
Beating the probabilistic lower bound on perfect hashing

Chaoping Xing∗ Chen Yuan†

Abstract

For an integer q > 2, a perfect q-hash code C is a block code over [q] := {1, . . . , q} of length
n in which every subset {c1, c2, . . . , cq} of q elements is separated, i.e., there exists i ∈ [n] such
that {proji(c1),proji(c2), . . . ,proji(cq)} = [q], where proji(cj) denotes the ith position of cj .
Finding the maximum size M(n, q) of perfect q-hash codes of length n, for given q and n, is
a fundamental problem in combinatorics, information theory, and computer science. In this
paper, we are interested in asymptotical behavior of this problem. More precisely speaking, we

will focus on the quantity Rq := lim supn→∞
log2 M(n,q)

n .
A well-known probabilistic argument shows an existence lower bound on Rq, namely Rq >

1
q−1 log2

(
1

1−q!/qq

)
[9, 11]. This is still the best-known lower bound till now except for the case

q = 3 for which Körner and Matron [12] found that the concatenation technique could lead to a
perfect 3-hash code beating this the probabilistic lower bound. The improvement on the lower
bound on R3 was discovered in 1988 and there has been no any progress on lower bound on Rq

for more than 30 years despite of some work on upper bounds on Rq. In this paper we show
that this probabilistic lower bound can be improved for q = 4, 8 and all odd integers between
3 and 25, and all sufficiently large q with q (mod 4) 6= 2. Our idea is based on a modified
concatenation which is different from the classical concatenation for which both the inner and
outer codes are separated. However, for our concatenation we do not require that the inner code
is a perfect q-hash code. This gives a more flexible choice of inner codes and hence we are able
to beat the probabilistic existence lower bound on Rq.

∗School of Electronics, Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai 200240,
China. Email:xingcp@sjtu.edu.cn
†Centrum Wiskunde & Informatica, Amsterdam, the Netherlands. Email:Chen.Yuan@cwi.nl

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 108 (2019)

1 Introduction

One of the most powerful tools to derive lower bounds in theoretical computer science and extremal
combinatorics is probabilistic method [1]. Roughly speaking, to prove the existence of an object of
a given size satisfying certain conditions, one shows that a random object of this size (maybe after
being slightly modified) has a positive probability to satisfy these conditions. In many problems
the lower bound given by this method is conjectured exact, at least asymptotically, and sometimes
one can prove it is indeed so. This means that optimal solutions to such problems are rather
common. On the other hand, when the probabilistic lower bound is not asymptotically exact,
optimal solutions tend to be rare and have some particular structure. So, from a theoretical point
of view, it is of great importance to know whether a problem belongs to one or the other of these two
classes. Some exceptional examples where the probabilistic lower bounds are not asymptotically
exact include the Gilbert-Varshamov bound in coding theory [15] and the probabilistic lower bound
on perfect hash codes [12]. In this paper, we study lower bounds on perfect hash codes and compare
them with the probabilistic lower bound.

A q-ary code C ⊆ [q]n is said to be a perfect q-hash code if for every subset of C of q elements,
there exists an coordinate where the q codewords in this subset have distinct values. The rate of a
perfect q-hash code is defined as RC = log2 |C|

n .

The existence of perfect q-hash code gives rise to a perfect q-hash family. To see this, let C be the
whole universe and the projection of each coordinate be a hash function. Then, for any q elements
of this universe, there exists a hash function mapping them to distinct value. Other application
of perfect q-hash code includes the zero-error list decoding on certain channel. A channel can be
thought of as a bipartite graph (V ;W ;E), where V is the set of channel inputs, W is the set of
channel outputs, and (w, v) ∈ E if on input v, the channel can output w. The q/(q − 1) channel
then is the channel with V = W = {0, 1, . . . , q − 1}, and (v, w) ∈ E if and only if v 6= w. If we
want to ensure that the receiver can identify a subset of at most q− 1 sequences that is guaranteed
to contain the transmitted sequence, one can communicate via n repeated uses of the channel. See
[8, 6] for more details.

In this paper, we only consider the asymptotic behavior of rates of perfect q-hash codes, namely,
we focus on the quantity Rq := lim supn→∞

log2 M(n,q)
n , where M(n, q) stands for the maximum size

of perfect q-hash codes of length n.

The study of Rq could be dated back to 80s. There are a few works dedicated to the upper

bound on Rq. Fredman and Komlós [9] showed a general upper bound: Rq 6 q!
qq−1 for all q > 2.

Arikan [2] improved this bound for q = 4, and then Dalai, Guruswami and Radhakrishnan [6]
further improved the upper bound on R4. Recently, Guruswami and Riazanov [10] discovered a
stronger bound for every q ≥ 4. Although there are some works towards tightening the upper
bound on Rq. There are a little work dedicated to lower bounds on Rq. A probabilistic argument

shows the existence of perfect q-hash code with rate Rq > 1
q−1 log2

(
1

1−q!/qq

)
[9, 11]. This is still the

best-known lower bound till now except for the case q = 3 for which Körner and Matron [12] found
that the concatenation technique could lead to a perfect 3-hash code beating this the probabilistic
lower bound. The improvement on the lower bound on R3 was discovered in 1988 and there has
been no any progress on lower bounds on Rq for more than 30 years. Körner and Matron’s idea is
to concatenate an outer code, an 9-ary 3-hash code and an inner code, a perfect 3-hash code with
size 9. They further posed an open problem whether there exist perfect q-hash code beating the

1

random argument for every q. In this paper, we provide a partial and affirmative answer to this
open problem. We show that there exists perfect q-hash code beating the random argument for all
sufficiently large q with q (mod 4) 6= 2. To complement this result, we also prove the existence of
perfect q-hash code that could beat random result for small q such as q = 4, 8 and all odd integers
q between 3 and 25 (in fact for many other odd integers between 27 and 155 (see Remark 4)). Our
computer search result together with asymptotical result suggests that our construction might beat
the the probabilistic lower bound for every integer q with q (mod 4) 6= 2.

The main technique of this paper is a modified concatenation. Unlike Körner and Matron’s
concatenation for which it is required that both inner and outer codes be separated, we abandon
this separated requirement on the inner code at a cost of an even stricter requirement on the outer
code. By relaxing the condition that the inner code is q-perfect hash code, we have more freedom
to construct the inner code. As a result, we are able to improve the lower bound on Rq.

Before explaining our technique in detail, let us recall the concatenation technique by Körner
and Matron. One first relies on the probabilistic argument to show the existence of an m-ary outer
code C1 of length n1 that is q-separated with q 6 m, i.e., for every q-element subset of C1 (a
q-element set is a set of cardinality q), there exists i ∈ {1, 2, . . . , n1} such that elements of this
q-subset are pairwise distinct at position i. Then they construct a perfect q-hash code C2 of length
n2 as an inner code. By concatenating C1 and C2 (this concatenation is slightly different form the
classical concatenation in coding theory (see Lemma 2.3 for detail)), one obtains a perfect q-hash
code of length n1n2.

In our concatenation, we make a trade-off between inner code and outer code by relaxing the
condition on the inner code and imposing a stricter condition on the outer code. We first take
a set A consisting of some q-element subsets of [m]. Then we use the probabilistic argument to
show existence of an m-ary outer code C1 such that, for every q-element subset {c1, c2, . . . , cq} of
C1, {proji(c1), proji(c2), . . . ,proji(cn1)} ∈ A, where proji(cj) stands for the ith coordinate of cj .
Note that Körner and Matron’s concatenation requires that {proji(c1),proji(c2), . . . ,proji(cn1)}
are pairwise distinct. Thus, we have a stricter condition on C1. If we could find a q-ary inner code
C2 such that there are at least |A| q-element subsets of C1 that are separated, concatenating these
two codes could be shown to be a perfect q-hash code. Now, it remains to look for suitable inner
code C2. One good candidate for the inner code is an MDS code. In this paper, we choose an
q-ary MDS code of length 3 and dimension 2 to be the inner code C2. To show improvement, we
have to estimate the number of separated q-element subsets of C2. We further reduce determining
the number of separated q-element subsets of C2 to determining the number of q-element subsets
of C2 in which all three positions are separated. It turns out that the latter problem is equivalent
to the following well-known combinatorial problem: determine the number sq of pairs (π1, π2) of
bijections [q]→ G such that π1 +π2 is a bijection as well, where [q] denotes the set {1, 2, . . . , q}. In
literature, there is an asymptotic result on sq for odd number q [14] which can be used to estimate
the number of separated q-element subsets of C2. As a result, we are able to improve Rq for large
odd q. Recently, this problem is further generalized to abelian group G with

∑
x∈G x = 0 [7].

Due to this generalization, we can also extend our result to improve Rq for every large q with q
(mod 4) 6= 2. When it comes to the case where q is small, our computer search reveals that other
codes could give a better lower bound although a [3, 2]-MDS code still leads to an improved lower
bound on Rq.

Our main result is a new lower bound valid for every integer q except q (mod 4) = 2.

2

Theorem 1.1. For every integer q with q (mod 4) 6= 2, there exists a perfect q-hash code over [q]
with rate R satisfying

R > − 1

3(q − 1)
log2

(
1− 3

q!

qq
+ 3

(q!)2

q2q
−
(

1√
e

+ o(1)

)
(q!)3

q3q−1

)
.

This rate outperforms the probabilistic lower bound, Rq > − 1
(q−1) log2(1 −

q!
qq), for all sufficiently

large q with q (mod 4) 6= 2.

On the other hand, for small integers q with q (mod 4) = 2 such as q = 6 and 10, our computer
search shows that our codes do not work well. This implies that we need other type of codes or
even other constructions in order to obtain improvement on Rq with q (mod 4) = 2.

The paper is organized as follows. In Section 2, we propose a new concatenation technique and
derive a lower bound on Rq in terms of the number of separated q-element subsets of the inner
code. In Section 3, we provide several candidates for the inner code of our concatenation technique
and estimate the number of separated q-element subsets for these candidates. By plugging this
number into the lower bound in Section 2, we manage to prove that the probabilistic lower bound
on Rq can be improved in many cases.

2 A-friendly codes and concatenation

2.1 Hash code

A set containing q elements is called a q-element set. Assume that m > q, then a q-element subset
{c1, c2, . . . , cq} of [m]N is called separated if there exists i ∈ [N] such that proji(c1),proji(c2), . . . ,proji(cq)
are pairwise distinct. Denote by Fq the finite field with q elements and let Zm := Z/mZ be a con-
gruence class of integers modulo m.

A subset C of [m]N is called an m-ary code of length N . For an integer q 6 m, an m-ary
code C of length N is called an m-ary q-hash code if every q-element subset of C is separated. In
particular, we say that C is a perfect q-hash code if m = q.

Let us generalize the notion of an m-ary q-hash code. Let
(
[m]
q

)
denote the collection of

all q-element subsets of [m]. Let A be a subset of
(
[m]
q

)
and let C be a code in [m]N . We

say that a q-element subset {c1, . . . , cq} of [m]N is A-friendly if there exists i ∈ [N] such that
{proji(c1),proji(c2), . . . ,proji(cq)} ∈ A. Otherwise, we call {c1, . . . , cq} an A-unfriendly subset. If
every q-element subset of C is A-friendly, we say that C is an A-friendly code. In particular, this
definition coincides with an m-ary q-hash code when A =

(
[m]
q

)
.

2.2 Random A-friendly codes

In this subsection, by applying a probabilistic argument, we show existence of A-friendly codes.
This is a generalization for random argument showing existence of perfect hash codes.

Lemma 2.1. Let A be a nonempty subset of
(
[m]
q

)
. Then there exists an m-ary A-friendly code C

of length N and size at least
⌈
M
3

⌉
as long as(
M

q

)(
1− q!|A|

mq

)N

≤ M

2q
(1)

3

Proof. We sample M codewords c1, . . . , cM uniformly at random in [m]N with replacement. The
number of collisions is negligible compared to M . To see this, let Xi,j be the 0, 1-random variable
such that Xi,j = 1 if ci = cj and Xi,j = 0 otherwise. It is clear P [Xi,j = 1] = m−N . It follows
that E[

∑
1≤i<j≤M Xi,j] =

(
M
2

)
m−N = o(M) due to the fact that M = o(mN). Next, we bound the

number of A-friendly q-element sets from these M codewords. Let us consider the q-element set
{c1, . . . , cq} with ci = (ci,1, . . . , ci,N). For any j ∈ [n], the probability that {c1,j , . . . , cq,j} ∈ A is
q!|A|
mq as ci,j is picked uniformly at random in [m]. It follows that the probability that {c1, . . . , cq} is

not A-friendly is (1− q!|A|
mq)N . There are at most

(
M
q

)
q-element sets from {c1, . . . , cM}. By union

bound, the expected number of A-unfriendly q-element sets is at most
(
M
q

) (
1− q!|A|

mq

)N
≤ M

2q .

Remove all the codewords that lie in any of these A-unfriendly q-element sets. Then, we remove
at most q × M

2q = M
2 codewords. According to our previous argument, there are o(M) collisions

among these M codewords. Remove these o(M) codewords and we obtain an A-friendly code of
size at least M

3 . The desired result follows.

Remark 1. Note that in [12], the set A is the collection of all q-element subsets of [m]. Thus, our
random argument can be viewed as a generalization of the argument in [12]. This generalization
allows us to relax the constraint on our inner code C1, i.e., C1 is not necessary a perfect q-hash
code, although we propose a stricter constraint on the outer code. Instead of requiring that C1 is
a perfect q-hash code, we only require that |A|/

(
m
q

)
fraction of q-element sets of C1 are separated.

If we choose m = q in Lemma 2.1, then |A| = 1. Thus, we obtain a random construction of
perfect q-hash codes.

Corollary 2.2. Let q > 2. Then there exists q-hash code of length N and size at least
⌈
M
3

⌉
as long

as (
M

q

)(
1− q!

qq

)N

≤ M

2q
. (2)

In particular, we have a random q-hash code with rate

R =
log2M

N
= − 1

q − 1
log2

(
1− q!

qq

)
+
O(1)

N
. (3)

Hence, we have a probabilistic lower bound

Rq >
1

q − 1
log2

(
1

1− q!/qq

)
. (4)

Proof. As
(
M
q

)
6 Mq

q! , the following inequality

M q

q!

(
1− q!

qq

)N

≤ M

2q
(5)

implies the inequality (2). Choose M to be the largest integer satisfying the inequality (5) and

consider the limit limN→∞
log2 M

N . The desired equality (3) follows.

4

2.3 A concatenation technique

Let C be a q-ary code of length n and size m. Denote by S(C) the collection of all q-element
subsets of C that are separated.

Lemma 2.3. Let C be a q-ary code of length n and size m. Then one has

Rq > −
1

(q − 1)n
log2

(
1− q!|S(C)|

mq

)
. (6)

Proof. Denote C by C2 and put n2 = n. Let π be any bijection from C2 to [m]. Define A :=⋃
{c1,...,cq}∈S(C){π(c1), . . . , π(cq)}. It is clear that A ⊆

(
[m]
q

)
and |A| = |S(C)|. Lemma 2.1 tells us

that there exists an m-ary A-friendly code C1 of length n1 with rate

R = − 1

(q − 1)
log2

(
1− q!|A|

mq

)
+
O(1)

n1
.

Let C be the concatenation of C1 with C2, i.e.,

C := {π−1(c) = (π−1(c1), π
−1(c2), . . . , π

−1(cn1)) : c = (c1, c2, . . . , cn1) ∈ C1}.

Clearly, the rate of C is R = − 1
n(q−1) log2(1−

q!|A|
mq) + O(1)

n1n2
. It remains to show that C is a perfect

q-hash code.

Choose a q-element subset {π−1(c1), π−1(c2), . . . , π−1(cq)} from C with {c1, c2, . . . , cq} be-
ing a q-element subset of C1. Since C1 is A-friendly, there exists i ∈ [N] such that {proji(c1),
proji(c2), . . . ,proji(cq)} ∈ A. This implies that {π−1(proji(c1)), . . . , π

−1(proji(cq))} ∈ S(C) and
thus {π−1(c1), π−1(c2), . . . , π−1(cq)} is separated. The desired result follows from the definition of
perfect q-hash codes.

Remark 2. Given a q-ary inner code C2 of length n, Lemma 2.3 tells us there must exist an outer
code whose concatenation with this inner code gives a perfect q-hash code with rate − 1

n(q−1) log2(1−
q!|S(C2)|

mq). That means we only need to focus on finding good inner codes C2 with large subset S(C2).
In what follows, when we talk about concatenation, we only specify the inner code. The outer code
is always given by Lemma 2.3.

3 Beating probabilistic lower bound

By Lemma 2.3, to have a good lower bound on Rq, one needs a find to a q-ary inner code C of
length n such that S(C) has large size for fixed q, n and size |C|. However, determining (or even
estimating) the size of S(C) for a given inner code C with dimension at least 2 seems very difficult.
In this section, we estimate the size of S(C) for some classes of codes and show that these inner
codes give lower bounds on Rq better than the probabilistic lower bound (4)

3.1 Lower bounds from linear codes

To overcome the problem of estimating the size of S(C), we need to resort to linearity and dual
distance of linear codes and narrow our target to linear codes with simple structure. In this
subsection, we investigate a promising candidate for the inner code.

5

Let us recall some facts on linear codes. Let q be a prime power and let C be a q-ary [n, k]-linear
code. A subset I of [n] of size k is called an information set of C if every codeword c ∈ C is uniquely
determined by cI , where cI is the projection of c at I. In other words, let G be a generator of C,
then a subset I of [n] of size k is an information set of C if and only if GI is a k × k invertible
matrix, where GI is the submatrix of G consisting of those columns of G indexed by i ∈ I.

Lemma 3.1. Let C be a q-ary [n, k]-linear code with dual distance d⊥. Then for any subset J of
[n] with |J | 6 d⊥ − 1, there exists an information set I such that J ⊆ I.

Proof. Let G be a generator of C. As C has dual distance d⊥, any d⊥−1 columns of G are linearly
independent. Thus, the submatrix GJ has rank |J |. Hence, one can find a subset I of [n] of size k
such that J ⊆ I and GI has rank k. The proof is completed.

Let q be a prime power and assume that there is a q-ary [n, k]-linear code C with dual distance
d⊥. For each i ∈ [n], define the set

Ai = {{c1, c2, . . . , cq} ⊆ C : {proji(c1)), . . . , (proji(cq))} = {0, . . . , q − 1}}.

Thus, we have S(C) = ∪ni=1Ai.

For any subset T of [n], we denote by AT the set ∩i∈TAi. Let Ai denote the number

Ai =
∑

T⊆[n],|T |=i

|AT |. (7)

Lemma 3.2. Let C be a q-ary [n, k]-linear code with dual distance d⊥. Then

|S(C)| =
d⊥−1∑
i=1

(−1)i−1
(
n

i

)
qq(k−i)(q!)i−1 +

n∑
i=d⊥

(−1)i−1Ai. (8)

Proof. First we claim that for any j ∈ [d⊥ − 1] and subset J of [n] with |J | = j, we have |AJ | =
qq(k−j−1)(q!)j−1.

By Lemma 3.1, we can choose an information set I ⊆ [n] that includes J . For any matrix M in

Fq×k
q , by the definition of the information set, there is a unique q-tuple (c1, c2, . . . , cq) such that

M =

c1
c2
...
cq

I

. (9)

It is clear that {c1, c2, . . . , cq} ∈ AJ if and only every column of MJ is a permutation of (0, . . . , q−1).
There are (q!)|J | = (q!)j ways to pick MJ and qq(|I|−|J |) = qq(k−j) ways to pick MI−J . This gives
(q!)jqq(k−j) different q-tuples (c1, c2, . . . , cq) with {c1, c2, . . . , cq} ∈ AJ . It follows that the number
of q-element sets in AJ is (q!)j−1qq(k−j).

By the inclusion-exclusion principle, we have

|S(C)| = |
n⋃

i=1

Ai| =
d⊥−1∑
i=1

(−1)i−1
(
n

i

)
qq(k−i)(q!)i−1 +

n∑
i=d⊥

(−1)i−1Ai.

6

By the equality (8), we have

|S(C)| =
n∑

i=1

(−1)i−1
(
n

i

)
qq(k−i)(q!)i−1 −

n∑
i=d⊥

(−1)i−1
(
n

i

)
qq(k−i)(q!)i−1 +

n∑
i=d⊥

(−1)i−1Ai

=
−qqk

q!qqn
(−qqn + (qq − q!)n)−

n∑
i=d⊥

(−1)i−1
(
n

i

)
qq(k−i)(q!)i−1 +

n∑
i=d⊥

(−1)i−1Ai

=
qqk

q!

(
1−

(
1− q!

qq

)n)
−

n∑
i=d⊥

(−1)i−1
(
n

i

)
qq(k−i)(q!)i−1 +

n∑
i=d⊥

(−1)i−1Ai.

Thus, we have

1− q!|S(C)|
qqk

=

(
1− q!

qq

)n

+

n∑
i=d⊥

(−1)i−1
(
n

i

)(
q!

qq

)i

− q!

qqk

n∑
i=d⊥

(−1)i−1Ai.

Hence, in order to beat the probabilistic lower bound, we need to verify the following inequality
for an inner code C = [n, k]q.

n∑
i=d⊥

(−1)i−1
(
n

i

)(
q!

qq

)i

<
q!

qqk

n∑
i=d⊥

(−1)i−1Ai (10)

Lemma 3.2 shows that computing |S(C)| is reduced to computing Ai for i = d⊥, d⊥ + 1, . . . , n.
However, if d⊥ is too far from n, we have to compute many Ai and this is rather difficult. The
simplest case is d⊥ = n where we need to compute only An. In this case the dimension k is at least
n− 1. Therefore, let us consider [n, n− 1] MDS codes. On the other hand, when C has dimension
n− 1, we do not require that q is a prime power. Precisely speaking, we have the following result.

Lemma 3.3. Let q > 2 be an integer and let G be an abelian group of order q. Define the q-ary
code C = {(x1, . . . , xn−1,

∑n−1
i=1 xi) : x1, . . . , xn−1 ∈ Zq}. Let An denote the cardinality of the set

{{c1, c2, . . . , cq} ⊆ C : {proji(c1)), . . . , (proji(cq))} = {0, . . . , q − 1}} for any i ∈ [n]}.

Then |S(C)| = qq(n−1)

q!

(
1−

(
1− q!

qq

)n)
− (−1)n−1q−q(q!)n−1 + (−1)n−1An.

Proof. One can show that in this case, we have Ai = qq(n−i−1)(q!)i−1 for any 1 6 i 6 n − 1. The
desired result follows from the same arguments as in Lemma 3.2.

Corollary 3.4. Let q > 2 be an integer and let G be an abelian group of order q. Let An be the
number given in Lemma 3.3. If

(−1)n−1An > (−1)n−1
(q!)n−1

qq
, (11)

Then there exist families of perfect q-hash code over Fq with rate better than the probabilistic lower
bound (4).

7

Proof. Let C be the q-ary code defined in Lemma 3.3. Then

1− q!|S(C)|
qq(n−1)

=

(
1− q!

qq

)n

+ (−1)n−1
(
q!

qq

)n

− (−1)n−1
q!

qq(n−1)
An <

(
1− q!

qq

)n

.

The desired result follows.

If C is the code of length 3 over Zq given in Lemma 3.3, i.e, C = {(x, y, x+y) : x, y ∈ Zq}, then
determining A3 given in Lemma 3.3 is actually reduced to the following well-known combinatorial
problem: determine the number sq of pairs (π1, π2) of bijections [q] → Zq such that π1 + π2 is a
bijection as well. The relation between A3 and sq is A3 =

sq
q! .

The number sq has been studied somewhat extensively, but under a different guise [3, 5, 4, 16,
14]. It is in general very difficult to determine the exact value of sq unless q is an even number
for which sq = 0. It has been conjectured in [16] that there exists two positive constant c1 and c2
such that cq1(q!)

2 < sq < cq2(q!)
2 for all odd q. Various upper bounds are given [14]. To beat the

probabilistic lower bound on Rq, we want to show sp > (q!
qq)2. That means, we are only interested

in the lower bounds on sq. A generic lower bound is sq > 3.246n×n! for all odd n. However, there
is still a very big gap between this lower bound and the aforementioned conjecture. On the other
hands, there are various algorithms to numerically approximate sn [13].

By taking exact value of sq for all odd q between 3 and 25 from [13], we obtain the following
result.

Corollary 3.5. There exists a family of perfect q-hash codes over Zq with rate better than the
probabilistic lower bound (4) for all odd q between 3 and 25.

Proof. By Corollary 3.4, it is sufficient to verify the inequality

sq
q!
>

(q!)2

qq
(12)

for all odd q between 3 and 25. Taking the values of sq from Table I of [13] gives the desired
claim.

Remark 3. For completeness, we list the values of A3 =
sq
q! and (q!)2

qq for odd q ∈ [3, 25] in Table 3.

We observe that the ratio A3 over (q!)2

qq grows slowly but monotonically. In fact, we will see that

this ratio is asymptotically equal to q√
e

in our following discussion.

Remark 4. In literatures, various algorithms were proposed to compute sq for large odd q. Using
these algorithms, for many odd q in the interval [27, 155], estimation on sq is given in [13]. One can
verify from these estimation that the probabilistic lower bound (4) is improved for all odd integers
q for which available values of sq are given in [13].

For even q, we have sq = 0. Therefore, we cannot use the codes defined in Lemma 3.3. Instead,
we can replace Zq by Fq if q is a prime power.

Corollary 3.6. There exists a family of perfect q-hash code over Fq with rate better than the
probabilistic lower bound (4) for q = 4, 8, 9. Furthermore, the lower bound on R9 given here is
better than that in Corollary 3.5 and the probabilistic lower bound.

8

Zq Z5 Z7 Z9 Z11 Z13 Z15

A3 15 133 2025 37851 1.03× 106 3.63× 107

(q!)2

qq 4.6 30.8 339.9 5584.6 1.28× 105 3.90× 106

Ratio 3.26 4.32 5.96 6.78 8.04 9.30

Zq Z17 Z19 Z21 Z23 Z25

A3 1.60× 109 8.76× 1010 5.77× 1012 4.52× 1014 4.16× 1016

(q!)2

qq 1.52 ∗ 108 7.47× 109 4.47× 1011 3.2× 1013 2.70× 1015

Ratio 10.53 11.71 12.93 14.12 15.4

Table 1: The comparison between A3 and (q!)2

qq for small odd q.

Proof. Let C be a code with the form

C = {(x, y, x+ y) : x, y ∈ Fq}.

Let A3 be defined in (7). With the help of computer search, we get the values A3 of C: 8 for code
over F4, 384 for code over F8 and 2241 for code over F9, respectively. We note the fact that A3

from code over F9 is 2241, while A3 from code over Z9 is 2025. It is straightforward to verify that

the inequality A3 >
(q!)2

qq is satisfied for q = 4, 8 and 9.

Remark 5. The lower bound on R3 given in [12] is R3 > 1
4 log2

9
5 . Let C be a ternary [4, 3]-MDS

code. The computer search shows that |S(C)| = 84. By Lemma 2.3, we also obtain the same lower
bound R3 > 1

4 log2
9
5 .

This remark indicates that q-ary MDS codes of larger length sometimes leads to a better lower
bound on Rq than q-ary MDS codes of length 3 and dimension 2. This is further confirmed by the
following example for q = 4.

Corollary 3.7. There exists a family of perfect 4-hash code over F4 with rate at least 0.049586.
This is better than both the lower bound given in Corollary 3.6 and the probabilistic lower bound.

Proof. Assume F4 = {0, 1, α, α+ 1}. Consider a [5, 2]-MDS code:

C = {(a, b, a+ b, aα+ b, a(α+ 1) + b) : a, b ∈ F4}.

By computer search, we find that there are 1100 out of
(
32
4

)
4-element subsets of C that are

separated. Plugging it parameters into Lemma 2.3, we obtain perfect 4-hash code with rate
0.049586.

For some odd integers q large than 25, there are also some lower bounds on sq [13]. By these
lower bounds, we can verify that the probabilistic lower bound on Rq are improved for odd integers
between 27 and 155. The computer search can only help to solve the small case. To lower bound
sq for large q, we have to look for a lower bound with rigorous mathematical proof. Fortunately,
a recent progress on asymptotic behavior of sq is given in [14]. Recall that there is a conjecture
saying that, for all odd q, the number sq lies in between cn1n!2 and cn2n!2 for some constants
c1, c2. This conjecture is recently confirmed in [14]. Moreover, they even close the gap by showing
c1 = c2 = 1√

e
+ o(1).

9

Proposition 3.8 ([14]). Let q be an odd integer. Then, the number sq is (1√
e

+ o(1)) q!3

qq−1 , and

hence A3 defined in Lemma 3.3 is (1√
e

+ o(1)) q!2

qq−1 .

Plugging A3 in Proposition 3.8 into (8) and (6) gives the following theorem.

Theorem 3.9. For every odd integer q, there exists perfect q-hash code over Zq with rate at least

R = − 1

3(q − 1)
log2

(
1− 3

q!

qq
+ 3

(q!)2

q2q
−
(

1√
e

+ o(1)

)
(q!)3

q3q−1

)
.

Moreover, for every sufficiently large odd q this rate is bigger than that given by the probabilistic
lower bound.

Proof. It remains to compare this rate with (3). It suffices to show that A3 >
(q!)2

qq . For large odd

q, this inequality is reduced to prove
(

1√
e

+ o(1)
)

(q!)3

q3q−1 >
(q!)3

q3q
. This holds as 1√

e
+ o(1) > 1

q for

sufficiently large q.

As sq = 0 for even q, we have to replace group Zq by other abelian groups of order q. Recently,
Eberhard [7] extends Proposition 3.8 to any abelian group G with

∑
x∈G x = 0 and size q, i.e.,

determine the number sG of pairs (π1, π2) of bijections [q]→ G such that π1 + π2 is a bijection as
well.

Proposition 3.10 ([7]). Let G be an abelian group with
∑

x∈G x = 0 and size q. Then, the number

sG is (1√
e

+ o(1)) q!3

qq−1 .

Theorem 3.11. For every integer q (mod 4) = 0, there exists perfect q-hash code with rate at least

R = − 1

3(q − 1)
log2

(
1− 3

q!

qq
+ 3

(q!)2

q2q
−
(

1√
e

+ o(1)

)
(q!)3

q3q−1

)
.

Moreover, for every sufficiently large q with q (mod 4) = 0, this rate is bigger than that given by
the probabilistic lower bound.

Proof. Since q (mod 4) = 0, let q = 2dr with an odd integer r and d ≥ 2. Let G = Zd
2 × Zr. It is

clear that G is an abelian group and
∑

x∈G x = 0. Define the code C := {(x, y, x+ y) : x, y ∈ G}.
Then, C is an MDS code with dimension 2 and length 3. It remains to bound A3. This is equivalent
to counting the pair of bijections (π1, π2) [q]→ G such that π1+π2 is a bijection as well. Proposition

3.10 says that the number A3 of C is sG
q! = (1√

e
+ o(1)) q!2

qq−1 . Plugging A3 into (8) and (6) gives the

desired result.

3.2 Lower bounds on R5 and R7

In previous subsection, we make use of linear codes C and estimate the size |S(C)| either numerically
or asymptotically. However, linear codes do not always give the best lower bound on Rq. In this
subsection we present a class of nonlinear inner code C2 where many q-element subsets are separated.

Lemma 3.12. Assume q is a prime. There exists a code C over Zq with length q and size 2q such
that |S(C)| = 2qq − 2(q − 1).

10

Proof. Let C1 = {c1 = (0, 1 . . . , q− 1), c2 = (1, 2 . . . q− 1, 0), . . . , cq = (q− 1, 0, . . . , q− 2)}, i.e., C1

consists of the codeword (0, 1 . . . , q− 1) and its ith shifts for i = 1, . . . , q− 1. Let C2 = {i · 1 : 0 6
i 6 q− 1}, where 1 stands for all-one vector of length q. Let C = C1∪C2. Obviously, C has length
q and size 2q. It remains to show that |S(C)| = 2qq − 2(q − 1).

We pick any 0 < i < q codewords c1, . . . , ci from C1. Denote by cj = (cj,1, . . . , cj,q) for
j ∈ [q]. For coordinate t ∈ [q], let Bt := {c1,t, c2,t, . . . , ci,t} be the collection of t-th components of
c1, . . . , ci. It is clear that |Bt| = i by observing that all codewords in C1 have distinct values on
each coordinate. Moreover, we will prove that B1, . . . , Bq are distinct if 0 < i < q. Assume not
and we have B1 = Ba for some a ∈ [q]. The structure of code C1 tells us that cj,a = cj,1 + a− 1 for
j = 1, . . . , i. This coupled with B1 = Ba implies that c1,1, c1,1 + a− 1 both belong to B1. Continue
this argument and we finally arrive at {c1,1, c1,1 + a− 1, . . . , c1,1 + (q − 1)(a− 1)} ⊆ B1. It is clear
that c1,1, c1,1 + a − 1, . . . , c1,1 + (q − 1)(a − 1) are distinct which contradicts our assumption that
|Bt| = i < q.

Now, we know that B1, . . . , Bq are distinct. For each set Bt = {c1,t, c2,t, . . . , ci,t}, we choose
a (q − i)-element set At := {i : i /∈ Bt} ⊆ C2. It is clear that c1, . . . , ci and the codewords in B
have distinct symbols on i-th coordinate. Moreover, for each value t, the set At is distinct due to
the fact that B1, . . . , Bq are distinct. That means, for any 0 < i < q-element set of C1, we could
obtain q distinct q-element sets of C that are separated. If i = 0 or i = q, it is clear that the only
q-element set that are separated is C1 or C2. Thus, the total number of q-element sets of C that
are separated is

∑q−1
i=1 q

(
q
i

)
+ 2 = 2qq − 2(q − 1).

Combined this construction with Lemma 2.3 gives following lower bounds on Rq for q = 5 and
7.

Corollary 3.13. One has R5 > 0.01452 and R7 > 0.001483. Furthermore, the lower bounds on
R5 and R7 given in this corollary are better than those in Corollary 3.5 and the probabilistic lower
bound.

Proof. Take the inner code to be the code in Lemma 3.12 for q = 5 and 7, respectively. The desired
result follows from Lemma 3.12 and 2.3.

Let us end this section by tabulating our best lower bound, denoted by Rnew, obtained in this
paper and the probabilistic lower bound denoted by Rran for some small q. We omit cases for
q ≥ 13.

q 4 5 7 8 9 11

Rnew 0.0495 0.01452 0.001483 4.95909× 10−4 1.689931× 10−4 2.01855746× 10−5

Rran 0.0473 0.01412 0.001476 4.95905× 10−4 1.689929× 10−4 2.01855739× 10−5

Table 2: Lower bounds

Acknowledgements

We are grateful to Venkat Guruswami who brought this topic to us. He gave a talk on his paper
[10] in our seminar when he was visiting Nanyang Technological University in 2018.

11

References

[1] Noga Alon and Joel H. Spencer. The Probabilistic Method, Third Edition. Wiley-Interscience
series in discrete mathematics and optimization. Wiley, 2008.

[2] Erdal Arikan. Upper bound on the zero-error list-coding capacity. Information Theory, IEEE
Transactions on, 40:1237 – 1240, 08 1994.

[3] Miklos Bona. Handbook of enumerative combinatorics. Discrete Mathematics and Its Appli-
cations. CRC Press, Hoboken, NJ, 2015.

[4] C. Cooper. A lower bound for the number of good permutations. Nat. Acad. Sci. Ukraine,
213:15–25, 2000.

[5] C. Cooper, R. Gilchrist, I. N. Kovalenko, and D. Novakovic. Estimation of the number of
“good” permutatio with applications to cryptography. Cybernetics and Systems Analysis,
35(5):688–693, Sep 1999.

[6] M. Dalai, V. G. Carnegie, and J. Radhakrishnan. An improved bound on the zero-error list-
decoding capacity of the 4/3 channel. In 2017 IEEE International Symposium on Information
Theory (ISIT), pages 1658–1662, June 2017.

[7] Sean Eberhard. More on additive triples of bijections. CoRR, abs/1704.02407, 2017.

[8] P. Elias. Zero error capacity under list decoding. IEEE Transactions on Information Theory,
34(5):1070–1074, Sep. 1988.

[9] M. Fredman and J. Komlós. On the size of separating systems and families of perfect hash
functions. SIAM Journal on Algebraic Discrete Methods, 5(1):61–68, 1984.

[10] Venkatesan Guruswami and Andrii Riazanov. Beating Fredman-Komlós for Perfect k-Hashing.
In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019),
volume 132, pages 92:1–92:14, Dagstuhl, Germany, 2019.

[11] J. Körner. Fredman-komlós bounds and information theory. SIAM Journal on Algebraic
Discrete Methods, pages 560–570, 1986.

[12] J. Körner and K. Marton. New bounds for perfect hashing via information theory. European
Journal of Combinatorics, 9(6):523–530, 1988.

[13] N Kuznetsov. Applying fast simulation to find the number of good permutations. Cybernetics
and Systems Analysis - CYBERN SYST ANAL-ENGL TR, 43:830–837, 11 2007.

[14] F. Manners S. Eberhard and R. Mrazović. Additive triples of bijections, or the toroidal
semiqueens problem. Journal of the European Mathematical Society, 21(2):441–463, 2019.

[15] M. A. Tsfasman, S. G. Vlădutx, and Th. Zink. Modular curves, shimura curves, and goppa
codes, better than varshamov-gilbert bound. Mathematische Nachrichten, 109(1):21–28, 1982.

[16] Ilan Vardi. Computational recreations in Mathematica. Addison Wesley, 1991.

12

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

