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Abstract

A sunflower with r petals is a collection of r sets so that the intersection of each
pair is equal to the intersection of all. Erdős and Rado proved the sunflower lemma:
for any fixed r, any family of sets of size w, with at least about ww sets, must contain
a sunflower. The famous sunflower conjecture is that the bound on the number of sets
can be improved to cw for some constant c. In this paper, we improve the bound to
about (logw)w. In fact, we prove the result for a robust notion of sunflowers, for which
the bound we obtain is tight up to lower order terms.

1 Introduction

Let X be a finite set. A set system F on X is a collection of subsets of X. We call F a
w-set system if each set in F has size at most w.
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†Research supported by NSF award 1614023.
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Definition 1.1 (Sunflower). A collection of sets S1, . . . , Sr is an r-sunflower if

Si ∩ Sj = S1 ∩ · · · ∩ Sr, ∀i 6= j.

We call K = S1 ∩ · · · ∩ Sr the kernel and S1 \K, . . . , Sr \K the petals of the sunflower.

Erdős and Rado [2] proved that large enough set systems must contain a sunflower.

Lemma 1.2 (Sunflower lemma [2]). Let r ≥ 3 and F be a w-set system of size |F| ≥
w! · (r − 1)w. Then F contains an r-sunflower.

Erdős and Rado conjectured in the same paper that the bound in Lemma 1.2 can be
improved. This is the famous sunflower conjecture.

Conjecture 1.3 (Sunflower conjecture [2]). Let r ≥ 3. There exists c(r) such that any w-set
system F of size |F| ≥ c(r)w contains an r-sunflower.

Consider a fixed r. The bound in Lemma 1.2 is of the order of (Θ(w))w. Despite nearly
60 years of research, the best known bounds towards the sunflower conjecture are still of
the order of ww(1−o(1)), even for r = 3. More precisely, Kostochka [5] proved that any w-
set system of size |F| ≥ cw! · (log log logw/ log logw)w must contain a 3-sunflower for some
absolute constant c.

Our main result improves upon this, getting closer towards the sunflower conjecture. We
prove that any w-set system of size (logw)w(1+o(1)) must contain a sunflower. More precisely,
we obtain the following bounds.

Theorem 1.4 (Main theorem, sunflowers). Let r ≥ 3. Any w-set system F of size |F| ≥
(logw)w(r · log logw)O(w) contains an r-sunflower.

2 Robust sunflowers

Our approach to find sunflowers is to find a more general type of structure. This was called
quasi-sunflower in [11] and approximate sunflower in [7]. However, as its existence implies
the existence of sunflowers, a better name is robust sunflower, which we adopt in this paper.

First, we define the notion of a satisfying set system. Given a finite set X, we denote
by U(X, p) the distribution of sets Y ⊂ X, where each element x ∈ X is included in Y
independently with probability p. We note that throughout the paper, we interpret “⊂” as
“subset or equal to”.

Definition 2.1 (Satisfying set system). Let 0 < α, β < 1. A set system F on X is (α, β)-
satisfying if

Pr
Y∼U(X,α)

[∃S ∈ F , S ⊂ Y ] > 1− β.

Given a set system F on X and a set T ⊂ X, the link of F at T is

FT = {S \ T : S ∈ F , T ⊂ S}.
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Definition 2.2 (Robust sunflower). Let 0 < α, β < 1, F be a set system, and let K =⋂
S∈F S be the common intersection of all sets in F . F is an (α, β)-robust sunflower if (i)

K /∈ F ; and (ii) FK is (α, β)-satisfying. We call K the kernel.

The connection between robust sunflowers and sunflowers was made in [7].

Lemma 2.3 ( [7]). If F is a (1/r, 1/r)-satisfying set system and ∅ /∈ F , then F contains r
pairwise disjoint sets.

For completeness, we include the proof.

Proof. Let F be a set system on X. Consider a random r-coloring of X, where each element
obtains any of the r colors with equal probability. Let Y1, . . . , Yr denote the color classes,
which are a random partition of X. For i = 1, . . . , r, let Ei denote the event that F contains
an i-monochromatic set, namely,

Ei = [∃S ∈ F , S ⊂ Yi] .

Note that Yi ∼ U(X, 1/r), and since we assume F is (1/r, 1/r)-satisfying, we have

Pr[Ei] > 1− 1/r.

By the union bound, with positive probability all E1, . . . , Er hold. In this case, F contains a
set which is i-monochromatic for each i = 1, . . . , r. Such sets must be pairwise disjoint.

Lemma 2.4 ( [7]). Any (1/r, 1/r)-robust sunflower contains an r-sunflower.

Proof. Let F be a (1/r, 1/r)-robust sunflower, and let K =
⋂
S∈F S be the common inter-

section of the sets in F . Note that by assumption, FK does not contain the empty set as
an element. Lemma 2.3 gives that FK contains r pairwise disjoint sets S1, . . . , Sr. Thus
S1 ∪K, . . . , Sr ∪K is an r-sunflower in F .

The proof of Theorem 1.4 follows from the following stronger theorem, by setting α =
β = 1/r and applying Lemma 2.4. The theorem verifies a conjecture raised in [7], and
answers a question of [11].

Theorem 2.5 (Main theorem, robust sunflowers). Let 0 < α, β < 1. Any w-set system F
of size |F| ≥ (logw)w · (log logw · log(1/β)/α)O(w) contains an (α, β)-robust sunflower.

We make a couple of notes. The bound in Theorem 2.5 for large w can be improved
to (logw)w · (log logw · log(1/β)/α)w(1+o(1)). Moreover, for robust sunflowers the bound of
(logw)w(1+o(1)) is sharp; it cannot be improved beyond (logw)w(1−o(1)). We give an example
demonstrating this in Lemma 4.1.

Below, we briefly describe a couple of applications of our techniques beyond the improved
bound for the sunflower lemma.
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2.1 Intersecting set systems

The study of how “spread out” an intersecting set system can be was investigated in [7],
motivated by its connection to the sunflower conjecture. Applying Lemma 2.3 for r = 2
shows that a (1/2, 1/2)-satisfying set system cannot be intersecting. Applying Theorem 5.5
for α = β = 1/2 gives the following bound, which proves a conjecture raised in [6, 7], and
may be of independent interest.

Theorem 2.6. Let F be an intersecting set system on n elements. Then there exists a
non-empty set T ⊂ [n] such that |FT | ≥ |F|/(log n)O(|T |).

We note that the intersecting condition cannot be replaced by the weaker condition that
most pairs of sets intersect. For example, if F is the family of all sets of size 10

√
n in [n],

then over 99% of the pairs of sets in F intersect. However, for any T ⊂ [n] it holds that
|FT | ≤ |F|/(0.1

√
n)|T |.

2.2 Improved bounds for Erdős-Szemerédi sunflowers

Erdős and Szemerédi [3] defined a weaker notion of sunflowers, where instead of bounding
the size of the sets in the family, they bound the size of the base set X. The following
conjecture follows from Conjecture 1.3.

Conjecture 2.7. For any r ≥ 3 there exists ε = ε(r) > 0 such that the following holds. Let
F be a set system on X, with |X| = n and |F| ≥ 2(1−ε)n. Then F contains an r-sunflower.

Erdős and Szemerédi showed that the sunflower lemma (Lemma 1.2) implies a weaker

version of Conjecture 2.7, where the bound needed on F is |F| ≥ 2n(1−cn
−1/2) for some

c = c(r) > 0. These are the best known bounds for r ≥ 4. For r = 3 Conjecture 2.7 is
known to be true - it follows from the resolution of the cap-set problem (see [9] for details).

Plugging in our improved bounds for the sunflower lemma to Erdős and Szemerédi frame-
work yields the following improved bounds for r ≥ 4.

Theorem 2.8. For any r ≥ 3 there exists c = c(r) such that the following holds. Let F
be a set system on X, with |X| = n and |F| ≥ 2n(1−c(logn)

−(1+o(1))). Then F contains an
r-sunflower.

3 Proof overview

In this section, we explain the high level ideas underlying the proof of Theorem 2.5. Our
framework builds upon the work of Lovett, Solomon and Zhang [7]. Their main idea was to
apply a structure vs. pseudo-randomness approach. However, the proof relied on a certain
conjecture on the level of pseudo-randomness needed for the argument to go through. Our
main technical result is a resolution of this conjecture.
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To be concrete, let’s consider the problem of finding a 3-sunflower, which corresponds in
our framework to finding a (1/3, 1/3)-robust sunflower (see Lemma 2.4). Given w ≥ 2, our
goal is to find a parameter κ = κ(w) such that any w-set system of size κw must contain a
(1/3, 1/3)-robust sunflower, and hence also a 3-sunflower.

Recall the definition of links: FT = {S \ T : S ∈ F , T ⊂ S}. We say that a w-set
system is κ-bounded if (i) |F| ≥ κw; and (ii) |FT | ≤ κw−|T | for all non-empty T (The actual
definition needed in the proof is bit more delicate, see Definition 5.1 for details).

Let F be a w-set system of size |F| ≥ κw. Then either F is κ-bounded, or otherwise
there is a link FT of size |FT | ≥ κw−|T |. In the latter case, we can focus on this link and
repeat the argument (this is the structured case).

So, from now on we consider only w-set systems which are κ-bounded (this is the pseudo-
random case). The main question is: how large should κ be to ensure that F is (1/3, 1/3)-
satisfying? The answer was conjectured to be (logw)O(1) in [6, 7]. If true, then it completes
the proof of Theorem 2.5. This is our main technical contribution. We show that in fact
κ = (logw)1+o(1) is sufficient (see Theorem 5.5). This is essentially tight, as in [7] it was
observed that κ ≥ (logw)1−o(1) is necessary.

We next explain how we obtain the bound on κ. Let F be a w-set system which is κ-
bounded. In [7] it was conjectured that there exists a (w/2)-set system F ′ that “covers” F :
for any set S ∈ F , there exists S ′ ∈ F ′ such that S ′ ⊂ S. Also, F ′ is κ′-bounded for κ′ ≈ κ.
If this conjecture is true, then it is sufficient to prove that F ′ is (1/3, 1/3)-satisfying, as
this would imply that F is also (1/3, 1/3)-satisfying (in the language of [7], this corresponds
to “upper bound compression for DNFs”. For more details on the connection to DNF
compression see [7, 8]).

What we show is that this conjecture is true with two modifications: we are allowed to
remove a small fraction of the sets in F , and also remove a small random fraction of the
elements in the base set X. To be more precise, sample W ∼ U(X, p) for p = O(1/ logw).
We show that with high probability over W , for most sets S ∈ F , there exists a set S ′ ∈ F
such that: (i) S ′ \W ⊂ S \W ; and (ii) |S ′ \W | ≤ w/2. Thus we can move to study the set
system F ′ comprised of the S ′ \W above, which “approximately covers” F . Note that F ′
is a (w/2)-set system which is κ′-bounded for κ′ ≈ κ. In the actual proof, we replace w/2
with (1− ε)w for a small ε to optimize the parameters. For details see Lemma 5.6.

Applying this “reduction step” iteratively t = logw times reduces the size w to constant,
where we can apply standard tools (Janson’s inequality, see Lemma 5.9). We get that if we
sample W1, . . . ,Wt ∼ U(X, p) (formally, they are disjoint, but we suppress this detail here),
then with high probability there exists S ∈ F such that S ⊂ W1∪· · ·∪Wt. Setting p ·t = 1/3
and the high probability to be 2/3 gives that F is (1/3, 1/3)-satisfying, as desired.

To conclude, let us comment on how we prove the reduction step (Lemma 5.6). The
main idea is to use an encoding lemma, inspired by Razborov’s proof of H̊astad’s switching
lemma [4,10]. Concretely, for W ⊂ X and S ∈ F , we say that the pair (W,S) is bad if there
is no S ′ ∈ F such that (i) S ′ \W ⊂ S \W ; and (ii) |S ′ \W | ≤ w/2. We show that bad pairs
can be efficiently encoded, crucially relying on the κ-boundedness condition. This allows to
bound the probability that for a random W there are many bad sets. The (w/2)-set system
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F ′ is then taken to be all those S ′ \W of size at most w/2.

4 Lower bound for robust sunflowers

In this section, we construct an example of a w-set system which does not contain a robust
sunflower, even though it has size (logw)w(1−o(1)). For concreteness we fix α = β = 1/2, but
the construction can be easily modified for any other constant values of α, β. We assume
that w is large enough.

Lemma 4.1. There exists a w-set system of size ((logw)/8)w−
√
w = (logw)w(1−o(1)) which

does not contain a (1/2, 1/2)-robust sunflower.

Let c ≥ 1 be determined later. Let X1, . . . , Xw be pairwise disjoint sets of size m =
log(w/c), and let X be their union. Let F̂ = X1 × · · · ×Xw be the w-set system containing

all sets which contain exactly one element from each of the Xi. We first argue that F̂ is not
satisfying.

Claim 4.2. For c ≥ 1, F̂ is not (1/2, 1/2)-satisfying.

Proof. Let Y ∼ U(X, 1/2). We analyze the probability that someXi is disjoint from Y , which

implies that no set in F̂ is contained in Y . The probability is 1−(1−2−m)w = 1−(1−c/w)w,
which is more than 1/2 for c ≥ 1.

Unfortunately, F̂ does contain a (1/2, 1/2)-robust sunflower with a large kernel. For

example, if T contains exactly one element from each of X1, . . . , Xw−1, then F̂T is isomorphic
to Xw, and in particular is (1/2, 1/2)-satisfying.

To overcome this, let ε > 0 be determined later, and choose F ⊂ F̂ to be a sub-set
system that satisfies:

|S ∩ S ′| ≤ (1− ε)w, ∀S, S ′ ∈ F , S 6= S ′.

For example, we can obtain F by a greedy procedure, each time choosing an element S in
F̂ and deleting all S ′ such that |S ∩ S ′| > (1 − ε)w. The number of such S ′ is at most(
w
εw

)
mεw ≤ 2wmεw. Hence we can obtain F of size |F| ≥ 2−wm(1−ε)w.

Claim 4.3. For c ≥ 1/ε, F does not contain a (1/2, 1/2)-robust sunflower.

Proof. Consider any set K ⊂ X. We need to prove that F does not contain a (1/2, 1/2)-
robust sunflower with kernel K. In particular, FK must contain at least two sets, which
implies that |K ∩ Xi| ≤ 1 for all i, and that in addition |K| ≤ (1 − ε)w. However, in this

case we claim even F̂K is not (1/2, 1/2)-satisfying.
To prove this, let I = {i : |K ∩ Xi| = 0} where |I| ≥ εw. Let Y ∼ U(X, 1/2). The

probability that there exists i ∈ I such that Y is disjoint from Xi is 1 − (1 − 2−m)|I| ≥
1− (1− c/w)εw which is more than 1/2 for c ≥ 1/ε.

To conclude the proof of Lemma 4.1 we optimize the parameters. Set c = 1/ε. We have
|F| ≥ 2−w(log(εw))(1−ε)w. Setting ε = 1/

√
w gives |F| ≥ ((logw)/8)w−

√
w = (logw)(1−o(1))w.

6



5 Proof of Theorem 2.5

We proceed to prove Theorem 2.5. The main idea is to apply a structure vs. pseudo-
randomness paradigm, following the approach outlined in [7]. Let F be a set system, and
let σ : F 7→ R≥0 be a weight function, assigning non-negative weights to sets in F . We
consider the pair (F , σ) as a weighted set system. For a subset F ′ ⊂ F we shorthand
σ(F ′) =

∑
S∈F ′ σ(S) the sum of the weights of the sets in F ′.

A weight profile is a vector s = (s0; s1, . . . , sk) where 1 ≥ s0 ≥ s1 ≥ · · · ≥ sk ≥ 0 are
rational numbers. We assume implicitly that si = 0 for all i > k.

Definition 5.1 (Bounded weighted set system). Let s = (s0; s1, . . . , sw) be a weight profile.
A weighted set system (F , σ) is s-bounded if

(i) σ(F) ≥ s0.

(ii) σ(FT ) ≤ s|T | for any link FT with non-empty T .

In particular, F is a w-set system.

Definition 5.2 (Bounded set system). Let s be a weight profile. A set system F is s-bounded
if there exists a weight function σ : F 7→ R+ such that (F , σ) is s-bounded.

We note that one may always normalize a weight profile to have s0 = 1. However, keeping
s0 as a free parameter helps to simplify some of the arguments later.

The main idea is to show that set systems which are s-bounded, for s appropriately
chosen, are “random looking” and in particular must be (α, β)-satisfying. This motivates
the following definition.

Definition 5.3 (Satisfying weight profile). Let 0 < α, β < 1. A weight profile s is (α, β)-
satisfying if any s-bounded set system is (α, β)-satisfying.

The following lemma underlies our proof of Theorem 2.5.

Lemma 5.4. Let 0 < α, β < 1 and w ≥ 2. Let κ > 1 be an integer such that the weight
profile (1;κ−1, . . . , κ−`) is (α, β)-satisfying for all ` = 1, . . . , w. Then any w-set system F of
size |F| > κw must contain an (α, β)-robust sunflower.

Proof. Let F be a w-set system on X of size |F| > κw. Let K ⊂ X be maximal so that
|FK | > κw−|K|. Note that we cannot have |K| = w, as in this case |FK | = 1 = κ0, and so
|K| ≤ w − 1. Let F ′ = FK \ {∅}. Note that |F ′| ≥ κw−|K|, where for any non-empty set
R disjoint from K, |F ′R| = |FK∪R| ≤ κw−|K|−|R|. Let σ(S) = 1 for S ∈ F ′. Then (F ′, σ) is
(1;κ−1, . . . , κ−`)-bounded for ` = w− |K|. Hence by our assumption, F ′ is (α, β)-satisfying,
and hence {S ∪K : S ∈ F ′} is an (α, β)-robust sunflower contained in F .

Lemma 5.4 motivates the following definition. For 0 < α, β < 1 and w ≥ 2, let κ(w, α, β)
be the least κ such that (1;κ−1, . . . , κ−w) is (α, β)-satisfying. Theorem 2.5 follows by com-
bining Lemma 5.4 with the following theorem, which bounds κ(w, α, β). We note that the
theorem proves a conjecture raised in [7].

Theorem 5.5. κ(w, α, β) ≤ logw · (log logw · log(1/β)/α)O(1).

We prove Theorem 5.5 in the remainder of this section.
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5.1 A reduction step

Let F be a w-set system on X, and fix w′ ≤ w. The main goal in this section is to reduce
F to a w′-set system F ′. We prove the following lemma in this section.

Lemma 5.6. Let s = (s0; s1, . . . , sw) be a weight profile, w′ ≤ w, δ > 0 and define s′ =
((1 − δ)s0; s1, . . . , sw′). Assume s′ is (α′, β′)-satisfying. Then for any p > 0, s is (α, β)-
satisfying for

α = p+ (1− p)α′, β = β′ +
(4/p)wsw′

δs0
.

Let W ⊂ X. Given a set S ∈ F , the pair (W,S) is said to be good if there exists a set
S ′ ∈ F (possibly with S ′ = S) such that

(i) S ′ \W ⊂ S \W .

(ii) |S ′ \W | ≤ w′.

If no such S ′ exists, we say that (W,S) is bad. Note that if it happens that W contains a set
in F (namely, S ′ ⊂ W for some S ′ ∈ F) then all pairs (W,S) are good.

Lemma 5.7. Let (F , σ) be an s = (s0; s1, . . . , sw)-bounded weighted set system on X. Let
W ⊂ X be a uniform subset of size |W | = p|X| and B(W ) = {S ∈ F : (W,S) is bad}. Then
EW [σ(B(W ))] ≤ (4/p)wsw′.

Proof. First, we simplify the setting a bit. We may assume by scaling σ and s by the same
factor that σ(S) = NS, S ∈ F are all integers. Let N =

∑
NS ≥ s0. We can identify (F , σ)

with the multi-set system F ′ = {S1, . . . , SN}, where every set S ∈ F is repeated NS times.
Observe that |F ′T | = σ(FT ) and that (W,S) is bad in F iff (W,Si) is bad in F ′ where Si = S
is any copy of S. Thus

σ(B(W )) = |{i : Si ∈ F ′ and (W,Si) is bad}|.

Assume that (W,Si) is bad in F ′. In particular, this means that W does not contain
any set in F . We describe (W,Si) with a small amount of information. Let |X| = n and
|W | = pn. We encode (W,Si) as follows:

1. The first piece of information is W ∪ Si. The number of options for this is

w∑
i=0

(
n

pn+ i

)
≤
(
n+ w

pn+ w

)
≤ p−w

(
n

pn

)
.

2. Given W ∪Si, let j be minimal such that Sj ⊂ W ∪Si; in particular, this is equivalent
to Sj \W ⊂ Si \W . There are fewer than 2w possibilities for A = Si ∩ Sj given that
we know Sj. As such, we will let A be the second piece of information.
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3. Note that as (W,Si) is bad, |A| = |Sj \W | > w′. So we know a subset A of Si of size
larger than w′. The number of the sets in F ′ which contain A is |F ′A| ≤ sw′ . The third
piece of information will be which one of these is Si.

4. Finally, once we have specified Si, we will specify Si ∩W , which is of course one of 2w

possible subsets of Si.

From these four pieces of information one can uniquely reconstruct (W,Si). Thus the
total number of bad pairs (W,Si) is bounded by

p−w
(
n

pn

)
· 2w · sw′ · 2w = (4/p)wsw′

(
n

pn

)
.

The number of sets W ⊂ X of size |W | = p|X| is
(
n
pn

)
. The lemma follows by taking

expectation over W .

The following is a corollary of Lemma 5.7, where we replace sampling W ⊂ X of size
|W | = p|X| with sampling W ∼ U(X, p).

Corollary 5.8. Let (F , σ) be an s = (s0; s1, . . . , sw)-bounded weighted set system on X. Let
W ∼ U(X, p) and B(W ) = {S ∈ F : (W,S) is bad}. Then EW [σ(B(W ))] ≤ (4/p)wsw′.

Proof. The proof is by a reduction to Lemma 5.7. Replace the base set X with a much
larger set X ′ (without changing F , so the new elements do not belong to any set in F). Let
W ′ ⊂ X ′ be a uniform set of size |W ′| = p|X ′|, and let W = W ′∩X. Then as X ′ gets bigger,
the distribution of W ′ approaches U(X, p), while the conclusion of the lemma depends only
on W .

Proof of Lemma 5.6. Let (F , σ) be an s = (s0; s1, . . . , sw)-bounded weighted set system on
X. Let W ∼ U(X, p). Say that W is δ-bad if σ(B(W )) ≥ δs0. By applying Corollary 5.8
and Markov’s inequality, we obtain that

Pr[W is δ-bad] ≤ E[σ(B(W ))]

δs0
≤ (4/p)wsw′

δs0
.

Fix W which is not δ-bad. By assumption, if (W,S) is good for S ∈ F , then there exists
π(S) = S ′ ∈ F (possibly with S ′ = S) such that (i) S ′ \W ⊂ S \W and (ii) |S ′ \W | ≤ w′.
Choose such π with the smallest possible image so that if S ′, S ′′ in the image of π are distinct
then S ′ \W 6= S ′′ \W .

Define a new weighted set system (F ′, σ′) on X ′ = X \W as follows:

F ′ = {π(S) \W : S ∈ F \ B(W )}, σ′(S ′ \W ) = σ(π−1(S ′)).

We claim that F ′ is σ′ = ((1 − δ)s0; s1, . . . , sw′)-bounded. To see that, note that σ′(F ′) =
σ(F \ B(W )) ≥ (1− δ)s0 and that for any set T ⊂ X ′,

σ′(F ′T ) =
∑
S′⊃T

σ′(S ′) =
∑

S:π(S)⊃T

σ(S) ≤
∑
S⊃T

σ(S) = σ(FT ) ≤ s|T |.
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Finally, all sets in F ′ have size at most w′. Thus, if we choose W ′ ∼ U(X ′, α′) then we
obtain that with probability more than 1 − β′, there exist S∗ ∈ F ′ such that S∗ ⊂ W ′.
Recall that S∗ = S \W for some S ∈ F . Thus S ⊂ W ∪W ′, which is distributed according
to U(p+ (1− p)α′).

5.2 A final step

In this section, we directly show that bounded set systems (with very good bounds) are
satisfying. A similar argument appears in [11].

Lemma 5.9. Let 0 < α, β < 1, w ≥ 2, and set κ = 4 ln 2 · w · log(1/β)/α. Let (F , σ) be
an s = (s0; s1, . . . , sw)-bounded weighted set system where si ≤ κ−is0. Then F is (α, β)-
satisfying.

Proof. We may assume without loss of generality that all sets in F have size exactly w,
by adding dummy elements to each set of size below w. Note that this new set system F ′
satisfies the assumption of the lemma, and that for any set W ⊂ X, if W contains a set
of F ′ then it also contains a set of F . We can also assume by scaling that NS = σ(S) for
S ∈ F are all integers. Let F ′ be the multi-set system, where each S ∈ F is repeated NS

times. Let N =
∑
NS ≥ s0 and denote F ′ = {S1, . . . , SN}.

The proof is by Janson’s inequality (see for example [1, Theorem 8.1.2]). Let W ∼
U(X,α) and Zi be the indicator variable for Si ⊂ W . Denote i ∼ j if Si, Sj intersect. Define

µ =
∑
i

E[Zi], ∆ =
∑
i∼j

E[ZiZj].

We have µ = Nαw. To compute ∆, let p` denote the fraction of pairs (i, j) such that
|Si ∩ Sj| = `. Then

∆ =
w∑
`=1

p`N
2α2w−`.

To bound p`, note that for each Si ∈ F , and any R ⊂ Si of size |R| = `, the number of
Sj ∈ F such that R ⊂ Sj is |FR| ≤ N/κ|R|. Thus we can bound

∆ ≤
w∑
`=1

(
w

`

)
κ−`N2α2w−` ≤

w∑
`=1

( w
ακ

)`
µ2.

Let κ = qw/α for q ≥ 2. Then ∆ ≤ 2µ2/q. Note that in addition ∆ ≥ µ, as we include in
particular the pairs (i, i) in ∆. Thus by Janson’s inequality,

Pr[∀i,Zi = 0] ≤ exp

{
− µ

2

2∆

}
≤ exp

{
−q

4

}
.

The lemma follows by setting q = 4 ln 2 · log(1/β).
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5.3 Putting everything together

We prove Theorem 5.5 in this subsection, where our goal is to bound κ(w, α, β). We will
apply Lemma 5.6 iteratively, until we decrease w enough to apply Lemma 5.9.

Let w ≥ 2 to be fixed throughout, and κ > 1 to be optimized later. We first in-
troduce some notation. For 0 < ∆ < 1, ` ≥ 1, let s(∆, `) = (1 − ∆;κ−1, . . . , κ−`) be a
weight profile. Let A(∆, `), B(∆, `) be bounds such that any s(∆, `)-bounded set system is
(A(∆, `), B(∆, `))-satisfying.

Lemma 5.6 applied to w′ ≥ w′′ and p, δ gives the bound

A(∆, w′) ≤ A(∆ + δ, w′′) + p,

B(∆, w′) ≤ B(∆ + δ, w′′) +
(4/p)w

′

δ(1−∆)κw′′
.

We apply this iteratively for some widths w0, . . . , wr. Set w0 = w and wi+1 = d(1− ε)wie
for some ε as long as wi > w∗ for some w∗. In particular, we need w∗ ≥ 1/ε to ensure
wi+1 < wi and we will optimize ε, w∗ later. The number of steps is thus r ≤ (u logw)/ε
for some constant u > 0. Let p1, . . . , pr and δ1, . . . , δr be the values we use for p, δ at each
iteration. To simplify the notation, let ∆i = δ1 + · · ·+ δi and ∆0 = 0. Furthermore, define

γi =
(4/pi)

wi−1

κwi
.

Then for i = 1, . . . , r, we have

A(∆i−1, wi−1) ≤ A(∆i, wi) + pi,

B(∆i−1, wi−1) ≤ B(∆i, wi) +
γi

δi(1−∆i−1)
.

Set pi = α/(2r) and δi =
√
γi. We will select the parameters so that ∆i ≤ 1/2 for all i.

Thus

A(0, w) ≤ A(∆r, wr) + α/2 ≤ A(1/2, w∗) + α/2,

B(0, w) ≤ B(∆r, wr) + 2∆r ≤ B(1/2, w∗) + 2∆r.

Plugging in the values for δi, we compute the sum

∆r =
r∑
i=1

δi ≤
r∑
i=1

√
(4/p)wi−1

κ(1−ε)wi−1
≤
∑
k≥w∗

(
u logw

εακ1−ε

)k/2
≤ 2

(
u logw

εακ1−ε

)w∗/2
,

assuming κ1−ε = Ω ((logw)/(εα)). More precisely, if we take κ so that

κ1−ε =
K · u logw

εα
, K ≥ 4,

then ∆r ≤ 2K−w
∗/2.
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Next, we apply Lemma 5.9 to bound A(1/2, w∗) ≤ α/2 and B(1/2, w∗) ≤ β/2.
We use the simple observation that (1/2;κ−1, . . . , κ−w

∗
)-bounded set systems are also

(1; (κ/2)−1, . . . , (κ/2)−w
∗
)-bounded, in which case we can apply Lemma 5.9 and obtain that

we need
κ ≥ Ω(w∗ · log(1/β)/α).

Let us now put the bounds together. We still have the freedom to choose ε > 0 and
w∗ ≥ 1/ε. To obtain A(0, w) ≤ α,B(0, w) ≤ β, we also need ∆r ≤ β/2 < 1/2. Thus all the
constraints are:

1. w∗ ≥ 1/ε;

2. κ1−ε = (K · u logw)/(εα) for some constant K ≥ 4;

3. κ ≥ Ω(w∗ log(1/β)/α);

4. 2K−w
∗/2 ≤ β/2⇐= w∗ ≥ Ω(log(1/β)/ logK).

Set ε = 1/ log logw and w∗ = c ·max {log logw, log(1/β)} for some c ≥ 1. Then we obtain
that the result holds whenever

κ ≥ c logw · (log logw · log(1/β)/α)c
′
.

For large enough w, the exponent can be taken to be c′ = 1 + o(1).
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