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Abstract

It is becoming increasingly important to understand the vulnerability of machine learning
models to adversarial attacks. In this paper we study the feasibility of robust learning from
the perspective of computational learning theory, considering both sample and computational
complexity. In particular, our de�nition of robust learnability requires polynomial sample com-
plexity. We start with two negative results. We show that no non-trivial concept class can be
robustly learned in the distribution-free setting against an adversary who can perturb just a
single input bit. We show moreover that the class of monotone conjunctions cannot be robustly
learned under the uniform distribution against an adversary who can perturb !(log n) input
bits. However if the adversary is restricted to perturbing O(log n) bits, then the class of mono-
tone conjunctions can be robustly learned with respect to a general class of distributions (that
includes the uniform distribution). Finally, we provide a simple proof of the computational
hardness of robust learning on the boolean hypercube. Unlike previous results of this nature,
our result does not rely on another computational model (e.g. the statistical query model) nor
on any hardness assumption other than the existence of a hard learning problem in the PAC
framework.

1 Introduction

There has been considerable interest in adversarial machine learning since the seminal work of Szegedy
et al. [25], who coined the term adversarial example to denote the result of applying a carefully
chosen perturbation that causes a classi�cation error to a previously correctly classi�ed datum.
Biggio et al. [4] independently observed this phenomenon. However, as pointed out by Biggio and
Roli [3], adversarial machine learning has been considered much earlier in the context of spam �l-
tering [8, 19, 20]. Their survey also distinguished two settings: evasion attacks, where an adversary
modi�es data at test time, and poisoning attacks, where the adversary modi�es the training data.1

Several di�erent de�nitions of adversarial learning exist in the literature and, unfortunately,
in some instances the same terminology has been used to refer to di�erent notions (for some
discussion see e.g., [11, 10]). Our goal in this paper is to take the most widely-used de�nitions and
consider their implications for robust learning from a statistical and computational viewpoint. For
simplicity, we will focus on the setting where the input space is the boolean hypercube X = f0; 1gn

1For an in-depth review and de�nitions of di�erent types of attacks, the reader may refer to [3, 11].
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(a) (b) (c)

Figure 1: (a) The support of the distribution is such that RC� (h; c) = 0 can only be achieved if c
is constant. (b) The �-expansion of the support of the distribution and target c admit hypotheses
h such that RC� (h; c) = 0. (c) An example where RC� and RE� di�er. The red concept is the target,
while the blue one is the hypothesis. The dots are the support of the distribution and the shaded
regions represent their �-expansion. The diamonds represent perturbed inputs which cause RE� > 0.

and consider the realizable setting, i.e. the labels are consistent with a target concept in some
concept class.

An adversarial example is constructed from a natural example by adding a perturbation. Typ-
ically, the power of the adversary is curtailed by specifying an upper bound on the perturbation
under some norm; in our case, the only meaningful norm is the Hamming distance. For a point
x 2 X , let B�(x) denote the Hamming ball of radius � around x. Given a distribution D on X , we
consider the adversarial risk of a hypothesis h with respect to a target concept c and perturbation
budget �. We focus on two de�nitions of risk. The exact in the ball risk RE� (h; c) is the probability
P

x�D
(9y 2 B�(x) � h(y) 6= c(y)) that the adversary can perturb a point x drawn from distribution

D to a point y such that h(y) 6= c(y). The constant in the ball risk RC� (h; c) is the probability
P

x�D
(9y 2 B�(x) � h(y) 6= c(x)) that the adversary can perturb a point x drawn from distribution

D to a point y such that h(y) 6= c(x). These de�nitions encode two di�erent interpretations of
robustness. In the �rst view, robustness speaks about the �delity of the hypothesis to the target
concept, whereas in the latter view robustness concerns the sensitivity of the output of the hypoth-
esis to corruptions of the input. In fact, the latter view of robustness can in some circumstances
be in conict with accuracy in the traditional sense [26].

1.1 Overview of Our Contributions

We view our conceptual contributions to be at least as important as the technical results and believe
that the issues highlighted in our work will result in more concrete theoretical frameworks being
developed to study adversarial learning.

Impossibility of Robust Learning in Distribution-Free PAC Setting

We �rst consider the question of whether achieving zero (or low) robust risk is possible under either
of the two de�nitions. If the balls of radius � around the data points intersect so that the total region
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is connected, then unless the target function is constant, it is impossible to achieve RC� (h; c) = 0

(see Figure 1). In particular, in most cases RC� (c; c) 6= 0, i.e., even the target concept does not have
zero risk with respect to itself. We show that this is the case for extremely simple concept classes
such as dictators or parities. When considering the exact on the ball notion of robust learning,
we at least have RE� (c; c) = 0; in particular, any concept class that can be exactly learned can
be robustly learned in this sense. However, even in this case we show that no \non-trivial" class
of functions can be robustly learned. We highlight that these results show that a polynomial-size
sample from the unknown distribution is not su�cient, even if the learning algorithm has arbitrary
computational power (in the sense of Turing computability).2

Robust Learning of Monotone Conjunctions

Given the impossibility of distribution-free robust learning, we consider robust learning under
speci�c distributions. We consider one of the simplest concept class studied in PAC Learning,
the class of monotone conjunctions, under the class of log-Lipschitz distributions (which includes
the uniform distribution) and show that this class of functions is robustly learnable provided � =
O(log n) and is not robustly learnable with polynomial sample complexity for � = !(log n). A
class of distributions is said to be �-log-Lipschitz if the logarithm of the density function is log(�)-
Lipschitz with respect to the Hamming distance. Our results apply in the setting where the learning
algorithm only receives random labeled examples. On the other hand, a more powerful learning
algorithm that has access to membership queries can exactly learn monotone conjunctions and as
a result can also robustly learn with respect to exact in the ball loss.

Computational Hardness of PAC Learning

Finally, we consider computational aspects of robust learning. Our focus is on two questions:
computability and computational complexity. Recent work by Bubeck et al. [7] provides a result
that states that minimizing the robust loss on a polynomial-size sample su�ces for robust learning.
However, because of the existential quanti�er over the ball implicit in the de�nition of the exact

in the ball loss, the empirical risk cannot be computed as this requires enumeration over the reals.
Even if one restricted attention to concepts de�ned over Qn, computing the loss would be recursively
enumerable, but not recursive. In the case of functions de�ned over �nite instance spaces, such as
the boolean hypercube, the loss can be evaluated provided the learning algorithm has access to a
membership query oracle; for the constant in the ball loss membership queries are not required.
For functions de�ned on Rn it is unclear how either loss function can be evaluated even if the
learner has access to membership queries, since in principle it requires enumerating over the reals.
Under strong assumptions of inductive bias on the target and hypothesis class, it may be possible
to evaluate the loss functions; however this would have to be handled on a case by case basis { for
example, properties of the target and hypothesis, such as Lipschitzness or large margin, could be
used to compute the exact in the ball loss in �nite time.

Second, we consider the computational complexity of robust learning. Bubeck et al. [6] and Deg-
wekar and Vaikuntanathan [9] have shown that there are concept classes that are hard to robustly

2We do require any operation performed by the learning algorithm is computable; the results of Bubeck et al.
[7] imply that an algorithm that can potentially evaluate uncomputable functions can always robustly learn using a
polynomial-size sample. See the discussion on computational hardness below.
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learn under cryptographic assumptions, even when robust learning is information-theoretically fea-
sible. Bubeck et al. [7] establish super-polynomial lower bounds for robust learning in the statistical
query framework. We give an arguably simpler proof of hardness, based simply on the assump-
tion that there exist concept classes that are hard to PAC learn. In particular, our reduction also
implies that robust learning is hard even if the learning algorithm is allowed membership queries,
provided the concept class that we reduce from is hard to learn using membership queries. Since the
existence of one-way functions implies the existence of concept classes that are hard to PAC learn
(with or without membership queries), our result is also based on a slightly weaker assumption
than Bubeck et al. [7]3.

1.2 Related work on the Existence of Adversarial Examples

There is a considerable body of work that studies the inevitability of adversarial examples, e.g., [12,
14, 13, 16, 24]. These papers characterize robustness in the sense that a classi�er's output on a
point should not change if a perturbation of a certain magnitude is applied to it. Among other
things, these works study geometrical characteristics of classi�ers and statistical characteristics of
classi�cation data that lead to adversarial vulnerability.

Closer to the present paper are [10, 21, 22], which work the with exact-in-a-ball notion of robust
risk. In particular, [10] considers the robustness of monotone conjunctions under the uniform
distribution on the boolean hypercube for this notion of risk (therein called the error region risk).
However [10] does not address the sample and computational complexity of learning: their results
rather concern the ability of an adversary to magnify the missclassi�cation error of any hypothesis
with respect to any target function by perturbing the input. For example, they show that an
adversary who can perturb O(

p
n) bits can increase the missclassi�cation probability from 0:01 to

1=2. By contrast we show that a weaker adversary, who can perturb only !(log n) bits, renders
it impossible to learn monotone conjunctions with polynomial sample complexity. The main tool
used in [10] is the isoperimetric inequality for the Boolean hypercube, which gives lower bounds
on the volume of the expansions of arbitrary subsets. On the other hand, we use the probabilistic
method to establish the existence of a single hard-to-learn target concept for any given algorithm
with polynomial sample complexity.

2 De�nition of Robust Learning

The notion of robustness can be accommodated within the basic set-up of PAC learning by adapting
the de�nition of risk function. In this section we review two of the main de�nitions of robust risk
that have been used in the literature. For concreteness we consider an input space X = f0; 1gn
with metric d : X � X ! N, where d(x; y) is the Hamming distance of x; y 2 X . Given x 2 X , we
write B�(x) for the ball fy 2 X : d(x; y) � �g with centre x and radius � � 0.

The �rst de�nition of robust risk asks that the hypothesis be exactly equal to the target concept
in the ball B�(x) of radius � around a \test point" x 2 X :

De�nition 1. Given respective hypothesis and target functions h; c : X ! f0; 1g, distribution D on

X , and robustness parameter � � 0, we de�ne the \exact in the ball" robust risk of h with respect

3It is believed that the existence of hard to PAC learn concept classes is not su�cient to construct one-way
functions. [1].
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to c to be

R
E
� (h; c) = P

x�D
(9z 2 B�(x) : h(z) 6= c(z)) :

While this de�nition captures a natural notion of robustness, an obvious disadvantage is that
evaluating the risk function requires the learner to have knowledge of the target function outside of
the training set, e.g., through membership queries. Nonetheless, by considering a learner who has
oracle access to the predicate 9z 2 B�(x) : h(z) 6= c(z), we can use the exact-in-the-ball framework
to analyse sample complexity and to prove strong lower bounds on the computational complexity
of robust learning.

A popular alternative to the exact-in-the-ball risk function in De�nition 1 is the following
constant-in-the-ball risk function:

De�nition 2. Given respective hypothesis and target functions h; c : X ! f0; 1g, distribution D
on X , and robustness parameter � � 0, we de�ne the \constant in the ball" robust risk of h with

respect to c as
R
C
� (h; c) = P

x�D
(9z 2 B�(x) : h(z) 6= c(x)) :

An obvious advantage of the constant in the ball risk over the exact in the ball version is that in
the former, evaluating the loss at point x 2 X requires only knowledge of the correct label of x and
the hypothesis h. In particular, this de�nition can also be carried over to the non-realizable setting,
in which there is no target. However, from a foundational point of view the constant in the ball risk
has some drawbacks: recall from the previous section that under this de�nition it is possible to have
strictly positive robust risk in the case that h = c. (Let us note in passing that the risk functions
RC� and RE� are in general incomparable. Figure 1c gives an example in which RC� = 0 and RE� > 0.)
Additionally, when we work in the hypercube, or a bounded input space, as � becomes larger, we
eventually require the function to be constant in the whole space. Essentially, to �-robustly learn
in the realisable setting, we require concept and distribution pairs to be represented as two sets D+

and D� whose �-expansions don't intersect, as illustrated in Figures 1a and 1b. These limitations
appear even more stringent when we consider simple concept classes such as parity functions, which
are de�ned for an index set I � [n] as fI(x) =

P
i xi + b mod 2 for b 2 f0; 1g. This class can

be PAC-learned, as well as exactly learned with n membership queries. However, for any point, it
su�ces to ip one bit of the index set to switch the label, so RC� (fI ; fI) = 1 for any � � 1 if I 6= ;.

Ultimately, we want the adversary's power to come from creating perturbations that cause the
hypothesis and target functions to di�er in some regions of the input space. For this reason we
favor the exact-in-the-ball de�nition and henceforth work with that.

Having settled on a risk function, we now formulate the de�nition of robust learning. For our
purposes a concept class is a family C = fCngn2N, with Cn a class of functions from f0; 1gn to f0; 1g.
Likewise a distribution class is a family D = fDngn2N, with Dn a set of distributions on f0; 1gn.
Finally a robustness function is a function � : N! N.

De�nition 3. Fix a function � : N! N. We say that an algorithm A e�ciently �-robustly learns
a concept class C with respect to distribution class D if there exists a polynomial poly(�; �; �) such that
for all n 2 N, all target concepts c 2 Cn, all distributions D 2 Dn, and all accuracy and con�dence

parameters �; � > 0, there exists m � poly(1=�; 1=�; n), such that when A is given access to a sample

S � Dm it outputs h : f0; 1gn ! f0; 1g such that P
S�Dm

�
RE
�(n)(h; c) < �

�
> 1� �.
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Note that the de�nition of robust learning requires polynomial sample complexity and allows
improper learning (the hypothesis h need not belong to the concept class Cn).

In the standard PAC framework, a hypothesis h is considered to have zero risk with respect to
a target concept c when P

x�D
(h(x) 6= c(x)) = 0. We have remarked that exact learnability implies

robust learnability; we next give an example of a concept class C and distribution D such that C is
PAC learnable under D with zero risk and yet cannot be robustly learned under D (regardless of
the sample complexity).

Lemma 4. The class of dictators is not 1-robustly learnable (and thus not robustly learnable for

any � � 1) with respect to the robust risk of De�nition 1 in the distribution-free setting.

Proof. Let c1 and c2 be the dictators on variables x1 and x2, respectively. Let D be such that
P

x�D
(x1 = x2) = 1 and P

x�D
(xk = 1) = 1

2 for k � 3. Draw a sample S � Dm and label it according

to c � U(c1; c2). By the choice of D, the elements of S will have the same label regardless of
whether c1 or c2 was picked. However, for x � D, it su�ces to ip any of the �rst two bits to
cause c1 and c2 to disagree on the perturbed input. We can easily show that, for any h 2 f0; 1gX ,
RE1 (c1; h) + RE1 (c2; h) � RE1 (c1; c2) = 1: Then

E
c�U(c1;c2)

E
S�Dm

�
R
E
1 (h; c)

� � 1=2 :

We conclude that one of c1 or c2 has robust risk at least 1/2.

Note that a PAC learning algorithm with error probability threshold " = 1=3 will either output
c1 or c2 and will hence have standard risk zero. We refer the reader to Appendix B for further
discussion on the relationship between robust and zero-risk learning.

3 No Distribution-Free Robust Learning in f0; 1gn

In this section, we show that no non-trivial concept class is e�ciently 1-robustly learnable in
the boolean hypercube. Such a class is thus not e�ciently �-robustly learnable for any � � 1.
E�cient robust learnability then requires access to a more powerful learning model or distributional
assumptions.

Let Cn be a concept class on f0; 1gn, and de�ne a concept class as C =
S
n�1 Cn. We say that a

class of functions is trivial if Cn has at most two functions, and that they di�er on every point.

Theorem 5. Any concept class C is e�ciently distribution-free robustly learnable i� it is trivial.

The proof of the theorem relies on the following lemma:

Lemma 6. Let c1; c2 2 f0; 1gX and �x a distribution on X . Then for all h : f0; 1gn ! f0; 1g

R
E
� (c1; c2) � R

E
� (c1; h) + R

E
� (c2; h) :

Proof. Let x 2 f0; 1gn be arbitrary, and suppose that c1 and c2 di�er on some z 2 B�(x). Then
either h(z) 6= c1(z) or h(z) 6= c2(z). The result follows.
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The idea of the proof of Theorem 5 (which can be found in Appendix C) is a generalization of
the proof of Lemma 4 that dictators are not robustly learnable. However, note that we construct a
distribution whose support is all of X . It is possible to �nd two hypotheses c1 and c2 and create a
distribution such that c1 and c2 will likely look identical on samples of size polynomial in n but have
robust risk 
(1) with respect to one another. Since any hypothesis h in f0; 1gX will disagree either
with c1 or c2 on a given point x if c1(x) 6= c2(x), by choosing the target hypothesis c at random
from c1 and c2, we can guarantee that h won't be robust against c with positive probability. Finally,
note that an analogous argument can be made for a more general setting (for example in Rn).

4 Monotone Conjunctions

It turns out that we do not need recourse to \bad" distributions to show that very simple classes
of functions are not e�ciently robustly learnable. As we demonstrate in this section, MON-CONJ,
the class of monotone conjunctions, is not e�ciently robustly learnable even under the uniform

distribution for robustness parameters that are superlogarithmic in the input dimension.

4.1 Non-Robust Learnability

The idea to show that MON-CONJ is not e�ciently robustly learnable is in the same vein as the
proof of Theorem 5. We �rst start by proving the following lemma, which lower bounds the robust
risk of two disjoint monotone conjunctions.

Lemma 7. Under the uniform distribution, for any n 2 N, disjoint c1; c2 2 MON-CONJ of length

3 � l � n=2 on f0; 1gn and robustness parameter � � l=2, we have that RE� (c1; c2) is bounded below

by a constant that can be made arbitrarily close to 1
2 as l gets larger.

Proof. For a hypothesis c 2 MON-CONJ , let Ic be the set of variables in c. Let c1; c2 2 C be as in
the theorem statement. Then the robust risk RE� (c1; c2) is bounded below by

P
x�D

(c1(x) = 0 ^ x has at least l=2 1's in Ic2) = (1� 2�l)=2 :

Now, the following lemma shows that if we choose the length of the conjunctions c1 and c2 to
be super-logarithmic in n, then, for a sample of size polynomial in n, c1 and c2 will agree on S with
probability at least 1=2. The proof can be found in Appendix D.1.

Lemma 8. For any functions l(n) = !(log(n)) and m(n) = poly(n), for any disjoint monotone

conjunctions c1; c2 such that jIc1 j = jIc2 j = l(n), there exists n0 such that for all n � n0, a sample

S of size m(n) sampled i.i.d. from D will have that c1(x) = c2(x) = 0 for all x 2 S with probability

at least 1=2.

We are now ready to prove our main result of the section.

Theorem 9. MON-CONJ is not e�ciently �-robustly learnable for �(n) = !(log(n)) under the

uniform distribution.
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Proof. Fix any algorithm A for learning MON-CONJ . We will show that the expected robust risk
between a randomly chosen target function and any hypothesis returned by A is bounded below by
a constant. Fix a function poly(�; �; �; �; �), and note that, since size(c) and � are both at most n, we
can simply consider a function poly(�; �; �) in the variables 1=�; and 1=�; n instead. Let � = 1=2, and
�x a function l(n) = !(log(n)) that satis�es l(n) � n=2, and let �(n) = l(n)=2 (n is not yet �xed).
Let n0 be as in Lemma 8, where m(n) is the �xed sample complexity function.Then Equation (8)
holds for all n � n0.

Now, let D be the uniform distribution on f0; 1gn for n � max(n0; 3), and choose c1, c2 as in
Lemma 7. Note that RE� (c1; c2) >

5
12 by the choice of n. Pick the target function c uniformly at

random between c1 and c2, and label S � Dm with c, where m = poly(1=�; 1=�; n). By Lemma 8, c1
and c2 agree with the labeling of S (which implies that all the points have label 0) with probability
at least 1

2 over the choice of S.
De�ne the following three events for S � Dm:

E : c1jS = c2jS ; Ec1 : c = c1 ; Ec2 : c = c2 :

Then, by Lemmas 8 and 6,

E
c;S

�
R
E
� (A(S); c)

� � P
c;S

(E) E
c;S

�
R
E
� (A(S); c) j E

�
>

1

2

�
P
c;S

(Ec1)E
S

�
R
E
� (A(S); c) j E \ Ec1

�
+ P

c;S
(Ec2)E

S

�
R
E
� (A(S); c) j E \ Ec2

��
=

1

4
E
S

�
R
E
� (A(S); c1) + R

E
� (A(S); c2) j E

�
� 1

4
E
S

�
R
E
� (c2; c1)

�
> 0:1 :

4.2 Robust Learnability Against a Logarithmically-Bounded Adversary

The argument showing the non-robust learnability of MON-CONJ under the uniform distribution
in the previous section cannot be carried through if the conjunction lengths are logarithmic in the
input dimension, or if the robustness parameter is small compared to that target conjunction's
length. In both cases, we show that it is possible to e�ciently robustly learn these conjunctions if
the class of distributions is �-log-Lipschitz, i.e. there exists a universal constant � � 1 such that
for all n 2 N, all distributions D on f0; 1gn and for all input points x; x0 2 f0; 1gn, if dH(x; x0) = 1,
then j log(D(x))� log(D(x0))j � log(�) (see Appendix A.3 for further details and useful facts).

Theorem 10. Let D = fDngn2N, where Dn is a set of �-log-Lipschitz distributions on f0; 1gn for

all n 2 N. Then the class of monotone conjunctions is �-robustly learnable with respect to D for

robustness function �(n) = O(log n).

The proof can be found in Appendix D. This combined with Theorem 10 shows that �(n) =
log(n) is essentially the threshold for e�cient robust learnability of the class MON-CONJ .

8



5 Computational Hardness of Robust Learning

In this section, we establish that the computational hardness of PAC-learning a concept class C
with respect to a distribution class D implies the computational hardness of robustly learning a
family of concept-distribution pairs from a related class C0 and a restricted class of distributions D0.
This is essentially a version of the main result of [7], which used the constant-in-the-ball de�nition
of robust risk. Our proof also uses the [7] trick of encoding a point's label in the input for the
robust learning problem. Interestingly, our proof does not rely on any assumption other than the
existence of a hard learning problem in the PAC framework and is valid under both De�nitions 1
and 2 of robust risk.

Construction of C0. Suppose we are given C = fCngn2N and D = fDngn2N with Cn and Dn

de�ned on Xn = f0; 1gn. Given k 2 N, we de�ne the family of concept and distribution pairs

f(c0; D0)gD02D0

c0
;c02C0 , where C0 = fC0(k;n)gk;n2N on X 0

k;n = f0; 1g(2k+1)n+1 as follows. Let majk :

X 0
k;n ! Xn be the function that returns the majority vote on each subsequent block of k bits, and

ignores the last bit. We de�ne C0(k;n) =
�
c �maj2k+1 j c 2 Cn

	
. Let 'k : Xn ! X 0

k;n be de�ned as

'k(x) := x1 : : : x1x2 : : : xd�1xd : : : xd| {z }
2k+1 copies of each xi

c(x) ; 'k(S) := f'k(xi) j xi 2 Sg ;

for x = x1x2 : : : xd 2 X and S � X . For a concept c 2 Cn, each D 2 Dn induces a distribution
D0 2 D0c0 , where c0 = c �maj2k+1 and D0(z) = D(x) if z = 'k(x), and D0(z) = 0 otherwise.

As shown below, this set up allows us to see that any algorithm for learning Cn with respect to Dn

yields an algorithm for learning the pairs f(c0; D0)gD02D0

c0
;c02C0 . However, any robust learning algo-

rithm cannot solely rely on the last bit of the input, as it could be ipped by an adversary. Then, this
algorithm can be used to PAC-learn Cn. This establishes the equivalence of the computational di�-
culty between PAC-learning Cn with respect to D0(k;n) and robustly learning f(c0; D0)gD02D0

c0
;c02C0

(k;n)
.

As mentioned earlier, we can still e�ciently PAC-learn the pairs f(c0; D0)gD02D0

c0
;c02C0 simply by al-

ways outputting a hypothesis that returns the last bit of the input.

Theorem 11. For any concept class Cn, family of distributions Dn over f0; 1gn and k 2 N, there
exists a concept class C0(k;n) and a family of distributions D0(k;n) over f0; 1g(2k+1)n+1 such that

e�cient k-robust learnability of the concept-distribution pairs f(c0; D0)gD02D0

c0
;c02C0

(k;n)
and either of

the robust risk functions RCk or REk implies e�cient PAC-learnability of Cn with respect to Dn.

Before proving the above result, let us �rst prove the following proposition.

Proposition 12. The concept-distribution pairs f(c0; D0)gD02D0

c0
;c02C0

(k;n)
can be k-robustly learned

using O
�
1
�

�
log jCnj+ log 1

�

��
examples.

Proof. First note that, since Cn is �nite, we can use PAC-learning sample bounds for the realizable
setting (see for example [23]) to get that the sample complexity of learning Cn isO

�
1
�
(log jCnj+ log 1

�
)
�
.

Now, if we have PAC-learned Cn with respect to Dn, and h is the hypothesis returned on a sample
labeled according to a target concept c 2 Cn, we can compose it with the function majk to get a
hypothesis h0 for which any perturbation of at most k bits of x0 � D0 (where D0 is the distribution
induced by the target concept c and distribution D) will not change h0(x0). Thus, we also have
k-robustly learned C0(k;n).
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Remark 13. The sample complexity in Proposition 12 is independent of k, and so the construction
of the class C0 on X 0 allows the adversary to modify 1

2n fraction of the bits. There are ways to
make the adversary more powerful and keep the sample complexity unchanged. Indeed, the fraction
of the bits the adversary can ip can be increased by using error correction codes. For example,
BCH codes [5, 17] would allow us to obtain an input space X 0 of dimension n + k log n where the
adversary can ip k

n+k logn bits.

We are now ready to prove the main result of this section.

Proof of Theorem 11. Given Cn and D, let C0(k;n) and fD0c0gc02C0(k;n) be constructed as above. Sup-

pose that it is hard to PAC-learn Cn with respect to the distribution family Dn. Suppose that we
are given an algorithm A0 to k-robustly learn f(c0; D0)gD02D0

c0
;c02C0

(k;n)
and a sample complexity m.

Let �; � > 0 be arbitrary and c 2 Cn be an arbitrary target concept and let c0 2 C0(k;n) be such
that c0 = c � maj2k+1. Let D 2 Dn be a distribution on Xn, and let D0 2 D0c0 be its induced
distribution on X 0

k;n. A PAC-learning algorithm for Cn is as follows. Draw a sample S � Dm and
let S0 = 'k(S). Note that this simulates a sample S0 � D0m, and that c0 will give the same label
to all points in the �-ball centred at x0 for any x0 in the support of D0.

Since A0 k-robustly learns the concept-distribution pairs f(c0; D0)gD02D0

c0
;c02C0

(k;n)
, with proba-

bility at least 1� � over S0, for any x � D, we have that h0 will be wrong on 'k(x) (where the last
bit is random) with probability at most �. So by outputting h = h0 � 'k, we have an algorithm to
PAC-learn Cn with respect to the distribution family Dn.

6 Conclusion

We have studied robust learnability from a computational learning theory perspective and have
shown that e�cient robust learning can be hard { even in very natural and apparently straight-
forward settings. We have moreover given a tight characterization of the strength of an adversary
to prevent robust learning of monotone conjunctions under certain distributional assumptions. An
interesting avenue for future work is to see whether this result can be generalised to other classes
of functions. Finally, we have provided a simpler proof of the previously established result of the
computational hardness of robust learning.

In the light of our results, it seems to us that more thought needs to be put into what we
want out of robust learning in terms of computational e�ciency and sample complexity, which will
inform our choice of risk functions. Indeed, at �rst glance, robust learning de�nitions that have
appeared in prior work seem in many ways natural and reasonable; however, their inadequacies
surface when viewed under the lens of computational learning theory. Given our negative results
in the context of the current robustness models, one may surmise that requiring a classi�er to be
correct in an entire ball near a point is asking for too much. Under such a requirement, we can
only solve \easy problems" with strong distributional assumptions. Nevertheless, it may still be of
interest to study these notions of robust learning in di�erent learning models, for example where
one has access to membership queries.
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Appendix

A Learning Theory Basics

A.1 The PAC framework

We study the problem of robust classi�cation. This is a generalization of standard classi�cation
tasks, which are de�ned on an input space Xn of dimension n and �nite output space Y. Common
examples of input spaces are f0; 1gn, [0; 1]n, and Rn. We focus on binary classi�cation in the
realizable setting, where Y = f0; 1g, and we get access to a sample S = f(xi; yi)gmi=1 where the xi's
are drawn i.i.d. from an unknown underlying distribution D, and there exists c : X ! Y such that
yi = c(xi), namely, there exists a target concept that has labeled the sample. In the PAC framework
[27], our goal is to �nd a function h that approximates c with high probability over the training
sample. This means we are allowing a small chance of having a sample that is not representative
of the distribution. As we require our con�dence to increase, we require more data. PAC learning
is formally de�ned for concept classes Cn � f0; 1gXn as follows.

De�nition 14 (PAC Learning). Let Cn be a concept class over Xn and let C =
S
n2N Cn. We say

that C is PAC learnable using hypothesis class H and sample complexity function p(�; �; �) if there
exists an algorithm A that satis�es the following: for all n 2 N, for every c 2 Cn, for every D over

Xn, for every 0 < � < 1=2 and 0 < � < 1=2, if whenever A is given access to m � p(n; 1=�; 1=�)
examples drawn i.i.d. from D and labeled with c, A outputs h 2 H such that with probability at

least 1� �,
P

x�D
(c(x) 6= h(x)) � � :

We say that C is statistically e�ciently PAC learnable if p is polynomial in n; 1=� and 1=�, and
computationally e�ciently PAC learnable if A runs in polynomial time in n; 1=� and 1=�.

PAC learning is distribution-free, in the sense that no assumptions are made about the distri-
bution from which the data comes from. The setting where C = H is called proper learning, and
improper learning otherwise.

A.2 Monotone Conjunctions

A conjunction c over f0; 1gn can be represented a set of literals l1; : : : ; lk, where, for x 2 Xn,
c(x) =

Vk
i=1 li. For example, c(x) = x1 ^ �x2 ^ x5 is a conjunction. Monotone conjunctions are the

subclass of conjunctions where negations are not allowed, i.e. all literals are of the form li = xj for
some j 2 [n].

The standard PAC learning algorithm to learn monotone conjunctions is as follows. We start
with the hypothesis h(x) =

V
i2Ih

xi, where Ih = [n]. For each example x in S, we remove i from
Ih if c(x) = 1 and xi = 0.

When one has access to membership queries, one can easily exactly learn monotone conjunctions
over the whole input space: we start with the instance where all bits are 1 (which is always a
positive example), and we can test whether each variable is in the target conjunction by setting
the corresponding bit to 0 and requesting the label.

We refer the reader to [23] for an in-depth introduction to machine learning theory.

13



A.3 Log-Lipschitz Distributions

De�nition 15. A distribution D on f0; 1gn is said to be �-log-Lipschitz if for all input points

x; x0 2 f0; 1gn, if dH(x; x0) = 1, then j log(D(x))� log(D(x0))j � log(�).

The intuition behind log-Lipschitz distributions is that points that are close to each other must
not have frequencies that greatly di�er from each other. Note that, by de�nition, D(x) > 0 for
all inputs x. Moreover, the uniform distribution is log-Lipschitz with parameter � = 1. Another
example of log-Lipschitz distributions is the class of product distributions where the probability of

drawing a 0 (or equivalently a 1) at index i is in the interval
h

1
1+� ;

�
1+�

i
. Log-Lipschitz distributions

have been studied in [2], and its variants in [15, 18].
Log-Lipschitz distributions have the following useful properties, which we will often refer to in

our proofs.

Lemma 16. Let D be an �-log-Lipschitz distribution over f0; 1gn. Then the following hold:

1. For b 2 f0; 1g, 1
1+� � P

x�D
(xi = b) � �

1+� .

2. For any S � [n], the marginal distribution D �S is �-log-Lipschitz, where D �S(y) =
P

y02f0;1gS D(yy0).

3. For any S � [n] and for any property �S that only depends on variables xS, the marginal with
respect to �S of the conditional distribution (Dj�S) �S is �-log-Lipschitz.

4. For any S � [n] and bS 2 f0; 1gS, we have that
�

1
1+�

�jSj � P
x�D

(xi = b) �
�

�
1+�

�jSj
.

Proof. To prove (1), �x i 2 [n] and b 2 f0; 1g and denote by x�i the result of ipping the i-th bit
of x. Note that

P
x�D

(xi = b) =
X

z2f0;1gn:
zi=b

D(z) =
X

z2f0;1gn:
zi=b

D(z)

D(z�i)
D(z�i) � �

X
z2f0;1gn:

zi=b

D(z�i) = � P
x�D

(xi 6= b) :

The result follows from solving for P
x�D

(xi = b).

Without loss of generality, let �S = f1; : : : ; kg for some k � n. Let x; x0 2 f0; 1g �S with
dH(x; x

0) = 1.
To prove (2), let D �S be the marginal distribution. Then,

D �S(x) =
X

y2f0;1gS

D(xy) =
X

y2f0;1gS

D(xy)

D(x0y)
D(x0y) � �

X
y2f0;1gS

D(x0y) = �D �S(x
0) :

To prove (3), denote by X�S the set of points in f0; 1gS satisfying property �S , and by xX�S

the set of inputs of the form xy, where y 2 X�S . By a slight abuse of notation, let D(X�S ) be the
probability of drawing a point in f0; 1gn that satis�es �S . Then,

D(xX�S ) =
X

y2X�S

D(xy) =
X

y2X�S

D(xy)

D(x0y)
D(x0y) � �

X
y2X�S

D(x0y) = �D(x0X�S ) :
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We can use the above and show that

(Dj�S) �S(x) =
D(xX�S )

D(x0X�S )

D(x0X�S )

D(X�S )
� �(Dj�S) �S(x0) :

Finally, (4) is a corollary of (1){(3).

B Discussion on the Relationship between Robust and Zero-Risk

Learning

We saw that, for both robust risks RC� and RE� , zero-risk learning does not necessarily imply robust
learning. Moreover, as shown in Section 3, e�cient distribution-free robust learning is not possible
even in the realizable setting. What can be said if we have access to a robust learning algorithm
for a speci�c distribution on the boolean hypercube? We will show that distribution-dependent
robust learning implies zero-risk learning for both robust risk de�nitions, under certain conditions
on the measure of balls in the support of the distribution. Let us start with De�nition 1, where we
require the hypothesis to be exact in the �-balls around a point.

Proposition 17. For any probability measure � on f0; 1gn, robustness parameter � and concepts

h; c, there exists � > 0 such that if RE� (h; c) < � then h(x) = c(x) for any x 2 X such that

�(B�(x)) > 0. In particular, one has that h and c agree on the support of �.

Proof. Suppose there exists x� 2 X with �(B�(x
�)) > 0 such that h(x�) 6= c(x�). Then for any

z 2 B�(x
�), we have that RE� (h; c; z), the robust risk of h with respect to c at point z, is 1. Let

~X := fx 2 X : � (B�(x)) > 0g, and � = minx2 ~X �(B�(x)). We have that

R
E
� (h; c) �

X
z2B�(x�)

�(fzg)`R� (h; c; z) = �(B�(x
�)) � � :

Corollary 18. For any �xed distribution D, robust learning with respect to D implies zero-risk

learning with respect to D for any robustness parameter as long as � in Proposition 17 satis�es

��1 = poly(n).

Proof. Fix a distribution D 2 D on X . Suppose that we have a �-robust learning algorithm
AR
F (D) for F , namely for all �; �; � > 0, for all c 2 F , if AR

F (D) has access to a sample S of size
m � poly(1

�
; 1
�
; size(c); n), it returns f 2 F such that

P
S�Dm

�
`R� (f; c) < �

� � 1� � : (1)

By Proposition 17, we can choose � such that RE� (h; c) < � implies that h(x) = c(x) for any
x 2 X such that �(B�(x)) > 0. Note that this � depends on D, � and n. So we have that

P
x�D

(f(x) 6= c(x)) = 0 ; (2)

with probability at least 1� � over the training sample S, whose size remains polynomial in 1
�
and

n by the proposition assumptions.
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Remark 19. The assumption on � in Corollary 18 is necessary to use the robust learning algorithm
as a black box: in Section 4.2, we work under a well-behaved class of distributions that includes
the uniform distribution and show that, for long enough monotone conjunctions and small enough
robustness parameter (with respect to the conjunction length), e�cient robust learning is possible.
However, we cannot exactly learn these monotone conjunctions. In the uniform distribution setting,
the �-balls all have the same probability mass and ��1 is essentially superpolynomial in n.

To show the same result for RC� , where the hypothesis is constant in a ball, we can use the exact
same reasoning as in Corollary 18, except that we need to show the analogue of Proposition 17 for
this setting.

Proposition 20. For any probability measure � on f0; 1gn and for any concepts h; c, there exists

� > 0 such that if RC� (h; c) < � then h and c agree on the support of �.

Proof. Fix h; c;D and let � = minx2supp(�) �(fxg). Suppose there exists x� 2 supp(�) and z 2
B�(x

�) such that c(x�) 6= h(z). Then

R
C
� (h; c) = P

x��
(9z 2 B�(x) : c(x) 6= h(z)) � � :

C Proofs from Section 3

Proof of Theorem 5. First, if C is trivial, we need at most one example to identify the target
function.

For the other direction, suppose that C is non-trivial. We �rst start by �xing any learning
algorithm and polynomial sample complexity function m. Let � = 1

2!(logn)
, 0 < � < 1

2 , and note
that for any constant a > 0,

lim
n!1

na log(1� �)�1 = 0 ;

and so any polynomial in n is o
�
(log(1=(1� �)))�1

�
. Then it is possible to choose n0 such that

for all n � n0,

m � log(1=�)

2n log(1� �)�1
: (3)

Since C is non-trivial, we can choose concepts c1; c2 2 Cn and points x; x0 2 f0; 1gn such that c1
and c2 agree on x but disagree on x0. This implies that there exists a point z 2 f0; 1gn such that
(i) c1(z) = c2(z) and (ii) it su�ces to change only one bit in I := Ic1 [ Ic2 to cause c1 to disagree
on z and its perturbation. Let D be such that

P
x�D

(xi = zi) =

(
1� � if i 2 I
1
2 otherwise

:

Draw a sample S � Dm and label it according to c � U(c1; c2). Then,

P
S�Dm

(8x 2 S c1(x) = c2(x)) � (1� �)mjIj : (4)

16



Bounding the RHS below by � > 0, we get that, as long as

m � log(1=�)

jIj log(1� �)�1
; (5)

(4) holds with probability at least �. But this is true as Equation (3) holds as well. However, if
x = z, then it su�ces to ip one bit of x to get x0 such that c1(x

0) 6= c2(x
0). Then,

R
E
� (c1; c2) � P

x�D
(xI = zI) = (1� �)jIj : (6)

The constraints on � and the fact that jIj � n are su�cient to guarantee that the RHS is 
(1).
Let � > 0 be a constant such that RE� (c1; c2) � �.

We can use the same reasoning as in Lemma 6 to argue that, for any h 2 f0; 1gX ,

R
E
1 (c1; h) + R

E
1 (c2; h) � R

E
1 (c1; c2) :

Finally, we can show that
E

c�U(c1;c2)
E

S�Dm

�
R
R
1 (h; c)

� � ��=2;

hence there exists a target c with expected robust risk bounded below by a constant4.

D Proofs from Section 4

D.1 Proof of Lemma 8

Proof. We begin by bounding the probability that c1 and c2 agree on an i.i.d. sample of size m:

P
S�Dm

(8x 2 S � c1(x) = c2(x) = 0) =

�
1� 1

2l

�2m

: (7)

Bounding the RHS below by 1=2, we get that, as long as

m � log(2)

2 log(2l=(2l � 1))
; (8)

(7) holds with probability at least 1=2.
Now, if l = !(log(n)), then for a constant a > 0,

lim
n!1

na log

�
2l

2l � 1

�
= 0 ;

and so any polynomial in n is o

��
log
�

2l

2l�1

���1
�
.

4For a more detailed reasoning, we refer the reader to the proof of Theorem 9, where we bound the expected
value E

c;S

�
R
E
� (A(S); c)

�
of the robust risk of a target chosen at uniformly random and the hypothesis outputted by a

learning algorithm A on a sample S.
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D.2 Proof of Theorem 10

Proof. We show that the algorithm A for PAC-learning monotone conjunctions (see [23], chapter
2) is a robust learner for an appropriate choice of sample size. We start with the hypothesis
h(x) =

V
i2Ih

xi, where Ih = [n]. For each example x in S, we remove i from Ih if c(x) = 1 and
xi = 0.

Let D be a class of �-log-Lipschitz distributions. Let n 2 N and D 2 Dn. Suppose moreover
that the target concept c is a conjunction of l variables. Fix "; � > 0. Let � = 1

1+� , and note that

by Lemma 16, for any S � [n] and bS 2 f0; 1gS , we have that �jSj � P
x�D

(xi = b) � (1� �)jSj.

Claim 1. Ifm �
l
logn�log �

�l+1

m
then given a sample S � Dm, algorithmA outputs c with probability

at least 1� �.
Proof of Claim 1. Fix i 2 f1; : : : ; ng. Algorithm A eliminates i from the output hypothesis just

in case there exists x 2 S with xi = 0 and c(x) = 1. Now we have P
x�D

(xi = 0 ^ c(x) = 1) � �l+1

and hence

P
S�D

(8x 2 S � i remains in Ih) � (1� �l+1)m � e�m�l+1
=

�

n
:

The claim now follows from union bound over i 2 f1; : : : ; ng.

Claim 2. If l � 8
�2
log(1

"
) and � � �l

2 then P
x�D

(9z 2 B�(x) � c(z) = 1) � ".

Proof of Claim 2. De�ne a random variable Y =
P

i2Ic
I(xi = 1). We simulate Y by the

following process. Let X1; : : : ; Xl be random variables taking value in f0; 1g, and which may
be dependent. Let Di be the marginal distribution on Xi conditioned on X1; : : : ; Xi�1. This
distribution is also �-log-Lipschitz by Lemma 16, and hence,

P
Xi�Di

(Xi = 1) � 1� � : (9)

Since we are interested in the random variable Y representing the number of 1's in X1; : : : ; Xl,
we de�ne the random variables Z1; : : : ; Zl as follows:

Zk =

 
kX
i=1

Xi

!
� k(1� �) :

The sequence Z1; : : : ; Zl is a supermartingale with respect to X1; : : : ; Xl:

E [Zk+1 j X1; : : : ; Xk] = E
�
Zk +X 0

k+1 � (1� �) j X 0
1; : : : ; X

0
k

�
= Zk + P

�
X 0
k+1 = 1 j X 0

1; : : : ; X
0
k

�� (1� �)

� Zk : (by (9))

Now, note that all Zk's satisfy jZk+1�Zkj � 1, and that Zl = Y � l(1� �). We can thus apply the
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Azuma-Hoe�ding (A.H.) Inequality to get

P (Y � l � �) � P
�
Y � l(1� �) +

p
2 ln(1=")l

�
= P

�
Zl � Z0 �

p
2 ln(1=")l

�
� exp

 
�
p
2 ln(1=")l

2

2l

!
(A.H.)

= " ;

where the �rst inequality holds from the given bounds on l and �:

l � � = (1� �)l +
�l

2
+

�l

2
� �

� (1� �)l +
�l

2
(since � � �l

2 )

� (1� �)l +
p
2 log(1=")l : (since l � 8

�2
log(1

"
))

This completes the proof of Claim 2.
We now combine Claims 1 and 2 to prove the theorem. De�ne l0 := max( 2

�
log n; 8

�2
log(1

"
)).

De�ne m :=
l
logn�log �

�l0+1

m
. Note that m is polynomial in n, �, ".

Let h denote the output of algorithm A given a sample S � Dm. We consider two cases. If
l � l0 then, by Claim 1, h = c (and hence the robust risk is 0) with probability at least 1 � �. If
l0 � l then, since � = log n, we have l � 8

�2
log(1

"
) and � � �l

2 and so we can apply Claim 2. By
Claim 2 we have

R
E
� (h; c) � P

x�D
(9z 2 B�(x) � c(z) = 1) � "
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