have not given QNC0:
unbounded fan-out. Our reduction uses the fact that NC0 can make unlimited copies of the output
of a gate, whereas QNC0 cannot do so.

Theorem 20 (Grid-RPHP is not in AC0). There is an NC0 reduction from PHPn,O(n3/2) to

Grid-RPHPn. In particular, an AC0 circuit of size s ≤ exp
(
n1/2(d+1)

)
and depth d cannot solve

Grid-RPHPn with probability better than

1

2
+ exp

(
−n1/2−o(1)

/
O(log s)2d

)
(33)

on a uniformly random input with even parity.

Proof. Suppose we want to solve an instance of PHPn,O(n3/2), and we can solve Grid-RPHPn. Let

T = (V,E) be a O(
√
n)-diameter spanning tree of an n vertex grid graph.

Take the input x ∈ {0, 1}n from the PHP instance as input for a Grid-RPHPn instance, mapping
the n bits arbitrarily to vertices of the grid. Solving this Grid-RPHP instance gives us two outputs
y ∈ {0, 1}V and d ∈ {0, 1}E such that

|y| ≡ |x|/2 + 〈z, x〉 (mod 2), (34)

where z ∈ {0, 1}V satisfies the parity constraints in d. In particular, if we fix z1 = 0 then each zi is
the parity of all dj along a path from z1 to zi in the graph. Let Di ⊆ |E| denote the edges in the
path from z1 to zi. Then we can write

〈z, x〉 =
∑
i

zixi (35)

=
∑
i

∑
j∈Di

djxi. (36)

Since the diameter of the grid graph is O(
√
n), we may assume each Di has size at most O(

√
n).

Thus, we have expressed 〈z, x〉 as a sum of O(n3/2) terms of the form djxi. Note that any such
term djxi is easy to compute with a single AND gate, since we have the string x (our input) and
string d (the output of the Grid-RPHP circuit) available.

We now create O(n3/2) new output bits, one for each term djxi that appears in the sum above.
If we call this string of length O(n3/2) y′, then our final output for PHPn,O(n3/2) is the string y
(the output of the Grid-RPHP circuit) concatenated with the string y′. We claim this is a correct
solution to our PHPn,O(n3/2) instance. This is because |y′| = 〈z, x〉 by construction, and hence the
output to PHPn,O(n3/2), which is the concatenated string (y, y′), has parity

|y|+ |y′| ≡ |x|/2 + 〈z, x〉+ |y′| ≡ |x|/2 (mod 2), (37)
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which satisfies the output condition of PHPn,O(n3/2).

Note that using this reduction, if Grid-RPHP is solved by an AC0 circuit of size s and depth
d, then we get an AC0 circuit for PHPn,O(n3/2) of size s + O(n3/2) and depth d + 1. Applying

Theorem 15 gives the required bound assuming s ≤ exp
(
n1/2(d+1)

)
.

4 Parallel Grid-RPHP

A common way to decrease the success probability of a problem is to repeat it in parallel and
require success on every instance. We define the Parallel version of Grid-RPHP to simply be some
number of copies of Grid-RPHP where the correctness condition is that all outputs must be correct.
Obviously if there is a QNC0 circuit for Grid-RPHP then there is one for Parallel Grid-RPHP. So
the QNC0 upper bound in Theorem 4 is clearly true. The remainder of this section is devoted to
proving the lower bound in Theorem 4.

We need to show that Parallel Grid-RPHP becomes harder for AC0 circuits, but let us start
with showing that a parallel version of the Parity Halving Problem gets harder with more copies,
and then we will reduce Parallel Grid-RPHP to this. Note that although the copies of the game are
played in parallel, this does not represent a so-called “parallel repetition result” for Grid-RPHP
because different copies of the game are played by different players.

4.1 Parallel Parity Halving Problem

We now define the parallel version of PHP, with k copies of the problem.

Problem 4 (Parallel Parity Halving Problem, PHP⊗kn,m). Given k strings x1, . . . , xk ∈ {0, 1}n of
length n as input, promised that each xi has even parity, output k strings y1, . . . , yk ∈ {0, 1}m of
length m such that

|yi| ≡
1

2
|xi| (mod 2) (38)

for all 1 ≤ i ≤ k.

In other words, PHP⊗kn,m is simply k independent copies of the Parity Halving Problem, and the

players win if they solve all of the subgames simultaneously. Clearly a QNC0 circuit will have no
problem solving this, given k cat states.

Proposition 21. There is a depth-2, linear-size QNC0/qpoly circuit which solves PHP⊗kn,n with

certainty. More specifically, the quantum advice is k cat states of size n, | n〉⊗k.

The classical lower bound, however, will require some new ideas. It is not always easy to show
that solving many independent instances of a problem is as hard as solving all of them independently,
because of the possibility of correlating success in one instance with success in another. We use
Vazirani’s XOR Lemma [Vaz86] to attack this problem indirectly.

Lemma 22 (Vazirani’s XOR Lemma). Let D be a distribution on Fm2 and pS denote the parity
function on the set S ⊆ [m], defined as pS(x) = ⊕i∈S xi. If |Ex∈D[(−1)pS(x)]| ≤ ε for every non-
empty subset S ⊆ [m], then D is ε · 2m/2 close (in statistical distance) to the uniform distribution
over Fm2 .

Note that this bound is very intuitive when ε = 0. It says that if a distribution has the property
that on every subset of bits, if the induced distribution places equal mass on even and odd parity
strings, then this distribution must be the uniform distribution.

22



To get an effective bound in Lemma 22 we need to guarantee that ε < 2−m/2. The following
simple lemma handles bigger ε effectively, but only guarantees that the probability to sample the
all zeros input is small, as opposed to guaranteeing that the distribution is close to uniform.

Lemma 23 (Special case of the XOR Lemma). Let D be a distribution on Fm2 . If |Ex∈D[(−1)pS(x)]| ≤
ε for every non-empty subset S ⊆ [m], then, Prx∼D[x = 0m] ≤ 2−m + ε.

Proof. Fix y ∈ Fm2 . Let f : {0, 1}m → {0, 1} be the indicator function that checks whether a given
input is equal to 0m.

f(x) =
m∏
i=1

(−1)xi + 1

2
= 2−m

∑
S⊆[m]

(−1)pS(x) = 2−m + 2−m
∑

∅6=S⊆[m]

(−1)pS(x) (39)

Thus,

Pr
x∼D

[x = 0m] = Ex∼D[f(x)] ≤ 2−m + 2−m ·
∑

∅6=S⊆[m]

∣∣∣Ex∼D[(−1)pS(x)]
∣∣∣ ≤ 2−m + ε. (40)

The relevance of the XOR lemma is the following: Consider the task of solving k instances of
some problem with some class of circuits. Say we know that solving 1 instance of the problem is
hard, in the sense that no circuit from our class solves the problem with probability significantly
greater than half on some hard distribution over inputs. For our task with k instances we will
choose the input distribution to be this hard distribution on all instances independently. Now define
a single bit random variable for each instance that indicates whether a given circuit correctly solved
that instance on our chosen distribution. We know that for 1 instance this bit, the random variable
we defined, is essentially a coin flip. If we can prove that each bit is essentially a coin flip, and
furthermore that the XOR of any subset of bits is essentially a coin flip, then we will get that the
distribution is essentially uniform. Which means the probability of getting the all zeros output,
which corresponds to the circuit correctly solving all instances, is exponentially small.

Consider an instance of PHP⊗kn,m. If we solve all the instances correctly, then the parity of the
entire output of length km (all instances included) is the same as half the entire input’s Hamming
weight mod 2. This just follows from the definition of PHP. If we solve all but one instance correctly,
then this condition will not hold. In general, we fail on an even number of subgames if the parity of
the entire output is the same as half the entire input Hamming weight mod 2. But that is just the
usual condition for the Parity Halving Problem on an input of size kn and output of size km. The
only difference is that each instance additionally has an even-parity input. Thus we need a stronger
version of Theorem 8 which allows for parity constraints on the input. As in Theorem 8, we prove
this theorem in the language of non-local games.

Theorem 24. Consider the constrained Parity Halving Game on n players, in which the inputs of
d1 players are fixed, and the remaining n− d1 players are partitioned into d2 parts (of size ≥ 2) with
each part constrained to some fixed parity. The probability of winning this version of the problem is

Pr[Win] ≤ 1

2
+ 2−(n−d1)/2+d2 . (41)

Proof. The proof builds on Theorem 8. The main change is that we need a different function f , to
capture the different promise. Suppose for now that d1 = 0. Say the input bits are divided into sets
S1, . . . , Sd and constrained to have parity p1, . . . , pd ∈ {0, 1}. We define f such that

f(x) :=
1

2d

d∏
k=1

(
i
∑
Sk + (−1)pd(−i)

∑
Sk
)

(42)
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The idea is that 1
2

(
i
∑
Sk + (−i)

∑
Sk
)

is exactly Re(i
∑
Sk), so it is 0 if the parity on Sk is odd and

i
∑
Sk otherwise. Similarly, 1

2

(
i
∑
Sk − (−i)

∑
Sk
)

is 0 if the parity on Sk is even and i
∑
Sk otherwise.

Altogether, this means that f(x) is 0 if the promise is violated and i|x| otherwise.
On the other hand, if we expand f(x), we see that it is a convex combination of terms of the

form ±(±i)x1(±i)x2 · · · (±i)xn , and we have essentially already argued that∣∣∣∣∣∑
x

(−1)a+b·x(±i)x1 · · · (±i)xn
∣∣∣∣∣ ≤ 2n/2. (43)

It follows that the correlation of (−1)a+b·x and f(x), denoted by χ, is at most 2n/2

2n−d
= 2−n/2+d.

The probability of winning the game on a random input satisfying the promise is 1+χ
2 , or

Pr[Win] ≤ 1

2
+ 2−n/2+d−1. (44)

Plugging d1 and d2 back in, we have

Pr[Win] ≤ 1

2
+ 2−(n−d1)/2+d2−1, (45)

as desired.

With this result we can now show that the Parallel Parity Halving Problem is hard for AC0

circuits.

Theorem 25 (Parallel PHP is not in AC0). Let k = n and m ∈ [n, n2]. Any AC0 circuit F :
{0, 1}nk → {0, 1}mk with depth d and size s ≤ exp

(
(kn)1/2d

)
solves PHP⊗kn,m with probability at most

exp
(
n2/(m1+o(1) ·O(log s)2(d−1))

)
.

Proof. Much like Theorem 15, we assume F solves the problem and randomly restrict it. We pick
parameters q =

√
log(mk), p = 1/(O(log s)d−1 · (mk)1/q) that are similar to the ones picked in

Theorem 15, but adjusted to the input and output lengths. We apply p-random restrictions. Most
of the time this will simplify F to the point that F |ρ ∈ DT(pnk/4) ◦DT(q − 1)mk and ρ keeps at
least pnk/2 variables alive. However, with probability exp(−Ω(pnk)) the restriction will fail, and
we are forced to assume (pessimistically) that F |ρ solves the problem perfectly in these cases. This
probability of failure is negligible compared to exp

(
−n2/(m1+o(1) ·O(log s)d−1)

)
.

Let us assume the random restriction did its job, and now F |ρ is computed by common partial
decision tree followed by a forest of depth-q decision trees. By averaging argument, it suffices to
show that for each leaf λ in the partial decision tree, Fρ,λ solves the Parallel Parity Halving Problem
on the legal inputs consistent with (ρ, λ) with exponentially small probability.

For each leaf in the partial decision tree, λ, the circuit Fρ,λ has pnk/4 inputs, mk outputs,
and locality 2q. By Proposition 9, we may further restrict down to a subset of Ω((pnk)2/(mk22q))
inputs so that each output bit depends on at most one input bit. Finally, we restrict one more
time to eliminate subgames where fewer than say, half the average number of inputs (which is
Ω((pn)2/(m22q)) are unrestricted. Subgames with too few inputs may be too easy to win and
prevent us from using the XOR Lemma. This last step kills at most half of the input bits that were
alive before this step.

The remaining circuit, which we will call C, satisfies the following:

• C has Ω((pn)2k/(m22q)) unrestricted inputs.
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• Each output bit depends on at most one input bit.

• Each subgame is either fixed or has at least n′ = Ω((pn)2/(m22q)) unrestricted bits.

Note that there are at least ` = Ω(p2nk/(m22q)) = Ω(n′) remaining subgames. We shall show that
the probability to win the remaining subgames is at most 2−Ω(n′).

Define a distribution D on ` bit strings which runs the circuit C on a random input satisfying
the promise, and outputs a string of bits, w ∈ {0, 1}`, one bit for each of the remaining ` subgames,
which is 0 if the circuit wins the subgame and 1 if the circuit loses the subgame. We will argue that∣∣∣Ew∈D[(−1)pS(w)]

∣∣∣ ≤ 2−Ω(n′) (46)

for each non-empty S ⊆ [`]. That is, the parity of any non-empty subset of the games is exponentially
close to a coin flip. Once we show this, Lemma 23 applies and says that the probability to sample 0`

from D is at most 2−` + 2−Ω(n′) ≤ 2−Ω(n′). Thus, we win with probability 2−Ω(n′), which dominates
the exp(−Ω(pnk)) probability that the restriction fails.

All that remains to show is that for any non-empty subset of subgames, the circuit loses an even
number of subgames with probability exponentially close to 1

2 . Notice that losing an even number
of subgames is equivalent to winning a constrained Parity Halving game on the combined inputs
and outputs of the subgames, where the constraints ensure each subgame has even parity input.
For a subset S ⊆ [`] of the subgames, Theorem 24 says that the probability of winning is at most
1
2 + 2−Ω(|S|n′)+|S|, since there are at least |S|n′ inputs and at most |S| relevant constraints. This is

maximized when |S| = 1, where we get that the probability of winning is at most 1/2 + 2−Ω(n′).
To finish we note that n′ = Ω((pn)2/(m22q) ≥ n2/(m1+o(1) ·O(log s)2(d−1)).

4.2 Parallel Grid-RPHP

We are now ready to prove the lower bound for Parallel Grid-RPHP by reduction to Theorem 25.
As before, we define Grid-RPHP⊗kn to be the problem where we are given k copies of Grid-RPHPn,
and the correctness condition is that all copies are correct. We are now ready to show the lower
bound.

Theorem 26 (Parallel Grid-RPHP is not in AC0). Choose k = n. Any AC0 circuit of size s and
depth d for Grid-RPHP⊗kn succeeds with probability at most exp

(
−n1/2−o(1)/O(log s)2d

)
.

Proof. We use the reduction from PHPn,O(n3/2) to Grid-RPHPn (Theorem 20) on each of the k
instances. Note that the reduction does not change the inputs, and only manipulates the output bits.
Assume C is a circuit of size s and depth d for Grid-RPHP⊗kn that succeeds with probability ε (over
the uniform distribution over inputs that satisfy the promise). Then, there exists a circuit C ′ of size
poly(s) and depth d+ 1 that succeeds with probability at least ε on the same input distribution. By
Theorem 25, with m = O(n3/2), we get that

ε ≤ exp
(
−n1/2−o(1)

/
O(log s)2d

)
, (47)

which yields the bound stated in the theorem.

This implies the second part of Theorem 4 and completes its proof.
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5 Relation to Hidden Linear Function Problems

Finally, to establish our main result (Theorem 1), we have to show that Parallel Grid-RPHP
reduces to the 2D HLF problem. Since we have already established the required hardness for
Parallel Grid-RPHP in Theorem 4, we will then be done.

We start by recalling the general Hidden Linear Function problem (HLF) defined by Bravyi,
Gosset, and König [BGK18].

Problem 5 (Hidden Linear Function problem). We are given as input a symmetric matrix A ∈
{0, 1}n×n and vector b ∈ {0, 1, 2, 3}n. From these, define a quadratic form q : Fn2 → Z4 as q(u) :=
uTAu+ bTu (mod 4). Define Lq as follows:

Lq := {u ∈ Fn2 : ∀v ∈ Fn2 , q(u⊕ v) ≡ q(u) + q(v) (mod 4)}. (48)

Bravyi et al. [BGK18] show that (i) Lq is a linear subspace of Fn2 , (ii) for all u ∈ Lq, q(u) ∈ {0, 2},
and (iii) q is linear on Lq. Since q is linear on Lq, there exists a p ∈ Fn2 such that q(u) ≡ 2pTu
(mod 4) for all u ∈ Lq. The goal is to output any string p satisfying this condition.

Theorem 27. There is an NC0 reduction from RPHP on any graph G to the HLF problem.

Proof. As discussed, the Relaxed Parity Halving Problem is well defined for any connected graph
G = (V,E) (Problem 2). Given an even-parity vector x ∈ {0, 1}V , the goal is to output y ∈ {0, 1}V
and d ∈ {0, 1}E , such that the parity of d on any cycle is 0, and the unique (up to complement)
z ∈ {0, 1}V satisfying the parity conditions implied by d also satisfies

|y| ≡ |x|
2

+ zTx (mod 2). (49)

Note that if we take the complement of z instead, the condition does not change because (zT +zT )x ≡
1Tx ≡ |x| ≡ 0 (mod 2).

We now describe our reduction from RPHP on G = (V,E) to the HLF problem. In our
reduction, n = |V |+ |E|. We define the input A ∈ {0, 1}n×n to HLF from the graph G, and the

input b ∈ {0, 1, 2, 3}n to HLF from the input x ∈ {0, 1}V to RPHP. Let M ∈ F|V |×|E|2 be the
incidence matrix of the graph G. Then we define A and b as

A =

(
0 M
MT 0

)
, and b =

(
x
0

)
, (50)

where the 0 above refers to the all zeros matrix or vector as appropriate. The solution to this HLF
problem is some vector p, which we claim solves the Relaxed Parity Halving Problem with the

identification p =

(
y
d

)
. Let us verify this claim.

With this choice of A and b, the quadratic form q becomes

q

(
uV
uE

)
≡ uTVMuE + uTEM

TuV + xTuV (mod 4) (51)

≡ 2uTVMuE + uTV x (mod 4). (52)

Now note that since G is connected, M has rank |V | − 1. Specifically, the column span

{Mw : w ∈ F|E|2 } ⊆ F|V |2 is the set of all vectors of even parity. Since our input to RPHP, x ∈ F|V |2 ,

26



has even parity, there exists a w ∈ F|E|2 such that x = Mw. Let us show that the vector u is in Lq,
where

u :=

(
1
w

)
, (53)

and 1 is the all ones vector of size |V |. This means we want that for all v, q(u⊕ v)− q(u)− q(v) ≡ 0

(mod 4). Let us verify this for an arbitrary vector v =

(
vV
vE

)
using the following calculation

(performed modulo 4):

q

((
1
w

)
⊕
(
vV
vE

))
− q

(
1
w

)
− q

(
vV
vE

)
(54)

≡ 2(1⊕ vV )TM(w ⊕ vE) + (1⊕ vV )Tx− 2(1TMw)− 1Tx− 2vTVMvE − vTV x (55)

≡ 2(1 + vV )TM(w + vE) + (1⊕ vV )Tx− 2(1TMw)− 1Tx− 2vTVMvE − vTV x (56)

≡ 2(1TMvE) + 2vTVMw + (1⊕ vV )Tx− 1Tx− vTV x (57)

≡ 2vTV x+ (1⊕ vV )Tx− 1Tx− vTV x (58)

≡ 2vTV x+ (1− vV )Tx− 1Tx− vTV x (59)

≡ 0. (60)

In Eq. (56), we used that for a, b ∈ {0, 1}, we have 2(a⊕ b) ≡ 2(a+ b) (mod 4). In Eq. (58) we used
Mw ≡ x (mod 2) and that 1TM ≡ 0 (mod 2), since M is an incidence matrix and any column has
exactly two ones. In Eq. (59) we used that for any a ∈ {0, 1}, 1⊕ a = 1− a.

Since u ∈ Lq, and q is linear on Lq, we have

q(u) ≡ 2pTu ≡ 2

(
y
d

)T (
1
w

)
≡ 2(yT 1 + dTw) (mod 4). (61)

To prove that the output of HLF on our chosen inputs is a valid output for RPHP, we need
to verify the two conditions in Problem 2. The first condition requires d to be related to some
z ∈ {0, 1}V ; the entries of d are differences (along edges) of two entries in z. If such a z existed,
then we would have d = MT z. As noted after Problem 2, for z to exist it suffices to show that the
parity of d along any cycle is 0. In other words, we need to show that if c ∈ {0, 1}E is the indicator
vector of any cycle, then dT c ≡ 0 (mod 2).

To show this, note that for any cycle we have Mc ≡ 0 (mod 2). Since q( 0
c ) = 0, we also have

q

((
uV
uE

)
⊕
(

0
c

))
≡ 2uTVM(uE ⊕ c) + uTV x (mod 4) (62)

≡ 2uTVMuE + 2uTVMc+ uTV x (mod 4) (63)

≡ q
(
uV
uE

)
+ q

(
0
c

)
(mod 4). (64)

In other words, ( 0
c ) is in Lq for all cycles. Thus,

0 ≡ q
(

0
c

)
≡ 2

(
y
d

)T (
0
c

)
≡ 2dT c (mod 4), (65)

which implies that dT c ≡ 0 (mod 2).
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Now that we know d = MT z for some z, it follows that dTw = zTMw = zTx, and therefore
from Eq. (61) we have q(u) = 2(|y|+ zTx). On the other hand, we can also evaluate q(u) from the
quadratic form definition, Eq. (52), which gives

q(u) ≡ 2(1TMw) + 1Tx (mod 4) (66)

≡ 3|x| (mod 4) (67)

≡ |x| (mod 4), (68)

where the last equivalence follows from the fact that x has even parity.
Thus solving the HLF problem on our chosen inputs produces a solution such that 2|y|+2zTx ≡ |x|

(mod 4), which satisfies the second condition of Problem 2. Hence the outputs to HLF, y and d
(and implicitly z), satisfy the conditions of the Relaxed Parity Halving Problem.

The main problem studied in Bravyi, Gosset and König [BGK18] is actually a version of HLF on
an N ×N grid called the 2D Hidden Linear Function problem (2D HLF). More specifically, in 2D
HLF, the matrix A is supported only on the grid in the sense that Aij = 0 if there is no edge from
vertex i to vertex j on the 2D grid. The reduction in Theorem 27 roughly preserves the topology of
the graph, so it is not difficult to show a reduction from Relaxed Parity Halving on the 2D grid to
the 2D HLF.

Corollary 28. There is an NC0 reduction from Grid-RPHP to 2D HLF.

Proof. The plan is use the same reduction to HLF as above, and observe that the reduction actually
creates a 2D HLF instance. Obviously, RPHP on a grid starts from a grid graph. The reduction
creates a matrix with |V |+ |E| rows and columns from this graph on |V | vertices. We can think
of the reduction as transforming the graph by creating a new vertex for each edge, then splitting
each edge into two, both incident at the new vertex. The matrix A is then supported on this
transformed graph. Fortunately, the transformation takes the n× n grid graph to a subgraph of the
(2n− 1)× (2n− 1) grid graph. This means the HLF instance constructed when starting from a 2D
graph is actually a 2D HLF instance, which completes the proof.

Furthermore, we can solve multiple instances of Grid-RPHP by solving a single instance of 2D
HLF.

Lemma 29. Consider an instance of HLF with input A ∈ {0, 1}n×n and b ∈ {0, 1, 2, 3}n such that A
is block diagonal with blocks A1, . . . , Ak (all square matrices of various sizes), and the corresponding
division of b is b1, . . . , bk. Then any solution p to the instance (A, b) is a direct sum of solutions pi
to instances (Ai, bi) of HLF.

Proof. It suffices to prove the result for k = 2 blocks, since we can break up k blocks into two blocks
of size 1 and k − 1 and prove the claim by induction.

Now let u = (u1, u2). Then the block structure of A gives q(u) ≡ q1(u1) + q2(u2) (mod 4), where

q1(u1) := uT1 A1u1 + bT1 u1 (mod 4), and q2(u2) := uT2 A2u2 + bT2 u2 (mod 4). (69)

Suppose we have u = (u1, u2) ∈ Lq. By definition, for all v = (v1, v2) ∈ {0, 1}n we have

q(u1 ⊕ v1, u2 ⊕ v2) ≡ q(u1, u2) + q(v1, v2) (mod 4). (70)

By rearranging the terms, we have

q1(u1 ⊕ v1) ≡ q1(u1) + q1(v1) + q2(u2) + q2(v2)− q2(u2 ⊕ v2) (mod 4). (71)
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In particular, if v2 = 0 then for all v1 we have

q1(u1 ⊕ v1) ≡ q1(u1) + q1(v1) (mod 4), (72)

which proves u1 ∈ Lq1 . Similarly, u2 ∈ Lq2 , and so we have that Lq = Lq1 ⊕ Lq2 .
Finally, suppose p = (p1, p2) is a valid solution to HLF on input (A, b). For all u = (u1, u2) ∈ Lq

we have
q1(u1) + q2(u2) ≡ q(u) ≡ 2pTu ≡ 2pT1 u1 + 2pT2 u2 (mod 4). (73)

In particular, for all u1 ∈ Lq1 we have (u1, 0) ∈ Lq and hence

q1(u1) ≡ 2pT1 u1 (mod 4) (74)

for all u1 ∈ Lq1 . It follows that p1 is a solution to HLF on the instance (A1, b1), and (by symmetry)
p2 is a solution to HLF on the instance (A2, b2).

Conversely, if p1 and p2 are solutions to (A1, b1) and (A2, b2), then p = (p1, p2) is a solution to
(A, b) since

q(u) ≡ q1(u1) + q2(u2) ≡ 2pT1 u1 + 2pT2 u2 ≡ 2pTu (mod 4), (75)

and u ∈ Lq implies u1 ∈ Lq1 and u2 ∈ Lq2 .

Corollary 30. Parallel Grid-RPHP reduces to 2D HLF.

Proof. The parallel version of Grid-RPHP is just many instances of RPHP which we are expected to
solve simultaneously. If we reduce each instance to a 2D HLF problem, then combine the instances
as in the lemma above, then solving the combined HLF instance gives solutions to all the individual
HLF instances, and hence solutions for all the parallel Grid-RPHP instances.

6 Parity Bending Problem

We now move on to the Parity Bending Problem discussed in the introduction.

Problem 6 (Parity Bending Problem, PBPn). Given an input x ∈ {0, 1}n, output a string
y ∈ {0, 1}n such that

|y| ≡ 0 (mod 2) if |x| ≡ 0 (mod 3) and (76)

|y| ≡ 1 (mod 2) otherwise. (77)

Our goal is to prove a quantum advantage for QNC0/ circuits. Theorem 5 states our main
results about this problem.

Theorem 5 (formal). The Parity Bending Problem (PBPn) can be solved by a depth-2, linear-size
quantum circuit starting with the | n〉 state with probability at least 3/4 on any input. But there

exists an input distribution on which any AC0[2]/rpoly circuit of depth d and size at most exp
(
n

1
10d

)
only solves the problem with probability 1

2 + 1
nΩ(1) .

Most of this section is devoted to a proof of Theorem 5. We begin by introducing the quantum
circuit that solves this problem (Theorem 31) in Section 6.1, and then prove the classical lower
bound (Theorem 34) in Section 6.2. Finally, in Section 6.3 we establish Theorem 6, which shows
that a parallel version of the game can further separate the success probabilities of classical and
quantum circuits.
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6.1 Upper bounds

As in the previous section, the QNC0 circuit solving the Parity Bending Problem can be thought
of as an implementation of a quantum strategy for a cooperative non-local game. In the Parity
Bending Problem, the players are each given one bit of an n-bit string, and want to give an output
satisfying the same criterion as in Problem 6. It is known that a quantum strategy can win this
game with probability larger than classically possible, although even quantum players cannot achieve
probability 1 [BWHKN18]. We now describe the quantum strategy.

Theorem 31 (Quantum circuit for PBPn). There is a quantum strategy for the Parity Bending
Problem which wins with certainty on inputs with Hamming weight 0 (mod 3) and with probability
3/4 on any other input. For an n-player game, this strategy only requires an n-qubit cat state, | n〉.

Proof. The quantum strategy for this game is similar to the one for Problem 1 described in Theorem 7
and Figure 1, except that the controlled-S gates, which add a phase of i if both qubits are 1, are
replaced with controlled-Rz(2π/3) gates, which add a phase of e2πi/3 when both qubits are 1. We
define Rz(2π/3) to be the matrix

(
1 0
0 e2πi/3

)
.

We now describe the strategy in more detail. Each player starts with their input bit xi and
a single qubit of the | n〉 state. If their input bit is xi = 1, they apply a rotation Rz(2π/3) to
their qubit of the cat state, otherwise they do nothing. This is equivalent to applying a controlled-
Rz(2π/3) gate with xi as the control qubit and their qubit of the cat state as the target. Then they
apply a Hadamard gate to their qubit of the cat state and measure that qubit.

Given an input string x, after the controlled rotations and before the Hadamard gate, the cat
state has been transformed into

n⊗
j=0

(
Rz(2π/3)xj

) 1√
2

(
|0n〉+ |1n〉

)
=

1√
2

(
|0n〉+ exp

(
2πi|x|

3

)
|1n〉

)
. (78)

If |x| ≡ 0 (mod 3) this state is just the cat state. As noted in Section 2

H⊗n
(

1√
2

(
|0n〉+ |1n〉

))
= |Ψeven〉 , (79)

where |Ψeven〉 is a uniform superposition over all even parity n-bit strings. So we see the players
win the game with probability 1 on an input with Hamming weight 0 (mod 3).

If |x| ≡ 1 (mod 3) or |x| ≡ 2 (mod 3), the state after rotation and before the Hadamard gates
is given by

1√
2

(
|0n〉+ exp(±2πi/3) |1n〉

)
. (80)

Note that this state lives in the span of the states 1√
2

(
|0n〉+ |1n〉

)
and 1√

2

(
|0n〉 − |1n〉

)
, and that

H⊗k
(

1√
2

(
|0n〉 − |1n〉

))
= |Ψodd〉 , (81)

with |Ψodd〉 being the uniform superposition over odd parity n-bit strings. Then the players win the
game given input with Hamming weight 1 or 2 (mod 3) with probability exactly∣∣∣∣12(〈0n| − 〈1n|)(|0n〉+ exp(±2πi/3) |1n〉

)∣∣∣∣2 =
1

4
(2 + 2 cos(±2π/3)) =

3

4
. (82)

It is clear that the strategy described in Theorem 31 can be implemented by a QNC0/ circuit.
By the analysis given above it is also clear that this circuit succeeds at Parity Bending with worst
case probability 3/4, and probability 5/6 against inputs drawn from a uniform distribution.
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6.2 Lower bounds

The main tool used in this section is a reduction from the Parity Bending Problem to the Mod 3
problem. We begin with a formal definition of the Mod 3 problem.

Problem 7 (Mod 3). Given an input x ∈ {0, 1}n, output y ∈ {0, 1} such that y = 0 if |x| ≡ 0
(mod 3), and y = 1 otherwise.

For our purposes, the key feature of Mod 3 problem is that it is hard to solve for AC0[2] circuits,
as shown by Smolensky [Smo87]:

Theorem 32 (Mod 3 is not in AC0[2]). Any AC0[2] circuit of depth d that computes the Mod 3

function (Problem 7) must have size exp
(
Ω(n

1
2d )
)
.

From this worst-case lower bound it is not too hard to obtain an average-case lower bound.

Lemma 33 (Average-case lower bound for Mod 3). There exists an input distribution on which

any AC0[2]/rpoly circuit of depth d and size at most exp
(
n

1
10d

)
only solves the Mod 3 function

(Problem 7) with probability 1
2 + 1

nΩ(1) .

Proof. Toward a contradiction, assume that for all input distributions there exists an AC0[2]/rpoly

circuit of depth d and size exp
(
n

1
10d

)
that solves the Mod 3 problem with probability 1/2 + ε for

ε = 1/no(1).
Then by Yao’s minimax principle, there exists a probability distribution over AC0[2]/rpoly

circuits, or equivalently over AC0[2] circuits, that solves the Mod 3 problem with probability 1/2 + ε
on every input. By sampling O(1/ε2) AC0[2] circuits from this probability distribution and taking
the majority vote of their outcomes, we get a new AC0[2] circuit that solves the Mod 3 problem with
probability at least 0.99 on every input. Now 1/ε2 = no(1), and it is easy to construct a depth-d
circuit of size exp

(
mO(1/d)

)
to compute the majority of m variables [H̊as86]. Hence this majority

circuit has depth d and size exp
(
no(1/d)

)
, which doubles the depth and does not significantly increase

the size of our circuit.
Now we can amplify success probability 0.99 to 1− exp(−n) by again sampling O(n) circuits

that succeed with probability 0.99 and taking their majority vote. This majority vote can be
performed in AC0, since we only need to perform an approximate majority as constructed by Ajtai
and Ben-Or [ABO84].

Since this distribution over AC0[2] circuits fails with probability less than 2−n, there exists one
circuit in the distribution that works for all inputs. This yields an AC0[2] circuit of depth 2d+O(1)

and size exp
(
n

1
10d

)
computing Mod 3, which contradicts Theorem 32.

We can finally use this average-case bound to show our lower bound for the Parity Bending
Problem.

Theorem 34 (PBP is not in AC0[2]). There exists an input distribution on which any AC0[2]/rpoly

circuit of depth d and size at most exp
(
n

1
10d

)
only solves PBPn with probability 1

2 + 1
nΩ(1) .

Proof. Observe that any AC0[2] circuit which solves the Parity Bending Problem with some proba-
bility can be extended to one that solves the Mod 3 problem with the same probability by adding a
final parity gate over the output of the original circuit. The result then follows from Lemma 33.
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6.3 Parallel Parity Bending Problem

Now our goal is to establish Theorem 6, which strengthens the separation shown above. In this
section we will consider input and output strings over the ternary alphabet {0, 1, 2}. Since we
are talking about Boolean circuits manipulating these symbols, we actually mean that we encode
these trits in binary using some canonical encoding, e.g., {0 7→ 00, 1 7→ 01, 2 7→ 11}. For a vector
x ∈ {0, 1, 2}n we denote by |x| =

∑n
i=1 xi.

To simplify our lower bounds, we modify the Parity Bending Problem to accept inputs drawn
from {0, 1, 2}n when we move to the parallel version of the problem.

Problem 8 (k-Parallel Parity Bending Problem). Given inputs x1, . . . , xk with xi ∈ {0, 1, 2}n for
all i ∈ [k], produce outputs y1, . . . yk ∈ {0, 1}n such that yi satisfies:

|yi| ≡ 0 (mod 2) and |xi| ≡ 0 (mod 3) or (83)

|yi| ≡ 1 (mod 2) and |xi| 6≡ 0 (mod 3) (84)

for at least a 2
3 + 0.05 fraction of the i ∈ [k].

This problem is k copies of a problem very similar to PBP, except that the inputs are now in
{0, 1, 2} instead of being in {0, 1}. But the quantum algorithm described in Section 6.1 can be
easily modified to work in this case, by applying a controlled gate that applies the phase exp(2πi/3)
when the control and target are 11, and applies the phase exp(4πi/3) when the control and target
are 21. By using this strategy for each individual gate, we get a QNC0/qpoly circuit which solves
any given instance of the Parity Bending Problem with probability at least 3/4. Since the Parallel
Parity Bending Problem only requires 2/3 + 0.05 of the instances to be solved correctly, by using
this quantum strategy for each instance independently, the quantum circuit solves the Parallel
Parity Bending Problem with probability 1− o(1). This establishes the quantum upper bound in
Theorem 6.

We now show that this problem is hard for AC0[2]/rpoly circuits. We start by introducing a
related problem:

Problem 9 (3 Output Mod 3). Given an input x ∈ {0, 1, 2}n, output a trit y ∈ {0, 1, 2} such that
y ≡ |x| (mod 3).

As expected, an AC0[2] circuit cannot solve this problem. In fact, on the uniform distribution,
an AC0[2] circuit succeeds with probability close to 1/3, which is trivially achieved by a circuit that
just outputs 0. The easiest way to see this is by using random self-reducibility.

Lemma 35 (Worst case to average case). Suppose there is an AC0[2]/rpoly circuit C of size S and
depth d that solves Problem 9 on a uniformly random input with probability 1/3 + ε for some ε.
That is,

Pr
x∈{0,1,2}n

[C(x) ≡ |x| (mod 3)] =
1

3
+ ε. (85)

Then there exists an AC0[2]/rpoly circuit C ′ of depth d+O(1) and size S +O(n) such that for any
x ∈ {0, 1, 2}n,

Pr
[
C ′(x) ≡ |x| (mod 3)

]
=

1

3
+ ε, and (86)

Pr
[
C ′(x) ≡ |x|+ 1 (mod 3)

]
= Pr

[
C ′(x) ≡ |x|+ 2 (mod 3)

]
=

1

3
− ε

2
. (87)

32



Proof. Although AC0 circuits cannot compute |x| mod 3 for an input string x ∈ {0, 1, 2}n, it is
possible for an AC0 circuit to sample a uniformly random vector b ∈ {0, 1, 2}n and its Hamming
weight mod 3, |b| mod 3, as follows.

Sample random trits8 c ∈ {0, 1, 2}n and set bi = ci+1 − ci for all 1 ≤ i ≤ n − 1 and bn = −cn.
We claim that b is a uniformly random string over {0, 1, 2}n. To see this, observe that bn equals
a uniformly random trit, and furthermore for every i ∈ [n − 1], bi is uniformly random over
{0, 1, 2}, even conditioned on ci+1, . . . , cn, and therefore bi is also uniformly random conditioned on
bi+1, . . . , bn. It follows that b is a uniformly random string over {0, 1, 2}n. However, the advantage
of this method of producing a random string (as opposed to simply sampling a random string) is
that we know |b| since

|b| ≡
n∑
i=1

bi ≡
n−1∑
i=1

(ci+1 − ci)− cn ≡ −c1 (mod 3). (88)

Now we use a random self-reduction to construct the claimed circuit C ′. The circuit C ′ first
samples a random a ∈ {1,−1} and a random b ∈ {0, 1, 2}n with known Hamming weight |b|, as
described above. Then let C ′ output

C ′(x) :=
C(a · x+ b mod 3)− |b|

a
(mod 3). (89)

It is clear that |a · x+ b| ≡ a|x|+ |b| mod 3, and that a · x+ b is uniformly random regardless of a
and x, so we have

Pr
a,b

[C ′(x) ≡ |x|+ k (mod 3)] = Pr
a,b

[C(a · x+ b) ≡ a|x|+ |b|+ ak (mod 3)] (90)

= Pr
a,b

[C(a · x+ b) ≡ |a · x+ b|+ ak (mod 3)] (91)

= Pr
y∈{0,1,2}n,a

[C(y) ≡ |y|+ ak (mod 3)]. (92)

In particular, when k = 0 we have

Pr
a,b

[C ′(x) ≡ |x| (mod 3)] = Pr
y

[C(y) ≡ |y| (mod 3)] =
1

3
+ ε. (93)

When k 6= 0, we observe that ak 6= 0 is uniformly random and independent of y, so

Pr
[
C ′(x) ≡ |x|+ 1 (mod 3)

]
= Pr

[
C ′(x) ≡ |x|+ 2 (mod 3)

]
=

1

3
− ε

2
. (94)

Observe that the sampling circuit above is of constant depth and linear size. The modular
arithmetic performed in Eq. (89) can be performed by a constant-sized circuit. Overall this reduction
increases the depth by a constant and the size by O(n).

Lemma 36 (Average-case lower bound). An AC0[2]/rpoly circuit of depth d and size at most

exp
(
n

1
10d

)
solves Problem 9 on a uniform distribution with probability at most 1

3 + 1
nΩ(1) .

Proof. Let A be the circuit that solves Problem 9 on the uniform distribution with probability 1
3 + ε.

By the worst-case to average-case reduction in Lemma 35, we get an AC0[2]/rpoly circuit (of similar
size and depth) that succeeds with probability 1

3 + ε on every input, and outputs each wrong answer
with probability 1

3 −
ε
2 .

Construct a circuit for the Mod 3 Problem (Problem 7) such that on input x,

8Technically, an AC0 cannot sample a trit with probability exactly 1/3, but the probability can be made
exponentially close to 1/3.
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• with probability 1
4 , it outputs 0,

• with probability 3
4 , it outputs 0 if A(x) = 0 and 1 otherwise.

If |x| mod 3 = 0 then the circuit outputs 0 w.p. 1
4 + 3

4(1
3 + ε) = 1

2 + 3
4ε. If |x| mod 3 6= 0 then

the circuit outputs 1 w.p. 3
4(1

3 + ε + 1
3 −

ε
2) = 1

2 + 3
8ε. In other words, the circuit solves the

Mod 3 Problem with probability at least 1
2 + 3

8ε on arbitrary inputs. By Lemma 33, this implies
ε = 1

nΩ(1) .

From this we get the following corollary.

Corollary 37. Let C be an AC0[2]/rpoly circuit outputting a trit. For any fixed x ∈ {0, 1, 2}n, we
denote by C(x) the random variable giving the output of the randomized circuit C on input x. Then,
for all i ∈ {0, 1, 2}

1

3
− n−Ω(1) ≤ Pr

x∈{0,1,2}n

[
C(x)− |x| ≡ i (mod 3)

]
≤ 1

3
+ n−Ω(1). (95)

Proof. Since

2∑
i=0

Pr
[
C(x)− |x| ≡ i (mod 3)

]
= 1, (96)

it suffices to show

Pr
[
C(x)− |x| ≡ i (mod 3)

]
≤ 1

3
+ n−Ω(1) (97)

for i ∈ {0, 1, 2}. For i = 0 this claim is exactly the statement of Lemma 36. For i ∈ {1, 2} we note a
circuit satisfying

Pr
[
C(x)− |x| ≡ i (mod 3)

]
≥ 1

3
+ n−o(1) (98)

can be converted to one violating Lemma 36 by subtracting i from every output.

We now need an analog of Vazirani’s XOR Lemma for finite groups [Rao07, Lemma 4.2].

Lemma 38 (XOR lemma for finite abelian groups). Let X be a distribution on a finite abelian
group G such that |E [ψ(X)]| ≤ ε for every non-trivial character ψ. Then X is ε

√
|G| close (in

statistical distance) to the uniform distribution over G.

We now consider the parallel version of the previous problem and show that it is hard.

Problem 10 (k-Parallel 3 Output Mod 3). Given inputs x1, . . . , xk ∈ {0, 1, 2}n for all i ∈ [k],
output a vector ~y ∈ {0, 1, 2}k such that

yi ≡ |xi| (mod 3) (99)

for at least a 1
3 + 0.01 fraction of the i ∈ [k].

Theorem 39. There exists a k ∈ Θ(log n) for which any AC0[2]/rpoly circuit solves the k-Parallel
3 Output Mod 3 Problem (Problem 10) with probability at most n−Ω(1).
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Proof. Our proof is be similar to that of Theorem 6: we will first prove that solving the sum of any
subset of subgames is hard, and then apply Lemma 38 to deduce that winning more than 1/3 + 0.01
fraction of the games is hard.

Let C be an AC0[2]/rpoly circuit trying to solve Problem 10. Let y1, . . . , yk be its k output trits.
We consider the distribution X over k trits defined by

k⊗
i=1

|xi| − yi (mod 3) (100)

for a uniform input x ∈ {0, 1, 2}k. We shall show that the distribution X is close to the uniform
distribution over {0, 1, 2}k.

Let χa be a non-trivial character of Fk3. That is χa(z) = ω
∑k
i=1 aizi where ω is a third root of

unity, and a ∈ Fk3. To show that X is close to uniform it suffices to show that the expectation of
χa(X) is small for all non-zero vectors of coefficients a1, . . . , ak ∈ {0, 1, 2}.

Given a ∈ {0, 1, 2}k let S be the support of a, i.e., the set of indices on which ai 6= 0. Given
strings x1, . . . xk ∈ {0, 1, 2}n finding trits y1, . . . yk satisfying∑

i∈S
ai|xi| ≡

∑
i∈S

aiyi (mod 3) (101)

is at least as hard as solving the 3 Output Mod 3 Problem on the concatenated input (aixi)i∈S .
This is true since any circuit solving the former can be converted into a circuit solving the latter by
adding an depth-2 circuit with exp(|S|) ≤ exp(k) ≤ poly(n) gates that adds the |S| trits aiyi modulo
3. However, the concatenated input (aixi)i∈S is a uniform vector in {0, 1, 2}n|S|. Corollary 37 then
gives that ∑

i∈S
ai(|xi| − yi) (mod 3) (102)

has an `1 distance at most n−Ω(1) from the uniform distribution over {0, 1, 2}. Thus, |E[χa(X)]| ≤
nΩ(1).

Applying Lemma 38 with G = Zk3 and X the distribution of the random variables
⊗k

i=1 |xi| − yi
(mod 3) gives that X has `1 distance

n−Ω(1) ·
√

3k (103)

from the uniform distribution on {0, 1, 2}k.
To finish the proof, we note that by Chernoff’s bound, the probability of drawing a string from

the uniform distribution over {0, 1, 2}k with more than a 1
3 +0.01 fraction of its outputs 0 is bounded

by exp(−Ω(k)). Then we see the probability of drawing a string from X with more than 1
3 + 0.01

fraction of zeros is bounded above by

n−Ω(1) ·
√

3k + e−Ω(k) = n−Ω(1)+k/(2 log3(n)) + e−Ω(k). (104)

To complete the proof, we note there is some k ∈ Θ(log n) for which the above sum is bounded
above by n−Ω(1).

Theorem 40. There exists a k ∈ Θ(log n) for which an AC0[2]/rpoly circuit succeeds on the
k-Parallel Parity Bending Problem with probability at most n−Ω(1).
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Proof. We show a circuit solving the Parallel Parity Bending Problem can be reduced to one solving
Problem 10 with success probability close to 1

2 the original success probability.
This reduction is straightforward : given a solution y1, . . . yk to Problem 8 we convert to a

solution y′1, . . . , y
′
k to Problem 10 by setting y′i = 0 if |yi| = 0 (mod 2), and y′i equal to a random

choice of 1 or 2 if |yi| = 1 (mod 2). The expected number of successes is at least half the number of
successes in the original instance, since a success on input i with |xi| ≡ 0 (mod 3) remains a success
with probability 1, and a success on an input i with |xi| (mod 3) ∈ {1, 2} remains a success with
probability 1

2 . Concentrating around this value completes the proof.

This establishes the classical lower bound in Theorem 6.

Acknowledgements

We would like to thank Nicolas Delfosse, Aram Harrow, Anna Gál, Anand Natarajan, Benjamin
Rossman, and Emanuele Viola for very helpful discussions.

A Proof of the multi-switching lemma (Lemma 14)

We follow the notation that was set up by Rossman in [Ros17] and define the following classes of
Boolean functions. One difference is that we consider functions with multiple outputs {f : {0, 1}n →
{0, 1}m}, instead of {f : {0, 1}n → {0, 1}}.

• DT(k) is the class of depth-k decision trees with a single output bit.

• CKT(d; s1, s2, . . . , sd) denotes the class of depth-d AC0 circuits with si nodes at height i for
all i ∈ {1, . . . , d}. Note that these circuits compute functions with sd many output bits.

• CKT(d; s1, s2, . . . , sd) ◦ DT(k) is the class of circuits in CKT(d; s1, s2, . . . , sd) whose inputs
are labeled by decision trees in DT(k).

• DT(t) ◦ CKT(d; s1, s2, . . . , sd) ◦DT(k) is the class of depth-t decision trees, whose leaves are
labeled by elements of CKT(d; s1, . . . , sd) ◦ DT(k). (Note that these are functions with sd
output bits)

• DT(k)m is the class of m-tuples of depth-k decision trees. That is a function F ∈ DT(k)m is
a tuple of m functions F = (f1, . . . , fm) where each fi ∈ DT(k).

• DT(t) ◦DT(k)m is the class of depth-t decision trees, whose leaves are labeled by m-tuples of
depth-k decision trees, one per output bit.

Recall that DT(t) ◦ DT(k)m is the class of functions mapping {0, 1}n to {0, 1}m that can be
evaluated by adaptively querying at most t coordinates globally, after which each of the m output
bits can be evaluated by making at most k additional adaptive queries. Note that while the first t
queries are global, the last k queries could be different for each output bit.

The next lemma shows that under random restriction with high probability objects of the form
DT(·) ◦ CKT(d; . . .) ◦DT(·) reduce to objects of the form DT(·) ◦ CKT(d− 1; . . .) ◦DT(·), where
the depth of the circuit reduces by one. Applying this lemma for d iterations would reduce the
depth of the circuit to 1.
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Lemma 41 ([Ros17, Lemma 24]). Let d, t, `, k, s1, . . . , sd ∈ N, d ≥ 2, p ∈ (0, 1). If ` ≥ log(s1) + 1
and f ∈ DT(t− 1) ◦ CKT(d; s1, . . . , sd) ◦DT(k), then

Pr
ρ∼Rp

[f |ρ /∈ DT(t− 1) ◦ CKT(d− 1; s2, . . . , sd) ◦DT(`)] ≤ s1(200pk)t/2 . (105)

Lemma 42 (Multi-Switching Lemma [H̊as14], for this formulation see [Tal17, Theorem 40]). Let
m, k, q, t ∈ N, p ∈ (0, 1). If f ∈ CKT(1;m) ◦DT(k), then

Pr
ρ∼Rp

[f |ρ /∈ DT(t− 1) ◦DT(q − 1)m] ≤ m1+t/q · (25pk)t . (106)

Lemma 43 (Multiple output AC0 circuits under random restrictions). Let d, t, q, k, s1, . . . , sd−1 ∈ N,
p1, . . . , pd ∈ (0, 1). Let f ∈ CKT(d; s1, . . . , sd−1,m) with n inputs and m outputs. Let s =
s1 + . . .+ sd−1 +m. Let p = p1 · p2 · · · pd. Then

Pr
ρ∼Rp

[f |ρ /∈ DT(2t− 2) ◦DT(q − 1)m]

≤ s1 ·O(p1)t/2 +

(
d−1∑
i=2

si ·O(pi log s)t/2

)
+m1+t/q ·O(pd log s)t. (107)

Proof. Let sd = m for ease of notation. Let ` = dlog(s)e+ 1. We think of ρ ∼ Rp as a composition
of d random restrictions ρ1 ◦ . . . ◦ ρd where each ρi ∼ Rpi . For i = 1, . . . , d− 1 we let Ei be the event
defined by

Ei ⇔ f |ρ1◦···◦ρi ∈ DT(t− 1) ◦ CKT(d− i; si+1, . . . , sd) ◦DT(`), (108)

and denote by Ed the event that

Ed ⇔ f |ρ1◦...◦ρd ∈ DT(2t− 2) ◦DT(q − 1)m. (109)

We shall show that E1 ∧ . . . ∧ Ed happens with high probability. We start with the first event E1.
Since f ∈ CKT(d; s1, . . . ; sd), it also holds that

f ∈ DT(t− 1) ◦ CKT(d; s1, . . . , sd) ◦DT(1). (110)

Thus, we may apply Lemma 41 with k = 1 and get

Pr[¬E1] ≤ s1 ·O(p1)t/2. (111)

For i = 2, . . . , d− 1, using Lemma 41 again, we have

Pr[¬Ei|E1 ∧ . . . ∧ Ei−1] ≤ si ·O(pi · `)t. (112)

We are left with the last event – showing that Pr[¬Ed|E1 ∧ . . . ∧ Ed−1] is small. We condition on
ρ1, . . . , ρd−1 satisfying E1 ∧ . . . ∧ Ed−1, and denote by g = f |ρ1◦...◦ρd−1

. Under this conditioning, we
have that

g ∈ DT(t− 1) ◦ CKT(1;m) ◦DT(`). (113)

For each leaf λ of the partial decision tree of depth at most t− 1 for g, denote by gλ the function
g restricted by the partial assignment made along the path to λ. Note that for each leaf λ, the
function gλ is in CKT(1;m) ◦DT(`). By Lemma 42, for each leaf λ,

Pr[gλ|ρd /∈ DT(t− 1) ◦DT(q − 1)m] ≤ m1+t/q ·O(pd · `)t. (114)
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Since there are at most 2t−1 leaves, by union bound, the probability that there exists a leaf λ for
which the switching does not hold is at most

2t−1 ·m1+t/q ·O(pd · `)t . (115)

In the complement event, the function g|ρd = f |ρ1◦...◦ρd is in DT(t− 1) ◦DT(t− 1) ◦DT(q − 1)m

and thus Ed holds. Thus, we showed that

Pr[¬Ed|E1 ∧ . . . ∧ Ed−1] ≤ 2t−1 ·m1+t/q ·O(pd · `)t ≤ m1+t/q ·O(pd · `)t. (116)

Overall, we got that the probability that one of E1, . . . , Ed does not hold is

Pr[¬E1 ∨ . . . ∨ ¬Ed)] =
d∑
i=1

Pr[¬Ei|E1 ∧ . . . Ei−1] (117)

≤ s1 ·O(p1)t/2 +

(
d−1∑
i=2

si ·O(pi · `)t/2
)

+m1+t/q ·O(pd · `)t , (118)

as promised.

We are now ready to restate and prove Lemma 14. (Note that the formulation here is slightly
stronger than what we used in Section 2.4, as we replace 2t and q with 2t−2 and q−1, respectively.)

Lemma 44. Let f : {0, 1}n → {0, 1}m be an AC0 circuit of size s, depth d. Let p = 1/(m1/q ·
O(log s)d−1). Then

Pr
ρ∼Rp

[f |ρ /∈ DT(2t− 2) ◦DT(q − 1)m] ≤ s · 2−t. (119)

Proof. We apply Lemma 43 with p1 = 1/O(1) and p2 = . . . = pd−1 = 1/O(log s) and pd =
1/O(m1/q · log s).
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