# Improved bounds for the sunflower lemma 

Ryan Alweiss<br>Department of Mathematics<br>Princeton University<br>alweiss@math.princeton.edu

Shachar Lovett*<br>Computer Science Department<br>University of California, San Diego<br>shachar.lovett@gmail.com

Kewen Wu<br>School of Electronics Engineering and Computer Science<br>Peking University, Beijing<br>shlw_kevin@pku.edu.cn

Jiapeng Zhang ${ }^{\dagger}$
Computer Science Department
University of California, San Diego
jpeng.zhang@gmail.com
August 23, 2019


#### Abstract

A sunflower with $r$ petals is a collection of $r$ sets so that the intersection of each pair is equal to the intersection of all. Erdős and Rado proved the sunflower lemma: for any fixed $r$, any family of sets of size $w$, with at least about $w^{w}$ sets, must contain a sunflower. The famous sunflower conjecture is that the bound on the number of sets can be improved to $c^{w}$ for some constant $c$. In this paper, we improve the bound to about $(\log w)^{w}$. In fact, we prove the result for a robust notion of sunflowers, for which the bound we obtain is tight up to lower order terms.


## 1 Introduction

Let $X$ be a finite set. A set system $\mathcal{F}$ on $X$ is a collection of subsets of $X$. We call $\mathcal{F}$ a $w$-set system if each set in $\mathcal{F}$ has size at most $w$.

[^0]Definition 1.1 (Sunflower). A collection of sets $S_{1}, \ldots, S_{r}$ is an $r$-sunflower if

$$
S_{i} \cap S_{j}=S_{1} \cap \cdots \cap S_{r}, \quad \forall i \neq j
$$

We call $K=S_{1} \cap \cdots \cap S_{r}$ the kernel and $S_{1} \backslash K, \ldots, S_{r} \backslash K$ the petals of the sunflower.
Erdős and Rado [2] proved that large enough set systems must contain a sunflower.
Lemma 1.2 (Sunflower lemma [2]). Let $r \geq 3$ and $\mathcal{F}$ be a $w$-set system of size $|\mathcal{F}| \geq$ $w!\cdot(r-1)^{w}$. Then $\mathcal{F}$ contains an $r$-sunflower.

Erdős and Rado conjectured in the same paper that the bound in Lemma 1.2 can be improved. This is the famous sunflower conjecture.

Conjecture 1.3 (Sunflower conjecture [2]). Let $r \geq 3$. There exists $c(r)$ such that any w-set system $\mathcal{F}$ of size $|\mathcal{F}| \geq c(r)^{w}$ contains an $r$-sunflower.

Consider a fixed $r$. The bound in Lemma 1.2 is of the order of $(\Theta(w))^{w}$. Despite nearly 60 years of research, the best known bounds towards the sunflower conjecture are still of the order of $w^{w(1-o(1))}$, even for $r=3$. More precisely, Kostochka [5] proved that any $w$ set system of size $|\mathcal{F}| \geq c w!\cdot(\log \log \log w / \log \log w)^{w}$ must contain a 3 -sunflower for some absolute constant $c$.

Our main result improves upon this, getting closer towards the sunflower conjecture. We prove that any $w$-set system of size $(\log w)^{w(1+o(1))}$ must contain a sunflower. More precisely, we obtain the following bounds.

Theorem 1.4 (Main theorem, sunflowers). Let $r \geq 3$. Any $w$-set system $\mathcal{F}$ of size $|\mathcal{F}| \geq$ $(\log w)^{w}(r \cdot \log \log w)^{O(w)}$ contains an $r$-sunflower.

## 2 Robust sunflowers

Our approach to find sunflowers is to find a more general type of structure. This was called quasi-sunflower in [11] and approximate sunflower in [7]. However, as its existence implies the existence of sunflowers, a better name is robust sunflower, which we adopt in this paper.

First, we define the notion of a satisfying set system. Given a finite set $X$, we denote by $\mathcal{U}(X, p)$ the distribution of sets $Y \subset X$, where each element $x \in X$ is included in $Y$ independently with probability $p$. We note that throughout the paper, we interpret " $\subset$ " as "subset or equal to".

Definition 2.1 (Satisfying set system). Let $0<\alpha, \beta<1$. A set system $\mathcal{F}$ on $X$ is $(\alpha, \beta)$ satisfying if

$$
\operatorname{Pr}_{Y \sim \mathcal{U}(X, \alpha)}[\exists S \in \mathcal{F}, S \subset Y]>1-\beta .
$$

Given a set system $\mathcal{F}$ on $X$ and a set $T \subset X$, the link of $\mathcal{F}$ at $T$ is

$$
\mathcal{F}_{T}=\{S \backslash T: S \in \mathcal{F}, T \subset S\}
$$

Definition 2.2 (Robust sunflower). Let $0<\alpha, \beta<1, \mathcal{F}$ be a set system, and let $K=$ $\bigcap_{S \in \mathcal{F}} S$ be the common intersection of all sets in $\mathcal{F} . \mathcal{F}$ is an $(\alpha, \beta)$-robust sunflower if (i) $K \notin \mathcal{F}$; and (ii) $\mathcal{F}_{K}$ is $(\alpha, \beta)$-satisfying. We call $K$ the kernel.

The connection between robust sunflowers and sunflowers was made in [7].
Lemma 2.3 ( [7]). If $\mathcal{F}$ is a $(1 / r, 1 / r)$-satisfying set system and $\emptyset \notin \mathcal{F}$, then $\mathcal{F}$ contains $r$ pairwise disjoint sets.

For completeness, we include the proof.
Proof. Let $\mathcal{F}$ be a set system on $X$. Consider a random $r$-coloring of $X$, where each element obtains any of the $r$ colors with equal probability. Let $Y_{1}, \ldots, Y_{r}$ denote the color classes, which are a random partition of $X$. For $i=1, \ldots, r$, let $\mathcal{E}_{i}$ denote the event that $\mathcal{F}$ contains an $i$-monochromatic set, namely,

$$
\mathcal{E}_{i}=\left[\exists S \in \mathcal{F}, S \subset Y_{i}\right]
$$

Note that $Y_{i} \sim \mathcal{U}(X, 1 / r)$, and since we assume $\mathcal{F}$ is $(1 / r, 1 / r)$-satisfying, we have

$$
\operatorname{Pr}\left[\mathcal{E}_{i}\right]>1-1 / r .
$$

By the union bound, with positive probability all $\mathcal{E}_{1}, \ldots, \mathcal{E}_{r}$ hold. In this case, $\mathcal{F}$ contains a set which is $i$-monochromatic for each $i=1, \ldots, r$. Such sets must be pairwise disjoint.

Lemma 2.4 ( [7]). Any ( $1 / r, 1 / r$ )-robust sunflower contains an $r$-sunflower.
Proof. Let $\mathcal{F}$ be a $(1 / r, 1 / r)$-robust sunflower, and let $K=\bigcap_{S \in \mathcal{F}} S$ be the common intersection of the sets in $\mathcal{F}$. Note that by assumption, $\mathcal{F}_{K}$ does not contain the empty set as an element. Lemma 2.3 gives that $\mathcal{F}_{K}$ contains $r$ pairwise disjoint sets $S_{1}, \ldots, S_{r}$. Thus $S_{1} \cup K, \ldots, S_{r} \cup K$ is an $r$-sunflower in $\mathcal{F}$.

The proof of Theorem 1.4 follows from the following stronger theorem, by setting $\alpha=$ $\beta=1 / r$ and applying Lemma 2.4. The theorem verifies a conjecture raised in [7], and answers a question of [11].

Theorem 2.5 (Main theorem, robust sunflowers). Let $0<\alpha, \beta<1$. Any w-set system $\mathcal{F}$ of size $|\mathcal{F}| \geq(\log w)^{w} \cdot(\log \log w \cdot \log (1 / \beta) / \alpha)^{O(w)}$ contains an $(\alpha, \beta)$-robust sunflower.

We make a couple of notes. The bound in Theorem 2.5 for large $w$ can be improved to $(\log w)^{w} \cdot(\log \log w \cdot \log (1 / \beta) / \alpha)^{w(1+o(1))}$. Moreover, for robust sunflowers the bound of $(\log w)^{w(1+o(1))}$ is sharp; it cannot be improved beyond $(\log w)^{w(1-o(1))}$. We give an example demonstrating this in Lemma 4.1.

Below, we briefly describe a couple of applications of our techniques beyond the improved bound for the sunflower lemma.

### 2.1 Intersecting set systems

The study of how "spread out" an intersecting set system can be was investigated in [7], motivated by its connection to the sunflower conjecture. Applying Lemma 2.3 for $r=2$ shows that a ( $1 / 2,1 / 2$ )-satisfying set system cannot be intersecting. Applying Theorem 5.5 for $\alpha=\beta=1 / 2$ gives the following bound, which proves a conjecture raised in $[6,7]$, and may be of independent interest.

Theorem 2.6. Let $\mathcal{F}$ be an intersecting set system on $n$ elements. Then there exists $a$ non-empty set $T \subset[n]$ such that $\left|\mathcal{F}_{T}\right| \geq|\mathcal{F}| /(\log n)^{O(|T|)}$.

We note that the intersecting condition cannot be replaced by the weaker condition that most pairs of sets intersect. For example, if $\mathcal{F}$ is the family of all sets of size $10 \sqrt{n}$ in $[n]$, then over $99 \%$ of the pairs of sets in $\mathcal{F}$ intersect. However, for any $T \subset[n]$ it holds that $\left|\mathcal{F}_{T}\right| \leq|\mathcal{F}| /(0.1 \sqrt{n})^{|T|}$.

### 2.2 Improved bounds for Erdős-Szemerédi sunflowers

Erdős and Szemerédi [3] defined a weaker notion of sunflowers, where instead of bounding the size of the sets in the family, they bound the size of the base set $X$. The following conjecture follows from Conjecture 1.3.

Conjecture 2.7. For any $r \geq 3$ there exists $\varepsilon=\varepsilon(r)>0$ such that the following holds. Let $\mathcal{F}$ be a set system on $X$, with $|X|=n$ and $|\mathcal{F}| \geq 2^{(1-\varepsilon) n}$. Then $\mathcal{F}$ contains an $r$-sunflower.

Erdős and Szemerédi showed that the sunflower lemma (Lemma 1.2) implies a weaker version of Conjecture 2.7, where the bound needed on $\mathcal{F}$ is $|\mathcal{F}| \geq 2^{n\left(1-c n^{-1 / 2}\right)}$ for some $c=c(r)>0$. These are the best known bounds for $r \geq 4$. For $r=3$ Conjecture 2.7 is known to be true - it follows from the resolution of the cap-set problem (see [9] for details).

Plugging in our improved bounds for the sunflower lemma to Erdős and Szemerédi framework yields the following improved bounds for $r \geq 4$.

Theorem 2.8. For any $r \geq 3$ there exists $c=c(r)$ such that the following holds. Let $\mathcal{F}$ be a set system on $X$, with $|X|=n$ and $|\mathcal{F}| \geq 2^{n\left(1-c(\log n)^{-(1+o(1))}\right)}$. Then $\mathcal{F}$ contains an $r$-sunflower.

## 3 Proof overview

In this section, we explain the high level ideas underlying the proof of Theorem 2.5. Our framework builds upon the work of Lovett, Solomon and Zhang [7]. Their main idea was to apply a structure vs. pseudo-randomness approach. However, the proof relied on a certain conjecture on the level of pseudo-randomness needed for the argument to go through. Our main technical result is a resolution of this conjecture.

To be concrete, let's consider the problem of finding a 3 -sunflower, which corresponds in our framework to finding a ( $1 / 3,1 / 3$ )-robust sunflower (see Lemma 2.4). Given $w \geq 2$, our goal is to find a parameter $\kappa=\kappa(w)$ such that any $w$-set system of size $\kappa^{w}$ must contain a ( $1 / 3,1 / 3$ )-robust sunflower, and hence also a 3 -sunflower.

Recall the definition of links: $\mathcal{F}_{T}=\{S \backslash T: S \in \mathcal{F}, T \subset S\}$. We say that a $w$-set system is $\kappa$-bounded if (i) $|\mathcal{F}| \geq \kappa^{w}$; and (ii) $\left|\mathcal{F}_{T}\right| \leq \kappa^{w-|T|}$ for all non-empty $T$ (The actual definition needed in the proof is bit more delicate, see Definition 5.1 for details).

Let $\mathcal{F}$ be a $w$-set system of size $|\mathcal{F}| \geq \kappa^{w}$. Then either $\mathcal{F}$ is $\kappa$-bounded, or otherwise there is a link $\mathcal{F}_{T}$ of size $\left|\mathcal{F}_{T}\right| \geq \kappa^{w-|T|}$. In the latter case, we can focus on this link and repeat the argument (this is the structured case).

So, from now on we consider only $w$-set systems which are $\kappa$-bounded (this is the pseudorandom case). The main question is: how large should $\kappa$ be to ensure that $\mathcal{F}$ is ( $1 / 3,1 / 3$ )satisfying? The answer was conjectured to be $(\log w)^{O(1)}$ in $[6,7]$. If true, then it completes the proof of Theorem 2.5. This is our main technical contribution. We show that in fact $\kappa=(\log w)^{1+o(1)}$ is sufficient (see Theorem 5.5). This is essentially tight, as in [7] it was observed that $\kappa \geq(\log w)^{1-o(1)}$ is necessary.

We next explain how we obtain the bound on $\kappa$. Let $\mathcal{F}$ be a $w$-set system which is $\kappa$ bounded. In [7] it was conjectured that there exists a $(w / 2)$-set system $\mathcal{F}^{\prime}$ that "covers" $\mathcal{F}$ : for any set $S \in \mathcal{F}$, there exists $S^{\prime} \in \mathcal{F}^{\prime}$ such that $S^{\prime} \subset S$. Also, $\mathcal{F}^{\prime}$ is $\kappa^{\prime}$-bounded for $\kappa^{\prime} \approx \kappa$. If this conjecture is true, then it is sufficient to prove that $\mathcal{F}^{\prime}$ is $(1 / 3,1 / 3)$-satisfying, as this would imply that $\mathcal{F}$ is also $(1 / 3,1 / 3)$-satisfying (in the language of [7], this corresponds to "upper bound compression for DNFs". For more details on the connection to DNF compression see $[7,8]$ ).

What we show is that this conjecture is true with two modifications: we are allowed to remove a small fraction of the sets in $\mathcal{F}$, and also remove a small random fraction of the elements in the base set $X$. To be more precise, sample $W \sim \mathcal{U}(X, p)$ for $p=O(1 / \log w)$. We show that with high probability over $W$, for most sets $S \in \mathcal{F}$, there exists a set $S^{\prime} \in \mathcal{F}$ such that: (i) $S^{\prime} \backslash W \subset S \backslash W$; and (ii) $\left|S^{\prime} \backslash W\right| \leq w / 2$. Thus we can move to study the set system $\mathcal{F}^{\prime}$ comprised of the $S^{\prime} \backslash W$ above, which "approximately covers" $\mathcal{F}$. Note that $\mathcal{F}^{\prime}$ is a $(w / 2)$-set system which is $\kappa^{\prime}$-bounded for $\kappa^{\prime} \approx \kappa$. In the actual proof, we replace $w / 2$ with $(1-\varepsilon) w$ for a small $\varepsilon$ to optimize the parameters. For details see Lemma 5.6.

Applying this "reduction step" iteratively $t=\log w$ times reduces the size $w$ to constant, where we can apply standard tools (Janson's inequality, see Lemma 5.9). We get that if we sample $W_{1}, \ldots, W_{t} \sim \mathcal{U}(X, p)$ (formally, they are disjoint, but we suppress this detail here), then with high probability there exists $S \in \mathcal{F}$ such that $S \subset W_{1} \cup \cdots \cup W_{t}$. Setting $p \cdot t=1 / 3$ and the high probability to be $2 / 3$ gives that $\mathcal{F}$ is $(1 / 3,1 / 3)$-satisfying, as desired.

To conclude, let us comment on how we prove the reduction step (Lemma 5.6). The main idea is to use an encoding lemma, inspired by Razborov's proof of Håstad's switching lemma $[4,10]$. Concretely, for $W \subset X$ and $S \in \mathcal{F}$, we say that the pair $(W, S)$ is bad if there is no $S^{\prime} \in \mathcal{F}$ such that (i) $S^{\prime} \backslash W \subset S \backslash W$; and (ii) $\left|S^{\prime} \backslash W\right| \leq w / 2$. We show that bad pairs can be efficiently encoded, crucially relying on the $\kappa$-boundedness condition. This allows to bound the probability that for a random $W$ there are many bad sets. The $(w / 2)$-set system
$\mathcal{F}^{\prime}$ is then taken to be all those $S^{\prime} \backslash W$ of size at most $w / 2$.

## 4 Lower bound for robust sunflowers

In this section, we construct an example of a $w$-set system which does not contain a robust sunflower, even though it has size $(\log w)^{w(1-o(1))}$. For concreteness we fix $\alpha=\beta=1 / 2$, but the construction can be easily modified for any other constant values of $\alpha, \beta$. We assume that $w$ is large enough.

Lemma 4.1. There exists a $w$-set system of size $((\log w) / 8)^{w-\sqrt{w}}=(\log w)^{w(1-o(1))}$ which does not contain a (1/2,1/2)-robust sunflower.

Let $c \geq 1$ be determined later. Let $X_{1}, \ldots, X_{w}$ be pairwise disjoint sets of size $m=$ $\log (w / c)$, and let $X$ be their union. Let $\widehat{\mathcal{F}}=X_{1} \times \cdots \times X_{w}$ be the $w$-set system containing all sets which contain exactly one element from each of the $X_{i}$. We first argue that $\widehat{\mathcal{F}}$ is not satisfying.
Claim 4.2. For $c \geq 1, \widehat{\mathcal{F}}$ is not $(1 / 2,1 / 2)$-satisfying.
Proof. Let $Y \sim \mathcal{U}(X, 1 / 2)$. We analyze the probability that some $X_{i}$ is disjoint from $Y$, which implies that no set in $\widehat{\mathcal{F}}$ is contained in $Y$. The probability is $1-\left(1-2^{-m}\right)^{w}=1-(1-c / w)^{w}$, which is more than $1 / 2$ for $c \geq 1$.

Unfortunately, $\widehat{\mathcal{F}}$ does contain a $(1 / 2,1 / 2)$-robust sunflower with a large kernel. For example, if $T$ contains exactly one element from each of $X_{1}, \ldots, X_{w-1}$, then $\widehat{\mathcal{F}}_{T}$ is isomorphic to $X_{w}$, and in particular is $(1 / 2,1 / 2)$-satisfying.

To overcome this, let $\varepsilon>0$ be determined later, and choose $\mathcal{F} \subset \widehat{\mathcal{F}}$ to be a sub-set system that satisfies:

$$
\left|S \cap S^{\prime}\right| \leq(1-\varepsilon) w, \quad \forall S, S^{\prime} \in \mathcal{F}, S \neq S^{\prime}
$$

For example, we can obtain $\mathcal{F}$ by a greedy procedure, each time choosing an element $S$ in $\widehat{\mathcal{F}}$ and deleting all $S^{\prime}$ such that $\left|S \cap S^{\prime}\right|>(1-\varepsilon) w$. The number of such $S^{\prime}$ is at most $\binom{w}{\varepsilon w} m^{\varepsilon w} \leq 2^{w} m^{\varepsilon w}$. Hence we can obtain $\mathcal{F}$ of size $|\mathcal{F}| \geq 2^{-w} m^{(1-\varepsilon) w}$.
Claim 4.3. For $c \geq 1 / \varepsilon, \mathcal{F}$ does not contain a $(1 / 2,1 / 2)$-robust sunflower.
Proof. Consider any set $K \subset X$. We need to prove that $\mathcal{F}$ does not contain a ( $1 / 2,1 / 2$ )robust sunflower with kernel $K$. In particular, $\mathcal{F}_{K}$ must contain at least two sets, which implies that $\left|K \cap X_{i}\right| \leq 1$ for all $i$, and that in addition $|K| \leq(1-\varepsilon) w$. However, in this case we claim even $\widehat{\mathcal{F}}_{K}$ is not ( $1 / 2,1 / 2$ )-satisfying.

To prove this, let $I=\left\{i:\left|K \cap X_{i}\right|=0\right\}$ where $|I| \geq \varepsilon w$. Let $Y \sim \mathcal{U}(X, 1 / 2)$. The probability that there exists $i \in I$ such that $Y$ is disjoint from $X_{i}$ is $1-\left(1-2^{-m}\right)^{|I|} \geq$ $1-(1-c / w)^{\varepsilon w}$ which is more than $1 / 2$ for $c \geq 1 / \varepsilon$.

To conclude the proof of Lemma 4.1 we optimize the parameters. Set $c=1 / \varepsilon$. We have $|\mathcal{F}| \geq 2^{-w}(\log (\varepsilon w))^{(1-\varepsilon) w}$. Setting $\varepsilon=1 / \sqrt{w}$ gives $|\mathcal{F}| \geq((\log w) / 8)^{w-\sqrt{w}}=(\log w)^{(1-o(1)) w}$.

## 5 Proof of Theorem 2.5

We proceed to prove Theorem 2.5. The main idea is to apply a structure vs. pseudorandomness paradigm, following the approach outlined in [7]. Let $\mathcal{F}$ be a set system, and let $\sigma: \mathcal{F} \mapsto \mathbb{R}_{\geq 0}$ be a weight function, assigning non-negative weights to sets in $\mathcal{F}$. We consider the pair $(\mathcal{F}, \sigma)$ as a weighted set system. For a subset $\mathcal{F}^{\prime} \subset \mathcal{F}$ we shorthand $\sigma\left(\mathcal{F}^{\prime}\right)=\sum_{S \in \mathcal{F}^{\prime}} \sigma(S)$ the sum of the weights of the sets in $\mathcal{F}^{\prime}$.

A weight profile is a vector $\mathbf{s}=\left(s_{0} ; s_{1}, \ldots, s_{k}\right)$ where $1 \geq s_{0} \geq s_{1} \geq \cdots \geq s_{k} \geq 0$ are rational numbers. We assume implicitly that $s_{i}=0$ for all $i>k$.
Definition 5.1 (Bounded weighted set system). Let $\mathbf{s}=\left(s_{0} ; s_{1}, \ldots, s_{w}\right)$ be a weight profile. A weighted set system $(\mathcal{F}, \sigma)$ is $\mathbf{s}$-bounded if
(i) $\sigma(\mathcal{F}) \geq s_{0}$.
(ii) $\sigma\left(\mathcal{F}_{T}\right) \leq s_{|T|}$ for any link $\mathcal{F}_{T}$ with non-empty $T$.

In particular, $\mathcal{F}$ is a $w$-set system.
Definition 5.2 (Bounded set system). Let $\mathbf{s}$ be a weight profile. A set system $\mathcal{F}$ is $\mathbf{s}$-bounded if there exists a weight function $\sigma: \mathcal{F} \mapsto \mathbb{R}_{+}$such that $(\mathcal{F}, \sigma)$ is $\mathbf{s}$-bounded.

We note that one may always normalize a weight profile to have $s_{0}=1$. However, keeping $s_{0}$ as a free parameter helps to simplify some of the arguments later.

The main idea is to show that set systems which are s-bounded, for $\mathbf{s}$ appropriately chosen, are "random looking" and in particular must be $(\alpha, \beta)$-satisfying. This motivates the following definition.

Definition 5.3 (Satisfying weight profile). Let $0<\alpha, \beta<1$. A weight profile $\mathbf{s}$ is $(\alpha, \beta)$ satisfying if any $\mathbf{s}$-bounded set system is $(\alpha, \beta)$-satisfying.

The following lemma underlies our proof of Theorem 2.5.
Lemma 5.4. Let $0<\alpha, \beta<1$ and $w \geq 2$. Let $\kappa>1$ be an integer such that the weight profile $\left(1 ; \kappa^{-1}, \ldots, \kappa^{-\ell}\right)$ is $(\alpha, \beta)$-satisfying for all $\ell=1, \ldots, w$. Then any $w$-set system $\mathcal{F}$ of size $|\mathcal{F}|>\kappa^{w}$ must contain an $(\alpha, \beta)$-robust sunflower.
Proof. Let $\mathcal{F}$ be a $w$-set system on $X$ of size $|\mathcal{F}|>\kappa^{w}$. Let $K \subset X$ be maximal so that $\left|\mathcal{F}_{K}\right|>\kappa^{w-|K|}$. Note that we cannot have $|K|=w$, as in this case $\left|\mathcal{F}_{K}\right|=1=\kappa^{0}$, and so $|K| \leq w-1$. Let $\mathcal{F}^{\prime}=\mathcal{F}_{K} \backslash\{\emptyset\}$. Note that $\left|\mathcal{F}^{\prime}\right| \geq \kappa^{w-|K|}$, where for any non-empty set $R$ disjoint from $K,\left|\mathcal{F}_{R}^{\prime}\right|=\left|\mathcal{F}_{K \cup R}\right| \leq \kappa^{w-|K|-|R|}$. Let $\sigma(S)=1$ for $S \in \mathcal{F}^{\prime}$. Then $\left(\mathcal{F}^{\prime}, \sigma\right)$ is ( $1 ; \kappa^{-1}, \ldots, \kappa^{-\ell}$ )-bounded for $\ell=w-|K|$. Hence by our assumption, $\mathcal{F}^{\prime}$ is $(\alpha, \beta)$-satisfying, and hence $\left\{S \cup K: S \in \mathcal{F}^{\prime}\right\}$ is an $(\alpha, \beta)$-robust sunflower contained in $\mathcal{F}$.

Lemma 5.4 motivates the following definition. For $0<\alpha, \beta<1$ and $w \geq 2$, let $\kappa(w, \alpha, \beta)$ be the least $\kappa$ such that $\left(1 ; \kappa^{-1}, \ldots, \kappa^{-w}\right)$ is $(\alpha, \beta)$-satisfying. Theorem 2.5 follows by combining Lemma 5.4 with the following theorem, which bounds $\kappa(w, \alpha, \beta)$. We note that the theorem proves a conjecture raised in [7].
Theorem 5.5. $\kappa(w, \alpha, \beta) \leq \log w \cdot(\log \log w \cdot \log (1 / \beta) / \alpha)^{O(1)}$.
We prove Theorem 5.5 in the remainder of this section.

### 5.1 A reduction step

Let $\mathcal{F}$ be a $w$-set system on $X$, and fix $w^{\prime} \leq w$. The main goal in this section is to reduce $\mathcal{F}$ to a $w^{\prime}$-set system $\mathcal{F}^{\prime}$. We prove the following lemma in this section.

Lemma 5.6. Let $\mathbf{s}=\left(s_{0} ; s_{1}, \ldots, s_{w}\right)$ be a weight profile, $w^{\prime} \leq w, \delta>0$ and define $\mathbf{s}^{\prime}=$ $\left((1-\delta) s_{0} ; s_{1}, \ldots, s_{w^{\prime}}\right)$. Assume $\mathbf{s}^{\prime}$ is $\left(\alpha^{\prime}, \beta^{\prime}\right)$-satisfying. Then for any $p>0$, $\mathbf{s}$ is $(\alpha, \beta)$ satisfying for

$$
\alpha=p+(1-p) \alpha^{\prime}, \quad \beta=\beta^{\prime}+\frac{(4 / p)^{w} s_{w^{\prime}}}{\delta s_{0}} .
$$

Let $W \subset X$. Given a set $S \in \mathcal{F}$, the pair $(W, S)$ is said to be good if there exists a set $S^{\prime} \in \mathcal{F}$ (possibly with $S^{\prime}=S$ ) such that
(i) $S^{\prime} \backslash W \subset S \backslash W$.
(ii) $\left|S^{\prime} \backslash W\right| \leq w^{\prime}$.

If no such $S^{\prime}$ exists, we say that $(W, S)$ is bad. Note that if it happens that $W$ contains a set in $\mathcal{F}$ (namely, $S^{\prime} \subset W$ for some $S^{\prime} \in \mathcal{F}$ ) then all pairs ( $W, S$ ) are good.

Lemma 5.7. Let $(\mathcal{F}, \sigma)$ be an $\mathbf{s}=\left(s_{0} ; s_{1}, \ldots, s_{w}\right)$-bounded weighted set system on $X$. Let $W \subset X$ be a uniform subset of size $|W|=p|X|$ and $\mathcal{B}(W)=\{S \in \mathcal{F}:(W, S)$ is bad $\}$. Then $\mathbb{E}_{W}[\sigma(\mathcal{B}(W))] \leq(4 / p)^{w} s_{w^{\prime}}$.

Proof. First, we simplify the setting a bit. We may assume by scaling $\sigma$ and $\mathbf{s}$ by the same factor that $\sigma(S)=N_{S}, S \in \mathcal{F}$ are all integers. Let $N=\sum N_{S} \geq \mathbf{s}_{0}$. We can identify $(\mathcal{F}, \sigma)$ with the multi-set system $\mathcal{F}^{\prime}=\left\{S_{1}, \ldots, S_{N}\right\}$, where every set $S \in \mathcal{F}$ is repeated $N_{S}$ times. Observe that $\left|\mathcal{F}_{T}^{\prime}\right|=\sigma\left(\mathcal{F}_{T}\right)$ and that $(W, S)$ is bad in $\mathcal{F}$ iff $\left(W, S_{i}\right)$ is bad in $\mathcal{F}^{\prime}$ where $S_{i}=S$ is any copy of $S$. Thus

$$
\sigma(\mathcal{B}(W))=\mid\left\{i: S_{i} \in \mathcal{F}^{\prime} \text { and }\left(W, S_{i}\right) \text { is bad }\right\} \mid
$$

Assume that $\left(W, S_{i}\right)$ is bad in $\mathcal{F}^{\prime}$. In particular, this means that $W$ does not contain any set in $\mathcal{F}$. We describe ( $W, S_{i}$ ) with a small amount of information. Let $|X|=n$ and $|W|=p n$. We encode ( $W, S_{i}$ ) as follows:

1. The first piece of information is $W \cup S_{i}$. The number of options for this is

$$
\sum_{i=0}^{w}\binom{n}{p n+i} \leq\binom{ n+w}{p n+w} \leq p^{-w}\binom{n}{p n} .
$$

2. Given $W \cup S_{i}$, let $j$ be minimal such that $S_{j} \subset W \cup S_{i}$; in particular, this is equivalent to $S_{j} \backslash W \subset S_{i} \backslash W$. There are fewer than $2^{w}$ possibilities for $A=S_{i} \cap S_{j}$ given that we know $S_{j}$. As such, we will let $A$ be the second piece of information.
3. Note that as $\left(W, S_{i}\right)$ is bad, $|A|=\left|S_{j} \backslash W\right|>w^{\prime}$. So we know a subset $A$ of $S_{i}$ of size larger than $w^{\prime}$. The number of the sets in $\mathcal{F}^{\prime}$ which contain $A$ is $\left|\mathcal{F}_{A}^{\prime}\right| \leq s_{w^{\prime}}$. The third piece of information will be which one of these is $S_{i}$.
4. Finally, once we have specified $S_{i}$, we will specify $S_{i} \cap W$, which is of course one of $2^{w}$ possible subsets of $S_{i}$.

From these four pieces of information one can uniquely reconstruct $\left(W, S_{i}\right)$. Thus the total number of bad pairs ( $W, S_{i}$ ) is bounded by

$$
p^{-w}\binom{n}{p n} \cdot 2^{w} \cdot s_{w^{\prime}} \cdot 2^{w}=(4 / p)^{w} s_{w^{\prime}}\binom{n}{p n} .
$$

The number of sets $W \subset X$ of size $|W|=p|X|$ is $\binom{n}{p n}$. The lemma follows by taking expectation over $W$.

The following is a corollary of Lemma 5.7, where we replace sampling $W \subset X$ of size $|W|=p|X|$ with sampling $W \sim \mathcal{U}(X, p)$.

Corollary 5.8. Let $(\mathcal{F}, \sigma)$ be an $\mathbf{s}=\left(s_{0} ; s_{1}, \ldots, s_{w}\right)$-bounded weighted set system on $X$. Let $W \sim \mathcal{U}(X, p)$ and $\mathcal{B}(W)=\{S \in \mathcal{F}:(W, S)$ is bad $\}$. Then $\mathbb{E}_{W}[\sigma(\mathcal{B}(W))] \leq(4 / p)^{w} s_{w^{\prime}}$.

Proof. The proof is by a reduction to Lemma 5.7. Replace the base set $X$ with a much larger set $X^{\prime}$ (without changing $\mathcal{F}$, so the new elements do not belong to any set in $\mathcal{F}$ ). Let $W^{\prime} \subset X^{\prime}$ be a uniform set of size $\left|W^{\prime}\right|=p\left|X^{\prime}\right|$, and let $W=W^{\prime} \cap X$. Then as $X^{\prime}$ gets bigger, the distribution of $W^{\prime}$ approaches $\mathcal{U}(X, p)$, while the conclusion of the lemma depends only on $W$.

Proof of Lemma 5.6. Let $(\mathcal{F}, \sigma)$ be an $\mathbf{s}=\left(s_{0} ; s_{1}, \ldots, s_{w}\right)$-bounded weighted set system on $X$. Let $W \sim \mathcal{U}(X, p)$. Say that $W$ is $\delta$-bad if $\sigma(\mathcal{B}(W)) \geq \delta s_{0}$. By applying Corollary 5.8 and Markov's inequality, we obtain that

$$
\operatorname{Pr}[W \text { is } \delta-\operatorname{bad}] \leq \frac{\mathbb{E}[\sigma(\mathcal{B}(W))]}{\delta s_{0}} \leq \frac{(4 / p)^{w} s_{w^{\prime}}}{\delta s_{0}}
$$

Fix $W$ which is not $\delta$-bad. By assumption, if $(W, S)$ is good for $S \in \mathcal{F}$, then there exists $\pi(S)=S^{\prime} \in \mathcal{F}$ (possibly with $S^{\prime}=S$ ) such that (i) $S^{\prime} \backslash W \subset S \backslash W$ and (ii) $\left|S^{\prime} \backslash W\right| \leq w^{\prime}$. Choose such $\pi$ with the smallest possible image so that if $S^{\prime}, S^{\prime \prime}$ in the image of $\pi$ are distinct then $S^{\prime} \backslash W \neq S^{\prime \prime} \backslash W$.

Define a new weighted set system $\left(\mathcal{F}^{\prime}, \sigma^{\prime}\right)$ on $X^{\prime}=X \backslash W$ as follows:

$$
\mathcal{F}^{\prime}=\{\pi(S) \backslash W: S \in \mathcal{F} \backslash \mathcal{B}(W)\}, \quad \sigma^{\prime}\left(S^{\prime} \backslash W\right)=\sigma\left(\pi^{-1}\left(S^{\prime}\right)\right)
$$

We claim that $\mathcal{F}^{\prime}$ is $\sigma^{\prime}=\left((1-\delta) s_{0} ; s_{1}, \ldots, s_{w^{\prime}}\right)$-bounded. To see that, note that $\sigma^{\prime}\left(\mathcal{F}^{\prime}\right)=$ $\sigma(\mathcal{F} \backslash \mathcal{B}(W)) \geq(1-\delta) s_{0}$ and that for any set $T \subset X^{\prime}$,

$$
\sigma^{\prime}\left(\mathcal{F}_{T}^{\prime}\right)=\sum_{S^{\prime} \supset T} \sigma^{\prime}\left(S^{\prime}\right)=\sum_{S: \pi(S) \supset T} \sigma(S) \leq \sum_{S \supset T} \sigma(S)=\sigma\left(\mathcal{F}_{T}\right) \leq s_{|T|} .
$$

Finally, all sets in $\mathcal{F}^{\prime}$ have size at most $w^{\prime}$. Thus, if we choose $W^{\prime} \sim \mathcal{U}\left(X^{\prime}, \alpha^{\prime}\right)$ then we obtain that with probability more than $1-\beta^{\prime}$, there exist $S^{*} \in \mathcal{F}^{\prime}$ such that $S^{*} \subset W^{\prime}$. Recall that $S^{*}=S \backslash W$ for some $S \in \mathcal{F}$. Thus $S \subset W \cup W^{\prime}$, which is distributed according to $\mathcal{U}\left(p+(1-p) \alpha^{\prime}\right)$.

### 5.2 A final step

In this section, we directly show that bounded set systems (with very good bounds) are satisfying. A similar argument appears in [11].

Lemma 5.9. Let $0<\alpha, \beta<1$, $w \geq 2$, and set $\kappa=4 \ln 2 \cdot w \cdot \log (1 / \beta) / \alpha$. Let $(\mathcal{F}, \sigma)$ be an $\mathbf{s}=\left(s_{0} ; s_{1}, \ldots, s_{w}\right)$-bounded weighted set system where $s_{i} \leq \kappa^{-i} s_{0}$. Then $\mathcal{F}$ is $(\alpha, \beta)-$ satisfying.

Proof. We may assume without loss of generality that all sets in $\mathcal{F}$ have size exactly $w$, by adding dummy elements to each set of size below $w$. Note that this new set system $\mathcal{F}^{\prime}$ satisfies the assumption of the lemma, and that for any set $W \subset X$, if $W$ contains a set of $\mathcal{F}^{\prime}$ then it also contains a set of $\mathcal{F}$. We can also assume by scaling that $N_{S}=\sigma(S)$ for $S \in \mathcal{F}$ are all integers. Let $\mathcal{F}^{\prime}$ be the multi-set system, where each $S \in \mathcal{F}$ is repeated $N_{S}$ times. Let $N=\sum N_{S} \geq s_{0}$ and denote $\mathcal{F}^{\prime}=\left\{S_{1}, \ldots, S_{N}\right\}$.

The proof is by Janson's inequality (see for example [1, Theorem 8.1.2]). Let $W \sim$ $\mathcal{U}(X, \alpha)$ and $\mathcal{Z}_{i}$ be the indicator variable for $S_{i} \subset W$. Denote $i \sim j$ if $S_{i}, S_{j}$ intersect. Define

$$
\mu=\sum_{i} \mathbb{E}\left[\mathcal{Z}_{i}\right], \quad \Delta=\sum_{i \sim j} \mathbb{E}\left[\mathcal{Z}_{i} \mathcal{Z}_{j}\right]
$$

We have $\mu=N \alpha^{w}$. To compute $\Delta$, let $p_{\ell}$ denote the fraction of pairs $(i, j)$ such that $\left|S_{i} \cap S_{j}\right|=\ell$. Then

$$
\Delta=\sum_{\ell=1}^{w} p_{\ell} N^{2} \alpha^{2 w-\ell}
$$

To bound $p_{\ell}$, note that for each $S_{i} \in \mathcal{F}$, and any $R \subset S_{i}$ of size $|R|=\ell$, the number of $S_{j} \in \mathcal{F}$ such that $R \subset S_{j}$ is $\left|\mathcal{F}_{R}\right| \leq N / \kappa^{|R|}$. Thus we can bound

$$
\Delta \leq \sum_{\ell=1}^{w}\binom{w}{\ell} \kappa^{-\ell} N^{2} \alpha^{2 w-\ell} \leq \sum_{\ell=1}^{w}\left(\frac{w}{\alpha \kappa}\right)^{\ell} \mu^{2} .
$$

Let $\kappa=q w / \alpha$ for $q \geq 2$. Then $\Delta \leq 2 \mu^{2} / q$. Note that in addition $\Delta \geq \mu$, as we include in particular the pairs $(i, i)$ in $\Delta$. Thus by Janson's inequality,

$$
\operatorname{Pr}\left[\forall i, \mathcal{Z}_{i}=0\right] \leq \exp \left\{-\frac{\mu^{2}}{2 \Delta}\right\} \leq \exp \left\{-\frac{q}{4}\right\}
$$

The lemma follows by setting $q=4 \ln 2 \cdot \log (1 / \beta)$.

### 5.3 Putting everything together

We prove Theorem 5.5 in this subsection, where our goal is to bound $\kappa(w, \alpha, \beta)$. We will apply Lemma 5.6 iteratively, until we decrease $w$ enough to apply Lemma 5.9.

Let $w \geq 2$ to be fixed throughout, and $\kappa>1$ to be optimized later. We first introduce some notation. For $0<\Delta<1, \ell \geq 1$, let $\mathbf{s}(\Delta, \ell)=\left(1-\Delta ; \kappa^{-1}, \ldots, \kappa^{-\ell}\right)$ be a weight profile. Let $A(\Delta, \ell), B(\Delta, \ell)$ be bounds such that any $\mathbf{s}(\Delta, \ell)$-bounded set system is $(A(\Delta, \ell), B(\Delta, \ell))$-satisfying.

Lemma 5.6 applied to $w^{\prime} \geq w^{\prime \prime}$ and $p, \delta$ gives the bound

$$
\begin{aligned}
& A\left(\Delta, w^{\prime}\right) \leq A\left(\Delta+\delta, w^{\prime \prime}\right)+p \\
& B\left(\Delta, w^{\prime}\right) \leq B\left(\Delta+\delta, w^{\prime \prime}\right)+\frac{(4 / p)^{w^{\prime}}}{\delta(1-\Delta) \kappa^{w^{\prime \prime}}}
\end{aligned}
$$

We apply this iteratively for some widths $w_{0}, \ldots, w_{r}$. Set $w_{0}=w$ and $w_{i+1}=\left\lceil(1-\varepsilon) w_{i}\right\rceil$ for some $\varepsilon$ as long as $w_{i}>w^{*}$ for some $w^{*}$. In particular, we need $w^{*} \geq 1 / \varepsilon$ to ensure $w_{i+1}<w_{i}$ and we will optimize $\varepsilon, w^{*}$ later. The number of steps is thus $r \leq(u \log w) / \varepsilon$ for some constant $u>0$. Let $p_{1}, \ldots, p_{r}$ and $\delta_{1}, \ldots, \delta_{r}$ be the values we use for $p, \delta$ at each iteration. To simplify the notation, let $\Delta_{i}=\delta_{1}+\cdots+\delta_{i}$ and $\Delta_{0}=0$. Furthermore, define

$$
\gamma_{i}=\frac{\left(4 / p_{i}\right)^{w_{i-1}}}{\kappa^{w_{i}}}
$$

Then for $i=1, \ldots, r$, we have

$$
\begin{aligned}
& A\left(\Delta_{i-1}, w_{i-1}\right) \leq A\left(\Delta_{i}, w_{i}\right)+p_{i}, \\
& B\left(\Delta_{i-1}, w_{i-1}\right) \leq B\left(\Delta_{i}, w_{i}\right)+\frac{\gamma_{i}}{\delta_{i}\left(1-\Delta_{i-1}\right)} .
\end{aligned}
$$

Set $p_{i}=\alpha /(2 r)$ and $\delta_{i}=\sqrt{\gamma_{i}}$. We will select the parameters so that $\Delta_{i} \leq 1 / 2$ for all $i$. Thus

$$
\begin{aligned}
& A(0, w) \leq A\left(\Delta_{r}, w_{r}\right)+\alpha / 2 \leq A\left(1 / 2, w^{*}\right)+\alpha / 2 \\
& B(0, w) \leq B\left(\Delta_{r}, w_{r}\right)+2 \Delta_{r} \leq B\left(1 / 2, w^{*}\right)+2 \Delta_{r}
\end{aligned}
$$

Plugging in the values for $\delta_{i}$, we compute the sum

$$
\Delta_{r}=\sum_{i=1}^{r} \delta_{i} \leq \sum_{i=1}^{r} \sqrt{\frac{(4 / p)^{w_{i-1}}}{\kappa^{(1-\varepsilon) w_{i-1}}}} \leq \sum_{k \geq w^{*}}\left(\frac{u \log w}{\varepsilon \alpha \kappa^{1-\varepsilon}}\right)^{k / 2} \leq 2\left(\frac{u \log w}{\varepsilon \alpha \kappa^{1-\varepsilon}}\right)^{w^{*} / 2}
$$

assuming $\kappa^{1-\varepsilon}=\Omega((\log w) /(\varepsilon \alpha))$. More precisely, if we take $\kappa$ so that

$$
\kappa^{1-\varepsilon}=\frac{K \cdot u \log w}{\varepsilon \alpha}, \quad K \geq 4
$$

then $\Delta_{r} \leq 2 K^{-w^{*} / 2}$.

Next, we apply Lemma 5.9 to bound $A\left(1 / 2, w^{*}\right) \leq \alpha / 2$ and $B\left(1 / 2, w^{*}\right) \leq \beta / 2$. We use the simple observation that $\left(1 / 2 ; \kappa^{-1}, \ldots, \kappa^{-w^{*}}\right)$-bounded set systems are also $\left(1 ;(\kappa / 2)^{-1}, \ldots,(\kappa / 2)^{-w^{*}}\right)$-bounded, in which case we can apply Lemma 5.9 and obtain that we need

$$
\kappa \geq \Omega\left(w^{*} \cdot \log (1 / \beta) / \alpha\right)
$$

Let us now put the bounds together. We still have the freedom to choose $\varepsilon>0$ and $w^{*} \geq 1 / \varepsilon$. To obtain $A(0, w) \leq \alpha, B(0, w) \leq \beta$, we also need $\Delta_{r} \leq \beta / 2<1 / 2$. Thus all the constraints are:

1. $w^{*} \geq 1 / \varepsilon$;
2. $\kappa^{1-\varepsilon}=(K \cdot u \log w) /(\varepsilon \alpha)$ for some constant $K \geq 4$;
3. $\kappa \geq \Omega\left(w^{*} \log (1 / \beta) / \alpha\right)$;
4. $2 K^{-w^{*} / 2} \leq \beta / 2 \Longleftarrow w^{*} \geq \Omega(\log (1 / \beta) / \log K)$.

Set $\varepsilon=1 / \log \log w$ and $w^{*}=c \cdot \max \{\log \log w, \log (1 / \beta)\}$ for some $c \geq 1$. Then we obtain that the result holds whenever

$$
\kappa \geq c \log w \cdot(\log \log w \cdot \log (1 / \beta) / \alpha)^{c^{\prime}} .
$$

For large enough $w$, the exponent can be taken to be $c^{\prime}=1+o(1)$.

## Acknowledgements

We thank Noga Alon for helpful suggestions on an earlier version of this paper.

## References

[1] N. Alon and J. H. Spencer. The probabilistic method. John Wiley \& Sons, 2004.
[2] P. Erdős and R. Rado. Intersection theorems for systems of sets. Journal of the London Mathematical Society, 35(1):85-90, 1960.
[3] P. Erdös and E. Szemerédi. Combinatorial properties of systems of sets. Journal of Combinatorial Theory, Series A, 24(3):308-313, 1978.
[4] J. Håstad. Computational limitations of small-depth circuits. MIT Press, Cambridge, MA, USA, 1987.
[5] A. Kostochka. A bound of the cardinality of families not containing $\Delta$-systems. In The Mathematics of Paul Erdös II, pages 229-235. Springer, 1997.
[6] X. Li, S. Lovett, and J. Zhang. Sunflowers and quasi-sunflowers from randomness extractors. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.
[7] S. Lovett, N. Solomon, and J. Zhang. From DNF compression to sunflower theorems via regularity. In 34th Computational Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA., pages 5:1-5:14, 2019.
[8] S. Lovett and J. Zhang. DNF sparsification beyond sunflowers. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 454-460. ACM, 2019.
[9] E. Naslund and W. Sawin. Upper bounds for sunflower-free sets. In Forum of Mathematics, Sigma, volume 5. Cambridge University Press, 2017.
[10] A. A. Razborov. Bounded arithmetic and lower bounds in boolean complexity. In Feasible Mathematics II, pages 344-386. Springer, 1995.
[11] B. Rossman. The monotone complexity of k-clique on random graphs. SIAM J. Comput., 43(1):256-279, 2014.


[^0]:    *Research supported by NSF award 1614023.
    ${ }^{\dagger}$ Research supported by NSF award 1614023.

