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Abstract9

The d-to-1 conjecture of Khot asserts that it is NP-hard to satisfy an ε fraction of constraints of10

a satisfiable d-to-1 Label Cover instance, for arbitrarily small ε > 0. We prove that the d-to-111

conjecture for any fixed d implies the hardness of coloring a 3-colorable graph with C colors for12

arbitrarily large integers C.13

Earlier, the hardness of O(1)-coloring a 4-colorable graphs is known under the 2-to-1 conjecture,14

which is the strongest in the family of d-to-1 conjectures, and the hardness for 3-colorable graphs is15

known under a certain “fish-shaped” variant of the 2-to-1 conjecture.16
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1 Introduction25

Determining if a graph is 3-colorable is one of the classic NP-complete problems. Thus,26

given a 3-colorable graph it is NP-hard to color it with 3 colors. The best known polynomial27

time algorithms for coloring 3-colorable graphs use about n0.2 colors, where n is the number28

of vertices in the graph [9]. On the other hand, on the hardness front, we only know that29

5-coloring 3-colorable graphs is NP-hard [3].30

This embarrassingly large gap between the hardness and algorithmic results has prompted31

the quest for conditional hardness results for approximate graph coloring. The canonical32

starting point for most strong inapproximability results is the Label Cover problem. Label33

Cover refers to constraint satisfaction problems of arity two over a large (but fixed) domain34

whose constraint relations are functions. Label Cover is known to be very hard to approximate35

even on satisfiable instances.36

The Unique Games Conjecture of Khot [10], which asserts strong inapproximability of37

Label Cover when the constraint maps are bijections, has formed the basis of numerous tight38

hardness results for problems which have defied NP-hardness proofs. However, the imperfect39

completeness inherent in the Unique Games Conjecture makes it unsuitable as the basis for40

hardness results for graph coloring, where we want all edges to be properly colored under41

the coloring.42
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62:2 d-to-1 Hardness of Graph Coloring

In [10], along with the Unique Games Conjecture, Khot introduced the d-to-1 conjecture.43

The d-to-1 conjecture says that given a Label Cover instance whose constraint relations44

are d-to-1 functions, it is NP-hard to decide if there exists a labelling that satisfies all the45

constraints or no labelling can satisfy even an ε fraction of constraints, for arbitrarily small46

ε > 0. (The key is that d can be held fixed and achieve soundness ε → 0.) Constraints47

similar to 2-to-1 also played an implicit role in the beautiful work of Dinur and Safra on48

inapproximability of vertex cover [8].49

Based on the 2-to-1 conjecture, Dinur, Mossel and Regev [7], extending the invariance50

principle based techniques of [11,15], proved the hardness of coloring graphs that are promised51

to be 4-colorable with any constant number of colors. Furthermore, they prove the same52

for 3-colorable graphs under a certain “fish shaped” variant of the 2-to-1 conjecture. In this53

paper, we prove that the same result can be proved under the weaker assumption of d-to-154

conjecture1, for some (arbitrarily large) constant d.55

I Theorem 1. Assume that d-to-1 conjecture is true for some constant d. Then, for every56

positive integer t ≥ 3, it is NP-hard to color a 3-colorable graph G with t colors.57

We stress that the d-to-1 conjecture insists on perfect completeness (i.e., hardness on58

satisfiable instances), and this important feature seems necessary for its implications for59

coloring problems, where we seek to properly color all edges. The variant of the 2-to-160

conjecture where one settles for near-perfect completeness was recently established in a61

striking sequence of works [5, 6, 12,13].62

The result of [7] in fact shows hardness of finding an independent set of density ε in a63

3-colorable graph for arbitrary ε > 0 (which immediately implies the hardness of finding a64

coloring with 1/ε colors). Our result in Theorem 1 above does not get this stronger hardness65

for finding independent sets. But it is conditioned on the d-to-1 conjecture for arbitrary d66

rather than the specific 2-to-1 conjecture. We note that proving the d-to-1 conjecture for67

some large d could be significantly easier than the 2-to-1 conjecture, so Theorem 1 perhaps68

provides an avenue for resolving a longstanding challenge concerning the complexity of69

approximate graph coloring.70

Our proof of Theorem 1 is a simple combination of two results. First, following the71

methodology of [7], we prove that the d-to-1 conjecture implies that coloring a 2d-colorable72

graph with O(1) colors is NP-hard. The result of [7] is the d = 2 case of this claim. In73

fact, they state in a future work section that the d-to-1 conjecture should imply hardness74

of O(1)-coloring q-colorable graphs for some large enough q = q(d). However, they did not75

specify the details of the reduction or an explicit value of q, and mention determining the76

dependence of q on d as an interesting question. Here we show the conditional hardness77

based on d-to-1 conjecture holds for q = 2d (achieving q < 2d seems unlikely with the general78

reduction approach of [7]).79

The key technical ingredient necessary for such a reduction is a symmetric Markov chain80

on [q]d where transitions are allowed only between disjoint tuples and which has spectral81

radius bounded away from 1. We show the existence of such a symmetric Markov chain82

for q = 2d. We do so via a connection to matrix scaling, which enables us to deduce the83

necessary chain at a conceptual level without messy calculations. Specifically, we use the84

result [4], which follows from the Sinkhorn-Knopp iterative matrix scaling algorithm [19],85

1 For d-to-1 Label Cover, there are two definitions possible, one where the constraint maps are at most
d-to-1 with each element in the range having at most d pre-images, and one where the constraint maps
are exactly d-to-1. In this paper, we stick with the exact variant.
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that if a non-negative symmetric matrix A has total support then there is a symmetric doubly86

stochastic matrix supported on the non-zero entries of A. When A is the adjacency matrix87

of a graph G, the total support condition is equivalent to every edge of G belonging to a88

cycle cover. We describe a graph on [q]d whose edges connect disjoint tuples and where every89

edge belongs to a cycle cover.90

Our second ingredient is a remarkable yet simple reduction due to Krokhin, Opršal,91

Wrochna and Z̆ivný [14], which exploits the relation between the arc-chromatic number and92

chromatic number of a digraph [17]. Let b : N→ N be defined by b(n) :=
(

n
bn/2c

)
. Their result93

then is that b(t)-coloring b(c)-colorable graphs is polynomial time (in fact logspace) reducible94

to t-coloring c-colorable graphs. Since b(n) is increasing and b(n) > n for all n ≥ 4, it follows95

that a NP-hardness result for O(1)-coloring q-colorable graphs also implies NP-hardness96

of O(1)-coloring 4-colorable graphs. Furthermore, the NP hardness of O(1)-coloring of97

3-colorable graphs follows from the above by applying the arc graph reduction twice to K4.98

Overview.99

In Section 2, we define the Label Cover problem, and state the d-to-1 conjecture formally.100

We also introduce low degree influences that we need later. In Section 3, we first prove the101

existence of the Markov chain with required properties, and then describe the reduction from102

Label Cover to Approximate Coloring. We note that the reduction is in fact exactly the103

same one used in [7], the difference being in using a different Markov Chain. We present the104

reduction and the preliminaries required in this paper for the sake of completeness.105

2 Preliminaries106

We first formally define the Label Cover problem and then state the hardness conjectures.107

2.1 Label Cover108

I Definition 2. (Label Cover) In the Label Cover instance, we are given a tuple G =109

((V,E), R,Ψ) where110

1. (V,E) is a graph on vertex set V with edge set E.111

2. Each vertex in V has to be assigned a label from the set Σ = [R] = {1, 2, . . . , R}.112

3. For every edge e = (u, v) ∈ E, there is an associated relation Ψe ⊆ Σ × Σ. This113

corresponds to a constraint between u and v.114

A labeling σ : V → Σ satisfies a constraint associated with the edge e = (u, v) if and only if115

(σ(u), σ(v)) ∈ Ψe. Given such an instance, the goal is to distinguish if there is a labeling that116

can satisfy all the constraints or no labeling can satisfy a significant fraction of constraints.117

We now state the d-to-1 conjecture. As is the case with [7], we will state and use the118

exact d-to-1 variant where the constraint maps have exactly d pre-images for each element in119

the range. Khot’s original formulation only required that there are at most d pre-images for120

each element in the range. The d-to-1 conjecture becomes stronger for smaller d (so that121

the 2-to-1 is the strongest form of the conjecture)—this is obvious for the variant where the122

maps are at most d-to-1. For the exact variant, if we allow the Label cover graph to have123

multiple edges, we can reduce d-to-1 conjecture to (d + 1)-to-1 conjecture using a simple124

argument. We present this reduction in Section 4. On that note, we remark without details125

that our reduction indeed works with the multigraph variant of d-to-1 conjecture.126

I Conjecture 3. ((Exact) d-to-1 Conjecture) For every ε > 0, given a bipartite Label Cover127

instance G = ((V = X ∪ Y,E), (dR,R),Ψ) satisfying the following constraints:128

ICALP 2020



62:4 d-to-1 Hardness of Graph Coloring

(i) We refer to X as the vertices on the left, and Y as the set of vertices on the right. The129

vertices belonging to X are to be assigned labels from [dR] while the vertices in Y are to130

be assigned labels from [R].131

(ii) The constraints are d-to-1 i.e. for every b ∈ [R], there are precisely d values a ∈ [dR]132

such that (a, b) ∈ Ψe for every relation Ψe in the instance.133

It is NP-hard to distinguish between the following cases:134

1. There is a labeling that satisfies all the constraints in G.135

2. No labeling can satisfy more than ε fraction of constraints in G.136

Similar to the d-to-1 constraints, one can consider d-to-d constraints in the Label Cover.137

In order to do so, we define the relation d↔ d on [dR]× [dR]:138

d↔ d = {(di− p+ 1, di− q + 1) | 1 ≤ i ≤ R, 1 ≤ p, q ≤ d} .139

A constraint ψ ⊆ [dR]× [dR] is said to be d-to-d if there exist permutations π1 and π2 on140

[dR] such that (a, b) ∈ ψ iff (π−1
1 (a), π−1

2 (b)) ∈ d↔ d.141

In [7], it is proved that Conjecture 3 implies the following conjecture.142

I Conjecture 4. (d-to-d conjecture) For every ε > 0 and every t ∈ N, there exists R ∈ N143

such that given a Label Cover instance G = ((V,E), dR,Ψ) where all the constraints are144

d-to-d, it is NP-hard to distinguish between the following cases:145

(i) sat(G) = 1, or146

(ii) isatt(G) < ε147

Here, sat(G) denotes the maximum fraction of constraints satisfied by any labeling.148

Similarly, isat(G) denotes the size of the largest set S ⊆ V such that there exists a labeling149

that satisfies all the constraints induced on S. The value isatt(G) denotes the size of largest150

set S ⊆ V such that there exists a labeling that assigns at most t labels to each vertex that151

satisfies all the constraints induced on S. A constraint between u, v is said to be satisfied by152

labeling assigning multiple labels to u and v if and only if there exists at least one pair of153

labels to u and v among the multiple labels that satisfy the constraint.154

2.2 Low degree influences155

Next, we define the low degree influences that we need later. We refer the reader to [7] for a156

comprehensive treatment of the same.157

Let α0 = 1, α1, . . . , αq−1 be an orthonormal basis of Rq. We can define the set of158

functions αx : [q]n → R, x ∈ [q]n as αx(y) = (αx1(y1), αx2(y2), . . . , αxn(yn)). Observe that159

these functions form a basis for the functions from [q]n to R. Let f̂(αx) = 〈f, αx〉, where we160

define the inner product between functions f, g : [q]n → R as 〈f, g〉 = q−n
∑
x∈[q]n f(x)g(x).161

We define the low degree influence of f as follows:162

I Definition 5. For a function f : [q]n → R, the degree k influence of the coordinate i is163

defined as follows:164

I≤ki (f) =
∑

x:xi 6=0,|x|≤k

f̂2(αx)165

Note that the above definition is independent of the basis α0, α1, . . . , αq−1 that we start with,166

as long as α0 = 1. From the above definition, we can infer that for functions f : [q]n → [0, 1],167

the sum of low degree influences is bounded by168 ∑
i

I≤ki (f) ≤ k169
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For a vector x ∈ [q]dR, let x ∈ [qd]R be the corresponding element in [qd]R i.e.170

x = ((x1, x2, . . . , xd), (xd+1, xd+2, . . . , x2d), . . . , (xdR−d+1, xdR−d+2, . . . , xdR))171

Similarly, for y ∈ [qd]R, let y denote the inverse of above operation. We can extend this172

notion to functions as well: For a function f : [q]dR → R, let the function f : [qd]R → R be173

defined naturally by174

f(y) = f(y)175

Similarly, for a function f : [qd]R → R, let f : [q]dR → R be defined as f(x) = f(x).176

We need the following lemma:177

I Lemma 6. For any function f : [q]dR → R and any k ∈ N and i ∈ [R],178

I≤ki (f) ≤
d∑
j=1

I≤dkdi−d+j(f)179

Proof. Fix a basis αx of functions from [q]dR → R as above. The functions αx form a basis180

for functions from [qd]R → R, where αx(y) = αx(y). Note that f̂(αx) = f̂(αx). Thus we get181 ∑
i

I≤ki (f) =
∑

x:xi 6=(0,0,...,0),|x|≤k

f̂
2
(αx) =

∑
x:xi 6=(0,0,...,0),|x|≤k

f̂2(αx)182

≤
∑

x:xi 6=(0,0,...,0),|x|≤dk

f̂2(αx)183

≤
d∑
j=1

∑
x:xdi−d+j 6=0,|x|≤dk

f̂2(αx)184

=
d∑
j=1

I≤dkdi−d+j(f) J185

186

Using the invariance principle and Borell’s inequality, [7] prove the following:187

I Theorem 7. Let q be a fixed integer, and T be a symmetric Markov chain on [q] with188

r(T ) < 1. Then for every ε > 0, there exists a δ > 0 and a positive integer k such that the189

following holds: For every f, g : [q]n → [0, 1] if E[f ] > ε,E[g] > ε and 〈f, Tg〉 = 0, then190

∃i ∈ [n] : I≤ki (f) ≥ δ, I≤ki (g) ≥ δ191

where r(T ) denotes the second largest eigenvalue (in absolute value) of T .192

3 d-to-1 hardness for 3-colorable graphs193

In this section, we will prove Theorem 1.194

3.1 Reducing chromatic number to 3195

The following lemma is present in [14] based on a beautiful result concerning the arc-chromatic196

numbers of digraphs from [17].197

I Lemma 8. (Theorem 1.8 of [14]) Suppose there exists q ∈ N such that O(1) coloring198

q-colorable graphs is NP-hard. Then, O(1) coloring 3-colorable graphs is NP hard.199

ICALP 2020



62:6 d-to-1 Hardness of Graph Coloring

Let Graph-Coloring(t, c) denote the promise problem of distinguishing if a graph can be200

colored with c colors, or cannot even be colored with t colors. The statement is proved by201

presenting a reduction from Graph-Coloring(b(t), b(c)) to Graph-Coloring(t, c) in polynomial202

time, for the function b(n) :=
(

n
bn/2c

)
. The reduction works by constructing the arc-graph of203

the underlying graphs, and using the property of arc graphs that the chromatic number of the204

arc graph can be bounded precisely using the chromatic number of the original graph. Since205

b is an increasing function and b(n) > n for all n ≥ 4, setting c = 4 and t large enough proves206

the statement claimed in the lemma. The reduction from 4-colorable graphs to 3-colorable207

graphs is achieved by applying the arc graph construction twice recursively.208

Thanks to Lemma 8, we can restrict ourselves to the weaker goal of proving that O(1)209

coloring q-colorable graphs is NP-hard for some fixed constant q assuming Conjecture 3. In210

fact, following [7], we prove a stronger statement showing hardness of finding independent211

sets of ε fraction of vertices for any ε > 0. Combined with Lemma 8, this immediately gives212

us Theorem 1.213

I Theorem 9. Suppose that Conjecture 4 is true for a constant d. Then, there exists a214

constant q = q(d) such that for every ε > 0, given a graph G, it is NP-hard to distinguish the215

following cases:216

1. G can be colored with q colors.217

2. G does not have any independent set of relative size ε.218

In fact, we can take q = 2d.219

In the remainder of the section, we will prove Theorem 9. We next develop the main220

technical ingredient that we will plug into the reduction framework of [7] to establish221

Theorem 9.222

3.2 A symmetric Markov chain supported on disjoint tuples223

A Markov chain T defined on a state space Ω is said to be symmetric if the transition matrix224

of T is symmetric, namely for all pairs of states x, y ∈ Ω, the probability of transition from x225

to y is equal to the probability of transition from y to x. Symmetry of the Markov chain226

ensures that the uniform distribution is stationary which is essential when we compose the227

Label Cover-Long Code reduction with the Markov chain. We define the spectral radius228

r(T ) of a symmetric Markov chain as the second largest eigenvalue in absolute value of229

its transition probability matrix, i.e., if 1 = λ1 ≥ λ2 ≥ . . . ≥ λq are the eigenvalues, then230

r(T ) = max(|λ2|, |λq|).231

We now show the existence of a symmetric Markov Chain T on [q]d with r(T ) < 1 if232

d ≥ 2, q ≥ 2d. Furthermore, there is a nonzero transition probability between two elements233

x, y ∈ [q]d only if the support of x and y are disjoint. In [7], such a Markov Chain is shown234

to exist for the values (q, d) = (3, 1), (4, 2).235

I Lemma 10. Suppose that q, d ∈ N, q ≥ 2d, d ≥ 2. There exists a symmetric Markov chain T236

on [q]d such that r(T ) < 1. Furthermore, if the transition {x1, x2, . . . , xd} ↔ {y1, y2, . . . , yd}237

has positive probability in T , then {x1, x2, . . . , xd} ∩ {y1, y2, . . . , yd} = φ.238

Proof. We first construct an undirected graph G on [q]d such that there is an edge between239

x, y ∈ [q]d only if the support of x and y are disjoint. We then use a matrix scaling algorithm240

to obtain a symmetric Markov chain T from the adjacency matrix of G. For the resulting241

Markov chain to have r(T ) < 1, we need that the underlying graph G is connected, and is242

not bipartite. Furthermore, for the scaling algorithm to produce a valid Markov chain, we243

need that every edge of G is present in a cycle cover, where a cycle cover of a graph is a244
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disjoint union of cycles that covers every vertex in the graph. Note that we allow trivial245

2-cycles in a cycle cover, where we just take an edge twice.246

We say that two multisets x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd) ∈ [q]d are of the same247

type if the following condition holds: for all pairs of indices i, j ∈ [d], xi = xj if and only if248

yi = yj and (xi − xj)(yi − yj) ≥ 0. Note that this is an equivalence relation, and thus each249

element x ∈ [q]d uniquely determines its type.250

Consider the graph G = (V,E) where the vertex set is V = [q]d. We add two kinds of251

edges in this graph. We add an edge between every pair of x, y ∈ [q]d that are of the same252

type, and have disjoint support. Let the subset of [q]d of elements that are supported on253

single element be denoted by S, i.e.,254

S = {(1, 1, . . . , 1), (2, 2, . . . , 2), . . . , (q, q, . . . , q)} .255

We also add edges between x and y if their support is disjoint, and at least one of x and y256

belongs to S.257

First, we claim that G is connected. This follows from the fact that the set of nodes in S258

are connected to each other, and every vertex in V is adjacent to at least one vertex in S.259

As q ≥ 4, the graph is not bipartite (indeed S induces a q-clique). We will now prove that260

every edge in this graph is part of a cycle cover. Given an undirected graph on vertex set V ,261

a cycle cover of it is a function σ : V → V that is bijective, and σ(u) = v only when u and v262

are adjacent in the underlying graph.263

Towards this, we first prove that for every edge in G between multisets of the same type,264

there is a cycle cover that uses that edge. For each type, consider the graph obtained by265

taking the vertices as multisets of that type, and with edges between two multisets of the266

same type if they are disjoint. Note that for every type, this graph is isomorphic to a Kneser267

graph KG(q, k) (for some k ≤ d), whose vertex set corresponds to k-element subsets of [q]268

and there is an edge between two subsets if they are disjoint.269

By symmetry across the subsets, we can infer that the Kneser graphs are regular. Note270

that every regular graph contains a cycle cover: For a regular graph H, consider a bipartite271

graph H ′ which contains a copy of H on both the left side L, and right side R. There is an272

edge between x ∈ L, y ∈ R of H ′ if and only if x, y are adjacent in H. As H is a regular273

graph, H ′ is a regular bipartite graph, and thus, contains a perfect matching. This perfect274

matching in H ′ directly gives a cycle cover of H. Furthermore, as Kneser graphs are also275

vertex-transitive, every edge in these graphs is part of a cycle cover.276

Next, we consider edges of G that are between multisets of different types i.e. edges277

between multisets x, y where exactly one of x and y is in S. Consider an edge between s ∈ S278

and x ∈ V \ S. As q ≥ 2d, every multiset in G is adjacent to at least one multiset of the279

same type. Let y be a multiset that is adjacent to x in G and is of the same type as x. Let280

s′ ∈ S be chosen such that it is adjacent to y in G. As S is a complete subgraph of G, s and281

s′ are adjacent in G. From the previous argument about edges between multisets of the same282

type, we can infer that there is a cycle cover of G where y is mapped to x, and s is mapped283

to s′. We can modify this cycle cover by transforming it as follows - (s→ x) can be made284

part of cycle cover by transforming (s→ s′), (y → x) to (s→ x), (y → s′) and keeping rest285

of the cycle cover intact. Thus, we have proved that every edge of G is part of a cycle cover.286

Let A denote the adjacency matrix of the above graph G. Using the Sinkhorn Knopp287

iterative algorithm, it is proved in [4] that if a non-negative symmetric matrix A has total288

support, then there exists a diagonal matrix D such that DAD is a doubly stochastic matrix.289

A square matrix A = (aij) of order n is said to have total support if A 6= 0, and for every290

nonzero entry aij of A, there exists a permutation σ of [n] such that σ(i) = j and for all291
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62:8 d-to-1 Hardness of Graph Coloring

e ∈ [n], ae,σ(e) 6= 0. When the matrix A is an adjacency matrix of a graph G, the total292

support condition translates to the requirement that every edge in G is part of a cycle cover,293

a property we have already shown to hold for the graph G.294

Thus, we can apply the above scaling result, and view the resulting matrix B = DAD295

as the transition matrix of a Markov chain T . As A and D are symmetric, B is symmetric,296

i.e., T is symmetric. As A is connected and no principal diagonal element of D is zero, T is297

connected as well. Note that every nonzero element of A stays nonzero in T , and A is not298

bipartite. The above two facts combined ensure that the spectral radius r(T ) of T is strictly299

less than 1. We conclude that there exists a symmetric Markov chain T on state space [q]d300

that has both the properties: (i) r(T ) < 1, and (ii) there is nonzero probability of transition301

between two multisets only when their support is disjoint. J302

3.3 Proof of Theorem 9303

Let d be the constant for which Conjecture 3 is true. Thus, Conjecture 4 is true for the same304

value d as well. Choose q, T from Lemma 10 such that T is a symmetric Markov chain on305

[q]d such that r(T ) < 1.306

We now reduce the given d-to-d Label Cover instance to the problem of finding independent307

sets in q-colorable graphs. To be precise, given a Label Cover instance G = ((V,E), dR,Ψ),308

we output a graph G′ = (V ′, E′) such that309

1. Completeness: If G is satisfiable, G′ can be colored with q colors.310

2. Soundness: If isatt(G) < ε′, then G′ does not have any independent set of size ε.311

The parameters t and ε′ will be set later.312

Reduction.313

Our reduction follows the standard Label Cover Long Code paradigm, and in particular314

closely mirrors [7]. We replace each vertex w ∈ V of the Label Cover with a set fw of [q]dR315

nodes, each corresponding to a vertex in G′. Consider an edge e = (u, v) where Ψe is an316

associated constraint with permutations π1, π2 on [dR] such that (a, b) ∈ Ψe if and only if317

(π−1
1 (a), π−1

2 (b)) ∈ d↔ d.318

We add an edge between (x1, x2, . . . , xdR) ∈ fu and (y1, y2, . . . , ydR) ∈ fv to E′ if and319

only if320

∀i ∈ [R], T ((xπ1(di−d+1), xπ1(di−d+2), . . . , xπ1(di))↔ (yπ2(di−d+1), yπ2(di−d+2), . . . , yπ2(di))) > 0321

Completeness.322

Suppose σ : V → [dR] be a labeling satisfying all the constraints of the Label Cover instance323

G. We color the node (x1, x2, . . . , xdR) ∈ fw with xσ(w) ∈ [q]. We claim that this is a legit324

q-coloring of G′. Suppose that we added an edge between x ∈ fu and y ∈ fv. Let x be colored325

with xa and y be colored with yb. As (a, b) ∈ Ψ(u,v), we have (π−1
1 (a), π−1

2 (b)) ∈ d ↔ d.326

Thus, there exist i ∈ [R], 1 ≤ p, q ≤ d such that a = π1(di− d+ p) and b = π2(di− d+ q).327

As we have added an edge between x ∈ fu and y ∈ fv, xa 6= yb as the Markov chain T has328

nonzero probability only between two elements of [q]d with disjoint support. Thus, there329

exists a q-coloring of G′ when G is satisfiable.330

Soundness.331

We prove the contrapositive that if G′ has an independent set of relative size ε, then there332

exists a labeling of G with isatt(G) ≥ ε′. Let S ⊆ V ′ be the largest independent set of G′.333
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We know that |S| ≥ ε|V ′|. This implies that in at least ε′ = ε
2 fraction of the long code334

blocks, at least ε
2 fraction of nodes belong to S. Let this subset of V be denoted by Z. Our335

goal is to show that there exists a small set of labels τ : Z → 2[dR] to which we can decode336

the vertices in Z such that all the constraints induced in Z are satisfied by τ .337

For every vertex w ∈ Z, we define functions gw : [q]dR → {0, 1} to be the indicator338

functions of set S inside the long code blocks corresponding to w i.e. gw(x) = 1 if and only339

if x ∈ S. Consider an edge e = (u, v) corresponding to the constraint Ψe induced in Z. Let340

the functions f : [q]dR → {0, 1} and g : [q]dR → {0, 1} be defined such that f(xπ1) = gu(x)341

and g(yπ2) = gv(y), where π1 and π2 are the permutations underlying the relation Ψe i.e.342

(a, b) ∈ Ψe if and only if (π−1
1 (a), π−1

2 (b)) ∈ d↔ d.343

We note that 〈f, Tg〉 is equal to zero. In other words, suppose that x, y ∈ [q]dR, x ∈344

fu, y ∈ fv are such that345

∀i ∈ [R], T ((xdi−d+1, xdi−d+2, . . . , xdi)↔ (ydi−d+1, ydi−d+2, . . . , ydi)) > 0. (1)346

Then, f(x)g(y) = 0. Suppose for contradiction that there exist x, y ∈ [q]dR satisfying the347

above condition, and f(x) = g(y) = 1. Let x′ ∈ fu, y′ ∈ fv be such that (x′)π1 = x, (y′)π2 = y.348

We have gu(x′) = gv(y′) = 1. That is, both x′ ∈ fu, y′ ∈ fv are in the independent set S.349

However, Equation (1) can be rewritten as the following:350

∀i ∈ [R], T ((x′π1(di−d+1)), (x′π1(di−d+2)), . . . , x′π1(di))↔ (y′π2(di−d+1), y
′
π2(di−d+2), . . . , y

′
π2(di))) > 0.

(2)351

Note that this is precisely the condition for adding edges in G′. Thus, Equation (2) implies352

that x′ ∈ fu and y′ ∈ fv are adjacent in E′, and thus cannot both be part of the independent353

set S. This completes the proof that 〈f, Tg〉 = 0.354

Thus, 〈f, Tg〉 is also equal to zero, where f : [qd]R → {0, 1} and g : [qd]R → {0, 1} are the355

corresponding functions in [qd]R of f, g. From the definition of Z, E(f) ≥ ε
2 and E(g) ≥ ε

2 .356

We apply Theorem 7 to f and g to deduce that there exists i ∈ [R], a positive integer k = k(ε)357

and δ = δ(ε) such that I≤ki (f) ≥ δ and I≤ki (g) ≥ δ. This motivates us to define the label set358

of vertex w ∈ Z, L(w) as the following -359

L(w) := {i ∈ [dR] : I≤dki (gw) ≥ δ

d
}360

As the sum of k degree influences of all variables is at most k, the size of L(w) is upper361

bounded by kd
δ for every v. Thus, we set the parameter t to be kd

δ .362

The final step is to prove that the labeling L is indeed a valid labeling inside edges induced363

in Z. Consider an edge e = (u, v) induced in Z with the constraint relation being Ψe such364

that (a, b) ∈ Ψe if and only if (π1(a), π2(b)) ∈ d ↔ d. Our goal is to show that there exist365

indices σ1, σ2 ∈ [dR] such that σ1 ∈ L(u), σ2 ∈ L(v) and (σ1, σ2) ∈ Ψe. Using Theorem 7, we366

can deduce that there exists i ∈ [R] such that I≤ki (f) ≥ δ and I≥ki (g) ≥ δ. Using Lemma 6,367

we can conclude that there exist i1, i2 ∈ [dR] such that I≤dki1
(f) ≥ δ

d and I≤dki2
(g) ≥ δ

d such368

that (i1, i2) ∈ d↔ d. Let σ1, σ2 ∈ [dR] be such that i1 = π1(σ1), i2 ∈ σ2. As f(xπ1) = gu(x),369

I≤dk
π−1

1 (i1)(gu) ≥ δ
d . And thus, σ1 ∈ L(u), and similarly σ2 ∈ L(v). As (i1, i2) ∈ d ↔ d,370

(σ1, σ2) ∈ Ψe, which completes the proof.371

4 Reducing multigraph (exact) d-to-1 to (d + 1)-to-1 conjecture372

For the version of d-to-1 conjecture where we only require the constraint maps to be at most373

d-to-1, the d-to-1 conjecture trivially implies the (d + 1)-to-1 conjecture. O’Donnell and374
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Wu [16] remark that no such reduction appears to be known for the exact d-to-1 conjecture.375

Here we prove that the exact d-to-1 conjecture implies the exact (d+ 1)-to-1 conjecture when376

the underlying Label Cover instances are allowed to have parallel edges. We remark that377

multigraph version of exact d-to-1 conjecture, which is implied by the simple graph version,378

also suffices for our reduction to graph coloring (and indeed all known reductions from d-to-1379

Label Cover).380

Let G = ((V = X∪Y,E), (dR,R),Ψ) be a Label Cover instance such that every constraint381

is of d-to-1 structure. We reduce it to G′ = ((V = X ∪ Y,E′), ((d+ 1)R,R),Ψ′) such that382

1. If G is satisfiable, G′ is satisfiable as well.383

2. If every labeling violates at least ε fraction of constraints in G, then every labeling violates384

at least ε′ = 2ε fraction of constraints in G′.385

Reduction.386

We first change the label set of X from [dR] to [(d + 1)R]. For every constraint ψ in G387

between nodes u ∈ X and v ∈ Y , we replace it with R constraints ψ1, ψ2, . . . , ψR between388

u and v in the following way: the relation between old labels is the same as ψ i.e. when389

x ≤ dR, (x, y) ∈ ψj for j = 1, 2, . . . , R if and only if (x, y) ∈ ψ. When x > dR, (x, y) ∈ ψj if390

and only if R divides (x+ j − y). This ensures that each new label is mapped to a different391

label in each of the R new constraints. The constraints are clearly of (d+ 1)− to− 1 form.392

Completeness.393

If there is a labeling satisfying all the constraints of G, the same labeling satisfies all the394

constraints in G′ as well.395

Soundness.396

Suppose that there is no labeling satisfying at least ε fraction of constraints in G. Note that397

this implies that R is at least 1
ε as there is always a labeling satisfying at least 1

R fraction of398

constraints: fix a labeling to the vertices on the left, and assign a label to the vertices in R399

uniformly at random from [R]. We claim that there is no labeling satisfying more than 2ε400

fraction of constraints in G′. Consider an arbitrary labeling of G, σ : V → [(d+ 1)R]. We401

can divide the set of edges E′ of G′ into two parts: the edges (u, v) such that σ(u) ≤ dR and402

the edges (u, v) such that σ(u) > dR. Let the set of first type of edges where the left vertex403

is assigned the new label be denoted by E1, and the set of second type of edges be denoted404

by E2. In E1, the fraction of constraints that can be satisfied by σ is at most 1
R ≤ ε. Note405

that we can get a labeling σ′ of G by replacing labels of vertices in X with label greater than406

dR with an arbitrary label in [dR], and keeping rest of the labels intact. For the edges in E2,407

the labelings σ and σ′ coincide. As σ′ can satisfy at most ε fraction of constraints of G, σ408

can only satisfy at most ε fraction of overall edges in E′. Thus, overall σ satisfies at most409

ε+ 1
R ≤ 2ε fraction of constraints in E′, which proves the required soundness claim.410

5 Conclusion411

In this paper, we prove that the d-to-1 conjecture, for arbitrarily large d, implies the412

NP-hardness of the longstanding and elusive problem of coloring 3-colorable graphs with413

constantly many colors. Note that the d-to-1 conjecture requires the soundness parameter414

to be arbitrarily small, independent of d. Currently, the best NP-hardness of d-to-1 Label415

Cover achieves a soundness of d−Ω(1). This follows from the PCP Theorem [1,2] combined416
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with Raz’s parallel repetition [18]. However, this does not yield any explicit constant in the417

exponent, obtaining which is an interesting open question. One can also investigate whether418

improving the soundness of d-to-1 Label Cover to something quantitatively much stronger,419

say inverse exponential in d, would have some implications for inapproximability of graph420

coloring.421
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