
A Simple Proof of Vyalyi’s Theorem and some Generalizations

Lieuwe Vinkhuijzen
Universiteit Leiden

Email: l.t.vinkhuijzen@liacs.leidenuniv.nl

André Deutz
Universiteit Leiden

Email: a.h.deutz@liacs.leidenuniv.nl

Abstract—In quantum computational complexity the-
ory, the class QMA models the set of problems effi-
ciently verifiable by a quantum computer the same
way that NP models this for classical computation.
Vyalyi proved that if QMA = PP then PH ⊆ QMA.
In this note, we give a simple, self-contained proof
of the theorem, using only the closure properties
of the complexity classes in the theorem statement.
We then extend the theorem in two directions:
(i) we strengthen the consequent, proving that if
QMA = PP then QMA = PHPP, and (ii) we weaken
the hypothesis, proving that if QMA = CO-QMA
then PH ⊆ QMA. Lastly, we show that all the
above results hold, without loss of generality, for the
class QAM instead of QMA. We also formulate a
“Quantum Toda’s Conjecture”.

1. Introduction

A major open question in quantum computa-
tional complexity theory is to find the relationships
between quantum complexity classes and classical
ones. In particular, we do not know how QMA
relates to the polynomial hierarchy or to PP. For
the first problem, no containment is known in
either direction. While it is known that QMA is
contained in PP, it is open whether the inclusion is
strict. Progress in this direction was made in 2003
when Vyalyi showed that the two questions are in
fact related:

Theorem 1 (Vyalyi [1]). If QMA = PP then
PH ⊆ PP.

For the proof, see page 6. Vyalyi took this
as evidence that QMA 6= PP because otherwise
PH ⊆ QMA, which seems unlikely.

Vyalyi’s proof of Theorem 1 introduces a new
complexity class called A0PP and uses Gap func-
tions to show that QMA ⊆ A0PP ⊆ PP; then
it uses Gap functions and a strong version of
Toda’s Theorem to show that if A0PP = PP then
PH ⊆ PP. Specifically, it uses the version of
Toda’s Theorem which states that PH ⊆ P#P[1]:
all languages in the polynomial hierarchy can be
solved with only one query to a counting oracle.

Our new proof is, in our view, simpler. It has
three ingredients: (i) the usual version of Toda’s
Theorem [4] (namely PH ⊆ PPP), (ii) that PP is
closed under complement [3] and (iii) that QMA∩
CO-QMA is closed under Turing reductions. The
third ingredient is, to the best of our knowledge,
new.

We anticipate the objection that our proof still
uses Toda’s Theorem and that therefore the com-
plexity of the original proof is not eliminated,
but merely outsourced. Our response is to give
a second, wholly self-contained elementary proof,
whose ideas we immediately use to improve The-
orem 1 in two ways. First, we strengthen the
consequent, as follows:

Theorem 2. If QMA = PP then QMA = PHPP.

That is, the hypothesis implies that the poly-
nomial hierarchy collapses relative to a count-
ing oracle. Second, we weaken the hypothesis of
Vyalyi’s Theorem from QMA = PP to merely
QMA = CO-QMA:

Theorem 3. If QMA = CO-QMA then PH ⊆
PP.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 131 (2019)

l.t.vinkhuijzen@liacs.leidenuniv.nl
a.h.deutz@liacs.leidenuniv.nl

A Simple Proof of Vyalyi’s Theorem and some Generalizations

2. Preliminaries

We assume that the reader is familiar with the
basics of Computational Complexity, in particular
the polynomial hierarchy (see Arora and Barak
[5]) and with quantum computing (see Nielsen
and Chuang [6] or Kitaev, Shin and Vyalyi [7]).
We work with languages over the binary alphabet
{0, 1}.

A Turing reduction from a language L to a
language K is an algorithm with oracle access to
K which solves L. If L Turing-reduces to K, we
write L ≤T K. If the reduction algorithm runs in
polynomial time, we say that there is a polynomial-
time deterministic Turing reduction from L to K
and write L ≤p

T K or L ∈ PK . A class C is closed
under polynomial-time Turing reductions, written
C = PC, if L ≤p

T K implies L ∈ C for every
language K ∈ C and L ⊆ {0, 1}∗. A class is closed
under complement, i.e. C = CO−C, if L ∈ C ⇐⇒
L ∈ C for all L ∈ C, where L = {0, 1}∗ \ L.

The class QMA was defined by Kitaev et al.
[7] (they called it BQNP):

Definition 1 (The class QMA: Quantum Mer-
lin-Arthur games). A language L ⊆ {0, 1}∗ is in
QMA if there are polynomials m(n), w(n) and
a polynomial-time constructible family of quantum
circuits {Ux}x∈{0,1}∗ receiving an m(n)-qubit in-
put and using w(n) qubits of workspace, possess-
ing completeness and soundness:
• Completeness: If x ∈ L then the circuit

Ux accepts some input state |ψ〉m(n) with
probability at least 1− 2−n

• Soundness: If x 6∈ L then the circuit Ux

rejects all input states with probability at
least 1− 2−n

The circuit family is called a protocol for L.

The class QMA is often studied as a set of
promise problems (which are pairs (Lyes, Lno),
where the algorithm is allowed to behave arbitrar-
ily on inputs outside of Lyes∪Lno), because in that
context it allows for complete problems, notably
the Local Hamiltonian Problem [7]. For us it will
be more natural to consider QMA simply as a set
of languages, because in this context the operation
of using a language as an oracle is cleaner, but
we stress that this decision is without loss of
generality.

The class PP, or Probabilistic Polynomial time,
was defined by Gill [3], who showed that PP is
closed under complement. Toda’s Theorem states
that PH ⊆ PPP [4].

3. Closure properties of QMA

In this section, we show that the class QMA∩
CO-QMA is closed under polynomial-time Turing
reductions. That is,

Theorem 4. QMA∩CO-QMA = PQMA∩CO-QMA

For the proof, see page 4. The ideas in the
proof are best illustrated by recalling two other
theorems: (i) the class NP∩CO-NP is closed under
Turing reductions (Theorem 5), and (ii) the class
QMA is closed under intersection (Theorem 7). To
streamline the proof of Theorem 7, we introduce
the Entanglement Independence Lemma, (Lemma
6).

The result NP ∩ CO-NP = PNP∩CO-NP is clas-
sic, and the idea of the Entanglement Independence
Lemma is simply the technique Kitaev et al. used
for error amplification when they defined QMA
[7].

Theorem 5. NP ∩ CONP is closed under
polynomial-time deterministic Turing reductions:
PNP∩CONP = NP ∩ CONP.

Proof. The trivial direction is NP ∩ CO-NP ⊆
PNP∩CO-NP, so we will only show the other direc-
tion, PNP∩CO-NP ⊆ NP ∩ CO-NP. To this end, it is
sufficient to show that PNP∩CO-NP ⊆ NP because
P is closed under complement.

Let K ∈ PNP∩CO-NP be a language decided
by the polynomial-time (say O(t(n))-time) Turing
Machine ML, with access to an oracle language
L ∈ NP ∩ CO-NP. Because L ∈ NP ∩ CO-NP,
there are non-deterministic Turing Machines Y and
N recognizing the languages L and L, respectively,
both running in time O(t′(n)). If we manage to
simulate ML with a non-deterministic machine,
we will have proved the theorem.

Clearly if we manage to obtain the answers to
all the queries ML makes, then we can faithfully
simulate ML. The central insight is that we can
obtain the answers by guessing and then verifying
them. Therefore the algorithm will be as follows.

2

A Simple Proof of Vyalyi’s Theorem and some Generalizations

Before we compute anything, (i) we non-
deterministically guess that the queries that ML is
going to make are the strings s1, . . . , st(n), (ii) we
guess the answers a1, . . . , at(n) to all the queries
that ML makes, and lastly (iii) we guess certifi-
cate strings y1, . . . , yt(n) and z1, . . . , zt(n) for the
machines Y and N , respectively.1 The remainder
of the computation is deterministic. The algorithm
checks that its guesses were correct: for each i, it
checks that Y (si, yi) = ai and N(si, zi) = ¬ai
(meaning that, for example, if a2 = 1 then Y
accepts the certificate y2 we guessed for s2 and
N rejects z2). If any of these checks fail, we have
evidently guessed incorrectly, and we reject on this
computation path.

Lastly, we simulate ML. When it makes the i-

th query, we check that it queries si
?
∈ L; if so, we

feed it the answer ai and continue the simulation,
but if not, we immediately reject, because we
have incorrectly guessed which strings ML would
query. When ML halts and accepts, we accept;
otherwise we reject.

If ML accepts, then our machine accepts. The
accepting paths are exactly those that correctly
guessed which strings ML was going to query,
what the answers were, and what certificates would
satisfy Y and N . If ML rejects, then our machine
rejects too, because even the paths that obtained
correct answers for the oracle queries still reject
when ML halts and rejects.

The next lemma, the Entanglement Indepen-
dence Lemma, says that if two QMA protocols
possess soundness individually, then soundness is
preserved when they are combined in a single
circuit and their inputs are entangled, as long as
they are implemented and measured independently,
as in Figure 1. This is not obvious a priori, because
oftentimes quantum circuits behave in surprising
ways when clever use is made of entanglement.
The result of the Lemma, then, is that in this
case, no such clever use is possible for Merlin:
entangling the two certificates for the two circuits
gives him no advantage.

1. All these strings are polynomially-bounded: The strings si
are not longer than t(n) bits, because ML runs in time t(n)
bits. The certificates yi, zi are not longer than t′(t(n)) bits.

|ψ〉m
U

|0〉w

|φ〉m
V

|0〉w

Figure 1. The circuits U and V receive inputs that may be
entangled.

Lemma 6 (Entanglement Independence Lemma).
Let U, V be two quantum circuits as in Figure 1,
both receiving an m-qubit input and a w-qubit
workspace, with measurement operators ΠU ,ΠV .
Suppose that U and V accept with probability at
most a and b, respectively, regardless of their m-
qubit input. Then the probability that both U and
V accept when they are implemented jointly, and
when their inputs may be entangled, is at most a·b.

Proof. The proof uses a trick by Marriot and Wa-
trous [8]. They are able to express the probability
that a circuit accepts an m-qubit input in terms
of the eigenvalues of a 2m × 2m matrix, as in
Equation 1. Equation 1 follows from the equality
(I⊗m ⊗ |0〉) · |ψ〉m = |ψ〉m ⊗ |0〉.

P [U accepts |ψ〉] (1)

= 〈ψ| 〈0|U†ΠUU |ψ〉 |0〉
= 〈ψ| ·

(
(I⊗m ⊗ 〈0|) · U†ΠUU · (I⊗m ⊗ |0〉)

)
|ψ〉

Let

Ũ =(I⊗m ⊗ 〈0|) · U†ΠUU · (I⊗m ⊗ |0〉)
Ṽ =(I⊗m ⊗ 〈0|) · V †ΠV V · (I⊗m ⊗ |0〉)

Clearly these operators are Hermitian, so their
eigenvalues are real, so their “largest” eigenvalue
is well-defined.

Using Equation 1, we can express the probabil-
ity that U and V both accept an m+m-qubit quan-
tum state |φ〉 =

∑
i yi |ai〉 |bi〉 as 〈φ| (Ũ ⊗ Ṽ) |φ〉.

This probability is maximized at the largest eigen-
value of Ũ ⊗ Ṽ . But the eigenvalues of Ũ ⊗ Ṽ are
exactly the products of the eigenvalues of Ũ and
Ṽ . More precisely, for every pair of eigenvalues
λ, µ of U and V , λ ·µ is an eigenvalue of Ũ ⊗ Ṽ .

3

A Simple Proof of Vyalyi’s Theorem and some Generalizations

By assumption, the largest eigenvalues of U
and V are at most a and b, so the largest eigenvalue
of Ũ ⊗ Ṽ is at most a · b.

The approach of Marriot and Watrous has the
advantage that the qubits of the workspace are
encapsulated by the operator Ũ , which allows us
to express acceptance of U , and in turn express
perfect play by Merlin, in terms of the eigenvalues
of Ũ :

P [U accepts | Perfect play by Merlin]

= max
|ψ〉
〈ψ| Ũ |ψ〉

This quantity is maximized at an eigenvalue
of Ũ , and the message that Merlin will send to
maximize Arthur’s probability of acceptance is a
corresponding eigenvector. The significance is that
one of the maximizing eigenvectors is an untangled
state. This gives us exactly what we wanted: while
Merlin has the ability to entangle his certificates,
he gains no advantage from doing so compared to
sending unentangled certificates.

Next, we use the Entanglement Independence
Lemma to show that QMA is closed under inter-
section.

Theorem 7. If L,K ∈ QMA then L∩K ∈ QMA.
That is, QMA is closed under intersection.

Proof. Let L ∈ QMA and K ∈ QMA. For
a particular input string x ∈ {0, 1}∗, we now
design a simple QMA protocol for membership
in L ∩ K. Let U and V be amplified circuits of
the QMA protocols for the languages L and K,
respectively. We ask Merlin for two certificates
|ψL〉p and |ψK〉q, feed them to the circuits and
measure the outcomes, like in Figure 2. We accept
iff both circuits accept. The difficulty is that Merlin
can entangle the two certificates, but we will show
that he gains no advantage from doing so.

Part 1: Completeness. Suppose that x ∈ L ∩
K. Then Merlin can be honest and send us the state
|ψL〉p⊗ |ψK〉q. These are two unentangled certifi-
cates for membership of L and K, so the two sub-
circuits U and V can be analyzed independently: U
will accept with probability |ΠUU |ψL〉|2 ≥ 9/10

and V will accept with probability |ΠV V |ψK〉|2 ≥

|ψL〉p
U

|0〉w •

|ψK〉q
V

|0〉w •

|0〉1

Figure 2. A circuit which receives two certificates |ψL〉p and
|ψK〉q , possibly entangled, and executes the protocols for
languages L and K on them.

9/10. Therefore both circuits accept with probabil-
ity at least

(
9/10

)2 ≥ 2/3, which suffices to show
that the protocol has completeness.

Part 2: Soundness. Suppose that x 6∈ L ∩K,
e.g. because x 6∈ L. Then Merlin may send us any
arbitrary, possibly highly entangled state. If U is
implemented alone, then it accepts any certificate
with probability at most 1/3. Here, we provide U
with a well-initialised workspace of |0〉w, so by the
Entanglement Independence Lemma, U will also
accept with low probability, at most 1/3, regardless
of how Merlin entangles its input register with the
rest of the certificate. Therefore the probability that
the circuit as a whole accepts is also ≤ 1/3, so
the protocol has soundness.

By a similar argument, QMA is closed under
union. Lastly, we need the union bound in the
following form.

Lemma 8 (Union Bound). If t(n) ∈ Ω(1) is a
polynomial then

lim
n→∞

(1− 2−n)t(n) = 1

�

We are now ready to prove Theorem 4.

Proof of Theorem 4. It suffices to give a QMA
protocol for a language in PQMA∩CO-QMA, because
P is closed under complement. So let ML be a
polynomial-time (say t(n)-time) Turing Machine
with oracle access to a language L ∈ QMA ∩
CO-QMA and let {Ys}s∈{0,1}∗ and {Ns}s∈{0,1}∗
be the circuit families corresponding to the QMA
protocols for L and L, respectively.

4

A Simple Proof of Vyalyi’s Theorem and some Generalizations

In the proof of Theorem 5, we fed ML truthful
answers to all its oracle queries. Here we will settle
for something which suffices for our purposes:
either (i) if x ∈ L, then with very high probability
we will give ML truthful answers to its queries,
or else (ii) if x 6∈ L, with very high probability
we will detect any attempt of Merlin to fool us,
and reject. To this end, we assume that the circuits
Ys and Ns are amplified such that if s ∈ L, then
there is a state that Ys accepts with probability
≥ 1−2−n, whereas if s 6∈ L, then Ys rejects every
state with probability ≥ 1− 2−n.

In this protocol, we expect that Merlin’s mes-
sage contains (i) the (classical) strings s1, . . . , st(n)

that ML queries, (ii) their answers a1, . . . , at(n)

and (iii) quantum states |ψ1〉 , . . . , |ψt(n)〉 and
|φ1〉 , . . . , |φt(n)〉 which will serve as the certifi-
cates to Y and N . This is the same strategy as
pursued in the proof of Theorem 5, except now
the certificates are quantum states. The certificates
are the only parts of Merlin’s message that need to
be quantum, because parts (i) and (ii) are simply
classical bit strings.

Before we simulate ML, we measure all the
qubits which we expect to be classical bits (the
answers and the query strings) in the computational
basis. Then we compute, for each i, whether Ysi
accepts |ψi〉 and whether Nsi accepts |φi〉. We
reject if Ysi does not output ai or Nsi does not
output ¬ai, just as before. Lastly, we simulate
ML just as in Theorem 5, rejecting if ML queries
a string we did not anticipate or if ML rejects.
Otherwise, we accept.

The only part where we use quantum com-
puting is in the evaluation of the certificates, and
we have to argue that this does not influence the
soundness of the protocol.

Part 1: Completeness. Suppose that ML ac-
cepts. Then Merlin can be honest and simply send
us good, unentangled certificates for the algorithms
Ys and Ns. In particular, for any query s, if
s ∈ L, then Ys will accept the good certificate
|ψi〉 with probability at least 1− 2−n and Ns will
reject its certificate |φi〉 with at least the same
probability. Because these circuits are implemented
independently of one another and the state |ψi〉
is not entangled with |φi〉, these two events are
independent, so the probability that both happen
is at least (1 − 2−n)2. This needs to happen for

all queries, of which there are at most t(n). The
probability that all oracle queries proceed this way
is at least

(1− 2−n)2t(n) (2)

Because t(n) is a polynomial, this quantity tends
to 1 for large n, by Lemma 8, meaning that with
probability tending to 1, we obtain correct answers
for all queries. After that, simulating ML is a
deterministic computation and we copy its answer,
so we output the correct answer with probability
tending to 1.

Part 2: Soundness. Suppose that ML rejects.
Then Merlin will send us a possibly very compli-
cated entangled state. We start by measuring all
the registers which we expect to be classical in
the computational basis, so that these registers are
now truly classical bits and are not entangled with
the rest of the certificate. The certificates to the
queries remain quantum. The fact that the various
certificates may be entangled with one another
presents the principal hurdle in this proof, which
we overcome by the Entanglement Independence
Lemma.

Suppose that in our simulation we feed ML

only correct answers. Then we will certainly reject.
So in order to make us accept, Merlin must make
us compute the wrong answer for at least one
query, which happens when s ∈ L but Ys rejects
and Ns accepts. But according to the Entanglement
Independence Lemma, and because the protocol
Ns possesses soundness, the probability that Ns

accepts any certificate state, no matter how the
state is entangled with other parts of the circuit that
Ns does not touch, is at most 2−n. (Our assymetric
focus here on the protocol Ns instead of Ys is
because it is easy enough for Merlin to make Ys
reject by sending a bad certificate. In the classical
case he might send a non-satisfying assignment to
the Satisfiability problem, for example).

Above we have described the “good event” that
the circuit Ns rejects a single bad certificate. For
our simulation to succeed, each query must be a
“good event”, that is, it must happen t(n) times.
By Lemma 8, this probability tends to 1.

The following corollary is immediate.

5

A Simple Proof of Vyalyi’s Theorem and some Generalizations

Theorem 9. QMA is closed under complement if
and only if it is closed under Turing reductions. In
symbols:

QMA = CO-QMA ⇐⇒ QMA = PQMA (3)

Proof. Suppose that QMA = CO-QMA. Then
QMA = QMA ∩ CO-QMA = PQMA∩CO-QMA =
PQMA by Theorem 4. In the other direction, if
QMA = PQMA, then it is closed under comple-
ment, because P is closed under complement.

4. A simple proof

Theorem 1 (Vyalyi [1]). If QMA = PP then
PH ⊆ PP.

Proof. Suppose that QMA = PP. Since PP is
closed under complement [3], now QMA is also
closed under complement, so by Theorem 9 it is
closed under Turing reductions. By assumption,
then, PP is closed under Turing reductions, i.e.
PP = PPP. Toda’s Theorem completes the proof:
PPP ⊇ PH.

5. Stronger statements

In this section, we improve Vyalyi’s Theorem
in two directions. First we strengthen the conse-
quent from PH ⊆ PP to PP = PHPP (Theorem
2), and second, we weaken the hypothesis from
QMA = PP to merely QMA = CO-QMA (The-
orem 3). Both proofs build on one more ingredient:

Theorem 10. NPQMA∩CO-QMA ⊆ QMA.

Proof. We ask Merlin for (i) a certificate for the
NP machine that we are simulating and (ii) for
the queries and their answers similar to how we
asked them in Theorem 4. The first thing the QMA
machine does is measure the certificate in the
computational basis. Merlin is supposed to send a
classical string, so if he is honest, nothing happens.
If he is dishonest, then the certificate collapses to
some classical string, and the NP machine will
reject this if it receives correct answers to its
queries.

After measuring the certificate Merlin gave for
the NP machine, the remaining computation is
a simulation of a deterministic Turing Machine
which makes queries to QMA ∩ CO-QMA, that

is, it is a PQMA∩CO-QMA computation. By Theorem
4, this can be simulated in QMA.

Theorem 11. If QMA = CO-QMA then
QMA = PHQMA.

Proof. The non-trivial direction is PHQMA ⊆
QMA. The proof is by induction. For the base
case, we prove that ΣP

1
QMA

= QMA, using The-
orem 10:

ΣP
1

QMA
=NPQMA

=NPQMA∩CO-QMA ⊆ QMA

The last inclusion is Theorem 10. The induction
step assumes that ΣPQMA

i = QMA and derives
ΣP

i+1
QMA

= QMA:

ΣP
i

QMA
=QMA Induction hypothesis

ΣP
i+1

QMA
=NPΣP

i
QMA

By definition

=NPQMA Induction hypothesis

=NPQMA∩CO-QMA QMA = CO-QMA
by assumption

⊆QMA Theorem 10

We have shown that PHQMA ⊆ QMA, i.e. relative
to a QMA oracle, every level of the polynomial
hierarchy is contained in the unrelativized version
of QMA. For the opposite inclusion, we note that
QMA ⊆ PQMA ⊆ PHQMA is unconditional.

All goals set out in the introduction are im-
mediate corollaries of Theorem 11, using the facts
that PP is closed under complement [3] and that
QMA ⊆ PP (see [1]). 2

Theorem 2. If QMA = PP then QMA = PHPP.

Proof. If QMA = PP, then QMA = CO-QMA
since PP is closed under complement [3]. So by
Theorem 11, QMA = PHQMA = PHPP.

Theorem 3. If QMA = CO-QMA then PH ⊆
PP.

2. We cite [1] for the result QMA ⊆ PP, because it is the
earliest published proof known to the authors. However, it is
mentioned earlier, in the text that defines QMA [7], where it
is left as an excercise to the reader.

6

A Simple Proof of Vyalyi’s Theorem and some Generalizations

Proof. If QMA = CO-QMA then by Theorem
11, PH ⊆ PHQMA = QMA. The Theorem fol-
lows from the inclusion QMA ⊆ PP [1].

Note that we have fulfilled our promise of
giving a self-contained proof of Vyalyi’s Theorem
that does not depend on Toda’s Theorem, as each
of Theorem 2 and 3 implies Vyalyi’s Theorem.

We feel that these proofs go some way towards
illustrating why Vyalyi’s Theorem is true, namely:
for the same reason as in the classical case, if we
rephrase the classical case as follows.

Theorem 12. If NP = CO-NP then PH ⊆ NP.

The idea, of course, is that if the unsatisfiability
of a SAT formula always has a short certificate,
then that enables one to check ΣP

2 predicates and,
by induction, the whole polynomial hierarchy. In
our quantum case, quantum unsatisfiability has a
short quantum certificate, but the idea is the same.

6. Generalization to AM and QAM

The techniques developed to give the simple
proof of Vyalyi’s Theorem also apply to the classes
AM and QAM. In particular, we reprove all the
theorems with QAM in lieu of QMA. The fol-
lowing definition of QAM is due to Marriot and
Watrous [8]. The class captures languages solvable
by a two-round public-coin interactive proof in
which Arthur sends a classical message to Merlin,
who responds with a quantum state, which Arthur
may use in a quantum computation.

Definition 2 (The class QAM). A language L ⊆
{0, 1}∗ is in QAM if there are polynomials
m(n), s(n) and a polynomial-time uniform family
{Ux}x∈{0,1}∗ of quantum circuits acting on three
collections on qubits: Arthur’s workspace qubits,
m(n) qubits sent by Merlin and s(n) classical
bits, corresponding to a sequence of coin-flips sent
by Arthur to Merlin, on which Merlin’s message
may depend. The family must satisfy the follow-
ing completeness and soundness conditions for all
x ∈ {0, 1}∗:

Completeness: If x ∈ L then there is a collec-
tion of quantum states {|ψy〉}y∈{0,1}s such that

1

2s(n)

∑
y∈{0,1}s(n)

Pr [Ux accepts |ψy〉 |y〉] ≥ 1− 2−n

Soundness: If x 6∈ L then for every collection
of quanum states {|ψy〉}y∈{0,1}∗ ,

1

2s(n)

∑
y∈{0,1}s(n)

Pr [Ux accepts |ψy〉 |y〉] ≤ 2−n

Marriot and Watrous showed that the complete-
ness and soundness parameter 2−n may be re-
placed by a constant or by 2−r(n) for a polynomial
r(n), without loss of generality.

In this Section, we follow the same setup as
above. We will establish that AM ∩ CO-AM and
QAM ∩ CO-QAM are closed under Turing re-
ductions, and then that NPQAM∩CO-QAM ⊆ QAM
(Theorem 16). Using these results, the two new
versions of Vyalyi’s Theorem will be easy to ob-
tain. All Theorems are analogues of their QMA
counterpart, and the proofs are set up so as to
deviate minimally from the corresponding proof
above. For the sake of exposition, the theorems are
first proven in the classical setting, for the class
AM, after which the theorem is reproven in the
quantum setting.

Theorem 13. PAM∩CO-AM = AM ∩ CO-AM.

Proof. Let K a language decided by deterministic
O(t(n))-time oracle Turing Machine with oracle
access to a language L ∈ AM ∩ COAM. If we
find an AM protocol to simulate ML, we will have
proved the theorem.

Since L ∈ AM ∩ COAM, there are determin-
istic Turing Machines Y and N which execute
the AM protocols for L and L, respectively, using
r(n) random bits, running in time t(n) and erring
with probability ≤ 2−n.

Again, of course, if we obtain the answers to
all the queries ML makes, then we can simulate
ML. We obtain those answers by running the
machines Y and N , just as in the proof of Theorem
5, with two differences: (i) the protocol starts
with Arthur generating some appropriate number
of random bits and communicating those to Merlin,
and (ii) the protocol may err with some small
probability conditioned on those random bits.

The protocols starts with Arthur flipping 2t(n)·
r(t(n)) coins and sending the result to Merlin.
This number, 2t(n) · r(t(n)), is an upper bound
on the number of random coins all the upcoming
protocols need, as ML makes at most t(n) queries,

7

A Simple Proof of Vyalyi’s Theorem and some Generalizations

each at most t(n) bits long. Then Y and N will
use r(t(n)) random bits each to answer a query
of length t(n). We expect Merlin to send us (i)
the strings q1, . . . , qt(n) that ML will query given
the random coins we just guessed, (ii) the answers
a1, . . . , at(n) to those queries and (iii) (classical)
certificates y1, . . . , yt(n) and z1, . . . , zt(n) for the
machines Y and N , respectively.

The first step for Arthur is to check whether
the certificates are good. For each i, he checks that
Y (qi, si, yi) = ai and N(qi, si, zi) = ¬ai. Here si
is the string of random coins Arthur flipped at the
beginning to feed to the i-th query. If any of these
checks fail, he rejects.

If all checks pass, then Arthur simulates ML

as before: If the i-th query of ML is not the string
qi, he rejects; otherwise, he feeds ML the answer
ai and resumes the simulation. When ML halts,
he copies its answer as his output.

Part 1: Completeness. Suppose that ML ac-
cepts. If good certificates to our queries exist (a
good certificate is one that Y will accept if the
answer is yes), then Merlin will send them and
Arthur will feed ML correct answers and accept.
However, the probability that such certificates ex-
ist, i.e. the probability that the AM protocol for qi
is successful, is at least 1− 2−n, conditioned over
the random bits Arthur generates at the beginning.
The probability, then, that all AM protocols are
successful, is ≥ (1 − 2−n)2t(n), which tends to
1 with n → ∞ by Lemma 8 because 2t(n) is a
polynomial.

Part 2: Soundness. Suppose that ML rejects.
If we feed ML correct answers to its queries, we
reject too. We only feed ML incorrect answers if
one of the AM protocols failed. Each AM protocol
fails with probability ≤ 2−n, and there are at most
2t(n) of them, so with overwhelming probability,
all of them succeed.

We now show that QAM∩CO-QAM is closed
under polynomial-time deterministic Turing reduc-
tions.

Theorem 14. PQAM∩CO-QAM = QAM ∩
CO-QAM

Proof. We give a QAM protocol for a language
K ∈ PQAM∩CO-QAM. Let ML be a determinis-
tic Turing machine with oracle access to L ∈
QAM ∩ CO-QAM, which decides K. In this

case there are two uniformly generated quantum
circuit families {Ys} and {Ns} which answer L
and L, respectively. We exchange random bits
and certificates the same way we did in The-
orem 13. We expect Merlin to send us (i) the
strings that ML is going to query, (ii) the an-
swers to those queries and (iii) quantum certificates
|ψ〉 = |ψ1〉 |φ1〉⊗· · ·⊗ |ψt(n)〉 |φt(n)〉 for the these
quantum circuits. As in the proof of Theorem 4,
we measure the bits that we expect to be classical
bits before we execute the QAM protocols.

Part 1: Completeness. If ML accepts, then
Merlin will send us the correct answers and un-
entangled quantum certificates, if they exist, but
as noted before, good certificates exist with over-
whelming probability. However, even if we give
Ys a good certificate, it may still err because it
is a quantum circuit. Fortunately, it is known that
QAM protocols such as Ys can be amplified to err
with ≤ 2−n error, so the previous completeness
argument goes through.

Part 2: Soundness. By previous observations,
for Arthur to fail it is necessary that at least one
QAM protocol fails. In the classical case, the
soundness of the protocols Y and N was sufficient
to reduce the probability that any query failed. The
difference in the quantum case is that Merlin can
entangle the certificates. But if a quantum circuit
Ys rejects all input states with probability ≥ p,
then by the Entanglement Independence Lemma
(Lemma 6) it rejects all states regardless of how
they are entangled with other qubits that the circuit
does not touch, with probability ≥ p. In our case,
p ≥ (1−2−n), so we have soundness by the same
argument as in Theorem 13.

Theorem 15. NPAM∩CO-AM ⊆ AM.

Proof. We will give an AM protocol for a lan-
guage A ∈ NPAM∩CO-AM accepted by nondeter-
ministic Turing Machine ML. We generate enough
random bits, and Merlin responds with certificates
to all the queries we are going to make, and with
the nondeterministic bits which allegedly make M
accept. Since the nondeterministic bits are fixed,
the remaining computation is simply a PAM∩CO-AM

computation, which is covered in Theorem 13

The following Theorem is the QAM analogue
of Theorem 10.

8

A Simple Proof of Vyalyi’s Theorem and some Generalizations

Theorem 16. NPQAM∩CO-QAM ⊆ QAM

Proof. Similar to the previous three theorems,
a QAM simulation of a language in
NPQAM∩CO-QAM starts with sending enough
random bits to Merlin and receiving a quantum
state allegedly representing a classical certificate
for the nondeterministic machine and quantum
certificates so we can simulate the oracle
queries. We measure these certificate bits in
the computational basis, in addition to the
qubits containing the queries and their alleged
answers. The nondeterministic input is fixed
now, so the remainder of the protocol simulates
a deterministic machine making queries to a
language in L ∈ QAM ∩ CO-QAM, which is
covered in Theorem 14.

The QAM analogues of the main theorems of
this paper follow immediately from Theorem 16,
using the techniques used in Section 5.

Theorem 17. If QAM = CO-QAM then
QAM = PHQAM

Proof. This follows from Theorem 16 by induc-
tion. The proof is exactly the same as that of
11, with QAM in lieu of QMA. We omit the
details.

Theorem 18. If QAM = CO-QAM then PH ⊆
QAM.

Proof. Clearly PH ⊆ PHQAM. By Theorem 17,
if QAM = CO-QAM then PH ⊆ PHQAM =
QAM.

Theorem 19. If QAM = PP then PH ⊆ PP. �

7. Discussion and future work

The classical counterpart of Vyalyi’s Theorem,
obtained by substituting MA for QMA, is the
following consequence of Toda’s Theorem.

Theorem 20. If MA = PP then MA = CH. �

Here CH is the counting hierarchy. The con-
sequent of this statement, MA = CH, is stronger
than the consequent we have obtained, which was
QMA = PHPP ⊆ CH. Can we get the same result
in the quantum case?

Conjecture 1. If QMA = PP then QMA = CH.

To this end, it suffices to prove what we call a
Quantum Toda’s Theorem, that QMA is low for
PPP:

Conjecture 2 (Quantum Toda’s Conjecture).
PPPQMA

= PPP. That is, QMA is low for PPP.

We can see a number of reasons to care about
Conjectures 1 and 2. First, Conjecture 1 strength-
ens Vyalyi’s Theorem “to the maximum extent
possible”, in the sense that it is what happens
classically. Second, it would repair a conjecture
of Aaronson that if QMA ⊆ BQP/qpoly then
QMA = CH. This appeared as a “theorem” in
[9], but he later found an error in the proof [10].

Third, proving Conjecture 2 would establish a
quantum version of Toda’s Theorem, namely:

QMA ∪ QMAQMA ∪ QMAQMAQMA
∪ · · · ⊆ PPP

Gharibian et al. recently gave a result in this spirit,
proving

Theorem 21 (“Quantum-classical Toda’s Theo-
rem”, Gharibian et al. [11]). QCPH ⊆ PPPPP

Here QCPH, defined in [11], is like PH,
except that the verifier is a uniform family of
quantum circuits instead of a deterministic Turing
Machine. Proving a Quantum Toda’s Conjecture
was much of the motivation for the work in this
article.

8. Acknowledgements

The first author would like to thank Scott
Aaronson, Dorit Aharonov, Harry Buhrman,
Mikhail Vyalyi and in particular Ralph Bottesch
for many fruitful discussions, and the second au-
thor for his supervision of the Master thesis during
which the present work was done.

References

[1] Vyalyi, Mikhail N. ”QMA=PP implies that PP contains
PH.” In ECCCTR: Electronic Colloquium on Computa-
tional Complexity, technical reports. 2003.

[2] Beigel, Richard. ”Perceptrons, PP, and the polynomial
hierarchy.” Structure in Complexity Theory Conference,
1992., Proceedings of the Seventh Annual. IEEE, 1992.

[3] Gill, John. ”Computational complexity of probabilistic
Turing machines.” SIAM Journal on Computing 6.4
(1977): 675-695.

9

A Simple Proof of Vyalyi’s Theorem and some Generalizations

[4] Toda, Seinosuke. ”PP is as hard as the polynomial-time
hierarchy.” SIAM Journal on Computing 20.5 (1991):
865-877.

[5] Arora, Sanjeev, and Boaz Barak. Computational com-
plexity: a modern approach. Cambridge University Press,
2009.

[6] Nielsen, Michael A., and Isaac Chuang. ”Quantum com-
putation and quantum information.” (2002): 558-559.

[7] Kitaev, Alexei Yu, Alexander Shen, and Mikhail N. Vya-
lyi. Classical and quantum computation. Vol. 47. Provi-
dence: American Mathematical Society, 2002.

[8] Marriott, Chris, and John Watrous. ”Quantum
Arthur–Merlin games.” Computational Complexity
14.2 (2005): 122-152.

[9] Aaronson, Scott. ”Oracles are subtle but not malicious.”
Computational Complexity, 2006. CCC 2006. Twenty-
First Annual IEEE Conference on. IEEE, 2005.

[10] Aaronson, Scott. ”Yet more error in papers.” Shtetl-
Optimized, 24 May 2017. Retrieved 8 January 2018.
https://www.scottaaronson.com/blog/?p=3256

[11] Gharibian, Sevag, et al. ”Quantum generalizations of the
polynomial hierarchy with applications to QMA (2).”
arXiv preprint arXiv:1805.11139 (2018).

10

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://www.scottaaronson.com/blog/?p=3256

