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Abstract

A tree code is an edge-coloring of the complete infinite binary tree such that every

two nodes of equal depth have a fraction–bounded away from 0–of mismatched colors

between the corresponding paths to their least common ancestor. Tree codes were

introduced in a seminal work by Schulman [Sch93] and serve as a key ingredient in

almost all deterministic interactive coding schemes. The number of colors effects the

coding scheme’s rate.

It is shown that 4 is precisely the least number of colors for which tree codes exist.

Thus, tree-code-based coding schemes cannot achieve rate larger than 1/2. To overcome

this barrier, a relaxed notion called palette-alternating tree codes is introduced, in which

the number of colors can depend on the layer. We prove the existence of such constructs

in which most layers use 2 colors–the bare minimum. The distance-rate tradeoff we

obtain matches the Gilbert-Varshamov bound.

Based on palette-alternating tree codes, we devise a deterministic interactive coding

scheme against adversarial errors that approaches capacity. To analyze our protocol,

we prove a structural result on the location of failed communication-rounds induced

by the error pattern enforced by the adversary. Our coding scheme is efficient given

an explicit palette-alternating tree codes and serves as an alternative to the scheme

obtained by Gelles et al. [GHK+16].

∗Department of Computer Science, Tel Aviv University, Tel Aviv, Israel. The research leading to these

results has received funding from the Israel Science Foundation (grant number 1569/18) and from the Azrieli

Faculty Fellowship. Email: gil@tauex.tau.ac.il.
†Department of Computer Science, Tel Aviv University, Tel Aviv, Israel. Email:

samocha@mail.tau.ac.il.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 147 (2019)



Contents

1 Introduction 1

1.1 Tree codes: 4 colors suffice and are necessary . . . . . . . . . . . . . . . . . . 1

1.2 Palette-alternating tree codes . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Interactive coding schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Capacity approaching coding schemes via palette-alternating tree codes . . . 7

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 9

2.1 Coding for interactive communication . . . . . . . . . . . . . . . . . . . . . . 10

3 Binary Tree Codes: Four Colors Suffice 12

3.1 Improving the distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Palette-Alternating Tree Codes 17

5 The Interactive Coding Scheme 22

5.1 Setting up the framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 The coding scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 A simpler analysis with sub-optimal rate . . . . . . . . . . . . . . . . . . . . 27

5.4 Optimal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



1 Introduction

Tree codes are a powerful combinatorial structure, defined and proven to exist in [Sch93] in

order to serve as a key ingredient for achieving a constant rate interactive coding scheme.

Tree codes are the central object for encoding information in the interactive coding theory

which developed from the initial papers. They remain a crucial building block in almost

all interactive coding schemes [RS94, BR14, BGMO17, GHK+16, BK12, BN13, ABE+16,

BKN14, GH14, GHS14, LV15, AGS16, GMS14, BE14, JKL15, SW17].

We turn to formally define tree codes. Let T be a rooted binary tree that is endowed

with an edge coloring from some ambient color set (or alphabet) Σ. Let u, v be a pair of

vertices in T with equal depth and a least common ancestor w. Let ` be the distance, in

edges, from u to w. Let pu, pv ∈ Σ` be the sequences of colors on the path from w to u and

to v, respectively. We define h(u, v) to be the relative Hamming distance between pu and pv.

Definition 1.1 (Tree codes [Sch93]). Let T be the complete rooted infinite binary tree. The

tree T , together with an edge-coloring of T by a color set Σ is called a tree code with distance

δ if for every pair of vertices u, v with equal depth it holds that h(u, v) ≥ δ. When there is

no δ > 0 for which T is a tree code with distance δ we say that T has vanishing distance.

Schulman [Sch93] proved that for every distance parameter δ < 1 tree codes with a

constant number of colors c = c(δ) exist. Although tree codes are used in different ways

by different interactive coding schemes, one aspect is common to all: When a party wishes

to send a bit, a suitable color from Σ is sent instead. Thus, the rate of all tree-code-based

coding schemes is bounded above by 1/ log2 |Σ|. One is led to ask a natural combinatorial

question–what is the least number of colors in a tree code with non-vanishing distance?

1.1 Tree codes: 4 colors suffice and are necessary

We first observe that 3 colors do not suffice and, as a result, the rate of every tree-code-based

coding scheme cannot exceed 1/2, let alone approach capacity. Consider any 3-color tree

code. First, we may assume that every two siblings are connected to their parent with edges

having distinct colors as otherwise the distance of the tree code is 0. Let u, v be any two

vertices. Out of u, v go four edges and so by the pigeonhole principal in every 3-coloring,

two of these edges share the same color. By the above, one of these edges goes out of u and

the other goes out of v. This implies that, starting from the two sons of the root, one can

construct two paths of any desired length n ≥ 1 with the same color pattern, establishing

that the tree has vanishing distance.
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Based on the ideas Schulman introduced to prove the existence of tree codes with a

constant number of colors, we complement the above observation and establish that 4 colors

suffice for a tree code with non-vanishing distance.

Theorem 1.2. There exists a 4-color tree code with distance 0.136.

The proof of Theorem 1.2 appears in Section 3. As Schulman’s original proof for the exis-

tence of tree codes, Theorem 1.2 is nonconstructive. Coming up with explicit constructions

of non-vanishing distance tree codes with a constant number of colors is one of the most

challenging problems in this field [Sch94, GMS11, Bra12, Pud16, MS14, GHK+16, CHS18,

NW20]. The currently best known result [CHS18] guarantees any designated distance δ < 1

when using (log n)Oδ(1) colors at depth n. This work, however, concerns with the information-

theoretic aspect of the channel capacity, and the computational aspects are left for future

work.

While our proof of Theorem 1.2 closely follows Schulman’s proof, and the observation that

4 colors are necessary is easy to prove, to the best of our knowledge, this basic combinatorial

result was not known and, furthermore, we find it surprising that merely 4 colors suffice

to guarantee such a strong combinatorial structure. Still, even if 4 is a surprisingly small

number of colors, an interactive coding scheme that uses a 4-color tree code would have rate

bounded above by 1/2.

1.2 Palette-alternating tree codes

To save on communication, one might hope to avoid the use of the tree code “every now and

then”. However, if one sends a bit in the clear without encoding it, and that bit is flipped

by the adversary, the simulation seems doomed to fail without some way of generating

an unpredictable verification (which can be done when considering randomized schemes).

Perhaps a better idea would be to try and apply puncturing–a standard tool from classic

error correcting codes used for improving the rate of a code. However, the distance of a tree

code is far more sensitive than the distance of a standard error correcting code. In particular,

changing the color of a single edge can cause the distance to vanish. It is thus not clear how

one can “puncture” a tree code without vanish its distance.

Our key insight is to consider a variant of tree codes we call palette-alternating tree codes

in which the number of colors is allowed to depend on the depth. A good first example

to have in mind is a coloring that uses 4 colors in even layers and 2 colors in odd layers.

To our surprise, such palette-alternating tree codes with non-vanishing distance exist! To
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calculate the rate-overhead incurred by using this palette-alternating tree code, observe that

the number of bits sent when using an (even) depth-n palette-alternating tree code is

n

2
log2 2 +

n

2
log2 4 =

3

2
n,

and so the rate incurred by the encoding is 2/3, improving upon the 1/2 rate one would

get by using the best available tree code. Note that this even beats the rate of a 3-color

tree code–had it existed–since log2 3 > 3/2. Put differently, in an amortized sense, the

palette-alternating tree code above requires only 23/2 ≈ 2.83 colors.

One can get greedy and ask whether a palette-alternating tree code that uses, say, 4

colors at layers 0, 3, 6, ... and 2 colors in the remaining layers exist. If so, one can potentially

improve the scheme’s rate to 3/4. We prove the existence of such palette-alternating tree

codes. In fact, we show that one can use 4 colors as seldom as she please and 2 colors–the

bare minimum–in most layers. We turn to give a formal treatment of the above discussion.

Definition 1.3 (Palette-alternating tree codes). Let Σ0, . . . ,Σc−1 be (not necessarily dis-

tinct) sets. Let T be the complete rooted infinite binary tree. A palette-alternating tree code

is an edge-coloring of T where at layer t ∈ N the colors are taken from the set Σt (mod c).

T is said to have distance δ if for every pair of vertices u, v with equal depth it holds that

h(u, v) ≥ δ. We define the rate ρ of T to be the number satisfying

1

ρ
=

1

c

c−1∑
i=0

log2 |Σi|.

We suggest that the flexibility introduced by palette-alternating tree codes allows one

to better capture the notion of rate in the online setting. Indeed, the importance of rate is

only significant when “long” messages are being sent and so, informally, using a big palette

of colors only once in a while should not be considered as an indication of poor rate. Our

definition of rate formalizes that property. Note that we still insist on having the distance

measured in terms of worst-case–a must as we wish to replace tree codes with palette-

alternating tree codes in interactive coding schemes. It is only the rate that is being, in a

sense, amortized.

As mentioned, we prove that palette-alternating tree codes can have rate approaching

arbitrarily close to 1 while maintaining non-vanishing distance, thus bypass the 1/2 bound

proven for (standard) tree codes.

Theorem 1.4. For every ε > 0 there exists a palette-alternating tree code with rate 1 − ε
and distance δ = Ω(ε · log−1(1/ε)).
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Comparison with the Gilbert-Varshamov bound. Observe that the distance-rate

trade-off obtained in Theorem 1.4 is the same as the one obtained by the Gilbert-Varshamov

bound for standard offline binary error correcting codes, and in particular is optimal (up to

constant factors). Interestingly, while it is known that the channel capacity in the online

setting is 1−Θ(
√
ε log(1/ε))–significantly lower than in the offline setting [KR13], the online

requirement on the encoding function itself does not cost more in terms of the distance-rate

trade-off. Rather, it is the additional overhead incurred by the mechanism required for

synchronization that is responsible for the lower channel capacity in the online setting. We

elaborate more on this in Section 1.3.

The proof of Theorem 1.4, which can be found in Section 4, is based on a variant of the

construction we use in Theorem 1.2. There, the alphabet symbols are taken from the field

of four elements, F4. The key idea in obtaining the savings in the alphabet size is to trace

the F4 field elements down to F2 in most layers. Interestingly, we cannot afford to work over

the field F3 as we crucially rely on the fact that the characteristic of the fields is 2 as well as

on the smaller field being a subfield of the larger one.

1.2.1 Palette-alternating tree codes: further discussion and generalization

We remark that it is not clear if one can start from an arbitrary 4-color tree code and

change some of the layers to have only 2 colors (in a sense, effectively puncturing the 4-

color tree code) while maintaining non-vanishing distance. Our proof seems to have the

effect of “correlating” the colors in the 4-color layers with the paths that contain them. To

emphasize this point, note that a 2-color layer does not immediately “buy” us redundancy.

Nevertheless, the 2-color layers have the important task of making sure that the 4-color

layers do. Indeed, by switching the colors of siblings in the 2-color layers one can potentially

vanish the distance.

It is also interesting to compare palette-alternating tree codes that use 2 colors in most

layers with some of the known probabilistic schemes [KR13, Hae14] that take the following

strategy: in most rounds simulate the protocol as is (namely, assuming no errors occur) and

only rarely verify the transcript using hash functions. It is tempting to compare the 2-color

layers in a palette-alternating tree code with the error-free part of the simulation and the

4-color layers with the verification rounds. Indeed, at the very least, both the 2-color layers

and the error-free part cost nothing in terms of rate. The crucial difference, however, lies

in the fact that while the error-free simulation does not carry any weight in terms of error

correction, the 2-color layers do.
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We end this section by proposing a more general, and arguable more natural, definition

than palette-alternating tree codes which allows for different palettes used at different layers

without being necessarily periodical. While our proof of Theorem 1.4 yields a palette-

alternating tree code, we believe that the more general definition is worth presenting here.

For simplicity, we identify a finite color set Σ with {1, 2, . . . , |Σ|}.

Definition 1.5 (Dynamic-Palette Tree Codes). Let c : N→ N. Let T be the complete rooted

infinite binary tree. A dynamic-palette tree code is an edge-coloring of T where at layer

t ∈ N the colors are taken from the set {1, 2, . . . , c(t)}. T is said to have distance δ if for

every pair of vertices u, v with equal depth it holds that h(u, v) ≥ δ. We define the rate ρ of

T to be the number satisfying

1

ρ
= inf

`∈N

1

`

∑̀
i=1

log2 c(i).

1.3 Interactive coding schemes

Based on palette-alternating tree codes, we devise a deterministic interactive coding scheme

against adversarial errors that approaches capacity. Our coding scheme is efficient given

an explicit construction of palette-alternating tree codes and serves as an alternative to the

scheme obtained by Gelles et al. [GHK+16]. In this section we describe our result and proof

technique. We start by reviewing basic notions in interactive coding schemes.

Communication complexity

Communication complexity addresses a basic question: If several parties wish to compute a

function of the information they jointly possess, how long does their conversation need to be?

In its most basic form, one considers two parties, Alice and Bob, that would like to jointly

compute a function f : {0, 1}n×{0, 1}n → {0, 1} of their respective inputs x, y ∈ {0, 1}n. The

parties can communicate over a channel, and their goal is to compute f(x, y) by exchanging

as few bits as possible.

An interactive computation as above is performed via a communication protocol π which

consists of a pair of algorithms πA and πB run by Alice and Bob, respectively. In this paper we

focus on deterministic protocols, that is, πA and πB are deterministic algorithms. Informally,

the communication is performed in rounds where the protocol dictates what is sent in each

round based on the round number, the input of the party, and the bits received so far. After

some number of rounds r = r(x, y) the protocol terminates, at which point both parties

know f(x, y). The (deterministic) communication complexity of the protocol π is given by
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CC(π) = maxx,y r(x, y). The communication complexity of f , denoted by CC(f), is the

minimum of CC(π) over all protocols π that compute f .

Interactive coding schemes

One aspect that is always an issue when considering communication are errors in transmission

introduced by imperfect or compromised channels. The research field of coding for interactive

communication that addresses this issue was initiated in a sequence of seminal papers by

Schulman [Sch92, Sch93, Sch96], and is by now an active and exciting research field (see

Gelles’s excellent survey [Gel17]). There are several models one can consider. For examples,

transmitted bits can be erased (replaced with a senseless symbol ⊥) or worse–flipped–leaving

no trace to the occurred error. In this paper we focus on perhaps the most well-studied model

in which bits can be flipped. Further, we consider the most difficult setting of adversarial

errors in which any ε-fraction of the bits might be flipped.

A protocol π is said to be ε-resilient if the protocol preserves its functionality even at

the presence of ε-fraction of adversarial errors. The ε-resilient communication complexity of

f , denoted by CCε(f), is the minimum of CC(π) over all ε-resilient protocols π that compute

f . For any fixed function f it is clear that CCε(f) is non-decreasing as ε increases. In the

extreme cases CC0(f) = CC(f) whereas CC1(f) =∞, namely, CC1(f) is unbounded.

Resilient protocols are typically obtained by devising an interactive coding scheme which,

informally, is a compiler CSε that is parameterized by the resiliency parameter ε. Given a

protocol π, the interactive coding scheme produces an ε-resilient protocol CSε(π) = πε that

computes the same function as π. The goal is to design an interactive coding scheme with

low overhead in communication. Namely, one would like to maximize ρ(π) = CC(π)/CC(πε).

The rate of the interactive coding scheme ρ(CSε) is the infimum of ρ(π) over all protocols π.

Channel capacity

Focusing on the channel itself, rather than on any specific function f , one can define the

channel capacity Cap : [0, 1]→ [0, 1] by

Cap(ε) = inf
f

(
CC(f)

CCε(f)

)
,

where the infimum is taken over all functions f : {0, 1}n × {0, 1}n → {0, 1} for all n ≥ 1.

Note that Cap(0) = 1 whereas Cap(1) = 0. A fundamental problem in interactive coding

theory, and the focus of this work, is the study of the channel capacity Cap(ε).
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We remark that the channel capacity can be defined with respect to other models and a

huge body of work is devoted to the study of the channel capacity in our setting as well as for

other channels, most notably binary symmetric channels (BSC) in which every bit is flipped

independently with probability ε. Moreover, one needs to specify other properties of the

protocols so as to formalize the problem. For example, is the turn of speak predetermined

by the protocol or can it depend on the exchanged bits? In case of such “adaptive” protocols,

what happens if both parties send a message at the same round?

As in most works, we focus on non-adaptive protocols in which the turn of speak is fixed

in advance. For concreteness, we focus on alternating protocols where Alice speaks at even

rounds and Bob speaks at odd rounds. We made this choice mostly for convenience and

our results can be straightforwardly generalized. We also assume that the channel is binary.

This is the most difficult setting and allowing for channels over a larger alphabet, especially

one that can depend on the error parameter ε, only makes the problem of devising protocols

easier.

In his seminal work [Sch93], Schulman proved that Cap(ε) > 0 for some ε > 0. In a tour

de force result, Kol and Raz [KR13] gave a tight bound of Cap(ε) = 1 − Θ(
√
ε log 1/ε) on

the channel capacity in this setting for non-adaptive probabilistic protocols. Their upper

bound clearly holds for adversarial errors as well. Gelles et al. [GHK+16] gave the first

deterministic coding scheme against adversarial errors that approaches capacity, namely,

their coding scheme has rate 1−O(
√
ε log 1/ε).

1.4 Capacity approaching coding schemes via palette-alternating

tree codes

Based on palette-alternating tree codes, we devise a deterministic interactive coding scheme

against adversarial errors that approaches capacity and thus matches the rate obtained

by [GHK+16]. The advantage of our coding scheme is that given an explicit construction of

palette-alternating tree codes, our scheme is efficient. We believe that the recent progress

on tree code constructions [CHS18, NW20] may eventually lead to constructions of palette-

alternating tree codes. The coding scheme suggested in [GHK+16], on the other hand, relies

on a certain counting argument, and it is not clear to us how to obtain an efficient scheme

based on these ideas.

Theorem 1.6. Let ε > 0. Assume there exists an explicit palette-alternating tree code with

rate 1 − ε and distance δ = Ω(ε · log−1(1/ε)) (which, computational aspects aside, we know

exists by Theorem 1.4). Then, there exists an efficient deterministic coding scheme against
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ε-fraction of adversarial errors with rate 1−O(
√
ε log(1/ε)).

1.4.1 Proof idea

In the remaining of this section, we elaborate on some of the ideas that go into our construc-

tion and analysis of Theorem 1.6.

Synchronization. Interactive coding schemes that make use of tree codes do not simply

encode the bits that are meant to be sent by the non-resilient protocol π using the tree code.

These schemes also need to implement a mechanism for making sure that both parties are,

in a sense, synchronized. Indeed, informally, the errors have the effect of causing the parties

to transmit data with respect to information that was never sent to them. Without a way

to synchronize, even with no additional errors, the parties will not be able to make progress

on simulating the protocol as the information they exchange is irrelevant.

Thus, on top of the bits that the parties would have communicate without the presence

of errors, some meta data used for synchronization must be maintained and transmitted.

Both the “data bits” as well as the “sync bits” are encoded using a tree code before sent

over the channel. Thus, the rate of deterministic interactive coding schemes is determined

both by the rate of the tree code as well as by the overhead required for synchronization.

To obtain interactive coding schemes with rate approaching 1 we need, on top of replacing

a tree code with a palette-alternating tree code, to have a low overhead in synchronization.

There are two main obstacles for accomplishing that:

1. One must argue that not too many sync bits are needed to successfully maintain

synchronization; and

2. One needs to distinguish between sync bits and data bits which in previous works was

effectively done by sending a bit indicating the bit “type” (more precisely, a larger

alphabet was used followed by an alphabet reduction).

The first issue is fairly straightforward to handle. Indeed, it is intuitive that in a sen-

sible scheme, the amount of synchronization required is proportional to the fraction of er-

rors and this is true for both Schulman’s coding scheme [Sch93] and for Braverman-Rao’s

scheme [BR11]. The second issue requires more care. Braverman-Rao’s scheme is very dy-

namic and on any given round the bit type depends on the error pattern enforced by the

adversary. Although most bits are data bits, it seems difficult to argue that their scheme
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can be made to have high rate. Luckily, we are able to devise a coding scheme based on

some adaptation of Schulman’s original ideas. The coding scheme obtained, however, does

not approach capacity, and has rate 1− Õ( 3
√
ε) (see Section 5.3). Further ideas are required

to prove Theorem 1.6 which we discuss next.

Clusters of failed decoding rounds. In order to approach capacity, we examine more

closely the effect that adversarial errors have on (palette-alternating) tree codes. Schulman’s

analysis is based on bounding the number of rounds in which decoding fails. More precisely,

it was shown [Sch93] that if one encodes using a tree code with distance δT C then at most

O(ε/δT C) fraction of rounds would result in failed decoding. We prove a structural result,

refining the quantitative one, regarding where these “bad” rounds may occur as a function of

the locations of the adversarial errors. We show that the bad rounds are, in a sense, clustered

around the errors that are introduced. We exploit this structure to obtain a tighter analysis

of our protocol, and achieve the stated, optimal, rate.

1.5 Organization

In Section 2 we give the formal definitions of protocols and interactive coding schemes,

as well as setting notation and state some known results we use. In Section 3 we prove

Theorem 1.2 which asserts that 4-color tree codes exist. While not directly applicable to

our proof of Theorem 1.6, we encourage the reader to read the proof (including Section 3.1)

as ideas from the proof will be used for proving the existence of palette-alternating tree

codes (Theorem 1.4). In Section 4 we prove Theorem 1.4. Lastly, in Section 5, we prove

Theorem 1.6 where first, in Section 5.3, we give a sub-optimal analysis.

2 Preliminaries

Unless otherwise stated, all logarithms are taken to the base 2. We denote by N the set of

natural numbers (of course, including 0), and write N1 for N\{0}. For integers a ≤ b we write

[a, b] for all integers in this interval. For an integer c ≥ 1, we let [c] = {1, 2, . . . , c}. We follow

the convention that strings are indexed starting from 1. For two strings x, y ∈ Σ1×· · ·×Σn,

we denote by ∆(x, y) their hamming distance. We make use of the following standard

inequalities.
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Lemma 2.1. For every integers 1 ≤ k ≤ n with k
n

= δ ≤ 1
2

it holds that

k∑
i=0

(
n

i

)
≤ 2H(δ)n.

Lemma 2.2. For every 0 < x < 1
2

it holds that

x

2 log2(6/x)
≤ H−1(x) ≤ x

log2(1/x)
.

2.1 Coding for interactive communication

2.1.1 Communication protocols

In this section we briefly recall some basic definitions from communication complexity. For

more details we refer the reader to [KN97, RY18]. Let T = (V,E) be a complete finite rooted

binary tree. Given an internal vertex v in T , define son(v, 0), son(v, 1) to be the left son and

the right son of v in T , respectively. Extend son for bit strings of length n ≥ 1 in the natural

way and denote by path the function that given x ∈ {0, 1}n, returns the edges on the unique

rooted path to son(root(T ), x). A communication protocol π consists of:

• A function fv : {0, 1}n → {0, 1} for every internal node v in T .

• A label player(v) ∈ {A,B} for each internal node v.

• A label value(v) ∈ {0, 1} for every leaf v.

The protocol π induces a function f = f(π) : {0, 1}n × {0, 1}n → {0, 1} in the following

natural way. Given x, y ∈ {0, 1}n, for every internal node v ∈ V , if player(v) = A let

d = fv(x) and otherwise let d = fv(y). Let u be the left son of v if d = 0 and otherwise let

u be the right son of v. Thus, given x, y, from every internal node v goes out exactly one

edge ev(x, y) = (v, u(x, y)). Let E(x, y) = {ev(x, y) | v internal node} be the set of these

edges. Observe that the edge set E(x, y) induces a unique root to leaf path in T . Let v(x, y)

be that unique leaf that is reachable from the root. We define f(x, y) = value(v(x, y)). We

write depth(π) for the depth of T .

The computation above of f(x, y) can be made by two parties, Alice that holds x and

Bob that holds y, that can communicate over a channel, in the natural way. Namely, at

node v, if player(v) = A then Alice sends to Bob fv(x) wheres at a node v with player(v) = B

Bobs sends fv(y) to Alice. It is clear that the number of bits communicated is the depth of

the tree. We say that a protocol is alternating if player(v) = A if and only if v is at even

depth. From here on we focus only on alternating protocols.

10



2.1.2 The pointer jumping game

The pointer jumping game is, in a sense, a complete problem for interactive protocols. Let

T = (V, F ) be a complete finite rooted binary tree. The depth of a vertex v is the distance,

measured in edges, from the root to v. In particular, the depth of the root is 0. We partition

the internal nodes of T to V = VA ∪ VB, where VA contains all nodes at even depth and VB

all nodes at odd depth. We partition the edge set F = X ∪ Y with X being the edges going

out of VA and Y the edges leaving VB. We call a subset of edges E ⊆ F consistent if every

internal node has exactly one outgoing edge in E. Given a consistent set of edges E, we

partition E = EA∪EB where EA = E∩X and EB = E∩Y . It is convenient to represent EA

and EB by functions πA : VA → {0, 1}, πB : VB → {0, 1} as follows: for v ∈ VA, πA(v) = 0 if

and only if the edge in EA that goes out of v is to the left son of v, and similarly for πB.

Note that in any consistent set of edges E there is a unique root to leaf path. The pointer

jumping game is a function that given a consistent set of edges E returns the unique leaf

reachable from the root using the edge set E. Consider a function f : {0, 1}n × {0, 1}n →
{0, 1} and a protocol π for f . Note that for any fixed x, y the task of computing the value

f(x, y) is an instance of the pointer jumping game. In that sense, the pointer jumping

game is complete. Given a function f as above, it is sometimes convenient to consider a

corresponding pointer jumping game of depth R > n in which the edge leaving every vertex

of depth larger than n points to its left son (this choice is of course arbitrary and any fixed

choice will do).

2.1.3 Resilient protocols and interactive coding schemes

A protocol π is said to be ε-resilient if on any pair x, y ∈ {0, 1}n, in the above two party

computation, both Alice and Bob compute f(x, y) correctly even if at most ε-fraction of the

communicated bits are flipped. An interactive coding scheme (coding scheme for short) is

a function CSε, parameterized by ε ∈ [0, 1], that gets as input a protocol π and outputs an

ε-resilient protocol πε = CSε(π) with f(πε) = f(π). The rate of the coding scheme CSε is

defined by

ρ(CSε) = inf
π

depth(π)

depth(πε)
.

Observe that for the purpose of devising a coding scheme CSε one may assume that the

inputs x, y are fixed. Thus, it suffices to focus on the problem of devising a coding scheme

for the pointer jumping game.
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3 Binary Tree Codes: Four Colors Suffice

In this section we prove Theorem 1.2. We start by setting some notation. Let T be the

infinite complete rooted binary tree. We identify length-n paths in T that starts at the root

with length-n binary strings in the natural way. Namely, we identify left son and right son

with 0 and 1, respectively. Given a node v at depth n ≥ 1 we define pv ∈ {0, 1}n to be the

string that encodes the (unique) path from the root to v.

An edge-coloring of T by a color set Σ is given by a function, which for ease of readability,

we slightly abuse notation and also denote by T : {0, 1}N1 → ΣN1 , where the color of an edge

e = u→ v is T (pv)depth(v). Note that T is an online function, namely, for every x ∈ {0, 1}N1

and i ∈ N1, the value T (x)i is determined by x1, . . . , xi.

The (probabilistic) construction

Let {Ri}i∈N1 be a sequence of independent random variables, each is uniformly distributed

over F4–the field of 4 elements. Let F2 be the (unique) subfield of F4 of size 2. Define the

(random) coloring function T : FN1
2 → FN1

4 (where we identify F2 and {0, 1} in the natural

way) as follows: for every t ∈ N1

T (x)t =
t∑
i=1

Rt+1−ixi. (3.1)

Definition 3.1. Let v be a depth-n vertex in T . Let ` ≥ 1 and x, y ∈ F`−12 . For k = 1, . . . , `

we define the random variable

av(x, y, k) = T (pv ◦ 1 ◦ y)n+k − T (pv ◦ 0 ◦ x)n+k.

Note that av(x, y, k) is a (random) element in F4. We define the integral random variable

hv(x, y) =
∑̀
k=1

Ik,

where Ik is the indicator random variable that equals 1 when av(x, y, k) 6= 0. Note that

hv(x, y) ∈ {0, 1, . . . , `} is the Hamming distance between T (pv ◦ 0 ◦ x)[n+1,n+`] and T (pv ◦ 1 ◦
y)[n+1,n+`].

Claim 3.2. Let v be a vertex in T . Let ` ≥ 1 and x, y ∈ F`−12 . Then, for every k ∈ {1, . . . , `}
it holds that

av(x, y, k) = Rk +
k−1∑
i=1

Rk−i(y − x)i.

12



Proof. Denote the depth of v by n. Fix k ∈ {1, . . . , `}. By Equation (3.1),

T (pv ◦ 0 ◦ x)n+k =
n+k∑
i=1

Rn+k+1−i(pv ◦ 0 ◦ x)i

=
n∑
i=1

Rn+k+1−i(pv)i +
k∑
i=1

Rk+1−i(0 ◦ x)i.

Similarly

T (pv ◦ 1 ◦ y)n+k =
n∑
i=1

Rn+k+1−i(pv)i +
k∑
i=1

Rk+1−i(1 ◦ y)i.

Thus,

av(x, y, k) =
k∑
i=1

Rk+1−i(1 ◦ y)i −
k∑
i=1

Rk+1−i(0 ◦ x)i

= Rk +
k−1∑
i=1

Rk−i(y − x)i.

Claim 3.3. Let v be a vertex in T . Let ` ≥ 1 and x, y ∈ F`−12 . Then, the random variables

av(x, y, 1), . . . , av(x, y, `) are independent and each is uniformly distributed over F4.

Proof. By Claim 3.2, av(x, y, k) = Rk + Lk where Lk is some F4-linear combination of

R1, . . . , Rk−1. Therefore, av(x, y, k) is independent of the joint distribution of av(x, y, 1),

. . . , av(x, y, k − 1). As this holds for every k we have that av(x, y, 1), . . . , av(x, y, `) are

independent. To conclude the proof, note that for every fixing of R1, . . . , Rk−1, av(x, y, k) =

Rk + `k for some fixed `k ∈ F4 and so av(x, y, k) is uniform over F4.

Claim 3.4. For every two vertices u, v in T and every x, y ∈ F`−12 ,

hv(x, y) = hu(x, y),

hv(x, y) = hv(0
`−1, y − x).

Proof. The first equality follows immediately by Claim 3.2 as, for every k ∈ {1, . . . , `},
the expression obtained for av(x, y, k) is independent of the choice of v. As for the second

13



asserted equality, again by Claim 3.2,

av(x, y, k) = Rk +
k−1∑
i=1

Rk−i(y − x)i

= Rk +
k−1∑
i=1

Rk−i((y − x)− 0)i

= av(0
`−1, y − x, k),

where observe that for the last equality we are using the fact that F2 is a subfield of F4

and so y − x ∈ F`−12 . Indeed, recall that av’s second argument is a binary string and so

the equality above would have been meaningless otherwise. The above equation implies

hv(x, y) = hv(0
`−1, y − x), proving the claim.

Given Claim 3.4 we can simplify our notation as follows. Let r denote the root of T . For

x ∈ {0, 1}`−1 and k ∈ {1, . . . , `} we define the random variables

a(x, k) = ar(0
`, 1 ◦ x, k),

h(x) = hr(0
`−1, x).

Note that h(x) =
∑`

k=1 a(x, k).

Theorem 3.5. There exists a fixing of the sequence {Ri}i such that the function T is a tree

code with distance 0.05.

Proof. First note that for every fixing of the sequence {Ri}i, T is an online function. Observe

that, for a fixing of {Ri}i, T is a tree code with distance δ if and only if for every ` ≥ 1 and

x ∈ {0, 1}`−1 it holds that h(x) ≥ δ`. Indeed, recall that by definition, T is a tree code with

distance δ if and only if for every vertex v in T , ` ≥ 1, and for every x, y ∈ {0, 1}`−1 it holds

that hv(x, y) ≥ δ`. However, by Claim 3.4, hv(x, y) = h(y − x).

For x ∈ {0, 1}`−1 denote by E(x) the event h(x) < δ`. By the above discussion, it suffices

to prove, for δ = 0.05, that

Pr

 ⋃
x∈{0,1}N

E(x)

 < 1.

To this end, by the union bound, it suffices to prove that∑
x∈{0,1}N

Pr[E(x)] < 1.
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Consider any x ∈ {0, 1}`−1 with ` ≥ 1. Note that the event E(x) holds if and only if

there exists a set T ⊆ {1, . . . , `} of size |T | ≥ d(1 − δ)`e such that for every k ∈ T ,

a(x, k) = 0. By taking the union bound over all such sets T , and using that a(x, 1), . . . , a(x, `)

are independent and each is uniformly distributed over F4 (Claim 3.3), we get

Pr[E(x)] ≤
(

`

d(1− δ)`e

)
4−d(1−δ)`e. (3.2)

By Lemma 2.1, we have that

1

`
· log2

(
`

d(1− δ)`e

)
≤ H

(
d(1− δ)`e

`

)
.

As δ < 1
2

and since the entropy function H decreases in [1
2
, 1] we have that

H

(
d(1− δ)`e

`

)
≤ H(1− δ) = H(δ).

Substitute to Equation (3.2), we get that

Pr[E(x)] ≤ 2(H(δ)−2(1−δ))`.

Thus,

∑
x∈{0,1}N

Pr[E(x)] ≤
∞∑
`=1

2`−1 · 2(H(δ)−2(1−δ))`

=
1

2

∞∑
`=1

2(H(δ)+2δ−1)`.

One can verify that for δ = 0.05 the above geometric sum is strictly smaller than 1, and the

theorem follows.

3.1 Improving the distance

We now show a method for improving the distance. We illustrate it to obtain a bound of

0.136 on the distance, which proves Theorem 1.2, though we believe that the method can be

used to push the bound further. It is fairly easy to show that the distance of a 4-color tree

code cannot be larger than 1/2.

Theorem 3.6. There exists a fixing of the sequence {Ri}i such that the function T is a tree

code with distance 0.136.
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Proof. For the proof it will be convenient to consider a specific representation of F4. We

make use of the standard construction of F4 as a quotient of the polynomial ring over F2

with respect to an ideal generated by a degree 2 irreducible element as follows. Note that

t2 + t + 1 ∈ F2[t] is irreducible, and so K = F2[t]/〈t2 + t + 1〉 is a field of 4 elements which

we will take as the construction for F4. Let α be the class of t in K. In this representation,

the field F4 consists of the elements 0, 1, α, α + 1 where α2 + α + 1 = 0.

Consider the sequence {Ri}i∈N as in the beginning of the section but with the fixings

R1 = 1 and R2 = α. Observe that for every x ∈ F`−12 with ` ≥ 2 it holds that a(x, 1) = 1

and a(x, 2) = α + x1. In particular, a(x, 1), a(x, 2) are both non-zeros and so h(x) ≥ 2. Let

`0 ≥ 2 be an integer parameter to be chosen later on. By the above, we have that for every

x ∈ F`−12 with ` ≤ `0 it holds that
h(x)

`
≥ 2

`0
. (3.3)

For x ∈ {0, 1}`−1 denote by E1,α(x) the event h(x) < δ` with the {Ri}i∈N as defined

above, namely, R1 = 1, R2 = α and the rest of the random variables {Ri | i ≥ 3} are

independent and uniformly distributed over F4. Once we establish a bound of

Pr

 ⋃
|x|≥`0

E1,α(x)

 < 1 (3.4)

for some choice of δ then, combined with Equation (3.3), we will establish the existence of a

tree code with distance at least

min

(
2

`0
, δ

)
.

Consider any x ∈ {0, 1}`−1 with ` ≥ `0 + 1. The event E1,α(x) holds if and only if

there exists a set T ⊆ {3, . . . , `} of size |T | ≥ d(1 − δ)`e such that for every k ∈ T ,

a(x, k) = 0. By taking the union bound over all such sets T , and using that a(x, 3), . . . , a(x, `)

are independent and each is uniformly distributed over F4, we get that

Pr[E1,α(x)] ≤
(

`− 2

d(1− δ)`e

)
4−d(1−δ)`e

≤
(

`

d(1− δ)`e

)
4−d(1−δ)`e

By Lemma 2.1, we have that

1

`
· log2

(
`

d(1− δ)`e

)
≤ H

(
d(1− δ)`e

`

)
.
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As we will choose δ < 1
2

and the entropy function H decreases in [1
2
, 1] we have that

H

(
d(1− δ)`e

`

)
≤ H(1− δ) = H(δ).

Thus,

Pr[E1,α(x)] ≤ 2(H(δ)−2(1−δ))`.

By substituting the above equation to Equation (3.4), we get that

∑
|x|≥`0

Pr[E1,α(x)] ≤
∞∑

`=`0+1

2`−1 · 2(H(δ)−2(1−δ))`.

Write β = 2H(δ)+2δ−1. Then, the above is bounded by

1

2

∞∑
`=`0+1

β` =
β`0+1

2(1− β)
.

Consider the real polynomial

f`0(x) = x`0+1 − 2(1− x).

We have that

f ′`0(x) = (`0 + 1)x`0 + 2

Since `0 ≥ 2, f ′`0(x) > 0 for all x ≥ 0. Further, f`0(0) = −2 and f`0(1) = 1. Thus, f`0(x)

has a single root β`0 ∈ [0, 1] (in fact, β`0 is monotone-increasing as a function of `0, and

β`0 → 1 as `0 → ∞). For a fixed choice of `0, by choosing β < β`0 and solving for δ (recall

β = 2H(δ)+2δ−1) to obtain δ`0 , we get that there exists a fixing of {Ri | i ≥ 3} such that the

obtained tree code has distance at least min(δ`0 ,
2
`0

). Thus, the obtained bound is

max
`0≥2

min

(
δ`0 ,

2

`0

)
.

One can verify that `0 = 14 maximizes the above equation to get distance larger than

0.136.

4 Palette-Alternating Tree Codes

In this section we prove Theorem 1.4. To this end we recall the definition of the (field) trace

function Tr : F4 → F2 that is given by Tr(x) = x+ x2. Observe that the trace function is an
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F2-linear map whose image and kernel are F2. In particular, if X is uniform over F4, then

Tr(X) is uniform over F2.

Let ε be a given parameter and define b = d1/εe. Let {Ri}i∈N be a sequence of inde-

pendent random variables, each is uniformly distributed over F4 except that R1 is fixed to

R1 = 1. We define a palette-alternating tree code with b palette sets Σ0, . . . ,Σb−1 such that

Σ0 = F4 and Σi = F2 for i > 0. Let x ∈ FN
2 . For every k ∈ N, define

Sk(x) =
k∑
i=1

Rk+1−ixi,

where addition and multiplication are performed in F4 and, as usual, F2 is identified with

the unique subfield of two elements in F4. The coloring function is given by

T (x)k =

{
Sk(x), k ≡b 0;

Tr(Sk(x)), otherwise.

Theorem 4.1. The function T above is a palette-alternating tree code with rate 1 − ε and

distance δ = Ω(ε log−1(1/ε)).

Proof. First, observe that T is indeed an online function with rate larger than 1−ε. Further

Definition 3.1 can be carried over to the more general case of palette-alternating tree codes.

We turn to prove an analog to Claim 3.2.

Claim 4.2. Let v be a depth-n vertex in T . Let ` ≥ 1 and x, y ∈ F`−12 . Then, for every

k ∈ {1, . . . , `} it holds that

av(x, y, k) =

{
Rk + Sk−1(y − x), n+ k ≡b 0;

Tr(Rk + Sk−1(y − x)), otherwise.

Proof. Fix k ∈ {1, . . . , `}. Assume first that n+ k ≡b 0. Then,

T (pv ◦ 0 ◦ x)n+k =
n+k∑
i=1

Rn+k+1−i(pv ◦ 0 ◦ x)i

=
n∑
i=1

Rn+k+1−i(pv)i +
n+k∑
i=n+1

Rn+k+1−i(0 ◦ x)i−n

=
n∑
i=1

Rn+k+1−i(pv)i +
k∑
i=1

Rk+1−i(0 ◦ x)i.
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Similarly

T (pv ◦ 1 ◦ y)n+k =
n∑
i=1

Rn+k+1−i(pv)i +
k∑
i=1

Rk+1−i(1 ◦ y)i.

Thus,

av(x, y, k) =
k∑
i=1

Rk+1−i(1 ◦ y)i −
k∑
i=1

Rk+1−i(0 ◦ x)i

= Rk +
k−1∑
i=1

Rk−i(y − x)i

= Rk + Sk−1(y − x).

Assume now that n+ k 6≡b 0. Using that Tr is F2-linear,

T (pv ◦ 0 ◦ x)n+k = Tr

(
n+k∑
i=1

Rn+k+1−i(pv ◦ 0 ◦ x)i

)

= Tr

(
n∑
i=1

Rn+k+1−i(pv)i

)
+

n+k∑
i=n+1

Tr (Rn+k+1−i) (0 ◦ x)i−n

= Tr

(
n∑
i=1

Rn+k+1−i(pv)i

)
+

k∑
i=1

Tr(Rk+1−i)(0 ◦ x)i.

Similarly

T (pv ◦ 1 ◦ y)n+k = Tr

(
n∑
i=1

Rn+k+1−i(pv)i

)
+

k∑
i=1

Tr(Rk+1−i)(1 ◦ y)i.

Thus, again by F2-linearity of Tr,

av(x, y, k) = Tr(Rk) +
k−1∑
i=1

Tr(Rk−i)(y − x)i

= Tr(Rk + Sk−1(y − x)).

Claim 4.3. Let v be a depth-n vertex and x, y ∈ F`−12 distinct. Then, the random variables

av(x, y, 1), . . . , av(x, y, `) are independent. Moreover, let k ∈ [`]. If n+k ≡b 0 then av(x, y, k)

is uniformly distributed over F4 and otherwise it is uniform over F2.
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Proof. By Claim 4.2, if n+k ≡b 0 then av(x, y, k) = Rk+Lk where Lk is a linear combination

of R1, . . . , Rk−1. Thus, in this case, av(x, y, k) is independent of the joint distribution of

av(x, y, 1), . . . , av(x, y, k − 1). Otherwise, namely n + k 6≡b 0, we have that av(x, y, k) =

Tr(Rk+Lk) = Tr(Rk)+Tr(Lk). Since for every fixing of Lk, av(x, y, k) is uniform over F2, we

have that av(x, y, k) is independent of the joint distribution of av(x, y, 1), . . . , av(x, y, k− 1).

As this holds for every k ∈ [`] we have that av(x, y, 1), . . . , av(x, y, `) are independent and

their marginal distributions are as stated.

Claim 4.4. Let u, v be two vertices with depth n,m, respectively such that n ≡b m. Let

x, y ∈ F`−12 . Then,

hv(x, y) = hu(x, y),

hv(x, y) = hv(0
`−1, y − x).

Proof. Let Ck = Rk + Sk−1(y − x). By Claim 4.2,

au(x, y, k) =

{
Ck, n+ k ≡b 0;

Tr(Ck), otherwise.

As Ck is independent of the choice of u and n ≡b m we have that au(x, y, k) is the same

random variable as av(x, y, k). Since this holds for every k, we have that hv(x, y) = hu(x, y).

We turn to prove the the second asserted equality. Assume first that k ∈ [`] is such that

n+ k ≡b 0. By Claim 4.2,

au(x, y, k) = Rk + Sk−1(y − x)

= Rk + Sk−1((y − x)− 0`−1)

= au(0
`−1, y − x, k),

where observe that for the last equality we are using the fact that F2 is a subfield of F4

and so y − x ∈ F`−12 . Indeed, recall that av’s second argument is a binary string and so the

equality above would have been meaningless otherwise. The case n + k 6≡b 0 follows by a

similar argument and using the F2-linearity of Tr.

Given Claim 4.4, we can simplify our notation as follows. Let v0 denote the root of the

tree. For i = 1, . . . , b− 1 let vi denote the left son of vi−1. For every i ∈ {0, 1, . . . , b− 1} and

x ∈ {0, 1}`−1 we define the random variables

ai(x, k) = avi(0
`, 1 ◦ x, k),

hi(x) = hvi(0
`−1, x).
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Define

δ = c1ε log−1(1/ε),

`0 = 12dε−1 log(1/ε)e,

for some constant c1 ∈ [0, 1] to be set later on. Observe that for every fixing of the sequence

{Ri}, T is a palette-alternating tree code with distance δ if and only if for every x ∈ {0, 1}`−1

and i ∈ {0, 1, . . . , b − 1} it holds that hi(x) ≥ δ`. Indeed, by definition, T is a palette-

alternating tree code with distance δ if and only if for every vertex v, ` ≥ 1, and every

distinct x, y ∈ {0, 1}`−1 it holds that hv(x, y) ≥ δ`. However, by Claim 4.4, the random

variable hv(x, y) is the same as the random variable hi(y − x) for i = depth(v) mod b.

For x ∈ {0, 1}`−1 and i ∈ {0, 1, . . . , b − 1} denote by Ei(x) the event hi(x) < δ`. Note

that as R1 = 1 and since Tr(1) = 1 we have that hi(x) ≥ 1 for every x. Thus, for |x| < `0

we have that
h(x)

|x|+ 1
≥ 1

`0
.

Therefore, in order to prove Theorem 4.1 it suffices to prove that

Pr

 ⋃
|x|≥`0

b−1⋃
i=0

Ei(x)

 < 1.

Indeed, this will give a bound of min
(

1
`0
, δ
)

= Ω(ε log−1(1/ε)) on the distance.

Fix x ∈ {0, 1}`−1 and i ∈ {0, 1, . . . , b− 1}. Observe that Ei(x) holds if and only if there

exists a set T ⊆ [`] of size d(1 − δ)`e such that for every k ∈ T , ai(x, k) = 0. For ease of

readability we ignore the ceiling in the calculations below. Recall that ai(x, 1), . . . , ai(x, `)

are independent. Further, 1− 1
b

fraction of them are uniform over F2 whereas the remaining
1
b

fraction are uniform over F4. Note that by our choice of parameters, δ < 1/b. Thus, for

any γ ≥ 0 and a fixed T , we have that

Pr [∀k ∈ T ai(x, k) = 0] ≤ 2−(1− 1
b
−γ)`4−( 1

b
−δ+γ)`

≤ 2−(1− 1
b )`4−( 1

b
−δ)`

= 2−(1+ 1
b
−2δ)`.

By taking the union bound over the choice of T , and using Lemma 2.1, we get that

Pr[Ei(x)] ≤
(

`

d(1− δ)`e

)
2−(1+ 1

b
−2δ)`

≤ 2−(1+ 1
b
−2δ−H(δ))`.
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By the union bound,

Pr

 ⋃
|x|≥`0

b−1⋃
i=0

Ei(x)

 ≤ ∑
|x|≥`0

b−1∑
i=0

Pr[Ei(x)] (4.1)

≤ b ·
∞∑
`=`0

2`−1 · 2−(1+ 1
b
−2δ−H(δ))`

=
b

2
·
∞∑
`=`0

2(H(δ)+2δ− 1
b )`.

By taking c1 sufficiently small and using Lemma 2.2, we get that H(δ) + 2δ − 1/b ≤ −ε/3.

Therefore, Equation (4.1) is bounded above by

b ·
∞∑
`=`0

2−ε`/3 = b · 2−ε`0/3

1− 2−ε/3

≤ bε4

1− 2−ε/3

≤ 2ε3

1− 2−ε/3
,

where the penultimate inequality follows by our choice of `0 and the last inequality follows

since b = d1/εe. One can verify that the above is strictly bounded by 1 for any ε < 1/3.

5 The Interactive Coding Scheme

In this section we prove Theorem 1.6. In the first section we set up the framework over

which our coding scheme will be defined. In Section 5.2 we present our coding scheme and

Sections 5.3, 5.4 contain the analysis.

5.1 Setting up the framework

Round types. Throughout the scheme Alice and Bob send information in an alternating

manner. More precisely, at even rounds Alice would decide on a bit to be sent and at odd

rounds, Bob will decide what bit to send. Let t ≥ 0. If t is even we say that it is an Alice’s

round and otherwise it is a Bob’s round.
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Epochs. We further partition the rounds as follows. Let c be a parameter to be set later

on. The protocol is divided to epochs where each epoch consists of 2c+ 2 rounds. The first

epoch starts from round 0 to round 2c + 1 and is denoted by e0 = [0, 2c + 2). The second

epoch is denoted by e1 = [2c + 2, 4c + 4) and, generally, the k’th epoch consists of rounds

[k(2c + 2), (k + 1)(2c + 2)). Let t be an Alice’s round and consider m = t mod (2c+ 2). If

m = 2c, then t is referred to as Alice’s bit sync round, and otherwise, t is called an Alice’s

edge round. Similarly, for t a Bob’s round, let m = t mod (2c+ 2). If m = 2c + 1, then t is

a Bob’s bit sync round. Otherwise, t is called Bob’s edge round.

We denote by edges(e) the sequence of 2c bits sent throughout the edge rounds during

epoch e, and define syncA(e), syncB(e) the bits sent by Alice and Bob during their sync

rounds, respectively.

Rewinding mechanism. As the adversary introduce some fraction of errors, the coding

scheme should incorporate a “regret mechanism” using which the parties can revert back

parts of the already exchanged messages. To formalize that, we will make use of the pair of

functions

rewind : {S,X}∗ → {S,X}∗,
survive : {S,R,X}∗ → {S,X}∗,

which are defined as follows. Let n ≥ 1. We define rewind(Xn) = Xn. Let v ∈ {S,X}n\{Xn}
and denote i ∈ [n] the largest index such that vi = S. Then,

rewind(v)j =

vj j 6= i;

X j = i.

We define the function survive recursively as follows. Let v ∈ {S,R,X}n,

survive(v) =

rewind(survive(v0, . . . , vn−1)) ◦X vn = R;

survive(v0, . . . , vn−1) ◦ vn vn 6= R.

Decoding the pointer jumping path. We describe now how to decode a rooted path

in the pointer jumping game from the bits that were sent during a sequence of epochs. To

formalize that, we define the function PJPath that given a sequence of epochs (e0, . . . , en),

computes a rooted path in the depth-n tree T as follows. Define h : e→ {S,R} by

h(e) = R ⇐⇒ syncA(e) ∨ syncB(e) = 1
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where an epoch is initialized with syncA(e) = syncB(e) = 0. Denote (m0, . . . ,mn) =

survive(h(e0), . . . , h(en)) and let i1 < · · · < i` be the indices such that mi1 = · · · = mi` = S.

Finally, set

PJPath(e0, . . . , en) = path(edges(ei1) ◦ · · · ◦ edges(ei`)).

where path is defined in the preliminaries.

Claim 5.1. Let e0, . . . , en+1 be a sequence of epochs such that syncA(en+1)∨syncB(en+1) = 0,

then

v(PJPath(e0, . . . , en)) = ancestor(v(PJPath(e0, . . . , en+1)), 2c).

If on the other hand syncA(en+1) ∨ syncB(en+1) = 1, then

ancestor(v(PJPath(e0, . . . , en)), 2c) = v(PJPath(e0, . . . , en+1)).

Proof. For the first direction of the claim, note that as h(en+1) = S it follows that

survive(h(e0), . . . , h(en+1)) = survive(h(e0), . . . , h(en)) ◦ S.

Let (m0, . . . ,mn) = survive(h(e0), . . . , h(en)) and 0 ≤ i1 < · · · < i` ≤ n where ` ≥ 0, the

indices such that mi1 = · · · = mi` = S. Thus, the set of indices that corresponds to an S

symbol in survive(h(e0), . . . , h(en)) ◦ S is exactly {i1, . . . , i`, n+ 1}. Hence,

PJPath(e0, . . . , en) = path(edges(ei1) ◦ · · · ◦ edges(ei`));
PJPath(e0, . . . , en+1) = path(edges(ei1) ◦ · · · ◦ edges(ei`) ◦ edges(en+1)),

and so ancestor(v(PJPath(e0, . . . , en)), 2c) = v(PJPath(e0, . . . , en+1)).

For the other direction, by definition, h(en+1) = R and so

survive(h(e0), . . . , h(en+1)) = rewind(survive(h(e0), . . . , h(en))) ◦X.

Let (m0, . . . ,mn) = survive(h(e0), . . . , h(en)) and i1 < · · · < i` the indices such that mi1 =

· · · = mi` = S. By the definition of the rewind function, if ` > 0 then the indices i1, . . . , i`−1

correspond to an S symbol in rewind(survive(h(e0), . . . , h(en))). Thus,

PJPath(e0, . . . , en) = path(edges(ei1) ◦ · · · ◦ edges(ei`));
PJPath(e0, . . . , en+1) = path(edges(ei1) ◦ · · · ◦ edges(ei`−1

)).

Therefore, ancestor(v(PJPath(e0, . . . , en)), 2c) = v(PJPath(e0, . . . , en+1)) as stated. In the

case that ` = 0, recall that root(T ) = ancestor(root(T ),m) for all m ∈ N concluding the

proof.
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Transcript notations. Let T C be the palette-alternating tree code from Theorem 4.1 set

with distance parameter δT C whose value will be set later on. Denote by TCEnc,TCDec

the encoding and decoding functions of T C, respectively where we decode to minimize the

distance from the received word to a codeword. At every round, one of the parties would

decide on a bit to be sent. That bit is not sent over the channel as is but rather is encoded

using a palette-alternating tree code. For an even integer t ≥ 0 we denote by (a0, a2, . . . , at)

those bits that Alice would “like” to send from round 0 until round t. As mentioned above,

the actual symbols that Alice sends are obtained by encoding these bits using T C. Similarly,

for an odd t ≥ 1 we denote (b1, b3, . . . , bt) the bits Bob would like to send. For an even

integer t ≥ 0 we define ã(t) = (ã(t)0, ã(t)2, . . . , ã(t)t) to be the bits that are decoded, via

TCDec, given the received transmission to Bob at round t. Note that ã(t)i may not equal

ã(t′)i for distinct times t, t′, and certainly may not equal ai.

For an odd t, we define rA(t) = (a0, b̃(t)1, a2, b̃(t)3, . . . , b̃(t)t) and similarly for an even t,

rB(t) = (ã(t)0, b1, ã(t)2, b3, . . . , ã(t)t). We further define r(t) = (a0, b1, a2, . . . , bt) for odd t

and r(t) = (a0, b1, a2, . . . , at) for even t. Recall that for a given set of edges E ′, we defined

v(E ′) to be the unique vertex in T with largest depth that is reachable from the root using

the edge set E ′. We define

pA(t) = PJPath(rA(t));

γA(t) = v(pA(t));

αA(t) = v(pA(t) ∩ (EA ∪ Y )).

Similarly,

pB(t) = PJPath(rB(t));

γB(t) = v(pB(t));

αB(t) = v(pB(t) ∩ (EB ∪X)).

5.2 The coding scheme

The coding scheme is composed of two parts. The first consists of R rounds and the second

of additional 2τR rounds where τ is a parameter to be chosen later on. We turn to describe

the first part of the scheme. The second part is described in Section 5.2.2.
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5.2.1 Part 1 of the coding scheme

We present the scheme from Alice’s point of view. The scheme from Bob’s point of view

can be easily inferred. As mentioned, Alice’s algorithm is partitioned to epochs. At the first

round of epoch ek = [k(2c + 2), (k + 1)(2c + 2)) Alice computes vA = γA(k(2c + 2) − 1).

We will make sure to maintain the invariant that at odd times t, γA(t) ∈ VA. In particular,

vA ∈ VA. For each round type, Alice proceeds as follows:

Alice’s edge round. Let t be an Alice’s edge round, namely, t is an even integer with

t 6≡ 2c (mod 2c+ 2).

1. At the edge rounds, Alice maintains vA in order to choose at which is the bit that she

would like to send at round t. Alice sets at ← πA(vA). This operation is well-defined

as we will be making sure also to maintain the invariant that in Alice’s edge rounds

vA ∈ VA.

2. Transmit TCEnc(a0, a2, . . . , at)t/2.

3. Update vA ← son(vA, at).

Bob’s edge round. Let t be Bob’s edge round, namely, t is odd with t 6≡ 2c+1 (mod 2c+

2). At this round Bob sent a bit to Alice who, in turn, proceeds by updating vA as follows:

1. vA ← son(vA, b̃(t)t), where, recall b̃(t) is the bit-string Alice decoded from the received

transcript at round t.

Alice’s bit sync round. Let t ≡ 2c (mod 2c + 2). Notice that αA(t − 1) is an ancestor

of γA(t− 1). We consider the following cases according to αA(t− 1), γA(t− 1) locations:

1. If αA(t− 1) = γA(t− 1), then

(a) at ← 0 (0 encodes “hold”)

(b) Transmit TCEnc(a0, a2, . . . , at)t/2

2. If αA(t− 1) is a strict ancestor of γA(t− 1) then

(a) at ← 1 (1 encodes “revert”)

(b) Transmit TCEnc(a0, a2, . . . , at)t/2
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5.2.2 Part 2 of the coding scheme

Recall that the coding scheme is divided to two parts. We now present the second part

which take place during rounds [R, (1 + 2τ)R]. This part is not partitioned to epochs and

we describe it per round. We define the function counterA : V → N that is initialized to 0.

Recall that n denotes the depth of the tree T . More precisely, our convention is that edges

leaving vertices of depth larger than n always point to their left son.

Alice’s edge round. Let t be an Alice’s round, namely, t is an even integer.

1. Alice sets at ← 0.

2. Transmit TCEnc(a0, a2, . . . , at)t/2.

Bob’s edge round. Let t be a Bob’s round, namely, t is odd. At this round, Bob sent a

bit to Alice who, in turn, proceeds by updating counterA as follows:

1. Alice computes γA(t).

2. If depth(γA(t)) ≥ n, denote by v the unique ancestor of γA(t) of depth n. Alice sets

counterA(v) = counterA(v) + 1.

Final round. Alice returns the vertex v that maximizes counterA(v). The analysis will

show that such vertex exists and is unique.

Remark. Note that in most rounds, TCEnc outputs a symbol in F2 which corresponds

to a single bit transmitted. At the rounds in which the symbol is an F4-element, we send

the information in two rounds and the round of the other party in between is ignored. For

simplicity, we make this issue transparent to the coding scheme.

5.3 A simpler analysis with sub-optimal rate

In this section we prove that the coding scheme above, when set with suitable parameters

δT C, c, τ , has rate 1− Õ( 3
√
ε). Many of the ideas and results used in this section will be used

for the proof of Theorem 1.6, to be presented in Section 5.4, which requires additional ideas.

We assume R is an integral multiple of 2c + 2 and let k be the number of epochs, namely,

R = (2c+ 2)k.
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Good rounds. We say that t ∈ [R] is good if the decoding at round t succeeds. More

precisely, when t is even, round t is good if

(a0, a2, . . . , at) = (ã(t)0, ã(t)2, . . . , ã(t)t).

Similarly, an odd t is good if

(b1, b3, . . . , bt) = (b̃(t)1, b̃(t)3, . . . , b̃(t)t).

We make use of the following lemma proved by Schulman [Sch93] (see also Section 2.1.3

in [Gel17]).

Lemma 5.2 ([Sch93]). Let T C be a palette-alternating tree code with distance δT C. Assume

the channel has at most ε-fraction errors. Then, at most

µ , 2ε/δT C

fraction of rounds are bad.

Good epochs. We say that epoch e = [t, t+ 2c+ 2) is good if each round r ∈ [t− 1, t+ 2c]

is good and otherwise we call it bad. Note that for an epoch to be good we require that the

last round of the previous epoch is good though do not require the last round of the current

epoch to be good. Note further that at least 1− (2c + 2)µ fraction of the epochs are good.

We wish to define vertices analog to γA(t), αA(t) and γB(t), βB(t) that are defined according

to what was actually sent by the parties in the first t rounds rather than according to what

was received. Formally, define

γ(t) = v(PJPath(r(t)));

α(t) = v(PJPath(r(t)) ∩ (EA ∪ Y ));

β(t) = v(PJPath(r(t)) ∩ (EB ∪X)),

where recall that r(t) is defined in the paragraph presenting our transcript notations in

Section 5.1. Let v(t) be the least common ancestor of α(t), β(t) in T . Observe that v(t) is

equal to either α(t) or β(t) and in particular is an ancestor of γ(t).

Claim 5.3. Let e = [t, t+ 2c+ 2) be a good epoch such that v(t− 1) 6= γ(t− 1). Then,

syncA(e) = 1 ∨ syncB(e) = 1.
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Proof. Observe that the hypothesis of the claim implies that v(t− 1) is a strict ancestor of

γ(t− 1). As γ(t− 1) is a strict ancestor of γ(t+ 2c− 1) and since v(t+ 2c− 1) = v(t− 1) it

follows that v(t+ 2c− 1) 6= γ(t+ 2c− 1). As round t+ 2c− 1 is good, it holds that

γA(t+ 2c− 1) = γ(t+ 2c− 1) = γB(t+ 2c− 1).

Furthermore, by the definition of αA and βB it follows that

αA(t+ 2c− 1) = α(t+ 2c− 1);

βB(t+ 2c− 1) = β(t+ 2c− 1).

Thus, as v(t + 2c− 1) 6= γ(t + 2c− 1), at least one of the following holds αA(t + 2c− 1) 6=
γA(t + 2c− 1) or βB(t + 2c− 1) 6= γB(t + 2c− 1). Hence, at least one of the parties set its

sync bit to 1.

Short-split epochs. We define the indicator function

nearAncestor(v(t), γ(t)) =

1 dist(v(t), γ(t)) ∈ (0, 2c);

0 otherwise.

A good epoch e = [t, t+ 2c+ 2) is called a short-split epoch if

nearAncestor(v(t− 1), γ(t− 1)) = 1.

Claim 5.4. The number of short-split epochs is bounded above by the number of bad epochs.

Proof. Consider any two short-split epochs e = [t, t+ 2c+ 2), e′ = [t′, t′+ 2c+ 2) with t < t′.

Since e is a short-split epoch, then e is good and also v(t−1) 6= γ(t−1). By Claim 5.3, Alice

or Bob set their sync bit to 1. By Claim 5.1 it holds that γ(t+2c+1) = ancestor(γ(t−1), 2c).

Observe that as d < 2c, this results in v(t+ 2c+ 1) = γ(t+ 2c+ 1).

Observe further that, until the arrival of a bad epoch, at epoch e′′ = [t′′, t′′ + 2c+ 2) we

have that v(t′′ − 1) = γ(t′′ − 1). Since e′ is a short-split epoch, v(t′ − 1) 6= γ(t′ − 1). It then

follows that there exists a bad epoch preceding e′. Since the first epoch is not short-split,

the claim follows.

Potential function for the progress. For an integer i ≥ 0 and t = (2c+2)i−1, consider

the following potential function

Φ(t) = 2depth(v(t))− depth(γ(t)).

Recall that depth(γ(t)) ≥ depth(v(t)) and so when Φ(t) ≥ n it holds that depth(v(t)) ≥ n.
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Claim 5.5. If e = [t, t+ 2c+ 2) is a good epoch that is not short-split, then Φ(t+ 2c+ 1) =

Φ(t− 1) + 2c. Otherwise, Φ(t+ 2c+ 1) ≥ Φ(t− 1)− 6c.

Proof. By Claim 5.1, dist(γ(t + 2c + 1), γ(t − 1)) ≤ 2c. Observe that by Claim 5.1 and by

the definition of v it follows that dist(v(t+ 2c+ 1), v(t−1)) ≤ 2c as well. Thus, the assertion

Φ(t+ 2c+ 1) ≥ Φ(t− 1)− 6c follows. Let then e be a good epoch that is not short-split, and

consider the following cases:

1. First assume that v(t− 1) = γ(t− 1). As epoch e is good, it follows that at the edge

rounds, Alice and bob extends the same (correct) path, and so

v(t+ 2c− 1) = γ(t+ 2c− 1). (5.1)

Since round t+ 2c− 1 is good,

γA(t+ 2c− 1) = γ(t+ 2c− 1) = γB(t+ 2c− 1).

The above equation together with Equation (5.1) implies that

αA(t+ 2c− 1) = γA(t+ 2c− 1);

βB(t+ 2c− 1) = γB(t+ 2c− 1).

By the algorithm both Alice and Bob sets their sync bit to 0, namely, syncA(e) =

syncB(e) = 0. Thus, together with Claim 5.1 and Equation (5.1),

depth(γ(t+ 2c+ 1)) = depth(γ(t− 1)) + 2c,

depth(v(t+ 2c+ 1)) = depth(v(t− 1)) + 2c,

and it follows that Φ(t+ 2c+ 1) = Φ(t− 1) + 2c.

2. Consider now the case that v(t − 1) is a strict ancestor of γ(t − 1). By Claim 5.3

it follows that syncA(e) = 1 or syncB(e) = 1. Then, by Claim 5.1 it holds that

ancestor(γ(t− 1), 2c) = γ(t+ 2c+ 1). Since e is not a short-split epoch, v(t− 1) is an

ancestor of γ(t+ 2c+ 1), and by the definition of v this implies v(t+ 2c+ 1) = v(t−1).

Thus, it holds that

depth(γ(t+ 2c+ 1)) = depth(γ(t− 1))− 2c,

depth(v(t+ 2c+ 1)) = depth(v(t− 1)),

and

Φ(t+ 2c+ 1) = Φ(t− 1) + 2c,

concluding the proof.
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By Claim 5.4, there are at least (1− 2(2c+ 2)µ)k good epochs which are not short-split.

By Claim 5.5, Φ increases by at least 2c in every such epoch. In the remaining epochs, Φ

decreases by at most 6c. Since Φ(−1) = 0 we have that

Φ(R) ≥ ((1− 2(2c+ 2)µ)2c+ 2(2c+ 2)µ · (−6c))k

= (1− 8(2c+ 2)µ) · 2ck

=

(
1−

(
4

2c+ 2
+ 16cµ

))
R.

By setting c to be an integer c = Θ(1/
√
µ), we get Φ(R) =

(
1−Θ(

√
µ)
)
R. Now setting

R = (1 + Θ(
√
µ))n, the first part of the scheme assures that depth(v(R)) ≥ n.

Analysis of part 2 of the scheme. Let vpj be the unique ancestor of v(R) of depth n

in T , it is well defined as the analysis of Part 1 of the scheme assures that depth(v(R)) ≥ n.

Recall that the second part of the scheme contains 2τR rounds. By Lemma 5.2, there are at

most

(1 + 2τ)µR

bad rounds. By the algorithm, for every good odd round in Part 2 of the scheme, Alice

increases counterA(vpj) by 1. Observe that in the final round Alice returns the vertex that

maximizes counterA and so the assertion counterA(vpj) > (τR)/2 implies that the simulation

will terminates successfully. By setting τ = 6µ, we get

τ

2
R > (1 + 2τ)µR

which guarantees that the majority of both Alice’s and Bob’s rounds in the second part of

the coding scheme are good. This concludes the proof of the theorem.

Calculating the rate. At each round of the simulation, a palette-alternating tree code

symbol is sent instead of a single bit. By Theorem 1.4 T C has rate 1 − O(δT C log(1/δT C)).

Setting δT C = 3
√
ε, we get that the simulation uses(

1 +O

(√
ε

δT C

))(
1 +O

(
δT C log

(
1

δT C

)))
n =

(
1 +O

(
3
√
ε log

(
1

ε

)))
n

bits. Thus, the coding scheme rate is 1− Õ( 3
√
ε) as stated.
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5.4 Optimal analysis

In this section we prove Theorem 1.6. We make use of the same coding scheme analyzed in

Section 5.3. The improved analysis follows by applying a more delicate analysis of the bad

rounds locations as a function of the errors introduced by the adversary.

Let T C be a palette-alternating tree code with distance δT C. Denote by E = {e1, . . . , eεR}
the set of rounds at which the adversary has introduced errors, where 0 ≤ e1 < · · · < eεR ≤ R.

A set of consecutive errors C = {ej, . . . , ej+r−1} is called a cluster of errors (with respect to

T C or more precisely δT C) if

∀` ∈ [r − 1] ej+` − ej ≤
2`

δT C
.

We define the cluster interval of C by I(C) = [ej, ej + 2r/δT C]. We denote by C the set of

all clusters (with respect to E).

Claim 5.6. Let C1, C2 ∈ C with C1 ⊆ C2. Then, I(C1) ⊆ I(C2).

Proof. Let C1 = {ei, . . . , ej}, C2 = {em, . . . , ek} with m ≤ i ≤ j ≤ k. By definition, it holds

that I(C1) = [ei, ei + 2(j − i+ 1)/δT C] , I(C2) = [em, em + 2(k −m+ 1)/δT C]. As ei ∈ C2

we have that ei ≤ em + 2(i−m)/δT C, and so

ei +
2(j − i+ 1)

δT C
≤ em +

2(j −m+ 1)

δT C

≤ em +
2(k −m+ 1)

δT C
,

which, together with em ≤ ei, concludes the proof.

We will be interested to study clusters on sub-intervals of [0, R] and in particular we wish

to consider clusters that are, in a sense, maximal in the sub-interval. To formalize that, let

[a, b] be a sub-interval of [0, R]. A cluster C ∈ C with C ⊆ [a, b] is called [a, b]-maximal if for

every cluster C ′ ⊆ [a, b] such that C ⊆ C ′ it holds that C ′ = C. A [0, R]-maximal cluster is

simply called maximal. We denote byM[a,b] the set of all [a, b]-maximal clusters, and byM
the set of all maximal clusters.

Claim 5.7. Every C1, C2 ∈M[a,b] are either equal or disjoint.

The proof of the above claim is straightforward. Indeed, by adapting the proof of

Claim 5.6, if false C1 ∪ C2 ∈ C in contradiction to the maximality.
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Claim 5.8. Let C1, C2 ∈M[a,b] distinct. Then, I(C1) ∩ I(C2) = ∅.

Proof. By Claim 5.7 we have that C1 ∩ C2 = ∅, and so we may denote C1 = {ei, . . . , ei+j},
C2 = {em, . . . , em+n} with i+j < m. Assume toward a contradiction that I(C1)∩I(C2) 6= ∅,
and so em ∈ [ei, ei+2(j+1)/δT C). Observe that this would imply that C ′ = {ei, . . . , em} ∈ C,
which together with C ′ ⊆ [a, b], stands in contradiction to C1 ∈M[a,b].

Claim 5.9. ∣∣∣∣∣ ⋃
M∈M

I(M)

∣∣∣∣∣ ≤ 2εR

δT C
.

Proof. By Claim 5.8, and since | I(C) | = 2 |C | /δT C for every C ∈ C,∣∣∣∣∣ ⋃
M∈M

I(M)

∣∣∣∣∣ =
∑
M∈M

2 |M |
δT C

.

As all maximal clusters are disjoint (Claim 5.7),∑
M∈M

|M | ≤ εR,

which concludes the proof.

Lemma 5.10. Let r ∈ [0, R]. If r 6∈
⋃
C∈C
I(C) then r is a good round.

Proof. Denote by σt the palette-alternating tree code symbol that is sent at round t, and

let σ̃t be the received symbol at that round. Denote by (µ1, . . . , µr) the path on T C that

corresponds to the decoded codeword . Assume toward a contradiction that r is bad, namely,

(σ1, . . . , σr) 6= (µ1, . . . , µr). Let ` ∈ [r] be the largest integer such that µr−` 6= σr−`. As

TCDec(σ̃1, . . . , σ̃r) returns the codeword that minimizes the distance, and since µi = σi for

every i < r − `, we have that

∆((µr−`, . . . , µr), (σ̃r−`, . . . , σ̃r)) ≤ ∆((σ̃r−`, . . . , σ̃r), (σr−`, . . . , σr)). (5.2)

Since T C is a palette-alternating tree code with distance δT C,

∆((µr−`, . . . , µr), (σr−`, . . . , σr)) ≥ (`+ 1)δT C . (5.3)

Let I = E ∩ [r− `, r], i.e the set of all rounds i such that σi 6= σ̃i in the interval [r− `, r].
Denote | I | = k. As M[r−`,r] ⊆ C and by the hypothesis of the lemma, it follows that

r 6∈
⋃

C∈M[r−`,r]

I(C).
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Observe that ⋃
C∈M[r−`,r]

I(C) ⊆ [r − `, r).

Claim 5.8 states that the intervals of any two maximal clusters are disjoint, hence,∑
C∈M[r−`,r]

| I(C) | ≤ `.

As | I(C) | = 2 |C | /δT C for every C ∈ C and since M[r−`,r] forms a partition of I, it follows

that ∑
C∈M[r−`,r]

| I(C) | = 2k

δT C
.

By the above two equations, we have that ` ≥ 2k/δT C. Substituting to Equation (5.3), we

have that ∆((µr−`, . . . , µr), (σr−`, . . . , σr)) > 2k. Since ∆((σ̃r−`, . . . , σ̃r), (σr−`, . . . , σr)) = k,

we have that ∆((µr−`, . . . , µr), (σ̃r−`, . . . , σ̃r)) > k in contradiction to Equation (5.2).

Using the above, we obtain a better bound on the fraction of bad epochs compared to

the bound O(εc/δT C) established in Section 5.3.

Lemma 5.11. At most (4ε/δT C + ε(2c+ 2)) fraction of the epochs are bad.

Proof. Observe that for every C ∈ C there exists a maximal cluster M ∈ M such that

C ⊆M . By Claim 5.6 it then follows that I(C) ⊆ I(M), and so⋃
C∈C

I(C) =
⋃

M∈M

I(M).

Claim 5.9 implies that ∑
M∈M

| I(M) | ≤ 2εR

δT C
. (5.4)

Notice that each cluster M intersect with at most d| I(M) | /(c + 1)e bad epochs. By

Claim 5.10, if r 6∈ I(M) for every M ∈M then r is good. Hence there are at most∑
M∈M

⌈
| I(M) |
c+ 1

⌉

34



bad epochs. Since the maximal clusters form a partition of E , it follows that |M | ≤ εR.

This, together with Equation (5.4) yields∑
M∈M

⌈
| I(M) |
c+ 1

⌉
≤ εR +

∑
M∈M

| I(M) |
c+ 1

≤ εR +
2εR

δT C(c+ 1)

=

(
4ε

δT C
+ ε(2c+ 2)

)
k.

So, at most (4ε/δT C + ε(2c+ 2)) fraction of the epochs are bad as stated.

By Claim 5.4 and Lemma 5.11 there are at least (1− 2(4ε/δT C + ε(2c+ 2))) k good

epochs that are not short-split. By Claim 5.5, in each such epoch, Φ increases by at least

2c. In the remaining epochs, Φ decreases by at most 6c. Since Φ(−1) = 0 we have that

Φ(R) ≥
((

1− 2

(
4ε

δT C
+ ε(2c+ 2)

))
2c+ 2

(
4ε

δT C
+ ε(2c+ 2)

)
· (−6c)

)
k

=

(
1− 32ε

δT C
− 8ε(2c+ 2)

)
· 2ck

≥
(

1− 2

c
− 32ε

δT C
− 16cε

)
R.

By setting c to be an integer with c = Θ( 1√
ε
) and δT C =

√
ε/ log(1/ε), we get that

Φ(R) ≥
(

1−Θ(
√
ε log(1/ε))

)
R.

By setting R = (1 + Θ(
√
ε log(1/ε)))n, and since T C has rate 1 − Θ(δT C log(1/δT C)) =

1−Θ(
√
ε log(1/ε)), the first part of the scheme assures that depth(v(R)) ≥ n. Similarly to

the analysis of Part 2 from Section 5.3, by setting τ = Θ(µ) = Θ(
√
ε log(1/ε)), Theorem 1.6

follows.
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