
On Prover-Efficient Public-Coin Emulation of Interactive Proofs

Gal Arnon∗ Guy N. Rothblum†

April 27, 2021

Abstract

A central question in the study of interactive proofs is the relationship between private-coin proofs,
where the verifier is allowed to hide its randomness from the prover, and public-coin proofs, where the
verifier’s random coins are sent to the prover. The seminal work of Goldwasser and Sipser [STOC 1986]
showed how to transform private-coin proofs into public-coin ones. However, their transformation incurs
a super-polynomial blowup in the running time of the honest prover.

In this work, we study transformations from private-coin proofs to public-coin proofs that preserve
(up to polynomial factors) the running time of the prover. We re-consider this question in light of the
emergence of doubly-efficient interactive proofs, where the honest prover is required to run in polynomial
time and the verifier should run in near-linear time. Can every private-coin doubly-efficient interactive
proof be transformed into a public-coin doubly-efficient proof? Adapting a result of Vadhan [STOC 2000],
we show that, assuming one-way functions exist, there is no general-purpose black-box private-coin to
public-coin transformation for doubly-efficient interactive proofs.

Our main result is a loose converse: if (auxiliary-input infinitely-often) one-way functions do not
exist, then there exists a general-purpose efficiency-preserving transformation. To prove this result, we
show a general condition that suffices for transforming a doubly-efficient private coin protocol: every
such protocol induces an efficiently computable function, such that if this function is efficiently invertible
(in the sense of one-way functions), then the proof can be efficiently transformed.

This result motivates a study of other general conditions that allow for efficiency-preserving private
to public coin transformations. We identify an additional (incomparable) condition to that used in our
main result. This condition allows for transforming any private coin interactive proof where (roughly) it
is possible to approximate the number of verifier coins consistent with a partial transcript. This allows
for transforming any constant-round interactive proof that have this property (even if it is not doubly-
efficient). We demonstrate the applicability of this final result by using it to transform a private-coin
protocol of Rothblum, Vadhan and Wigderson [STOC 2013], obtaining a doubly-efficient public-coin
protocol for verifying that a given graph is close to bipartite in a setting for which such a protocol was
not previously known.

∗galarnon42@gmail.com. Weizmann Institute of Science. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 819702)

†rothblum@alum.mit.edu. Weizmann Institute of Science. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 819702)

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 176 (2019)

mailto:galarnon42@gmail.com
mailto:rothblum@alum.mit.edu

Contents

1 Introduction 3
1.1 Overview of the Round-Efficient Emulation . 6
1.2 Overview of the Piecemeal Emulation Protocol . 12

2 Preliminaries 13
2.1 Concentration Bounds . 13
2.2 Protocols and Interactive Proofs . 13
2.3 Statistical Distance . 15
2.4 Hash Functions and Entropy . 18
2.5 One-Way Functions and Distributional Inversion . 19
2.6 Pseudo-Random Functions and Permutations . 20
2.7 Partitions and Histograms . 21
2.8 Coupon Collector . 21

3 Algorithms and Protocols Used 22
3.1 Organization and Oracle Naming Convention . 22
3.2 A Prover-Efficient Sampling Protocol . 23
3.3 Approximate Histograms . 30
3.4 Sampling Via Subsets . 32
3.5 Set Cardinality Approximation . 37

4 Round-Preserving Emulation from Inversion 41
4.1 Implementing HashInv . 43
4.2 Implementing Subset . 49
4.3 The Emulation Protocol . 51

5 Piecemeal Emulation Protocol 57
5.1 Efficiency . 58
5.2 Completeness . 58
5.3 Soundness . 59

6 Bipartiteness With Public-Coins Via the Piecemeal Protocol 60

References 65

A Black-Box Transformations 67
A.1 Overview of The Black-Box Impossibility Result . 67
A.2 Weak Disjoint Support . 69
A.3 Constructing the Distributions . 71
A.4 Proving Theorem 10 . 73

2

1 Introduction

Interactive proofs (IPs), introduced by Goldwasser, Micali and Rackoff [GMR85] in 1985 are an important
object in the study of complexity and cryptography. An interactive proof is an interactive protocol between
two parties, a “prover” and a “verifier”, where the prover is trying to convince the verifier of the membership
of a string in a language. If this claim is true, then the verifier should be convinced with high probability.
Otherwise, if the claim is false, then no matter what the prover does, the verifier should reject the claim
with high probability. Since their inception, a central question in the study of interactive proofs has been
the connection between private-coin proofs, where the verifier is allowed to hide its randomness from the
prover, and public-coin proofs, where hiding information is not allowed. Public-coin protocols are especially
appealing since they are easier to analyze and manipulate [FGM+89, BM89, BGG+88, FS86]. Goldwasser
and Sipser [GS86] showed that any private-coin interactive proof can be transformed into a public-coin proof
while preserving the number of rounds (up to an additive constant).

One issue with this transformation is that of the honest prover’s running time. Vadhan [Vad00] showed
that (assuming the existence of one-way functions) there exist protocols that cannot be transformed to
be public-coin in a black-box manner while preserving the running time of the prover (up to polynomial
factors). While in the classical setting the running time of the prover is considered unbounded, the recent
line of works on doubly-efficient interactive proofs (deIPs) [GKR08] restricts the honest prover to run in
polynomial time. We emphasize that soundness is required to hold against computationally unbounded
adversaries. Doubly-efficient interactive proofs apply only to tractable computations, and are therefore of
interest when the verifier time can be smaller than the time required to decide the language without the help
of a prover. Indeed, the main focus in the literature is on verifiers that run in near-linear time. Goldreich
[Gol18] gives a survey on recent work on doubly-efficient interactive proofs.

This Work. In this work we ask whether transformations of proofs from using private coins to using public
coins are applicable to the doubly-efficient setting:

Which private-coin doubly-efficient interactive proofs can be transformed into public-coin doubly-efficient
proofs and how can this be done?

We tackle the above question from a number of angles. Some of our results also apply to proofs that are not
doubly-efficient.

We extend Vadhan’s impossibility result to show that the existence of one-way functions implies that
there are no transformations from private-coin deIPs to public-coin deIPs that work in a natural “black-box”
way (See Appendix A for more information). Note that since deIPs exist only for problems in BPP, one can
always transform such proofs to using “public-coins” by having the verifier solve the problem on its own.
This transformation is not black-box, but it is also not interesting, as the motivation for deIPs is to reduce
the verifier’s running time to under what is required for it to solve the problem on its own.

Our main result shows that this reliance on one-way functions is essentially tight. Namely, if one-way
functions (of a certain type) do not exist, then (essentially) every doubly-efficient proof can be efficiently
transformed:

Theorem 1 (Informal Statement of Theorem 5). Suppose that infinitely-often auxiliary-input one-way func-
tions do not exist. Then every language that has a doubly-efficient private-coin interactive proof with “good
enough” soundness has a doubly-efficient public-coin interactive proof with the same number of rounds (up
to a constant).

Remark 1.1. Theorem 1 mentions “good enough” soundness. This is due to the fact that there is a strong
degradation in soundness when applying our technique.1 One could be tempted to amplify the soundness
using parallel or sequential repetition, but in the setting of deIPs, the overhead of repeating the protocol in

1Specifically, in order for the public-coin protocol that we end up with to have constant soundness error, the soundness error
of the original (private-coin) protocol should be O(poly(n, r, `)−r) where n is the input length, and r and ` are the number of
rounds and number of random bits used by the verifier in the original private-coin protocol respectively.

3

terms of the verifier might be problematic (e.g. it might degrade the verifier’s running-time from linear to
quadratic).

Viewing this result through the prism of Impagliazzo’s worlds [Imp95], it (very) roughly says that in
Pessiland (a world where one-way functions do not exist), efficiency-preserving transformation is always
possible. We prove Theorem 1 by showing that for every deIP there exists a specific efficiently computable
function such that if it is efficiently invertible in the sense of one-way functions2, then efficiency-preserving
transformation is possible (see Section 1.1 for a discussion on the notion of invertibility). We remark that a
straightforward implementation of the Goldwasser-Sipser transformation requires exponential running time
from the prover, and even an oracle that inverts any given function (on random inputs) does not seem
sufficient for making their public-coin prover efficient. Indeed, our results require changing the transformation
so that the ability to invert becomes sufficient for constructing a public-coin prover.

Using the technique for proving Theorem 1 (and some additional technical work) we show that in Pessi-
land’s “one-way function”-less landscape, standard constant-round proofs (i.e. ones where the honest prover
is allowed to run in super-polynomial time) can also be transformed to be public-coin with only a polynomial
overhead on the honest prover’s running time:

Theorem 2 (Informal Statement of Theorem 6). Suppose that infinitely-often auxiliary-input one-way func-
tions do not exist. Then every language that has a constant-round private-coin interactive proof has a
constant-round public-coin interactive proof where the honest prover’s running time is polynomially related
to that of the private-coin prover.

Sufficient conditions for efficient transformation. Both the impossibility result of [Vad00] and our
extension to doubly-efficient proofs are proved by demonstrating a specific (arguably contrived) protocol that
is hard to transform. It is very natural, then, to ask: considering interactive proofs on a case-by-case basis,
for which protocols (or families of protocols) is efficiency-preserving transformation possible? In other words
we wish to identify sufficient conditions that allow for efficiency-preserving transformation of private-coin
proofs to public-coin ones.

In particular, Theorem 1 implies one such condition: Every deIP has an efficiently computable function
such that if this function is efficiently invertible in the sense of one-way functions, then efficient transformation
for this proof system is possible.

We identify an additional, rather natural, sufficient condition for efficient transformation. We show that
if it is possible to efficiently count the number of coins that are consistent with transcripts of the protocol,
then it is also possible to efficiently emulate the protocol using public-coins. Unlike in Theorems 1 and 2,
this result does not preserve the number of rounds, but it applies to general interactive proofs (even when
the protocol has an inefficient honest prover and a polynomial number of rounds).

Theorem 3 (Informal Statement of Theorem 7). Let L be a language and suppose that L has an r-round
private-coin interactive proof with communication complexity m, and suppose that for every incomplete tran-
script it is possible to efficiently approximate the number of verifier random coins that are consistent with
the transcript. Then L has a 2rm-round public-coin interactive proof with an efficient prover.

A string of random coins ρ is consistent with an incomplete transcript of an execution of a protocol if for
every verifier message α in the transcript, the verifier outputs α when given the transcript prefix leading up
to α and using ρ as its random coins. We prove this theorem using a “piecemeal” emulation protocol in which
the prover and the verifier together generate a string that is distributed according to the distribution of a
random transcript in the private-coin protocol. The soundness error of the resulting protocol is a function
of how good the approximation algorithm is. In particular, if one can exactly count the number of verifier
random coins that are consistent with a transcript efficiently, then soundness is perfectly preserved.

Theorem 3 gives us a condition for efficiently transforming proofs from private-coin to public-coin that
is incomparable to the condition implied by Theorems 1 and 2. The condition implied by from Theorems 1
and 2 is efficient distributional inversion for some (efficiently computable) function that depends on the

2The requirement that a specific function is distributionally invertible [IL89] also suffices.

4

protocol, whereas Theorem 3 uses efficient approximation of the number of verifier coins consistent with a
transcript. We demonstrate a natural protocol for which the efficient counting condition of Theorem 3 is
satisfied, whereas we don’t know how to efficiently invert the function implied by Theorems 1 and 2.

An application. Rothblum, Vandhan and Wigderson [RVW13] show a private-coin proof of proximity
for distinguishing between a graph that is bipartite and graphs that are both far from bipartite and well-
mixing. Roughly speaking, an interactive proof of proximity (IPP) is an interactive proof where the verifier
has sub-linear query access to the input. The problem of distinguishing between a bipartite graph and a
well-mixing graph that is far from bipartite has also been studied extensively in the past in the context of
property testing [GR99, GR02]. By applying Theorem 3 to the private-coin protocol of [RVW13] we show a
new doubly-efficient public-coin proof system for this problem. We describe this below in more detail.

Theorem 4 (Informal Statement of Theorem 9). For every ε > 0, there exists a public-coin interactive
proof of ε-proximity with an efficient prover for the problem of distinguishing between bipartite graphs and
graphs that are ε-far from bipartite and are well-mixing.

We remark that no such proof was previously known (except for ε close to 1).
The main property of the RVW bipartiteness protocol that we use, is the fact that it that the (private coin)

verifier uses only a logarithmic number of coins (it has logarithmic randomness complexity), and this suffices
for soundness error 1− Ω(ε). Thus, polynomial time suffices for enumerating all possible choices of verifier
randomness and for exactly counting how many choices are consistent. The transformation of Theorem 3
is soundness preserving when efficient exact counting is possible, and so gives an efficient protocol with
soundness error 1 − Ω(ε), which can be amplified to obtain constant soundness. See Section 6 for further
discussion and details.

We note that a similar argument applies to every proof system where the verifier’s randomness complexity
is O(log n). We show that every such private-coin IP (resp. IPP) can be transformed to a public-coin IP
(resp. IPP) while the honest prover’s running time remains polynomial.

We further note that the Goldwasser-Sipser (GS) approach to transforming private-coin proofs into public-
coin ones, and the result behind Theorem 1, can also preserve the prover’s efficiency when the verifier’s
randomness complexity is O(log n). However, the GS approach degrades soundness significantly, and hence
usually requires parallel repetition before applying the transformation. Here, since the starting (private
coin) protocol has large soundness error, repeating it to reduce the soundness error to the point where the
GS approach can be applied requires super-logarithmic randomness complexity, which means that the GS
transformation will not preserve the prover’s efficiency. In comparison, in this setting Theorem 3 preserves
soundness (see above), and so it can be used even when the soundness error of the private-coin protocol is
large.

Related Work. A number of works have tackled the question of private versus public coins, including
Haitner, Mahmoody and Xiao [HMX10] who showed that if the prover is given an NP oracle it is possible
to transform private-coin protocols into public-coin ones where both the prover and the verifier run in
polynomial time. Holenstein and Künzler [HK13] show a public-coin protocol in which the prover helps
the verifier sample from a distribution, where in addition to the sampled element the verifier ends up with
an approximation of the probability that the element is sampled from the distribution. They then show
this can be used for public-coin emulation. Goldreich and Leshkowitz [GL16] improved upon the soundness
requirement of Goldwasser and Sipser. In all of the results described the prover is inefficient and the running
time of the verifier incurs a polynomial overhead. We additionally note that the celebrated IP = PSPACE
Theorem [LFKN92, Sha92], implies a non-black-box transformation of private-coin protocols to public-coin
ones. The protocol used to show that PSPACE ⊆ IP is public-coin, and so one can use this result
to transform private-coin protocols into public-coin ones as follows: Given an interactive proof, use the
transformation for IP ⊆ PSPACE to convert it into a PSPACE problem. Then use the reduction and
protocol showing that PSPACE ⊆ IP to construct a public-coin proof. While this transformation is not
black-box, it blows up the complexity of the honest prover and the number of rounds of the protocol.

5

Organization. This paper is organized into 6 sections. Sections 1 and 2 introduce the background and
main ideas of the paper and present relevant preliminaries as well as some useful lemmas. Section 3 lays out
the protocols and algorithms we use in our prover-efficient round-preserving emulation from distributional
inversion. In Section 4 we take the tools developed in the previous section and show how they apply
to public-coin emulation of interactive proofs. In Section 5 we use a “piecemeal” emulation protocol to
show that prover-efficient public-coin emulation of interactive proofs can also be done given appropriate
approximate counting. In Section 6 we show, as an application of our piecemeal emulation protocol, a
public-coin interactive proof of proximity for distinguishing between a bipartite graph and a well-mixing
expander that is far from bipartite. In Appendix A we prove that if one-way functions exist there are no
black-box prover-efficient transformations for doubly-efficient interactive proofs.

1.1 Overview of the Round-Efficient Emulation

Goldwasser and Sipser [GS86] showed not only that it is possible to transform private-coin proofs into
public-coin ones, but also that this can be done without significantly increasing the number of rounds in
the protocol. We show that, given a distributional inverter for certain functions, the prover can be made
efficient. A distributional inverter for a function f is an efficient randomized algorithm that upon receiving
an input y drawn from the distribution f(Un) returns a random element from the set f−1(y).

Remark 1.2. Proving Theorems 1 and 2 would be significantly simpler if we were to consider a stronger form
of inversion, where the input y to the inverter can be any element in the support of f . That is, y need not be
given as a sample from the distribution f(Un). We consider the weaker and more complicated variant, since
it allows us to establish Theorem 1, and through it the tight relationship between one-way functions and the
(non-)existence of private-coin to public-coin transformations that preserve the prover’s running time.

We give three toy cases for protocols of increasing complexity, and then discuss the general case. For
each case we show how Goldwasser and Sipser’s original protocol can be applied in order to transform it
to public-coin, and then discuss how we use distributional inversion in order to make the prover efficient.
Eventually, this requires changes to the Goldwasser-Sipser transformation. In all three toy cases consider a
language L and a one round private-coin protocol denoted 〈P, V 〉 with perfect completeness and soundness
error s. Since it has one round, the protocol is of the following form: On input x the verifier begins with
choosing a random ρ ← {0, 1}`, then sends α = V (x, ρ) where α ∈ {0, 1}m. After receiving β from the
prover, the verifier accepts if V (x, α, β; ρ) = 1. Henceforth throughout this overview we omit the shared
input x from notation of the verifier and prover functions.

1.1.1 Case 1: Equally Likely Messages With Known Number of Messages

The Protocol: In addition to the protocol being one-round and having perfect completeness, we assume
the following properties:

• Equally Likely Messages: If x is in the language L, then every pair of messages α1, α2 ∈ {0, 1}m that
have non-zero probability of being sent by the original verifier V are equally likely: Prρ←U` [V (ρ) = α1] =
Prρ←U` [V (ρ) = α2].

• Known Number of Messages For Completeness: If x ∈ L then there is a known efficiently computable
function N : {0, 1}∗ → N such that the total number of messages sent by the verifier with non-zero
probability is N(x) (i.e. N(x) =

∣∣{α|∃ρ ∈ {0, 1}` s.t. V (x; ρ) = α
}∣∣).

• Few Messages For Soundness: If x /∈ L then there are significantly fewer than N(x) verifier messages.

As a running example for this case one is encouraged to think of the classical private-coin protocol for
the graph non-isomorphism problem [GMW86]. In this language the input is comprised of two n-vertex
graphs G0 and G1 which are claimed to be non-isomorphic. The protocol is as follows: the verifier chooses
a random bit b, and random permutation π. It sends G̃ = π(Gb) to the prover who must return some b′.
The verifier accepts if b′ = b. One can easily verify that this protocol has completeness 1 and soundness

6

error 1
2 . Moreover, assuming for simplicity that the graphs have no automorphisms, every verifier message

is equally likely and if the graphs are non-isomorphic the number of possible verifier messages is N = 2n!.
If the graphs are isomorphic then there are only n! different messages.

The Goldwasser-Sipser Transformation: The transformation of 〈P, V 〉 into a public-coin protocol
hinges on the observation that, in this toy case, in order distinguish whether x is in the language, the prover
need only show that the number of possible verifier messages is at least N (since by assumption if x /∈ L there
are significantly fewer such messages). Thus a (public-coin) “set lower-bound” protocol is used, showing that
the set of all valid verifier messages (ones that are sent by V with non-zero probability over the choice of its
random coins) is large . Letting Hm,k be a family of pairwise independent hash functions from {0, 1}m to
{0, 1}k, Uk be the uniform distribution over k bits and k = k(N) be a value to be discussed later, the final
protocol is as follows:

1. The parties execute a “set lower-bound” protocol proving that the number of verifier messages is at
least N :

(a) The verifier chooses a random h← Hm,k and y ← Uk
3

(b) The prover returns α ∈ {0, 1}m.

(c) The verifier tests that h(α) = y and otherwise rejects.

2. The prover sends ρ ∈ {0, 1}`.4

3. The verifier accepts if V (ρ) = α.

In the case of completeness, where there are N verifier messages, if k is “small enough” (i.e. the hash
function is very compressing) it is likely that there exists some valid message α that hashes to y. Conversely,
in the case of soundness, where there are significantly fewer than N legal verifier messages, if k is “large
enough” then it is unlikely that there will exist a valid message that hashes to y. Thus, completeness and
soundness of the protocol are governed by setting k to a reasonable value, which depends on the gap between
N and and the magnitude of the prover’s lie in the case of a false claim. Note that in this protocol the prover
did not even need to send its message β - it was sufficient to use the fact that there is a large gap in the
number of verifier messages between the cases of completeness and soundness. The sub-protocol executed
in Step 1 is known as the “set lower-bound” protocol, and can be generalized to show a lower-bound on
the size of any set S for which the verifier can efficiently test membership. Specifically, the protocol begins
with a claim that N ≤ |S| and ends with both parties holding an element x for which the verifier needs
to verify that it belongs to S. If N ≤ |S|, then x ∈ S with high probability, and if |S| � N , x /∈ S with
high probability regardless of the prover strategy. A protocol inspired by the set lower-bound protocol is
presented and analysed in Section 3.2 under the name “prover-efficient sampling protocol”. Going back to
the example of graph non-isomorphism, upon receiving h, y from the verifier, the prover would send some
graph G̃, a bit b and a permutation π. The verifier would then accept if h(G̃) = y and G̃ = π(Gb).

Prover Efficiency: The prover strategy in the above protocol is inefficient. It receives some h, y and
is required to find a legal message α that hashes to y and some choice of randomness ρ that leads to
α. However, the prover can be made efficient by giving it oracle access to an inverter for the function
f(h, ρ) = h, h(V (ρ)). An inverter for a function f : {0, 1}a → {0, 1}b is a randomized algorithm that on
input y drawn from the distribution f(Ua) returns some element x in the set of preimages of y under f (that
is, x ∈ f−1(y)). We stress that the input to the inverter must come from the correct distribution, which in
our case is f(Hm,k, U`) ≡ (Hm,k,Hm,k(V (U`)). The hash function h is clearly chosen by the verifier from
the correct distribution. The image y is drawn by the verifier from the uniform distribution which, if the

3In the classic transformation it suffices to set y = 0k and is described here thus as it will be required later by our
transformation.

4The final prover message can be merged with the previous one to save a round and is described here as a separate round
for clarity.

7

hash function is compressing enough, will be statistically close to h(V (U`)) by the Leftover Hash Lemma.
Preimages of (h, y) with respect to f are of the form (h, ρ) where h(V (ρ)) = y. The prover can send ρ
and use ρ to calculate α. In all of this the prover only needs to make a single oracle call, and to calculate
α = V (ρ), and is therefore efficient.

1.1.2 Case 2: Equally Likely Messages With Unknown Number of Messages

The Protocol: We make the same assumptions on the protocol as in Case 1, except that the verifier in
the transformation does not know N , the number of verifier messages.

The Goldwasser-Sipser Transformation: The protocol is based on two observations made in the case
of a cheating prover:

• Since the soundness error is s and the verifier uses ` random coins, the number of verifier messages α
for which there exist β and ρ such that V (α, β; ρ) accepts is at most s · 2`.

• For every fixed α and β, the number of coins ρ such that V (ρ) = α and V (α, β; ρ) accepts is also
bounded from above by s · 2`.

If either of the above were not true, it would mean the soundness error is greater than s. Now notice that

since all messages are equally likely, if there are N valid verifier messages, then each message has 2`

N different

coins that are consistent with it. Importantly, if N is small, 2`

N is large. This gives rise to the following
protocol:

1. Prover sends N , a claim on the number of verifier messages.

2. Prover and verifier execute the set lower-bound protocol to show that the number of legal verifier
messages is at least N . The parties end up with some α claimed to be a verifier message.

3. Prover sends some β.

4. The parties execute the set lower-bound protocol to show that the number of coins that are consistent

with α and lead the verifier to accept (α, β) is at least 2`

N . The parties end up with a ρ which is
supposed to in the set of random coins that lead the verifier to α.

5. Verifier accepts if V (ρ) = α and V (α, β; ρ) = 1.

The protocol is complete, since if the prover is honest it is likely to succeed in both the set lower-bound
protocols, meaning it samples both a valid message α and valid coins ρ such that V (ρ) = α and V (α, β; ρ) = 1.
We now turn towards soundness. Let S be the set of verifier messages for which the prover has an accepting
strategy (messages α for which there exist β and ρ such that V (α, β; ρ) accepts). For verifier message α and
prover message β, let Tα,β be the number of random coins ρ such that V (α, β; ρ) accepts. Recall from the
argument above, that |S| ≤ s · 2` and for any α, β, |Tα,β | ≤ s · 2`. Now note that if the verifier ends up with
a verifier message α /∈ S it has a message for which no fixing of β and ρ will make the verifier accept. Thus
the prover must try to sample in S. Similarly, after fixing α and β if the verifier has ρ /∈ Tα,β it will reject,
and so the cheating prover must try to cause the verifier to end up with an element in Tα,β . To see why the
protocol is sound consider the prover’s choice of N . If |S| ≤ s · 2` � N , then due to the set lower-bound
protocol the prover is unlikely to make the verifier sample from S and so the verifier will reject with high

probability. If N is small, then 2`

N is large. Fixing α and β, if |Tα,β | ≤ s ·2` � 2`

N , then the verifier is unlikely

to end up with such coins, meaning it rejects. Note in the above analysis we have that s � min{N, 2`

N }.
Thus if s is small enough to begin with, the prover will be forced to lie and be caught with high probability.

8

Prover Efficiency: Inspecting the above protocol there are three things that the honest prover needs to
do: Count N , the number of verifier messages, execute the prover’s side of the set lower-bound protocol
to show that there are at least N verifier messages, and execute the prover’s side of the set lower-bound

protocol to prover that the number of coins that are consistent with α is at least 2`

N . We explain how to
compute each of these efficiently in reverse order:

1. Set Lower-Bound Protocol for Number of Consistent Coins: In this set lower-bound protocol the parties
have already computed a verifier message α. The prover receives some hash function h and an image
y from the verifier, and must return some ρ such that V (ρ) = α and h(ρ) = y. Naively it seems that
this can be solved simply if the prover has access to an inverter for the function f(h, ρ) = h, V (ρ), h(ρ)
since preimages of (h, α, y) are exactly of the form h′, ρ such that h′, V (ρ), h′(ρ) = h, α, y. The problem
with this idea is that to use this inverter it must be that the message α be drawn from the distribution
V (U`). Thus to use this idea it is imperative that α come from the correct distribution.

2. Set Lower-Bound Protocol for Number of Messages: In order to complete this stage, the prover must
find some valid verifier message α that hashes to y, and this (as we did in Case(1))can be done using
an inverter for the function f(h, ρ) = h, h(V (ρ)). Unfortunately as mentioned in point (1), we need it
α to be chosen from the real message distribution V (U`). Unfortunately using an inverter as described,
the message α might be drawn from a distribution which is far from the real one.5 This issue is
fixed if we move from using a regular inversion oracle to a distributional inversion oracle. Roughly, a
distributional inverter for a function f : {0, 1}m → {0, 1}t is a randomized algorithm A such if y is
drawn from f(Um), the distribution A(y) is statistically close to a random pre-image of y under f .

3. Computing N : We show in Section 3.5 that given an inversion oracle for the function f(h, ρ) =
h, h(V (ρ)) it is possible to efficiently approximate N , the number of verifier messages. The way this is
done is inspired by the techniques of [Sto83] for approximate counting using an NP oracle. The prover
chooses h ← Hm,k and y ← {0, 1}k for increasingly larger values of k, and calls the inversion oracle
on input (h, y). When k is small relative to the number of verifier messages, there will likely exist a
message α that hashes to y, and thus the inverter will return a set of coins ρ such that V (ρ) = α. Once
k is set to a relatively large value this is unlikely and the inverter will fail. Thus, given the smallest
size of k for which the inverter fails the prover can estimate the size of the set.

1.1.3 Case 3: A Two-Cluster Protocol

The Protocol: As in Case 2, we do not assume that the parties know initially the number of verifier
messages. Moreover we replace the assumption that all messages are of equal likelihood with the following
one:

• Two Clusters: The verifier messages that have non-zero probability can be partitioned into two “clus-
ters” C0 and C1, where every message in Cb has equal likelihood pb. Furthermore, each message in C1

is significantly more likely than messages in C0: p0 � p1. Both parties know the values p0 and p1 but
not |C0| and |C1|.

The Goldwasser-Sipser Transformation: Rather than giving a claim about the number of possible
messages, the prover will claim only that the heaviest of the flat clusters is large (the weight of cluster Cb is
pb · |Cb|).

1. Prover calculates |C0| and |C1| and chooses a bit b such that pb · |Cb| ≥ p1−b · |C1−b|. It sends b and
N = |Cb|.

2. Verifier tests that pb ·N ≥ 1
2 and otherwise rejects.

5Indeed, suppose that the inverter always returns the lexicographically smallest ρ such that h(V (ρ)) = y. This will cause a
sampling bias towards those messages that have coins that are lexicographically smaller.

9

3. Prover and verifier execute the set lower-bound protocol to show that the size of cluster Cb is at least
N . The parties end up with some α claimed to be in cluster b.

4. Prover sends some β.

5. The parties execute the set lower-bound protocol to show that the number of coins that are consistent
with α and lead the verifier to accept (α, β) is at least pb · 2`. The parties end up with a ρ which is
supposed to be a set of random accepting coins that lead the verifier to α.

6. Verifier accepts V (ρ) = α and V (α, β; ρ) = 1.

Completeness can be verified by noting that since there are only two clusters, the heaviest cluster must hold
at least half of the weight of the distribution and so the verifier’s test that pb ·N ≥ 1

2 will pass. Due to the
fact that every message α in Cb has likelihood pb, there are exactly pb · 2` different coins that would lead the
verifier to output α and to accept. For soundness first fix b. Once b is fixed, the smallest the prover can set
N to be is 1

2pb
because otherwise the verifier will reject in Step 2. If pb is very small, this value is large. As

in the analysis of Case 2, since the total number of verifier messages for which the prover as an accepting
strategy is small, if the claim N is large, it will likely not manage to make the verifier accept. If pb is large,
then the value of N can be set to be small, but in this case the value pb ·2` in Step 5 is large. Noting that for
any α and β the number of coins ρ for which V (α, β; ρ) accepts is at most s · 2`, which we think of as very
small, the prover is unlikely to be able to cause the verifier to end up with coins that will make it accept.

Prover Efficiency: In the classic transformation as described above the prover must do three things:
Calculate the size of each cluster, and take part in both executions of the set lower-bound protocol.

1. Counting |C0| and |C1|: The approximate counting technique as used in Case 2 to approximate N can
be used to approximate the number of coins which would lead to a message. Notice that for α ∈ Cb
there are exactly pb ·2` coins that lead to α. Thus, by randomly choosing many messages and counting
how many are in each cluster, the prover can build a “histogram” of the weights of each cluster - a list
of each cluster and its respective weight. This is formally addressed in Section 3.3 where it is shown
that using both a sampling and a membership oracle one can build such a histogram. An issue with
this approach is that the approximation procedure returns an approximate value for the number of
coins that lead to a message. That is, for a message in Cb it may claim that the number of coins that
lead to the message is anywhere in the range (1± ε) · pb · 2` for some (relatively small) ε. Since p0 and
p1 are far from each other, the ranges (1 ± ε) · p0 · 2` and (1 ± ε) · p1 · 2` do not intersect. Thus it is
still easy to recognize to which cluster a message belong.

2. Set Lower-Bound Protocol for Number of Messages in Cb: In this part of the protocol the prover receives
a hash function h and image y and needs to return a message α such that α ∈ Cb and h(α) = y. The
prover cannot simply use an inverter for a function that samples inside of Cb since there may not
be an efficient function for sampling in Cb. We instead show that given a distributional inverter for
f(h, ρ) = h, h(V (ρ)) it is possible to find preimages that are in Cb. This is true because the cluster
has significant weight with respect to the distribution of messages, and so for a randomly chosen hash
function and random image y the weight of elements that belong to the cluster and are preimages to
y is unlikely to be very small relative to all other preimages of y.

3. Set Lower-Bound Protocol for Number of Consistent Coins: The prover’s strategy can be made efficient
in this protocol in exactly the same way as in the same set lower-bound in the previous case: by inverting
f(h, ρ) = h, V (ρ), h(ρ). Doing this has the same issue dealt with in Case 2 - the distribution from which
the message α is drawn must be close to uniform. In the classical transformation the value of α will be
far from random because the protocol always works with the heaviest cluster. Suppose, for example,
that p0 · |C0| = p1 · |C1|+ ε for a very small ε. Then C0 will always be chosen, even though in the the
real message distribution the likelihood of being in each cluster is almost identical. In order to fix this
skew in distribution we make the choice of b “smoother”. Rather than setting b as the index of the

10

heaviest cluster, we let b be random and sampled from the Bernoulli distribution where 0 is drawn with

probability p0·|C0|
p0·|C0|+p1·|C1| . This presents a minor issue: now it could be that pb · N < 1

2 . To fix this,

we limit the choice of clusters only to ones that have some noticeable probability of appearing, and
so the verifier can make sure that the claimed probability is not smaller than this threshold. Similar
smoothing techniques were used in [HK13] and [GL16] in different contexts.

1.1.4 Towards the General Case

In the general case, the verifier message distribution cannot be split into a small number of flat clusters
and the protocol may have multiple rounds. To keep this overview simple we only consider doubly-efficient
proofs. Making the transformation work for constant-round proofs with an inefficient prover requires some
slight additional technical work.

General Message Distribution. General Message Distribution: The issue for working with a general
distribution for the verifier messages is solved in the classical transformation by defining clusters of messages
as follows: cluster i is the set of all the messages with weight in the range 2−i and 2−i+1. In our case, we have
to work harder. Firstly, due to the way we use distributional inverters, we will need that for every cluster,
the distribution of messages when restricted only to messages in the cluster be statistically close to uniform.
This can be solved by splitting the distribution into more clusters - cluster i will now be all messages in the
range (1 + 1/poly(n))−i and (1 + 1/ poly(n))−i+1. Note that the probabilities of messages in neighbouring
clusters are similar. Therefore, the observation made in analysis of Case 3 that we can distinguish to which
cluster a message belongs even though the approximation procedure does not return exact values for the
number of coins that lead to a message, is false. To solve this issue, we work with “approximate clusters”
- cluster i consists of all the verifier messages for which the approximation procedure claims the weight is
between (1 + 1/ poly(n))−i and (1 + 1/poly(n))−i+1.

Imperfect Completeness. In order to accommodate protocols with completeness c, recall that the clus-
ters are defined as sets of accepting coins with some weight. In the classical transformation in Case 3 the
final prover’s claim is that there are pb · 2` coins which would lead the verifier to accept. Since now pb is the
probability that these coins are sampled conditioned on sampling accepting coins, the end claim is changed
to pc · c · 2`. In our case, we will not be able to use inverters to find accepting coins, since we only know how
to invert efficient functions, and we do not have an efficient function that returns a random accepting coin.
We therefore redefine the clusters to refer to gerenal coins, not just accepting ones. This means that in our
protocol, the verifier accepts with almost the same probability as in the original private-coin protocol.

Multiple Rounds. The issue of multiple rounds is solved in the original transformation by iteratively
emulating each round of the protocol. In the following we ignore the issue of distributions over messages which
are not uniform. This is treated as explained under “General Message Distribution”. In the Goldwasser-
Sipser protocol round i starts with the prefix of a transcript γi−1 = (α1, β1, . . . , αi−1, βi−1) and Ni−1, a
claimed lower bound on the number of coins that are consistent with γi−1. The prover gives a claim Ni that
there are Ni coins consistent with each message possible verifier message conditioned on the transcript prefix
γi−1. The parties next run the set lower-bound protocol. That is, the verifier sends a randomly sampled hash
function h and random y. The honest prover sends back αi such that h(αi) = y and that αi is consistent
with γi−1 (i.e. there exist ρ such that α1 = V (α1, β1, . . . , αi−1, βi−1; ρ)). The prover then sends βi. This
process is run iteratively until the parties have a full transcript γ along with a claimed lower-bound on the
number of coins consistent with this full transcript, at which point the parties execute a final set lower-bound
protocol to sample a set of coins ρ.

To follow Goldwasser and Sipser’s formula with an efficient prover, we would like an efficient method
such that given a random hash function h, and y find this method outputs a consistent αi. In the one-round
case as explained previously, we noted that f(h, ρ) = h, h(V (ρ)) was an efficiently computable function in
order to sample α1 = V (ρ). How can we use the same idea but correlate the output to a transcript? To

11

more easily illustrate, in the following we consider a 2-round protocol so that our goal is to sample α2 after
the transcript (α1, β1) has already been set.

We show that if the proof in question is doubly-efficient, it suffices to invert the function f that on inputs
h and ρ: Computes α1 = V (ρ), β1 = P (α1), α2 = V (α1, β1; ρ) and outputs (α1, β1, h(α2)). Firstly note
that since the prover is efficient the function f can be computed in polynomial time. Next, notice that
the distribution f(H, U`) is identical to that of taking α1, β1 from a random execution of the protocol and
additionally outputting a random hash of the next verifier message. Consider an inverter for f . Given a
random pair α1, β1 and a random h, y it returns randomness ρ such that α1 = V (ρ). Given ρ it is easy to
compute α2 = V (α1, β1; ρ). Since ρ is consistent with α1, β1, we have that α2 is also consistent with α1, β1.
Moreover, α2 will hash to y. This is exactly what we needed.

1.2 Overview of the Piecemeal Emulation Protocol

In this section we overview the techniques used in Section 5 to prove Theorem 7. We prove the theorem
by constructing a protocol which we call the “piecemeal” emulation protocol, which is inspired by ideas
described in [Sud07] that are accredited to Joe Kilian.

The protocol hinges on a sampling protocol where the goal of the honest prover is to help the verifier
generate a transcript that is distributed similarly to a random transcript of the protocol the parties are trying
to emulate. Let L be a language and 〈P, V 〉 be an r-round interactive proof for L with ` bits of randomness
and message length m. Since there are r rounds, there are 2r messages sent in the protocol. Each message
is of length m, and so the length of a complete transcript of the protocol is 2rm bits. We assume without
loss of generality that the protocol ends with the verifier sending its entire randomness to the prover. To
reiterate, our goal is to generate a random transcript of an execution of the proof. We do this bit-by-bit
in an iterative manner as follows: Round i begins with a partial transcript prefix γi−1 and a claimed lower
bound Ni−1 on the number of random coins which are consistent with this partial transcript, where γ0 = ∅
is the empty transcript with the claim that all N0 = 2` coins are consistent with the empty transcript. By
consistent with a partial transcript we mean that had the private-coin verifier received these coins at the
beginning of the protocol execution, then this partial transcript would have been generated, with respect
to the prover messages. The prover sends two values N0

i and N1
i where N0

i is the number of coins that
are consistent with extending the transcript with the bit 0, meaning coins consistent with the transcript
(γi−1, 0), and similarly N1

i is the number of coins consistent with (γi−1, 1). If the prover can exactly count
each of these values, then it should be that Ni−1 = N0

i +N1
i . The verifier tests that indeed Ni−1 = N0

i +N1
i

and chooses a bit b with probability
Nbi
Ni−1

. Both parties set the new transcript to be γi = (γi−1, b) and the

new claim on the number of consistent coins to be Ni = N b
i . This continues on until i = 2rm when a full

transcript has been generated, where since we assumed that the verifier ends by outputting its randomness,
there can only be one random coin that is consistent with the transcript. Therefore, after the last iteration
the verifier tests that the final N2rm = 1, and that all verifier messages in the transcript are what V would
have sent in an actual execution using randomness from the end of the transcript. Finally, if all these tests
pass the verifier and accepts if V accepts given the transcript γ2rm.

For completeness, it can be shown that the protocol described above generates a transcript with the
exact same distribution as the original one, since in every stage the next bit of the transcript is chosen
with probability equal to the probability that it would appear in a real random transcript conditioned on
the part of the transcript that has already been fixed. We now would like to to show that the protocol is
sound, i.e. that for x /∈ L a malicious prover cannot cause the verifier to accept in the new protocol with
probability greater than in the original protocol. To show this we look the ratio between the number of
claimed consistent coins, N and the number of consistent coins that would make the verifier accept in a
given round. For a given partial transcript γ we denote by Acc(γ) the set of coins ρ such that there exists a
legal full transcript of the real execution γ′ which begins with γ and in which the verifier accepts.

We begin our inspection of soundness with the final round and work backwards from there. Let i = 2mr,
and let Ni−1 and γi−1 be the claim and the partial transcript at the beginning of the iteration. Since the
transcript ends with the verifier sending its entire randomness, the number of accepting coins consistent with

12

a transcript with only one bit missing can be 0, 1 or 2. It can be shown that in every case, the probability

that the verifier ends up accepting is at most |Acc(γi−1)|
Ni−1

. For conciseness we focus in this overview on what

happens if |Acc(γi−1)| = 1. In this case only one of the two options for the final bit will make the verifier
accept. Suppose this bit is 0, then the probability that the verifier accepts reduces to the probability that it

chooses b = 0, which is
N0
i

Ni−1
. Now, since in the end of the protocol the verifier tests that Ni = N2rm = 1 in

order for the prover to cause the verifier to accept bit 0 it must set N0
i = 1. Therefore, the probability that

the verifier ends up accepting the transcript is at most 1
Ni−1

= |Acc(γi−1)|
Ni−1

.

We now look at other rounds of the protocol. Let γi−1 and Ni−1 be the inputs to iteration i. Suppose, as
our induction hypothesis, that upon entering round i+1 with γi and Ni the probability that the verifier ends

up accepting is |Acc(γi)|Ni
. Let N0

i and N1
i be the values sent by the prover. By the induction hypothesis, if the

verifier chooses bit b, which happens with probability
Nbi
Ni−1

, then it will end up accepting with probability
|Acc(γi−1,b)|

Nbi
. Therefore the probability that the verifier ends up accepting is:

N0
i

Ni−1
· |Acc(γi−1, 0)|

N0
i

+
N1
i

Ni−1
· |Acc(γi−1, 1)|

N1
i

=
|Acc(γi−1, 0)|+ |Acc(γi−1, 1)|

Ni−1

Noting that |Acc(γi−1, 0)| + |Acc(γi−1, 1)| = |Acc(γi−1)| we have that the verifier eventually accepts with

probability |Acc(γi−1)|
Ni−1

. This inductive argument extends all the way up to γ0 and N0 in which case |Acc(γ0)|
N0

is equal to the soundness error of the original protocol.
The actual protocol differs slightly from the one described above. In the real setting, the honest prover

cannot exactly calculate N0
i and N1

i , but rather only ε-approximate them. This will mean that the transcript
that is sampled is only close to uniform. A further implication of this change is that since the honest prover
can err, the verifier now must relax its test that N0

i + N1
i = Ni−1. This relaxation turns out to be to test

that Ni−1

N0
i +N1

i
≤ 1 + 3ε. This in turn gives the cheating prover some additional leeway, specifically in round

i the probability that the verifier ends up accepting changes from |Acc(γi−1)|
Ni−1

to (1 + 3ε)
2rm−i · |Acc(γi−1)|

Ni−1

(recall that 2rm is the number of bits sent in the protocol). If ε is small enough this leeway is insignificant.

2 Preliminaries

2.1 Concentration Bounds

Lemma 2.1 (Markov’s Inequality). Let X be a non-negative random variable and a be a positive real number.
Then:

Pr [X ≥ a] ≤ E [X]

a

Lemma 2.2 (Chernoff Bound). Let p ∈ [0, 1] and X1, . . . , Xn be independent 0-1 random variables such
that Pr [Xi = 1] = p for each i. Then for every ε it holds that:

Pr

[∣∣∣∣∣ 1n
n∑
i=1

Xi − p

∣∣∣∣∣ > ε

]
< 2 · e−2·ε2·n

2.2 Protocols and Interactive Proofs

Definition 2.3 (Interactive Protocol). An Interactive Protocol is a pair 〈P, V 〉 of Interactive Turing Ma-
chines that are both run on a common input x, whose length we denote by n = |x|. The first machine, is
called the prover, and the second machine is called the verifier. For inputs of length n the parties altogether
send m = m (n) messages, the verifier runs in time tP , and the verifier runs in time tV and uses ` = ` (n)
bits of randomness. The number of messages in a protocol is sometimes counted in rounds, rather than
messages, denoted r = m

2 , where each round consists of a verifier message and a prover message.

13

Remark 2.4. We assume without loss of generality that all protocols begin with a verifier message.

Definition 2.5 (Public-Coin Interactive Protocol). An Interactive Protocol is public-coin if it can be split
into two phases. In the first phase (the communication phase) each message sent from the verifier to the
prover is a uniformly distributed random binary string. In the second phase (the verification phase) there is
no further communication between the verifier and the prover, and the verifier computes some function of
the transcript generated in the first phase.

In this paper, the prover and verifier will be denoted P and V respectively when talking about general
interactive protocols. When wishing to stress that the protocol is public-coin, we denote the prover by M
and the verifier by A.

The notion of an interactive proof for a language L is due to Goldwasser, Micali and Rackoff [GMR85].

Definition 2.6 (Interactive Proof [GMR85]). An interactive protocol is an Interactive Proof (IP) for L if:

• Completeness: For every x ∈ L, if V interacts with P on common input x, then V accepts with
probability c = c (|x|).

• Soundness: For every x /∈ L, and every computationally unbounded cheating prover strategy P ∗, the
verifier V accepts when interacting with P ∗ with probability at most s = s (|x|).

Definition 2.7 (Arthur-Merlin Protocol [Bab85]). An interactive proof for a language L is an Arthur-Merlin
Protocol (AM) if it is public-coin.

Definition 2.8 (Doubly-Efficient Interactive Proof [GKR08]). A doubly-efficient interactive proof (deIP)
for a language L is an interactive proof where for joint input x ∈ {0, 1}n both the verifier and the prover run
in time polynomial in n. Doubly-Efficient IPs can be private-coin or public-coin.

Definition 2.9 (Set of Consistent Coins). Let 〈P, V 〉 be an interactive proof where the verifier uses ` = `(n)
coins. For x ∈ {0, 1}n and partial transcript γ denote the set of coins consistent with x and γ by Coinsx (γ),
that is if γ = α1, β1, . . . , αi, βi then

Coinsx (γ) =
{
ρ ∈ {0, 1}` | V (x; ρ) = α1 ∧ ∀j ∈ {2, . . . , i} : V (x, α1, β1, . . . , αj−1, βj−1; ρ) = αj

}
where Coinsx (∅) = {0, 1}`. We sometimes abuse notation and let Coinsx (γ) also denote the uniform
distribution over the set of coins consistent with x and γ.

Definition 2.10 (Set of Accepting Coins). Let 〈P, V 〉 be an interactive proof. For x ∈ {0, 1}n and partial
transcript γ, the set of accepting coins consistent with x and γ, denoted by Accx(γ), are the coins that are
consistent with x and γ, which lead to an accepting transcript. Formally:

Accx (γ) = {ρ ∈ Coinsx (γ) | ∃γ′ : ρ ∈ Coinsx(γ, γ′) and V (x, (γ, γ′); ρ) = 1}

Definition 2.11 (Message Distribution). Let 〈P, V 〉 be an interactive proof, x ∈ {0, 1}n be a global input and
γ be a partial transcript ending in a prover message. Then the message distribution of 〈P, V 〉 with respect
to x and γ, denoted Msgx(γ) is defined by the following random process:

• Sample ρ uniformly from Coinsx(γ)

• Output the next verifier message consistent with ρ: Vx(γ; ρ).

If γ = (α1, β1, . . . , αi−1, βi−1, αi) ends in a verifier message, then Msgx(γ) is the singleton αi.

14

2.3 Statistical Distance

Definition 2.12 (Statistical Distance). Let P and Q be two distributions over countable set U . The statistical
distance between P and Q is defined as follows:

∆ (P,Q) =
1

2

∑
u∈U
|P (u)−Q (u)|

For δ ∈ [0, 1], if ∆ (P,Q) ≤ δ, we say that P and Q are δ-close, and if P and Q are not δ-close, then they
are δ-far.

We now give a number of useful claims regarding statistical distance

Claim 2.13 (Basic Properties of Statistical Distance). Let P , Q and W be distributions over U , A be a
(randomized) Turing Machine and E be some event. Then:

• Triangle Inequality: ∆ (P,Q) ≤ ∆ (P,W) + ∆ (W,Q)

• Post-Processing: ∆ (A (P) , A (Q)) ≤ ∆ (P,Q)

• Multiple Samples: Let (P1, . . . , Pt) and (Q1, . . . , Qt) be t independent samples from P and Q respec-
tively. Then ∆ ((P1, . . . , Pt) , (Q1, . . . , Qt)) ≤ t ·∆ (P,Q)

• Conditioning on Events: If E and ¬E both have non-zero probability by P and Q, then

∆ (P,Q) ≤ Pr [E] ∆
(
P|E , Q|E

)
+ Pr [¬E] ∆

(
P|¬E , Q|¬E

)
Claim 2.14. Let X be a distribution over universe U and A and B be randomized Turing Machines. Then

∆ (A(X), B(X)) =
∑
u∈U

Pr[X = u]∆ (A(u), B(u))

Proof. Suppose the output of the machines A and B is over universe W . Then:

∆ (A(X), B(X)) =
1

2

∑
w∈W

|Pr[A(X) = w]− Pr[B(X) = w]|

=
1

2

∑
w∈W

∣∣∣∣∣∑
u∈U

Pr[X = u] (Pr[A(u) = w]− Pr[B(u) = w])

∣∣∣∣∣
=
∑
u∈U

Pr[X = u]

(
1

2

∑
w∈W

|Pr[A(u) = w]− Pr[B(u) = w]|

)
=
∑
u∈U

Pr[X = u]∆ (A(u), B(u))

Claim 2.15. Let x1, . . . , xm be positive real numbers such that there exists xi 6= 0, 0 ≤ ε ≤ 1
2 , and w1, . . . , wm

be such that
∀i ∈ [m] (1− ε)xi ≤ wi ≤ (1 + ε)xi

Define the distributions X and W as follows:

Pr [X = i] =
xi∑

j∈[m] xj
Pr [W = i] =

wi∑
j∈[m] wj

then ∆ (X,W) ≤ 2ε.

15

Proof. Let us inspect the statistical distance between X and W :

∆ (X,W) =
1

2

∑
i∈[m]

∣∣∣∣∣ xi∑
j∈[m] xj

− wi∑
j∈[m] wj

∣∣∣∣∣
Looking at a specific i ∈ [m], and recalling that (1− ε)xi ≤ wi ≤ (1 + ε)xi:

xi∑
j∈[m] xj

− (1 + ε)xi∑
j∈[m] (1− ε)xj

≤ xi∑
j∈[m] xj

− wi∑
j∈[m] wj

≤ xi∑
j∈[m] xj

− (1− ε)xi∑
j∈[m] (1 + ε)xj

which gives us:

(1− ε)xi − (1 + ε)xi
(1− ε)

∑
j∈[m] xj

≤ xi∑
j∈[m] xj

− wi∑
j∈[m] wj

≤ (1 + ε)xi − (1− ε)xi
(1 + ε)

∑
j∈[m] xj

which in turn implies:(
2ε

1− ε

)
· −xi∑

j∈[m] xj
≤ xi∑

j∈[m] xj
− wi∑

j∈[m] wj
≤
(

2ε

1 + ε

)
xi∑

j∈[m] xj

and so since 1− ε > 0, for each i ∈ [m]:∣∣∣∣∣ xi∑
j∈[m] xj

− wi∑
j∈[m] wj

∣∣∣∣∣ ≤
(

2ε

1− ε

)
· xi∑

j∈[m] xj

Which finally shows that:

∆ (X,W) ≤ 1

2

∑
i∈[m]

[(
2ε

1− ε

)
· xi∑

j∈[m] xj

]

=
ε

1− ε
≤ 2ε

Claim 2.16. Fix m ∈ N. Let X be a discrete probability distribution over universe [m] and 0 ≤ ε ≤ 1
2m .

Define xi = Pr [X = i] and let w1 . . . wm be such that:

max {0, xi − ε} ≤ wi ≤ xi + ε

and for at least one index i, wi 6= 0. Define the distribution W as follows:

Pr [W = i] =
wi∑

j∈[m] wj

then ∆ (X,W) ≤ 2εm.

Proof. We again inspect the statistical distance

∆ (X,W) =
1

2

∑
i∈[m]

∣∣∣∣∣xi − wi∑
j∈[m] wj

∣∣∣∣∣
Noting that

xi −
xi + ε∑

j∈[m] [xj − ε]
≤ xi −

wi∑
j∈[m] wj

≤ xi −
xi − ε∑

j∈[m] [xj + ε]

16

and that
∑
j∈[m] xj = 1 the result is that

xi −
xi + ε

1− εm
≤ xi −

wi∑
j∈[m] wj

≤ xi −
xi − ε
1 + εm

which in turn implies that

(1− εm)xi − xi − ε
1− εm

≤ xi −
wi∑

j∈[m] wj
≤ (1 + εm)xi − xi + ε

1 + εm

and therefore
− (εmxi + ε)

1− εm
≤ xi −

wi∑
j∈[m] wj

≤ εmxi + ε

1 + εm

and so, since 1− εm > 0 for every i ∈ [m]∣∣∣∣∣xi − wi∑
j∈[m] wj

∣∣∣∣∣ ≤ εmxi + ε

1− εm

and so

∆ (X,W) ≤ 1

2

∑
i∈[m]

[
εmxi + ε

1− εm

]

=
εm
∑
i∈[m] xi + εm

2 (1− εm)

=
εm

1− εm
≤ 2εm

where the final inequality is since εm < 1
2

Claim 2.17. Let A and B be randomized Turing Machines receiving input from universe UI and with output
from universe UO, X and Y be distributions over {0, 1}` such that ∆ (X,Y) ≤ δ1 Q be a distribution over
{0, 1}n such that ∆ (A (Q) , B (Q)) ≤ δ1 and Q′ be a distribution such that for every u ∈ UI , Pr[Q′ = u] ≤
αPr[Q = u]. Let D be an oracle-aided algorithm such that given oracle K and input from distribution X,
makes a single oracle call to K which is distributed according to Q′. Then:

∆
(
DA (X) , DB (Y)

)
≤ δ1 + αδ2

Proof. Let us split D given access to oracle K into two algorithms, D1 and D2 such that D1 outputs a state
s, and a query answer K (q), and D2 receives s and K (q), and outputs whatever D outputs. That is, D1 is
D up to (and including) the oracle query, and D2 is D after receiving the oracle’s reply. By assumption D1

given an input distributed according to X outputs query distributed as Q. Therefore

∆
(
DA

1 (X) , DB
1 (X)

)
≤ ∆ (A (Q′) , B (Q′))

We now show that this expression is upper-bounded by αδ2. By Claim 2.14, we have that for every distribu-
tion W over universe {0, 1}n, ∆ (A(W), B(W)) is equivalent to

∑
w∈{0,1}n Pr[W = w]∆ (A(w), B(w)), and

so:

∆ (A(Q′), B(Q′)) =
∑
q∈UI

Pr[Q′ = q]∆ (A(q), B(q))

≤
∑
q∈UI

αPr[Q = q]∆ (A(q), B(q))

= α∆ (A(Q), B(Q))

≤ αδ2

17

By the post-processing property in Claim 2.13,

∆
(
DB

1 (X) , DB
1 (Y)

)
≤ ∆ (X,Y) ≤ δ1

Which due to the triangle inequality on statistical distance implies that

∆
(
DA

1 (X) , DB
1 (Y)

)
≤ ∆

(
DA

1 (X) , DB
1 (X)

)
+ ∆

(
DB

1 (X) , DB
1 (Y)

)
≤ δ1 + αδ2

We now can use post-processing to claim that applying A2 does not affect the statistical distance of the
output:

∆
(
DA (X) , DB (Y)

)
= ∆

(
D2

(
DA

1 (X)
)
, D2

(
DB

1 (Y)
))

≤ ∆
(
DA

1 (X) , DB
1 (Y)

)
≤ δ1 + αδ2

This gives us the following useful corollary, showing that the statistical distance does not pile up, even
when samples are taken adaptively (but non-adversarially):

Corollary 2.18 (Adaptive Sampling). Let A and B be randomized Turing Machines receiving input from
universe UI and with output from universe UO, X and Y be distributions over {0, 1}` such that ∆ (X,Y) ≤ δ1
Q be a distribution over {0, 1}n such that ∆ (A (Q) , B (Q)) ≤ δ1 and Q′ be a distribution such that for every
u ∈ UI , Pr[Q′ = u] ≤ αPr[Q = u]. Let D be an oracle-aided algorithm such that given oracle K and
input from distribution X, makes at most q calls to K which are all distributed according to Q′ (but may be
correlated). Then:

∆
(
DA (X) , DB (Y)

)
≤ δ1 + qαδ2

Proof. We split D into q parts, D0, . . . , Dq, where Di represents D from after query i − 1 up until before
query number i. That is for any oracle K and distribution W , DK(W) = DK

q (...(DK
2 (DK

1 (W)))). Let

HK
i (W) = DK

q (...(DK
2 (DK

1 (W)))). Then W ≡ HK
0 (W) and HK

q (K) = DK(W). Since in HA
0 (X) and

HB
0 (Y), no queries have been made, ∆

(
HA

0 (X), HB
0 (Y)

)
≤ ∆ (X,Y) ≤ δ1. Fix 0 < i ≤ q and suppose

that ∆
(
HA
i−1(X), HB

i−1(Y)
)
≤ δ1 + (i − 1)αδ2. Then for every oracle K and distribution W , HK

i (W) =
DK
i (HK

i (W)). Thus, by Claim 2.17,

∆
(
HA
i (X), HB

i (X)
)
≤ ∆

(
DA
i (HA

i−1(X)), DB
i (HB

i−1(X))
)

≤ ∆
(
HA
i (X), HB

i (X)
)

+ αδ2

≤ δ1 + iαδ2

Inductively proving the claim.

2.4 Hash Functions and Entropy

Intuitively, a good hash function should spread the elements in its domain as uniformly as possible over the
image. Throughout this paper we will use Hn,m to denote families of hash functions from {0, 1}n to {0, 1}m.
We can quantify this intuition by the following lemmas:

Lemma 2.19 (“Almost-Uniform Cover” of hash functions, [Gol08, Implied by Proof of Lemma D.6]). Let
m ≤ n and k be integers, Hn,m be a family of 2k-wise independent hash functions and S ⊆ {0, 1}n. Then
for every λ > 0 and y ∈ {0, 1}m:

Pr
h←Hn,m

[∣∣S ∩ h−1 (y)
∣∣ /∈ (1− λ, 1 + λ)

|S|
2m

]
≤
(

2k · 2m

λ2 |S|

)k

18

This allows us to show the following useful corollary, which says that even if the image chosen for the hash
is not chosen arbitrarily, but rather chosen as the hash value of some x ∈ S, there is still strong concentration
around a uniform cover over the values y:

Corollary 2.20. Let m ≤ n and k be integers, Hn,m be a family of 2k + 1-wise independent hash functions
and S ⊆ {0, 1}n. Then for every λ ∈ (0, 1) and x ∈ S:

Pr
h←Hn,m

[∣∣S ∩ h−1 (h (x))
∣∣ /∈ 1 + (1− λ, 1 + λ)

|S| − 1

2m

]
≤
(

2k · 2m

λ2 (|S| − 1)

)k
Proof. Due to 2k+1-wise independence, fixing any y and conditioning on h (x) = y, the marginal distribution
over the hash functions remains 2k-wise independent. Using Lemma 2.19 for S′ = S\ {x} and y = h (x):

Pr
h←Hn,m

[
|{ρ ∈ S′|h (ρ) = y}| /∈ (1− λ, 1 + λ)

|S′|
2m

]
≤
(

2k · 2m

λ2 |S′|

)k
Plugging in the fact that if x ∈ S, then |S′| =|S| − 1 and

∣∣S ∩ h−1 (y)
∣∣ =

∣∣S′ ∩ h−1 (y)
∣∣ + 1 we get the

corollary.

Lemma 2.21 ([Vad12, Construction 3.32]). For n ∈ N, 1 ≤ k ≤ n and 1 ≤ m ≤ n there exists a family
Hn,m of k-wise independent hash functions. Moreover, a function h can be sampled from Hn,m and evaluated
on any x ∈ {0, 1}n in time O(kn).

Definition 2.22 (Min-Entropy). Let D be a distribution over {0, 1}`, then the min-entropy of D, denoted
H∞ (D), is equal to − log

(
maxd∈{0,1}` Pr [D = d]

)
. Note that H∞ (D) ≤ log(Supp(D)).

Lemma 2.23 (Leftover Hash Lemma [ILL89]). Let X be a random variable with universe {0, 1}` and min-
entropy at least k, and let H`,t be a family of 2-universal hash functions6 for t ≤ k − 2 log (1/ε), then

∆
(

(H,H (X)) , (H, Ut)
)
≤ ε

2.5 One-Way Functions and Distributional Inversion

Definition 2.24 (One-Way Function). An efficiently computable function f : {0, 1}n → {0, 1}m(n) is a
(strongly) one-way function (OWF) if for every PPTM A

Pr
x←Un

[f (A (1n, f (x))) = f (x)] = negl (n)

Definition 2.25 (Distributionally One-Way Function [IL89]). An efficiently computable function f : {0, 1}n →
{0, 1}m(n) is distributionally one-way if there exists a polynomial p : N→ N such that for any PPTM A, the
distribution defined by (x, f (x)) and the distribution defined by (A (1n, f (x)) , f (x)) have statistical distance
at least 1

p(n) when x← Un.

The following lemma shows the existence of distributionally one-way functions is equivalent to (regular)
one-way functions.

Lemma 2.26 (Impagliazzo and Luby [IL89]). One-way functions exist if and only if distributionally one-way
functions exist.

In this paper we will work with a stronger notion - auxiliary-input one-way functions.

6Any pairwise independent hash function is also 2-universal

19

Definition 2.27 (Auxiliary-Input One-Way Functions [OW93]). An efficiently computable function f :
{0, 1}n × {0, 1}`(n) → {0, 1}m(n) is auxiliary-input one-way (AOWF) if for any PPTM A, there exists an
infinite set ZA such that for any z ∈ ZA:

Pr
x←U`(|z|)

[
f
(
z,A

(
z, 1`(|z|), f (z, x)

))
= f (z, x)

]
= negl (|z|)

And its distributional variant:

Definition 2.28 (Auxiliary-Input Distributionally One-Way Function). An efficiently computable function
f : {0, 1}n × {0, 1}`(n) → {0, 1}m(n) is auxiliary-input distributionally one-way (ADOWF) if there exists
polynomial p : N → N such that for any PPTM A, there exists an infinite set ZA where for any z ∈ ZA
the distribution defined by (z, x, f (z, x)) and the distribution defined by

(
z,A

(
z, 1`(n), f (z, x)

)
, f (z, x)

)
have

statistical distance at least 1
p(n) when x← U`(n).

Claim 2.29. Auxiliary-input distributionally one-way functions exist if and only if auxiliary-input one-way
functions exist.

The proof of Claim 2.29 is essentially identical to the proof of Lemma 2.26.

Definition 2.30 (δ Auxiliary-Input Distributional Inverter). Let f : {0, 1}n × {0, 1}`(n) → {0, 1}m(n) be
an efficiently computable function and let δ : N → [0, 1] be a function. An Auxiliary-Input Distributional
Inverter (δ-ADI) for f is a randomized algorithm ADIf such that there exists a constant N0 such that for
every n > N0 and z ∈ {0, 1}n the distributions

(
z,ADIf

(
z, 1`(n), f (z, x)

)
, f (z, x)

)
and (z, x, f (z, x)) where

x← U`(n) have statistical distance at most δ (n) .

2.6 Pseudo-Random Functions and Permutations

Definition 2.31 (Pseudo-Random Function Family). A family of functions Ψ = {Ψn}n∈N where Ψn are

functions of the form fk : {0, 1}n → {0, 1}`(n) indexed by a key k ∈ {0, 1}τ(n) is pseudo-random if:

• For all x ∈ {0, 1}n and k ∈ {0, 1}τ(n), fk (x) can be efficiently evaluated given x and k.

• For any oracle-aided PPTM D:∣∣∣∣ Pr
k←{0,1}τ(n)

[
Dfk (1n) = 1

]
− Pr
f←Rn

[
Df (1n) = 1

]∣∣∣∣ = negl (n)

where Rn is the set of random functions from {0, 1}n to {0, 1}`(n).

Lemma 2.32 (Goldreich, Goldwasser and Micali [GGM86]). If one-way functions exist, then there are
psudo-random functions.

Definition 2.33 (Strong Pseudo-Random Permutation Family). A family of permutations Ψ = {Ψn}n∈N
where Ψn are permutations of the form fk : {0, 1}n → {0, 1}n indexed by a key k ∈ {0, 1}τ(n) is strongly
pseudo-random if:

• For all x ∈ {0, 1}n and k ∈ {0, 1}τ(n), fk (x) and f−1
k can be efficiently evaluated given x and k.

• For any oracle-aided PPTM D:∣∣∣∣ Pr
k←{0,1}τ(n)

[
Dfk,f

−1
k (1n) = 1

]
− Pr
f←Πn

[
Df,f−1

(1n) = 1
]∣∣∣∣ = negl (n)

where Πn is the set of random permutations over {0, 1}n.

Lemma 2.34 (Luby and Rackoff [LR88]). If one-way functions exist, then there are strong psudo-random
permutations.

20

2.7 Partitions and Histograms

A common theme in this paper is that we wish to take a large set, split it into a number of partitions, and
then restrict ourselves to one partition based on the probability that a random sample from the set lands
inside this partition.

Definition 2.35 (Partitioning). A partitioning of a set S ⊆ {0, 1}n into I subsets, denoted by S, is a set of
I non-empty subsets of S, S1, . . . , SI ⊆ S such that ∪Ii=1Si = S and for each i 6= j, Si and Sj are disjoint.
A partitioning of a distribution D, denoted D, is defined by a partitioning of the set Supp(D) into I parts,
where distribution Di is the distribution of D conditioned on D landing in partition i of Supp(D).

We now define the notion of a histogram of a partitioning, which will allow us to choose a partition to
work on relative to its weight:

Definition 2.36 ((η, σ)-Histogram). Let D be a distribution over S ⊆ {0, 1}`, and S = {Si}Ii=1 be a
partitioning of S into I subsets. Then for 0 ≤ η, σ ≤ 1 an (η, σ)-histogram with regards to S and D is a set
of values (p1, . . . , pI) such that for all i ∈ [I]:

1. |pi − Prρ←D [ρ ∈ Si]| ≤ σ + η. Moreover, if pi 6= 0 then |pi − Prρ←D [ρ ∈ Si]| ≤ η

2. The value pi is either equal to 0 or greater than σ

If η = σ then we say that it is a η-Histogram.

A useful fact implied by the above definition is that for a (η, σ)-Histogram, if pi = 0 then Prρ←D [ρ ∈ Si] ≤
σ + η and alternatively, if pi 6= 0 then Prρ←D [ρ ∈ Si] ≥ σ − η. Additionally, note that for any D and
partitioning S = {Si}i∈[I], a 0-Histogram of S is one such that for any i ∈ [I], pi = Prρ←D [ρ ∈ Si].

2.8 Coupon Collector

In a number of proofs in this paper we are given an oracle for uniformly sampling from a set T ⊆ {0, 1}`
and are required to either sample all elements of T (if it is small) or recognize that T is large. We do this
by taking many samples, and inspecting the number of distinct elements which we have sampled.

Claim 2.37 (Coupon Collector from a Set). Let T ⊆ {0, 1}` be a set. For q ≥ 3, let S be a set of distinct
elements formed by q3 uniform samples in T . Then

Pr [|S| < min {q, |T |}] ≤ 1

q

Proof. This is essentially a “coupon collector” problem - for some set, how many random samples must we
take until we have seen each unique item. Let W ⊆ T be a set of k = min {|T | , q} elements. It is well known
that the expected number of uniformly chosen samples from W required until all distinct elements in W are
seen is less than k log k + k + 1.7 Then letting ξ be the random variable indicating how many samples are
needed until every unique item is sampled, by Markov’s inequality

Pr [|S| < min {q, |T |}] = Pr
[
ξ ≥ q3

]
≤ k log k + k + 1

q3

Since q > 3, k log k+k+1
q3 ≤ 1

q as required.

7More precisely, the expectation is k ·Hk where Hk is the k-th harmonic number

21

3 Algorithms and Protocols Used

3.1 Organization and Oracle Naming Convention

Organization: This section is split into four major subsections. We explain the role each one, while
referring to Section 1.1 for the bigger picture.

1. Section 3.2 contains our variant of the set-lower bound/sampling protocol shown in Section 1.1.1. Our
protocol enables an efficient verifier to sample from a distribution D that has small min-entropy. The
prover is efficient if it has access to an oracle that, given a random hash function h and a random image
y, can sample random elements from D conditioned on h(D) = y. Recall that in Section 1.1.3 we had
the problem that since there does not necessarily exist an efficient function that samples in a cluster,
the prover will have to complete the sampling protocol while having access to an inversion oracle for
the entire verifier, and hope that sampled preimages land inside the required cluster. In Section 3.2.4
we analyze this in a slightly different setting. There is a distribution D and set S in the support of
D, where the verifier wishes to sample from the distribution D conditioned on landing in S. We show
that if S has sufficient weight under D and the ratio between its heaviest and lightest elements is small

(i.e.
maxρ∈S Pr[D=ρ]
minρ∈S Pr[D=ρ] is small), then the prover can be made efficient if it can sample random elements

from D conditioned on h(D) = y.

2. Section 3.3 describes how to, given a partition of the support into subsets, build an approximate
histogram of a distribution. The algorithm is efficient given a sampling oracle for the distribution
and a membership oracle for the subsets. For our prover-efficient emulation these subsets will be the
approximate clusters described in Point 1 of Section 1.1.4.

3. Section 3.4 describes a generic “sampling via subsets” protocol. Given a distribution D and a par-
titioning of its support into subsets, the goal of the honest prover is to help the verifier sample an
element from the distribution, along with its subset index. For private-coin to public-coin emulation
the distribution will be the verifier message distribution and the subsets will be the approximate clus-
ters. Thus, sampling an element with its subset index means sampling a verifier message along with
an approximation of the number of coins that are consistent with the message. This protocol is first
described simply in the case where the prover has inversion oracles for each cluster separately. That
is, the prover is able to, for every subset S, given a hash function h and image y, sample from D
conditioned on landing in S and h(D) = y. This protocol uses as a sub-protocol the sampling protocol
of Section 3.2, which requires the verify know a lower-bound on the min-entropy of the distribution it
is sampling from. To accommodate this the verifier receives a function that, if the prover is honest, for
every subset gives a lower-bound on the min-entropy of D conditioned on landing in the subset. As
noted in Section 1.1.3 in general we cannot hope to invert functions to allow us to sample conditioned
in landing in a cluster. Section 3.4.4 gives an analysis showing that we can still execute a subsets-via-
sampling protocol with efficient prover if: (1) For every subset, D conditioned on landing in the subset
is statistically close to a distribution with small min entropy. (2) In the case of an honest prover, the
verifier can lower-bound this min-entropy. (3) For each subset the ratio of its heaviest elements to its
lightest elements is small. These properties all hold for our prover-efficient public-coin emulation.

4. Section 3.5 contains the algorithm for approximate counting from inversion alluded to in Section 1.1.2.

Oracle Naming Convention: In this section, in order to allow for some abstraction, our protocols and
algorithms access certain functionalities through oracles. We aggregate here a full explanation for each of
the types of oracles used as a reference to the reader. Oracles will be denoted by the Sans Serif font.

SampδD: Parameterized by a distribution D over {0, 1}`. Receives no input and returns a value such that

∆
(
SampδD, D

)
≤ δ.

22

Prover-Efficient Sampling Protocol

Joint Input: N ∈ [2m]

Parameters: m ∈ N, 0 < ε < 1

Prover Oracle Access: HashInvδD

1. Set k , max
{

0,
⌊
log2

(
ε3N

8

)⌋}
, and let Hm,k be a family of pairwise independent hash functions.

2. Verifier:

(a) Choose and send h← Hm,k and y ← {0, 1}k.

3. Prover:

(a) Receive h, y.

(b) Sample ρ← HashInvδD (k, h, y) and send it to the verifier.

4. Verifier:

(a) Receive ρ. Reject if h (ρ) 6= y.

5. Both parties output ρ.

Figure 1: Prover-Efficient Public-Coin Sampling Protocol

HashInvδD: Parameterized by a distribution D over {0, 1}`. Receives as input an index k ∈ [`], a function

h ∈ H`,k and an image y ∈ {0, 1}k. The output is such that ∆
(
HashInvδD(k, h, y), D|h(D)=y

)
≤ δ

when h← H`,k and y ← h(D). In order to simplify notation, if k = 0, i.e. the hash function has

no output, then we define HashInvδD(0, ·, ·) to be identical to SampδD.

SubsetδD,D: Parametrized by a distribution D over {0, 1}` and a partitioning of D, D = {Di}Ii=1. Receives
as input a value ρ← D. With probability 1− δ returns i ∈ [I] such that ρ ∈ Supp(Di).

InSetδD,S : Parametrized by a distribution D over {0, 1}` and set S ⊆ {0, 1}`. Receives as input a value
ρ← D. With probability 1− δ returns whether ρ ∈ S.

3.2 A Prover-Efficient Sampling Protocol

We construct a constant-round public-coin sampling protocol with an efficient prover, where the prover has
access to an oracle. In this protocol, which can be viewed as a generalization of the “set lower-bound”
protocol used in [GS86], the honest prover is trying to help the verifier to to sample from a distribution D
of entropy at least logN , while a malicious prover tries to cause the verifier to sample from a set S where
|S| � N . The protocol is roughly as follows: The verifier chooses a random pairwise independent hash
function h, and a random image y. The prover then samples an element from the distribution D conditioned
on h(D) = y and sends it back to the verifier. If the entropy of D is high, this should not be a problem, but
for any set S that is is much smaller than the claimed N if the range of the hash function is of an appropriate
size then (w.h.p) no such element exists. The most computationally difficult task in the protocol is for the
honest prover to sample an element from D conditioned on h(D) = y. We therefore give it access to an
oracle that given y and h does this sampling.

Lemma 3.1 (Properties of the Sampling Protocol, Figure 1). Let m ∈ N, 0 < ε < 1 and let H be a family
of pairwise independent hash functions. Then the protocol described in Figure 1 is a public-coin interactive
protocol with the following properties:

Verifier Efficiency: Running time O (m), Randomness O (m)

23

Prover Efficiency: Running time O (m), Oracle calls 1

Number Of Messages: 2

Completeness: Let D be a distribution over {0, 1}m and N be such that 0 ≤ logN ≤ H∞ (D). If the honest
prover is given oracle access to HashInvδD, then the output of the protocol has statistical distance
at most ε

2 + δ from taking a sample from D.

Soundness: For any set S ⊆ {0, 1}m and N ∈ [2m] and any unbounded malicious prover, the probability that

the verifier ends the execution with an element from S is at most 8
ε3 ·

|S|
N .

3.2.1 Efficiency

We begin by analyzing the verifier’s efficiency. The verifier must first generate a pairwise independent hash
function. Generating this hash function from {0, 1}m to {0, 1}k takes O (m) time and randomness. It then
generates y which takes time and randomness O (k) = O (m), and sends h and y to the prover. It receives
one element, ρ, and tests that h (ρ) = y, which takes time O (m). Therefore the verifier runs in time and
uses randomness O (m). We now analyze the running time of the prover. The prover receives h, y each of
which is of length O (m) and then makes a singe query to its oracle. Therefore the total running time of the
prover is O (m).

3.2.2 Completeness

Suppose D is a distribution over {0, 1}m and N is such that logN ≤ H∞ (D). We give four hybrids:

• H1: The output of the protocol as described in Figure 1.

• H2: The protocol is as in H1 except the verifier chooses y ← h(D) rather than uniformly.

• H3: The protocol is as in H2, except the prover is given access to HashInv0
D rather than HashInvδD.

• H4: Output a random sample from D.

We show in Claim 3.2 that ∆ (H1, H2) ≤ ε
2 , in Claim 3.3 that ∆ (H2, H3) ≤ δ and in Claim 3.4 that H3 and

H4 are identical. Thus by the triangle inequality H1 and H4 are of statistical distance at most ε
2 + δ.

Claim 3.2. The statistical distance between H1 and H2 is at most ε
2 .

Proof. We show that the statistical distance between (H, Uk) and (H,H (D)) is at most ε
2 . Since this is the

only difference between hybrids 1 and 2, this will imply that the hybrids are close. The distribution D has
min-entropy at least logN and the hash function compresses to k bits where k = blogN − 3 log (2/ε)c, and
so k ≤ H∞ (D)− 3 log (2/ε). By the Leftover Hash Lemma (Lemma 2.23), the distributions (H,H (D)) and
(H, Uk) have statistical distance at most ε

2 .

Claim 3.3. The statistical distance between H2 and H3 is at most δ.

Proof. In both oracles the call to the oracle is done from the distribution expected, namely (H,H(D)). Then
by adaptive sampling (Corollary 2.18) the statistical distance of the honest prover using HashInvδD is at most
δ-far from the distribution when the prover has access to the perfect oracle HashInv0

D.

Claim 3.4. The distributions H3 and H4 are identical.

24

Proof. The values h and y are drawn from the distribution expected by HashInv0
D, and so HashInv0

D (k, h, y)
returns a random element in D conditioned on h(D) = y. Fix h ∈ H, then for every ρ ∈ Supp(D):

Pr [H3 = ρ|h chosen] = Pr
d←D

[d = ρ|h(d) = h(ρ)] Pr
y←h(D)

[h (ρ) = y]

= Pr
d←D

[d = ρ|h(d) = h(ρ)] Pr
d←D

[h(ρ) = h(d)]

= Pr
d←D

[d = ρ]

= Pr[H4 = ρ]

Since this is true for every h, we can remove the conditioning to see that for every ρ ∈ Supp(D), Pr[H3 =
ρ] = Pr[H4 = ρ].

3.2.3 Soundness

We now inspect the probability that a dishonest prover will be able to cause the verifier to sample an element
from some |S| < N . Letting ρ be the output of the protocol, we wish to show that

Pr [ρ ∈ S] ≤ 8

ε3
· |S|
N

If N ≤ 8
ε3 then the ratio |S|N is so small that multiplying it with 8

ε3 yields a value greater than 1, making the

claim trivial. In more detail, 1 ≤ |S|, and N ≤ 8
ε3 which means that ε3

8 ≤
|S|
N , and so 1 ≤ 8

ε3 ·
|S|
N . We now

look at the case that N > 8
ε3 , in which k > 0. The prover succeeds in causing the verifier to end up with a

value in S if given h and y it can find an element in S ∩ h−1 (y), since sending this element will make the
verifier accept. Therefore, fixing h ∈ Hm,k:

Pr [ρ ∈ S|h chosen] ≤
∑

y∈{0,1}k
Pr [y chosen] · I

[
S ∩ h−1 (y) 6= ∅

]
≤ 1

2k

∑
y∈{0,1}k

∣∣S ∩ h−1 (y)
∣∣

=
|S|
2k

(3.1)

Where I
[
S ∩ h−1 (y) 6= ∅

]
is equal to one if and only if S ∩ h−1 (y) 6= ∅ and is otherwise equal to zero.

Equation (3.1) is true because |S| =
∑
y∈{0,1}k

∣∣S ∩ h−1 (y)
∣∣. Note that the bound on the probability that

the prover wins (i.e. ρ ∈ S) conditioned on h does not depend on h, and so we can remove the conditioning
to get

Pr [ρ ∈ S] ≤ |S|
2k
≤ 8

ε3
· |S|
N

Where the final inequality is reached by substituting: 2k = 2

⌊
log2

(
ε3N
8

)⌋
≥ Nε3

8 .

3.2.4 A Variation on the Sampling Protocol

Looking ahead, the protocol as described in Figure 1 will not be sufficient for our uses. We introduce two
changes which will satisfy our requirements.

The first is that finding a lower-bound for the min-entropy of a distribution may be a very difficult task.
In some cases it is however possible to lower-bound the min-entropy of a distribution which is close to D.
Consider the following: Suppose D is λ-close to a flat distribution Z for which we the size of the support is
known. Since Z is flat its min-entropy can be easily found. Our observation, is that while a lower-bound on
the min-entropy of Z is not necessarily a bound on the min-entropy of D, the fact that they are statistically
close implies that sampling with this claim does not skew the output probability much.

25

The second variation we consider is that we require the protocol to work even when the prover is given
HashInv for a distribution for which is larger than the one we wish to sample from. More precisely we
will be interested in using the protocol for the distribution of D conditioned on the event D ∈ S for some
set S ⊆ Supp(D), which we denote by DS , but where the prover has access to HashInvD rather than the
expected HashInvDS . In Figure 2, we show how to emulate HashInvDS using HashInvD. The algorithm, on
inputs (h, y) ← (H,H (DS)), takes multiple samples using its oracle HashInvD, and returns a sample which
lands in S if one exists. Note that this procedure requires the ability to recognize whether an element belongs
to S.

Putting both variants together yields the following corollary to Lemma 3.1:

Corollary 3.5 (Variation of the Sampling Protocol). There exists a public-coin interactive protocol which
is a variation on Lemma 3.1 where the honest prover is given additional inputs 0 < κ, µ ≤ 1 such that the
prover efficiency and completeness properties are changed to the following:

Prover Effieicency: Running time O
(
µm3

ε2κ

)
, Oracle calls O

(
µm3

ε2κ

)
Completeness: Let D be a distribution over {0, 1}m, S ⊆ Supp(D) be a set, Z be a distribution over S. Then

letting DS represent D conditioned on landing in S, if:

• The honest prover is given access to HashInvδD and InSetδD,S.

• The distributions DS and Z are statistically close: ∆ (DS , Z) ≤ λ.

• The min-entropy of Z is lower-bounded by logN : 0 < logN ≤ H∞ (Z).

• The probability of landing in S is bounded by κ: κ ≤ Pr[D ∈ S].

• The ratio of the maximum and minimum probabilities of the elements in S with regards to

D are bounded by µ: µ ≥ maxρ∈S Pr[D=ρ]
minρ∈S Pr[D=ρ] .

Then the output distribution of the protocol and D are of statistical distance at most:

λ+
3

2
ε+

80m3µ

κ2ε2
· δ

The remaining properties are identical to those specified in Lemma 3.1.

Proof. The honest prover is identical to the one described in Lemma 3.1 given N , except the single call to
HashInvDS will be replaced by the simulator described in Figure 2. The simulator is given access to HashInvδD
and InSetδD,S and parameters κ and µ. In order to prove the corollary we introduce four hybrids:

• H ′1: The output of the protocol as described above.

• H ′2: Identical to H ′1, except the verifier chooses y ← h(D) (exactly as H2 in Section 3.2.2).

• H ′3: Identical to H ′2, except the prover has access to perfect oracles HashInv0
D and InSet0D,S rather than

HashInvδD and InSetδD,S .

• H ′4: Take a random sample from DS .

By Claims 3.6, 3.7 and 3.9, ∆ (H ′1, H
′
2) ≤ λ+ ε

2 , ∆ (H ′2, H
′
3) ≤ 80m3µ

κ2ε2 · δ and ∆ (H ′3, H
′
4) ≤ ε. By the triangle

inequality for statistical distance, we have that ∆ (H ′1, H
′
4) ≤ λ+ 3

2ε+ 80m3µ
κ2ε2 · δ.

Turning to analysis of the rest of the properties of the algorithm, by Claim 3.7, the prover runs in time

O
(
µm3

ε2κ

)
and makes O

(
µm3

ε2κ

)
queries to its oracles, and each oracle call has multiplicative cost 1

κ .

We first show that even though the parties do not necessarily has a lower-bound to the entropy of DS ,
the protocol output does not change by much:

26

HashInv Simulator: HSim

Parameters: 0 < ε ≤ 1
2 , 0 < κ ≤ 1, 0 < µ ≤ 1.

Input: k ∈ [m], h ∈ Hm,k, y ∈ {0, 1}k

Oracle Access: HashInvδD, InSetδD,S

Algorithm:

1. For i = 1 to 40m3

ε2 ·
µ
κ :

(a) Let ρ← HashInvδD (k, h, y) be a fresh sample.

(b) If InSetδD,S (ρ) = True, output ρ and quit.

2. If no element has been found, output FAIL.

Figure 2: HashInv Simulator, HSim

Claim 3.6. The statistical distance between H ′1 and H ′2 is at most λ+ ε
2 .

Proof. The proof is nearly identical to that of Claim 3.2. By the Leftover Hash Lemma, since k =
blogN − 3 log (2/ε)c ≤ H∞ (Z) + 3 log (2/ε), we have that (H, Uk) and (H,H(Z)) have statistical distance
ε
2 . Since ∆ (D,Z) ≤ λ, we have that ∆ ((H,H(Z)) , (H,H(D))) ≤ λ, and so (H, Uk) and (H,H(D)) have
statistical distance λ+ ε

2 .

Now that we have that the choice h, y of the verifier are close to a useful distribution, we show that if
the hash inversion simulator uses imperfect oracles, it is still close to its ideal output:

Claim 3.7. The statistical distance between H ′2 and H ′3 is at most 80m3µ
κ2ε2 · δ.

Proof. Consider the following process, A: Receive h and y. Take a sample ρ ← HashInvδD(k, h, y) and
i′ ← InSetδD,S(ρ). Output ρ and i′. The process A represents one iteration of the HSim algorithm. Now,

consider A′ which is identical to A, but with access to HashInv0
D and InSet0D,S . Then by adaptive sampling,

we have that ∆ (A(H,H(D)), A′(H,H(D))) ≤ 2δ (one δ coming from the difference in ρ and the second
from the difference in i′). The actual input to HSim, and therefore also to A, comes from H,H(DS). Since
Pr[D ∈ S] ≥ κ, we have that for every ρ ∈ S,

Pr[D = ρ|D ∈ S] =
Pr[D ∈ S|D = ρ] Pr[D = ρ]

Pr[D ∈ S]
≤ 1

κ
Pr[D = ρ]

Thus, by adaptive sampling Corollary 2.18, the statistical distance between A(H,H(DS)) and A′(H,H(DS))
is at most 2δ

κ .

An entire execution of HSim consists of 40m3

ε2 ·
µ
κ such iterations, and so the statistical distance between

HSim when given HashInvδD and InSetδD,S and the same algorithm when given HashInv0
D and InSet0D,S is at

most 80m3δ
ε2 · µκ2 .

We would like to show that H ′3 and H ′4 are close, but in order to do so, we first give a helpful claim,
which says that with high probability over the choice of the hash function h, for every y, the weight of the
elements in DS that map by h to y is not very small. This will mean that after taking many samples of
D|h(D)=y, it is likely that the prover will sample at least one element in S.

Claim 3.8. Let 0 < ε ≤ 1
2 , D be a distribution over {0, 1}m, S ⊆ Supp(D) be a set such that Pr[D ∈ S] ≥ κ

and µ ≥ maxρ∈S Pr[D=ρ]
minρ∈S Pr[D=ρ] , and Hm,k be a set of pairwise independent hash functions for k ≤ log |S|+log2

(
ε3

8

)
.

27

Then for every y ∈ {0, 1}k, with probability 1− ε
2 over the choice of h← Hm,k:

Pr
d←D

[d ∈ S|h(d) = y] ≥ κ

µ
· ε

40m2

Proof. We begin by showing that for any fixed y ∈ {0, 1}k, with high probability over the choice of h, the
number of elements in S which are mapped by h to y is not too small. Note that since H∞ (DS) ≤ log2(|S|),
2k

|S| ≤
ε3

8 . We utilize the uniform-cover property of pairwise independent hash functions (Lemma 2.19) to
get:

Pr
h←Hm,k

[∣∣S ∩ h−1(y)
∣∣ < (1− ε) |S|

2k

]
≤ 2 · 2k

ε2 |S|
≤ ε

4

Thus with probability 1− ε
4 there are at least (1− ε) |S|

2k
elements mapped to y.

We now show that it is unlikely that the number of elements mapped to y from S is very small when
compared with the rest of the support of D. We do this by splitting the support of D into partitions, each of
which are close to uniform, and showing that it is unlikely that any of these partitions will have “too many”
elements mapped to y. Let λ = 1/m. We partition the support of D into I = log1+λ(2m) ≈ m2 subsets D =

{Di}Ii=1. Subset Di is the set of elements ρ ∈ Supp(D) such that (1 +λ)−(i+1) ≤ Prd←D[d = ρ] ≤ (1 +λ)−i.
Let pH = maxρ∈S Pr[D ∈ ρ] and pL = minρ∈S Pr[D ∈ ρ]. Notice that:

|S|∑I
i=1(1 + λ)−i|Supp(Di)|

≥ κ

(1 + λ)pH
(3.2)

Since |S| ≥ Pr[D∈S]
pH

and |Supp(Di)| ≥ (1 +λ)i+1 Pr[D ∈ Di]. The I subsets can be split in to two categories:

• Ismall: Subsets Di such that |Supp(Di)|
2k

< ε
4I

• Ibig: Subsets Di such that |Supp(Di)|
2k

≥ ε
4I

Subsets which are in Ismall are so small that with high probability no element will be mapped by h to y,

and subsets in Ibig will with high probability have no more than
(
1 + 6I

ε

) |Supp(Di)|
2k

such elements. Details
follow:

• Ismall: Fix i ∈ Ismall. Since the hash function family is 1-wise independent, for every ρ ∈ Supp(Di),
Prh[h(ρ) = y] = 2−k. Taking the union bound over all elements in the support of Di, we get that with
probability at least 1− 2−k |Supp(Di)| ≥ 1− ε

4I no element in Di is mapped by h to y.

• Ibig: Fix i ∈ Ibig. By Lemma 2.19, setting λ = 6I
ε >

√
32 · Iε we have

Pr
h←Hm,k

[∣∣Supp(Di) ∩ h−1 (y)
∣∣ > (1 +

6I

ε

)
|Supp(Di)|

2k

]
≤ 2 · 2k

λ2 |Supp(Di)|

≤ 8I

ελ2

≤ 8I

ε
· ε2

32I2

≤ ε

4I

Taking the union bound over all I subsets, we have that with probability 1 − ε
4 no subset in Ismall has

any element mapped to y and no subsets in Ibig has more than
(
1 + 6I

ε

) |Supp(Di)|
2k

elements. Thus, with
probability at least 1− ε

2 : ∣∣S ∩ h−1(y)
∣∣ ≥ (1− ε) |S|

2k
(3.3)

28

and

∀i ∈ I :
∣∣Supp(Di) ∩ h−1 (y)

∣∣ ≤ (1 +
6I

ε

)
|Supp(Di)|

2k
(3.4)

Conditioned on this event occurring we have the following:

Pr [D ∈ S|h(D) = y] =

∑
ρ∈S∩h−1(y) Prd←D[d = ρ]∑

ρ∈Supp(D)∩h−1(y) Prd←D[d = ρ]

≥
pL
∣∣S ∩ h−1(y)

∣∣∑
i∈I(1 + λ)i+1 |Supp(Di) ∩ h−1(y)|

(3.5)

≥ (1− ε)pL|S|
(1 + 6I

ε)
∑
i∈Ibig (1 + λ)i+1 |Supp(Di)|

(3.6)

≥ ε(1− ε)
ε+ 6I

· pL · κ
pH(1 + λ)

(3.7)

Where Equation (3.5) is because for ρ ∈ S, pL is a lower bound on Prd←D[d = ρ] and for ρ ∈ Supp(Di),
Prd←D[d = ρ] ≤ (1+λ)−i+1. Equation (3.6) is true by applying Equation (3.3) and Equation (3.4), and finally
Equation (3.7) is correct due to Equation (3.2). The claim is completed by noting that since 0 < ε ≤ 1/2:

pLκ

pH
· ε(1− ε)

(1 + λ)(ε+ 6I)
≥ pLκ

pH
· ε

2(1 + λ)(ε+ 6I)

≥ pLκ

pH
· ε

40I

≥ pLκ

pH
· ε

40m2

≥ κ

µ
· ε

40m2

Now we can give the final claim to prove that H ′3 is close to H ′4:

Claim 3.9. The statistical distance between H ′3 and H ′4 is at most ε.

Proof. The inputs (h, y) to HSim are drawn from the joint distribution (H,H(DS)). By Claim 3.8, since:

k ≤ logN + log2

(
ε3

8

)
≤ H∞ (Z) + log2

(
ε3

8

)
≤ log |Supp(Z)|+ log2

(
ε3

8

)
= log |S|+ log2

(
ε3

8

)
With probability 1− ε

2 over the choice of h, no matter which y was given:

Pr
d←D

[d ∈ S|h(d) = y] ≥ κ

µ
· ε

40m2

29

Histogram Generator Hist

Parameters: Partition size I ∈ [2m], Error bound η, Cut-off σ.

Oracle Access: A sampling oracle SampδD and access to SubsetδD,D

1. Set J = m
η3 , for each i ∈ [I], si = 0

2. For j = 1 to J :

(a) Sample ρ← SampδD. Let i′ = SubsetδD,D (ρ).

i. Increase sum si′ : si′ ← si′ + 1

3. For each i ∈ [I]:

(a) Let p̃i = si
J .

(b) If p̃i < σ: pi ← 0. Otherwise set pi = p̃i

4. Return (p1, . . . , pI)

Figure 3: (η, σ)-Histogram Generation Algorithm

Conditioned on this event occurring, taking q = m
ε ·
(

40m2

ε · µκ
)

samples from D|h(D)=y, the probability that

none of the elements sampled land inside of S is at most(
1− m

εq

)q
∼ e−mε < ε

2

Thus, with probability at least 1− ε the algorithm samples an element in S. Since each sample is from the
distribution D conditioned on h(D) = y, conditioned on landing in S, the element found is drawn from D
conditioned on D ∈ S and h(D) = y, which is identical to DS conditioned on h(DS) = y. Thus, all-in-all,
when given inputs (h, y) drawn from (H,H(DS)), the distribution output by HSim is ε-close to sampling
from DS conditioned on h(DS) = y. By an identical proof to that of Claim 3.4, this process ends with a
sample randomly chosen from DS

3.3 Approximate Histograms

We are given a distribution D and a partitioning of D into I different subsets, D. Our goal is to return a
histogram showing the weight of each subset in D with regards to D. The tools at our disposal are oracle
access to random samples from D and access to SubsetD,D which when given an element ρ← D returns the
partition index from D to which ρ belongs. To compute such a histogram we will take many samples from
D, and test to which partition they belong, counting how many belonged to each subset. If we take enough
samples, and a partition has enough weight with respect to D, then the ratio of samples taken to the number
of samples in Di is a good approximation of the weight of of subset Di by D.

Lemma 3.10 ((η, σ)-Histogram Generator). Let D be a distribution over {0, 1}m and D = {Di}Ii=1 be a
partitioning of D into I subsets where I ∈ [2m]. Then given parameters 0 < η, σ ≤ 1 and oracle access
to SampδD and SubsetδD,D, the output of Hist, as described in Figure 3, is an (η, σ)-Histogram (see Defini-

tion 2.36) with regards to D and D except with probability 2−O(mη) + 2mδ
η3 . Moreover, Hist runs in time

O
(
mI
η3

)
, and makes O

(
m
η3

)
oracle calls.

Proof. We begin by looking at the running time and number of oracle calls. The algorithm makes J different
iterations. In each iteration it makes one query to each of its oracles and changes a simple counter. The
algorithm then must generate the output, which is mI bits. Therefore the running time is O(mI + J) =

30

O
(
mI
η3

)
and the number of oracle calls is O (J) = O

(
m
η3

)
. In Proposition 3.11 we show that when given

oracle access to ideal oracles, the probability that the algorithm fails to output a (η, σ)-histogram is 2−O(mη).
Consider if the algorithm is given access to Samp0

D and SubsetδD,D. Since all inputs to SubsetδD,D are
taken directly from the perfect sampling oracle, it will, for every one of the m

η3 queries it receives, fail with

probability at most δ. Using the union bound, with probability mδ
η3 it will not fail on any of the queries.

Putting this together with the probability of failure in Proposition 3.11, in this experiment the algorithm
fails with probability at most 2−O(mη) + mδ

η3 .

Next, consider moving from access to Samp0
D and SubsetδD,D to access to SampδD and SubsetδD,D, as in the

lemma statement. By adaptive sampling Corollary 2.18, the statistical distance between the outputs given
access to Samp0

D relative to SampδD is at most δ multiplied by the number of queries. Since the event that

a correct histogram is output happens with probability 1− (2−O(mη) + mδ
η3), in this final experiment it must

also happen with probability at least 1− (2−O(mη) + 2mδ
η3).

Proposition 3.11. Let D be a distribution and D = {Di}Ii=1 be a partitioning of D into I subsets where
I ∈ [2m]. Then given parameters 0 < η, σ ≤ 1 and oracle access to Samp0

D and Subset0D,D, the output of

Hist is an (η, σ)-Histogram with regards to D and D except with probability 2−O(mη).

Proof. First, we note that Subset0D,D is only guaranteed to work if it receives inputs from the correct dis-

tribution, namely inputs drawn from D. Since all queries to Subset0D,D are samples taken directly from

Samp0
D which represents a random sample from D, the oracle does indeed receive inputs from the correct

distribution. The oracle Subset0D,D is ideal, and so never fails to classify elements in their respective subsets.
Let (p′1, . . . , p

′
I) be a 0-histogram of D with respect to D (i.e. for every i ∈ [I], p′i = Prρ←D [ρ ∈ Supp(Di)])

and let (p̃1, . . . , p̃I) be the values defined in Stage 3.a of a random execution of Hist as described in Figure 3.
The algorithm takes J samples and for each sample tests to which subset it belongs. Since each sample is in
subset i with probability p′i, by the Chernoff bound (Lemma 2.2) by Stage 2.c:

Pr [|p̃i − p′i| ≥ η] ≤ 2e−2Jη2

We have now bounded the probability of receiving significant additive error on the probability approximation
of a single subset. We can use the union bound in order to extend this to all subsets together, namely

Pr [∃i ∈ [I] : |p̃i − p′i| ≥ η] ≤ 2 · I · e−2Jη2

= 2 · I · e−2η2· m
η3

≤ 2 · 2m · e−2mη

= 2−O(mη)

Conditioned on the event that all values of p̃i are in this range, we show that indeed the values pi constitute
an (η, σ)-Histogram of D (Definition 2.36). That is, that:

1. |pi − Prρ←D [ρ ∈ Supp(Di)]| ≤ σ + η. Moreover, if pi 6= 0 then |pi − Prρ←D [ρ ∈ Supp(Di)]| ≤ η

2. pi /∈ (0, σ)

We begin by proving Item 1, conditioned on the event that for each i, p̃i is within additive error from p′i as
analyzed above. By the triangle inequality:

|p′i − pi| ≤ |p′i − p̃i|+ |p̃i − pi| ≤ η + |p̃i − pi|

In Stage 3.b, of the algorithm, each value pi is set to either 0 or left as p̃i, depending on if p̃i is smaller than
σ or not. This means that:

1. If p̃i ≤ σ, then pi = 0 and so p̃i − pi ≤ σ which gives |p′i − pi| ≤ η + σ

2. Otherwise p̃i > σ and then pi = p̃i 6= 0, and |p′i − pi| ≤ η
Proving Item 1. Item 2 follows by definition - each value of pi is either set to 0 or is greater than σ.

31

3.4 Sampling Via Subsets

Let D be a distribution over {0, 1}m and D = {Di}Ii=1 be a partitioning of D into I parts. Our goal is
for a prover to help a verifier sample an element from D and know also to which partition the element
belongs. Suppose that the prover is honest, and that it is possible given i and p ≤ Pr[D ∈ Supp(Di)] it is
possible for the verifier to lower-bound the min-entropy of Di using oracle access to a function f (specifically
log f(i, p) ≤ H∞ (Di)).

The protocol proceeds as follows - the prover creates a histogram (p1, . . . , pI) with respect to D and D,
and chooses a partition based on histogram values- partition i is chosen with probability pi∑

j pj
. The prover

then sends to the verifier the partition index i and p, a claimed probability of landing in partition Di. The
verifier then uses these values, and access to f in order to find a lower-bound on the min-entropy of Di.
Now, the prover can help the verifier sample from Di using the prover-efficient sampling protocol described
in Section 3.2. Since the histogram is a representation of the probability of landing in each subset, each
value of i is chosen with roughly the probability that D lands in subset Di. The sampling protocol samples
close to the distribution Di, and so altogether the output distribution is close to that of a random sample
from D along with its subset.

We now turn towards soundness. Suppose a malicious prover has for each i a set Si ⊆ {0, 1}m of elements
for which it “wins” if the output of the protocol is (i, ρ) where ρ ∈ Si. We show that it is unlikely that the
prover will win. In the protocol, the prover sends some subset index i∗ and probability p, the verifier uses f
to calculate some claimed lower bound N = f(i∗, p) and the two parties execute the sampling protocol. By
the soundness property of the sampling protocol, if |Si∗ | is much smaller than N , then the prover will likely
fail. Note that the claim N set by the oracle f which the verifier has access to, and so in order to have a
meaningful soundness property, it should be that the oracle is such that in the case of soundness it does not
return very small values.

Lemma 3.12 (Properties of the “Sampling Via Subsets” protocol, Figure 4). Let m ∈ N. Given parameters
I ∈ [2m] and 0 < ε < 1 the Sampling via Subsets protocol in Figure 4 is a public-coin interactive protocol
with the following properties:

Verifier Efficiency: Running time O (m), Randomness O (m). Oracle calls: one to f .

Prover Efficiency: Running time O
(
mI4

ε3

)
, Oracle calls: O

(
mI3

ε3

)
to Sampδ1S and Subsetδ1D,D and one to

HashInvδ2Di for some i.

Number Of Messages: 3 Starting with a prover message.

Completeness: Let D be a distribution over {0, 1}m and let D = {Di}Ii=1 be a partitioning of Supp(D) into

I parts, and let D̃ ≡
(
D,Subset0D,D (D)

)
be the joint distribution of taking a sample from D

along with the subset to which it belongs. Suppose the prover is given oracle access to Sampδ1D ,

Subsetδ1D,D and for every i ∈ [I], HashInvδ2Di and both parties are given access to f such that for
every i and p such that 0 ≤ p ≤ Pr[D ∈ Supp(Di)], f(i, p) ≤ H∞ (Di). Then letting Q be the
output distribution of the protocol:

∆
(
Q, D̃

)
≤ 2ε+O

((
I

ε

)3

mδ1 + δ2

)

Soundness: Let f : [I]×(0, 1]→ {0, 1}m be a function given as oracle access to both parties and let S1, ..., SI ⊆
{0, 1}m be sets. Then for every j ∈ [I], and every cheating prover P ∗ the probability that
the verifier outputs (ρ, i) such that i = j and ρ ∈ Sj when interacting with P ∗ is at most
8
ε3 ·

|Sj |
minp′> ε

6I
f(j,p′) .

32

Sampling Via Subsets

Parameters: Partition count I ∈ [2m], Sampling error 0 < ε < 1. Set η , ε
6I .

Prover Oracle Access: Sampδ1D , Subsetδ1D,D, and for every i ∈ [I], HashInvδ2Di .

Joint Oracle Access: f : [I]× (0, 1]→ {0, 1}m

Histogram Stage:

1. Prover:

(a) Generate (p1, . . . , pI), a histogram using the histogram generation algorithm described in
Lemma 3.10 with parameters ηhist = η and σ = 2η and oracle access to Sampδ1S and Subsetδ1D,D.
Choose a subset i by the distribution defined as follows

Pr [Choose subset i] =
pi∑

i′∈[I] pi′

(b) Send i and pi to the verifier.

2. Verifier:

(a) Receive i and pi. If pi < 2η, reject.

Sampling Stage:

1. Set N = f(i, p− η).

2. The parties take part in the prover-efficient sampling protocol (Lemma 3.1) to sample from Di,
claiming that Di has entropy at least N , with parameter ε, where the prover is given oracle access
to HashInvδ2Di .

3. The sampling protocol ends with both parties outputting some ρ ∈ {0, 1}m

4. Output ρ and i.

Figure 4: Sampling Via Subsets Protocol

33

3.4.1 Efficiency

Verifier Efficiency: In the histogram stage the verifier receives an index and a probability which has precision
of m bits. It does a simple test on it. In the sampling stage the verifier simply runs the verifier of
the sampling protocol, which by Lemma 3.1 takes time and randomness O (m). Thus the verifier
runs in total time O (m) and randomness O (m).

Prover Efficiency: The honest prover begins by calculating a histogram of the subsets, which by Lemma 3.10

takes O
(
mI
η3

)
= O

(
mI4

ε3

)
time and makes O

(
mI3

ε3

)
oracle calls to Samp and Subset. It then

samples i, which takes O (m log I) time, and runs the prover of the sampling protocol, which by
Lemma 3.1 runs in time O (m), making one oracle call to HashInv. All the honest prover running

time is O
(
mI4

ε3

)
and it makes O

(
mI3

ε3

)
calls to Samp and Subset and one to HashInv.

Message Number: The histogram stage has the prover sending the verifier a single message. The sampling
stage begins with a verifier message and has 2 messages in total. Therefore there are 3 messages
sent.

3.4.2 Completeness

We define hybrids each of which represents the distribution of the output string ρ, and the claimed subset i
in different experiments:

1. H1: The output distribution of the protocol as described in Figure 4.

2. H2: The histogram stage is as in H1, but if the prover generated a correct histogram, then the sampling
stage is replaced by the verifier taking a sample from the distribution ρ← Di, rather than running the
sampling protocol (where i is the index chosen in the histogram stage).

3. H3: The histogram stage is replaced by the prover generating a 0-histogram of D w.r.t. D and the
verifier does not test that the value it receives is at least than 2η. The sampling stage is as in H2.

4. H4: The ideal distribution:
(
D,Subset0D,D (D)

)
, the joint distribution of a uniform sample from D, and

the subset to which it belongs.

We first show that H1 is close to H2. The only difference between the two hybrids is that the sampling stage
is replaced with the verifier taking a uniform sample of the required partition. The fact that the hybrids are
close is due to the completeness property of the sampling protocol:

Proposition 3.13. The statistical distance between H1 and H2 is at most ε
2 + δ2.

Proof. If p < 2η, then the verifier rejects immediately in both hybrids. If p ≥ 2η, and the histogram
was generated incorrectly, then both hybrids are identical. This leaves only the case that p ≥ 2η and
the histogram was generated correctly. In this case, since p is the value output by a (η, 2η)-histogram,
p − η ≤ Prd←D[d ∈ Supp(Di)]. By assumption: logN = log f(i, p − η) ≤ H∞ (Di). Therefore, by the
correctness of the sampling protocol (Lemma 3.1), the output of the sampling protocol has statistical distance
ε
2 + δ2 from sampling from Di.

Next, we have shown that the sampling is done correctly, we show that working with an (η, 2η)-histogram
does not skew the choice of subset by much, since it is quite representative of the distribution.

Proposition 3.14. The statistical distance between hybrids H2 and H3 is at most 3
2ε+ 2mδ1

η3 .

Proof. The difference between the hybrids is that the histogram in H2 is sampled from Hist, whereas in H3

it is sampled from a 0-histogram. This affects the choice of subset index i. In H2 the prover tries to generate
a (η, 2η)-histogram with respect to D which by Lemma 3.10 succeeds with probability 1− (2−O(mη) + 2mδ1

η3).

34

The distribution of the subset index i chosen relative a (η, 2η)-histogram is close to the choice relative to a
0-histogram. Details follow: Let (p1, . . . , pI) be a (η, 2η)-histogram and (p′1, . . . p

′
I) be a and 0-histogram, both

with respect to D and partitioning D. Let W be the distribution where index i is chosen with probability
pi∑

j∈[I] pj
, and let W ′ be the distribution where index i is chosen with probability

p′i∑
j∈[I] p

′
j
. Note that

Pr[W ′ = i] = Prρ←D[ρ ∈ Di]. We wish to use Claim 2.16 with its ε parameter set to 3η = ε
2I <

1
2I to show

that W is 6Iη-close to W ′. Since 6Iη = ε this will mean they are ε-close.
In order to use Claim 2.16 in this way we must show that the (η, 2η)-histogram is not all zeros, and that

for all i ∈ [I], max {0, p′i − 3η} ≤ pi ≤ p′i + 3η. The fact that for all i ∈ [I], max {0, p′i − 3η} ≤ pi ≤ p′i + 3η
follows from the definition of a (η, 2η)-histogram. The histogram will not be set to all zeros, due to the
setting of η = ε

6I . For any (η, 2η)-histogram of D and D, and any index j, if pj = 0 this implies that
Pr [W ′ = i] ≤ 3η < 1

2I . Therefore, in any (η, 2η)-histogram any subset which has weight at least 1
I will not

have its histogram value set to zero. By an averaging argument, there must be some subset i such that
1
I ≤ Prρ←D[ρ ∈ Di], and so there must be some subset with non-zero value in the histogram. Therefore
Claim 2.16 shows that the choice of the subset index in a 0-histogram is at distance at most 6Iη = ε from
the choice of index using a (η, 2η)-histogram.

We have yet to show that the verifier will not reject the value set by the prover in H2. Conditioned on
the histogram being generated correctly, implies that pi ≥ 2η, and so the verifier’s test will always pass. In
H3 the verifier never rejects, and so conditioned on the histogram being generated correctly the verifier’s
action will be identical.

To recap, the prover inH2 generates a (η, 2η)-histogram with probability 1−(2−O(mη)+ 2mδ1
η3). Conditioned

on that event, choosing a subset based on this histogram is ε-close to the choice of subset in H3. Putting
this all together, the hybrids are of statistical distance at most ε + 2−O(mη) + 2mδ1

η3 . Since η = ε
6I we have

that 2−O(mη) � ε
2 and so this expression is bounded by 3

2ε+ 2mδ1
η3 .

All that we have left to show is that H3, which uses an ideal histogram and sampling, is identical to
sampling from D and giving its subset:

Proposition 3.15. The distributions represented by hybrids H3 and H4 are identical.

Proof. In H3 the prover generates a 0-Histogram. The prover will therefore at the histogram stage, choose
cluster i with probability Prρ←D [ρ ∈ Di]. In the sampling stage, the verifier samples uniformly from Di.
Let ρ ∈ {0, 1}m and j be such that ρ ∈ Dj then recalling that ρ cannot belong to any other subset:

Pr [D = ρ] = Pr [D ∈ Dj] · Pr [D = ρ|D ∈ Dj]

= pj · Pr [D = ρ|D ∈ Dj]

= Pr [prover chooses subset j] · Pr [verifier samples ρ from Sj]

= Pr [verifier returns ρ]

Therefore ρ is distributed according to sampling from D. The protocol always outputs the correct subset
and so the output distribution in H3 is identical to H4.

We can now put all of the previous claims together to get:

Claim 3.16. The statistical distance between the distributions H1 and H4 is bounded from above by 2ε +

O
((

I
ε

)3
mδ1 + δ2

)
.

Proof. Using Proposition 3.13, Proposition 3.14 and Proposition 3.15 and by the triangle inequality for

35

statistical distance:

∆ (H1, H4) ≤ ∆ (H1, H2) + ∆ (H2, H3) + ∆ (H3, H4)

≤ ε

2
+ δ2 +

3

2
ε+

2mδ1
η3

≤ 2ε+
2mδ1
η3

+ δ2

= 2ε+O

((
I

ε

)3

mδ1 + δ2

)

3.4.3 Soundness

Let f : [I] × (0, 1] → {0, 1}m be a function and S1, ..., SI ⊆ {0, 1}m be sets such that, for all j and p′ > η,
|Sj | < f(j, p′). Let i ∈ [I] be any subset which the cheating prover chooses, and let p be the value the prover
sends to the verifier. If the value p is smaller than 2η then the verifier rejects immediately. Therefore in
order for the prover to cause the verifier to sample in Si the value p must be greater or equal to 2η. If this
is indeed the case, the size claimed by the prover in the sampling stage is N = f(j, p − η). By Lemma 3.1
the probability that the prover manages to cause the verifier to end up with an element in Si is at most

8

ε3
· |Si|
N

=
8

ε3
· |Si|
f(i, p− η)

≤ 8

ε3
· |Si|

minp′>η f(i, p′)
=

8

ε3
· |Si|

minp′> ε
6I
f(i, p′)

3.4.4 A Variation on the Protocol

The protocol as described in Figure 4 has access to HashInv oracles for each subset of D. Looking ahead, we
will not be able to supply the honest prover with these oracles, but rather one global HashInv oracle for D
in its entirety. Additionally the protocol requires that the parties know how to reasonably lower-bound the
min-entropy of every (sufficiently large) partition, a requirement which we wish to relax.

Fortunately, using Corollary 3.5, we can deal with both of these variations, yielding the following corollary
to Lemma 3.12:

Corollary 3.17 (“Sampling Via Subsets” protocol with limited oracle access). There exists a public-coin
interactive protocol for which is identical to Lemma 3.12, except:

• The honest prover’s oracles are replaced to HashInvδD and SubsetδD,D. The prover additionally receives
input µ such that for every i ∈ [I]:

µ ≥
maxρ∈Supp(Di) Pr[D = ρ]

minρ∈Supp(Di) Pr[D = ρ]

• For every i ∈ [I] there exists a distribution Zi over Supp(Di) such that ∆ (Di, Zi) ≤ λ.

• The function f is changed such that for every i ∈ [I] and 0 < p ≤ Pr[D ∈ Supp(Di)], log f(i, p) ≤
H∞ (Zi).

In the new protocol the completeness parameter is changed to λ+ 3ε+O

((
mIµ
ε

)4

· δ
)

. The honest prover

runs in time O
(
µm3I4

ε3

)
and makes O

(
µm3I4

ε3

)
calls to its oracles. The remaining properties are identical

to those specified in Lemma 3.12.

36

Proof. In the histogram stage, the Sampδ1D used to construct the histogram is replaced with HashInvδD(0,⊥,⊥),

and Subsetδ1D,D is replaced with SubsetδD,D. In the sampling stage, the sampling protocol used is replaced from

the one described in Lemma 3.12 to that of Corollary 3.5, where InSetδD,S is implemented using SubsetD,D(i, ·)
where i is the index chosen in the histogram stage. In order to hep the verifier sample from Di, this new
prover expects to receive inputs κ, µ along with oracle access to HashInvD and InSetDi,Supp(Di). Recall that
by the end of the histogram stage both parties have a subset index i ∈ [I] and a value pi. The value κ is set
to η = ε

6I and µ will be given as is.
Let H ′1 represent the output of this protocol, and H ′2 be H2 as in the proof of completeness (Section 3.4.2)

except emulating H ′1 rather than H1 if the histogram is incorrect. We wish to show that H ′1 is close to H ′2.
Mimicking the proof of Proposition 3.13, we note that if pi < 2η, then the verifier rejects immediately in both
hybrids and that if pi ≥ 2η, but the histogram was generated incorrectly, then both hybrids are identical.
If the histogram was generated correctly, then κ = η ≤ pi − η ≤ Pr[D ∈ Supp(Di)] and by assumption

µ ≥ maxρ∈Supp(Di) Pr[D=ρ]

minρ∈Supp(Di) Pr[D=ρ] . Therefore, by Corollary 3.5, the output of the sampling protocol has statistical

distance λ+ 3
2ε+ 80m3µ

κ2ε2 · δ from randomly sampling from Di. Therefore the statistical distance between H ′1

and H ′2 is at most λ+ 3
2ε+ 80m3µ

κ2ε2 · δ
The proof that H ′2 and H3 (as defined in Section 3.4.2) are of statistical distance at most 3

2ε + 432mI3δ
ε3

is identical to the proof of Proposition 3.14, which shows that H2 and H3 are close. Since H3 is identical to
H4 ≡W , the ideal distributions, using the triangle inequality for statistical distance we have that

∆ (H ′1,W) ≤ ∆ (H ′1, H
′
2) + ∆ (H ′2, H3) + ∆ (H3, H4)

≤ λ+
3

2
ε+

80m3µ

κ2ε2
· δ +

3

2
ε+

432mI3δ

ε3

= λ+ 3ε+O

((
mIµ

ε

)4

· δ

)
Turning to analysis of the efficiency of the prover, by Corollary 3.5, the sampling protocol requires

O
(
µm3

ε2κ

)
steps and oracle calls. The histogram stage has not changed - generating the histogram takes

O
(
mI4

ε3

)
time and the prover makes O

(
mI3

ε3

)
. Thus together the prover runs in total time:

O

(
mI4

ε3
+
µm3I

ε3

)
= O

(
µm3I4

ε3

)
and makes the same number of calls to its oracles.

None of the changes made alter the number of messages and the soundness and verifier efficiency prop-
erties, and so they remain identical to those described in Lemma 3.12.

3.5 Set Cardinality Approximation

In this section we show that inversion implies approximation of the number of elements in a set. Given a set
S ⊆ {0, 1}` and oracle access to HashInvUS , we would like to construct an algorithm that approximates the
size of S. This algorithm is similar to approximate counting using an NP oracle (see [Gol08, Theorem 6.27])
but in our case instead of the NP oracle, the algorithm has access to a “hash inversion” oracle, HashInvUS .

Suppose we choose a random hash function h from a family of pairwise independent hash functions H
mapping {0, 1}` to {0, 1}k, and a random image y ∈ {0, 1}k. Due to the “almost-uniform cover” property
of hash functions (Lemma 2.19), the number of elements in S that h maps to y is proportional to the ratio
|S|
2k

, (except with probability that is itself proportional to 2k

|S|). This can be used to lower-bound the size of

S - choose a random pair h, y and if S ∩h−1 (y) is large, then it is likely that |S| > 2k. The algorithm works
in iterations on the size k, beginning by performing this test for k = 0, and if the test passes, it tries the
next largest k. We can approximate the size of |S| based on the value of k in which the algorithm fails. The

37

actual protocol makes a minor change to this recipe - the protocol will not choose a random element y, but
will rather choose a random x ∈ S and set y = h (x). This is done because the prover has oracle access only
to the function HashInvUS , which expects to receive inputs (h, y) drawn from the distribution (H,H (US)).
After setting y as described above, in order to use the same ideas as before, we can use 3-wise independence
instead of pairwise. The hash function remains pairwise independent even when conditioned on y = h (x).

Lemma 3.18. ((Amplified) Cardinality Approximation) Let S ⊆ {0, 1}` be some set and H be a family of
pairwise independent hash functions. Then for any parameters 0 < ν ≤ 1, 0 < ε < 1

2 there exists randomized
algorithm CardApprox such that:

Pr

[
CardApprox

HashInvδUS
ν,ε

(
1`
)
/∈ (1± ν) |S|

]
≤ ε+O

(
`4

ν6
log

1

ε
· δ
)

Moreover, CardApproxν runs in time O
(
`4

ν6 log 1
ε

)
and makes O

(
`4

ν6 log 1
ε

)
queries to its oracle.

Proof. In Figure 5 we describe a slightly simpler algorithm which ignores the ε parameter. This algorithm,
given access to an ideal inversion oracle, HashInv0

US , is analyzed in Proposition 3.19, and it is shown that
it succeeds except with probability 1

` . Keeping an ideal inversion oracle, we can reduce the error to ε by
running it Θ

(
log 1

ε

)
times and returning the median of the values generated. This means that the running

time and number of oracle calls are both O
(
`4

ν6 log 1
ε

)
. Using adaptive sampling (Corollary 2.18), moving

from ideal HashInv0
US oracle to HashInvδUS , the statistical distance at most O

(
`4

ν6 log 1
ε · δ

)
, and so the event

that the value output is not in the correct range happens with probability at most:

ε+O

(
`4

ν6
log

1

ε
· δ
)

Proposition 3.19. Let S ⊆ {0, 1}` be some set and H be a family of 3-wise independent hash functions.
Then for any parameter 0 < ν ≤ 1 the algorithm CardApproxν as described in Figure 5 satisfies:

Pr

[
CardApprox

HashInv0US
ν

(
1`
)
∈ (1± ν) |S|

]
= 1−Θ

(
1

`

)
Moreover, the running time and the number of queries to the inversion oracle of CardApproxν are both

O
(
`4

ν6

)
.

Proof. We have two cases to handle. If |S| < q then we hope to sample every element in S in Stage 1,
returning |S|, and if |S| ≥ q then we need the algorithm to stop at the right iteration. In the former
case, where S is small, since HashInvUS (0,⊥,⊥) samples ideally from US , we can invoke the coupon collector
theorem, Claim 2.37, so that with probability 1− 1

q = 1−O (2−t) the algorithm will return all of the elements

in S, and the algorithm will end in Stage 1.b returning |S|. We now turn to the latter case, in which S has
at least q elements. Let i = blog2 |S|c. We begin by showing that the algorithm is unlikely to stop before
iteration i− t.

Claim 3.20. Let i = blog2 |S|c. The probability that CardApproxν terminates before iteration i − t is
Θ (` · 2−t).

Proof. Using Claim 2.37, the algorithm passes Stage 1 with probability 1 − Θ (2−t). We now look at the
probability that the algorithm stops at some iteration k ∈ [i− t− 1]. Since i > k and i ≥ 1,

|S| − 1

2k
≥ 2i − 1

2i−t−1

= 2t+1 − 2t+1−i

≥ 2t+1 − 1

38

Cardinality Approximator CardApprox

Input: Length parameter 1`

Oracle Access: HashInvδUS

Parameters: Approximation parameter ν.

1. Let t , log (`) + max {log (`) ,−2 log (ν)} and q , 2t

2. Invoke the oracle HashInvδUS (0,⊥,⊥) q3 times to receive samples
(
ρ1, . . . , ρq3

)
(a) Let T be the set of unique elements in {ρi}q

3

i=1.

(b) If |T | < q3, then output |T |

3. Sample x← HashInvδUS (0,⊥,⊥).

4. For k = 1 to `− t:

(a) Choose h← Hm,k and y = h (x).

(b) Invoke HashInvδUS (k, h, y) for q3 times to receive samples
(
ρ′1, . . . , ρ

′
q3

)
(c) Let T ′ be the set of unique elements in {ρ′i}

q3

i=1

(d) If |T ′| ≥ q go to the next iteration.

(e) Otherwise, invoke HashInvδUS (k, h, y) for m = (1 + (1 + ν) · 2t)3
times to receive (ρ′′1 , . . . , ρ

′′
m)

(f) Return 1 + 2t · (|T ′′| − 1) where T ′′ is the set of unique elements in {ρ′′i }
m
i=1

5. Return 2`

Figure 5: Cardinality Approximator

39

Using Corollary 2.20 with parameters λ = 1
2 and pairwise independence, for any x ∈ S

Pr
h←H`,k

[
|{ρ ∈ S|h (ρ) = h (x)}| /∈ 1 +

(
1

2
,

3

2

)
· |S| − 1

2k

]
≤ 8 · 2k

|S| − 1

≤ 8 · 2−t

and so

Pr
h←H`,k

[
|{ρ ∈ S|h (ρ) = h (x)}| < 2t

]
≤ Pr
h←H`,k

[
|{ρ ∈ S|h (ρ) = y}| < 1 +

1

2
· |S| − 1

2k

]
≤ Pr
h←H`,k

[
|{ρ ∈ S|h (ρ) = y}| /∈ 1 +

(
1

2
,

3

2

)
· |S| − 1

2k

]
≤ 8 · 2−t

Therefore, with probability at least 8 · 2−t, there are at least q elements in S which map to y = h (x). The
algorithm takes q3 samples, attempting to sample at least q samples in the set {ρ ∈ S|h (ρ) = y} by using
HashInv. Note that the input to HashInv is distributed according to (H,H (US)) and so the sampling is done
correctly. By Claim 2.37, given that the number of preimages of y in S is at least q after taking q3 samples,

the probability that the algorithm does not see q distinct elements is Θ
(

1
q

)
= Θ (2−t). Putting together

the probability that |{ρ ∈ S|h (ρ) = y}| < q and the probability that the algorithm does not see 2t distinct
elements given that |{ρ ∈ S|h (ρ) = y}| ≥ q, the probability that the algorithm stops at iteration k is Θ (2−t).
Hence by using the union bound, the probability that the algorithm terminates in any of the i− t− 1 stages
is Θ ((i− t) 2−t). Since i ≤ `, and including the addition of the probability of terminating before step 3 is
upper bounded by O (` · 2−t).

Assuming the algorithm has passed iteration i − t − 1, we show that with high probability it will not
reach iteration i− t+ 2.

Claim 3.21. Let i = blog2 |S|c. If the algorithm reaches iteration k = i − t + 1 then it will terminate with
probability 1−Θ (2−t).

Proof. Noting that

2t−2 ≤ |S| − 1

2k
=

2i − 1

2i−t+1
≤ 2t−1

Since t > 2, we have that 1 + 3
2 · 2

t−1 ≤ 2t. We again utilize Corollary 2.20 with λ = 1
2 , to get

Pr
h←H`,k

[
|{ρ ∈ S|h (ρ) = h (x)}| /∈ 1 +

(
1

2
,

3

2

)
· |S| − 1

2k

]
≤ 8 · 2k

|S| − 1

≤ 8 · 2−t

and

Pr
h←Hm,k

[
|{ρ ∈ S|h (ρ) = y}| ≥ 2t

]
≤ Pr
h←Hm,k

[
|{ρ ∈ S|h (ρ) = y}| > 1 +

3

2
· |S| − 1

2k

]
≤ Pr
h←H`,k

[
|{ρ ∈ S|h (ρ) = h (x)}| /∈ 1 + (0, 2) · |S| − 1

2k

]
≤ 8 · 2−t

Given that |{ρ ∈ S|h (ρ) = y}| < 2t, the algorithm will stop at this iteration since there are less than q
distinct elements to sample. Therefore the probability that the algorithm will terminate in iteration i− t+ 1
is 1−Θ (2−t).

40

Now that we have bounded the probability that the algorithm terminates either in stage i− t or i− t− 1
we need to show that the it approximates size of S to within the required range.

Claim 3.22. Let i = blog2 |S|c. Given that CardApproxν stopped at iteration i−t or i−t+1, the probability
that it returns a value in the range (1± ν) |S| is 1−O

(
ν−2 · 2−t

)
.

Proof. Since k ∈ {i− t, i− t+ 1}, 2i−1
2i−t+1 ≤ |S|−1

2k
≤ 2i−1

2i−t and so 2t−2 ≤ |S|−1
2k
≤ 2t. Once again utilizing

Corollary 2.20 with λ = ν:

Pr
h←Hm,k

[
|{r ∈ S|h (r) = y}| /∈ 1 + (1± ν) · |S| − 1

2k

]
<

2k

ν2 |S|
≤ 4 · ν−2 · 2−t

If |{r ∈ S|h (r) = y}| is indeed in the range required, then |{r ∈ S|h (r) = y}| < 1 + (1 + ν) · 2t. Therefore,
by the coupon collector problem, Claim 2.37, using m = 1 + (1 + ν) · 2t, the probability that the algorithm
will not sample all of the elements of S ∩ h−1 (y) in Stage 3.e is O

(
1
m

)
= Θ

(
ν−12−t

)
. Putting this together

with the probability that |{r ∈ S|h (r) = y}| is not in the correct range, we have that conditioned on the

algorithm stopping on iteration i− t or i− t+1: With probability 1−Θ
(
ν−2 · 2−t

)
, |T ′′| ∈ 1+(1± ν) · |S|−1

2k

and so:

(1− ν) |S| ≤ 1 + (1− ν) (|S| − 1) ≤ 1 + 2t (|T ′′| − 1) ≤ 1 + (1 + ν) (|S| − 1) ≤ (1 + ν) |S|

By taking Claims 3.20 to 3.22 together using the union bound, the probability that the algorithm
fails to return a value in the correct range is 1 − Θ

(
2−t

(
`+ ν−2

))
. Noting our choice of t = log (`) +

max {log (`) ,−2 log (ν)} the failure probability is Θ
(

1
`

)
.

All that remains is to analyze the running time of CardApproxν .

Claim 3.23. The running time and the number of queries to the inversion oracle of CardApproxν are both

O
(
`4

ν6

)
.

Proof. The running time is dominated by taking ` iterations. In each iteration the algorithm first uses the
inversion oracles to sample 23t preimages and in the final iteration before it returns a value takes another(
(1 + ν) · 2t+1

)3
samples of preimages. Note that since ν ≤ 1,

(
(1 + ν) · 2t+1

)3
= O

(
23t
)
. For each set of

preimages sampled, the algorithm simply counts how many distinct elements there are, which can be done
in polynomial time in the number of elements the algorithm must go over. Therefore both the running time
of the algorithm and the number of queries send to the oracle is

O
(
` · 23t

)
= O

(
` ·
(
`3

ν6

))
= O

(
`4

ν6

)

Together, Claims Claim 3.20, Claim 3.21 and Claim 3.22 show that the algorithm will with the required
probability return a value in the requested bound, and Claim 3.23 shows that the algorithm is efficient
depending on ν, together proving Proposition 3.19.

4 Round-Preserving Emulation from Inversion

In this section, we show a public-coin emulation for private-coin proofs that preserves the running time of
both parties and the number of rounds in the protocol. Our emulation is inspired by the celebrated result of
Goldwasser and Sipser [GS86], based on the following idea: Rather than proving that a random interaction
leads to the verifier accepting, the prover proves that there are many sets of coins that would lead to the
verifier accepting if the verifier were to use them as its random input. We begin by giving some notation for
this section:

41

Notation: For the entirety of this section we consider a language L that has an r-round interactive proof
Π = 〈P, V 〉 with ` bits of randomness, m-bit messages, completeness c, soundness error s, prover running
time tP and verifier running time tV . For x ∈ {0, 1}n and ρ ∈ {0, 1}` we denote by Πi

x(ρ) the partial
transcript of the protocol executed up to the i’th message on input x and with verifier randomness ρ, where
for any x and ρ, Π0

x(ρ) = ∅ is the empty transcript. Additionally, for 1 ≤ i ≤ r, we denote by tP,i the
running time of the prover in round i and tV,i the running time of the verifier in the same round. Note that∑r
i=1 tP,i = tP and

∑r
i=1 tV,i = tV .

Fix x ∈ L and a transcript prefix γ = (α1, β1, . . . , αi, βi). Recall Definitions 2.9 to 2.11:

• Coinsx(γ): The set of verifier coins that are consistent with γ. We will sometimes overload the
term and refer to Coinsx(γ) as the uniform distribution over the set of consistent coins. That is, U`
conditioned on: For every j < i, Vx(α1, β1, . . . , αj−1, βj−1;U`) = αj .

• Accx(γ): The set of verifier coins that are consistent with γ and for which the prover has an accepting
strategy. Let Coinsx(γ) be as above, then:

Accx (γ) = {ρ ∈ Coinsx (γ) | ∃γ′ : ρ ∈ Coinsx(γ, γ′) and V (x, (γ, γ′); ρ) = 1}

• Msgx(γ): The distribution of the next verifier message, consistent with γ. Let Coinsx(γ) be as above,
then Msgx(γ) is the distribution of the next message of V generated by sampling consistent coins:
Vx(γ;Coinsx(γ)).

Overview: Round i of the protocol will begin with a partial transcript γi−1 and a claimed lower bound
Ni−1 on |Coinsx(γi−1)|, number of coins consistent with γi−1. Note that, unlike in Goldwasser and Sipser’s
original protocol, the bound is a claim about |Coinsx(γi−1)| rather than about the number of accepting and
consistent coins, |Accx(γi−1)|. Looking ahead, this is done since do not know how to use inversion for the
honest prover to approximate the number of accepting coins, but only of consistent coins in general. The
by-product of this is that in completeness the transcripts sampled by our emulation are close to random,
rather than always accepting as in the original transformation. For soundness, the verifier will also need
to check in the last round that the transcript and coins sampled in the final verifier message are accepting
(recall that without loss of generality we assume that the last message in the private-coin protocol is the
verifier revealing its randomness).

We begin by looking at completeness. The honest prover’s goal is to help the verifier sample a next
verifier message αi which is consistent with γi−1. If the parties begin with a (reasonable) lower-bound on
the entropy of the distribution of messages consistent with γi−1 then the parties could run the sampling
protocol described in Section 3.2. We would have liked to execute this for each round iteratively- in each
round the prover helps the verifier sample a new message, and then the prover returns its answer, thus
constructing a transcript. The issue with this approach is that even if for a given round we have a lower
bound on the entropy of the distribution of messages consistent with the transcript, it is unclear how to find
such a lower-bound for the next round, and convince the verifier of this bound.

We solve this problem similarly to Goldwasser and Sipser, by introducing the concept of clusters. Consider
the following experiment: Suppose the honest prover can, given x ∈ L and partial transcript γi−1, for every
message α which is consistent with γi−1, calculate the size of the support of Coinsx (γi−1, α). Then we
can define the following partitioning of Msgx (γi−1) into ` + 1 parts: subset j will be all the messages α
consistent with γi−1 such that 2j−1 ≤ |Coinsx (γi−1, α)| < 2j . We call these subsets Clusters. Now we would
like to sample a message along with its cluster index, by using the sampling via subsets protocol, where the
subsets are the clusters. One of the requirements to use the sampling via subsets protocol, is that the parties
need access to a function f that, given a cluster index and p, a lower-bound on the probability of landing in
this cluster, gives a lower-bound on the entropy of Msgx(γi−1) conditioned on landing in cluster i. Suppose
the parties have a lower-bound Ni−1 on |Coinsx (γi−1)|, and suppose for every j, Msgx(γ) conditioned on
landing in cluster j is flat (i.e. it is uniform over its support). By definition, if a message is in cluster j then
there are at most 2j+1 coins that lead to this message. Then, if the probability of landing in cluster j is p,

42

there are at least pNi−1

2j+1 messages in this cluster. Since the message distribution conditioned on landing in

cluster j is uniform over its support, this means that log 2j+1

pNi−1
is a lower-bound on the min-entropy of the

message distribution conditioned on landing in the cluster.
Now that the parties can successfully use the sampling via subsets protocol in order to sample (αi, j) a

message and the index of the cluster to which it belongs, we can, from the cluster index, find a lower-bound
on the number of coins consistent with αi (namely 2j), and feed this into the protocol iteratively. Looking
ahead, we will not be able to work with clusters as described above, but rather the prover will have a
partitioning of the message space representing an “approximate clustering” - where we know a bound on the
number of coins consistent with each message in the approximate cluster.

For soundness, a round of the protocol described above begins with a partial transcript γi−1, and a claim
Ni−1. Consider the ratio between the prover’s claim and the number of accepting coins consistent with the

current transcript, Ni−1

|Accx(γi−1)| , which we call the “gap”. We say that the malicious prover “wins” if it can

decrease the gap significantly. That is, if the sampling via subsets protocol ends with values γi and Ni, then
we want Ni

|Accx(γi)| to not be significantly smaller than Ni−1

|Accx(γi−1)| . To see why it is of interest to us to limit

the prover’s ability to shrink the gap, consider output values γi and Ni such that Ni = Accx (γi). Now the
malicious prover can, using the sampling via subsets protocol honestly, and make the verifier end up with
a next message which is consistent with an accepting transcript. Since it can do this for every round it
can generate a full accepting transcript and make the verifier accept. Luckily, we can bound the number of
elements that do shrink the gap significantly. Recall that the protocol has soundness s. Thus, in order to
cause the verifier to accept, the gap must go all the way down from 1

s to 1, and this together means that the
verifier will reject with good probability.

Organization: We begin in Section 4.1 by showing that if it is possible to efficiently invert certain functions
it is possible to implement the functionality of HashInv (see Section 3.1) for useful distributions. In Section 4.2
we show that HashInv can be used to partition the messages based on the number of coins that are consistent
with them. Finally, in Section 4.3 we put all of these tools together with ones developed in Section 3 in order
to emulate a protocol.

4.1 Implementing HashInv

In order to use the tools developed in Section 3 we need to give the prover access to an oracle HashInv defined
in Section 3.1 as follows:

• HashInvδD: Parametrized by a distribution D over {0, 1}` and error 0 ≤ δ ≤ 1. Receives as input k ∈ [`],

h ∈ H`,k and y ∈ {0, 1}k. The output is such that ∆
(
HashInvδD(k, h, y), Dh(D)=y

)
≤ δ when h← H`,k

and y ← h(D).

Specifically, we will be interested in using D as the distribution of either verifier coins or verifier messages in
the protocol. Let 〈P, V 〉 be a protocol for L in which the verifier uses ` bits of randomness and the verifier
messages have length m. Thus, translating this to HashInv we get:

• HashInvδCoinsx(γ): Receives inputs k ∈ [`] and (h, y) ← (H`,k,H`,k(Coinsx(γ))) and returns an output
ρ that is δ-close to Coinsx(γ) conditioned on the hash of the coins equalling y.

• HashInvδMsgx(γ): Receives as input k ∈ [m], (h, y) ← (Hm,k,Hm,k(Msgx(γ))). The output is drawn
from a distribution that is δ-close to Msgx(γ) conditioned on the message hashing to y.

We will not be able to implement the above functionalities for every transcript γ. Rather, we will only be
able to do so for random γ.

Remark 4.1. To show HashInv for coins we only need to show it for transcripts that end in a verifier message,
since for any γ ending in a verifier message and prover message β, Coinsx(γ) ≡ Coinsx(γ, β). Similarly,
when implementing HashInv for messages we only need to show how it can be done for transcripts that end

43

in a prover message. This is because when γ ends with a verifier message, Msgx(γ), the distribution of the
next message consistent with γ, always returns the last message in γ.

Overview: We begin by showing in Claim 4.2 that for any efficiently sampleable distribution D, efficiently
computable dependency function Dep and efficiently computable morphing function g, there exists a function
f such that if f is invertible then it is possible to efficiently sample from g(D) conditioned on Dep(D) = d.
In Sections 4.1.1 and 4.1.2 we show how to use Claim 4.2 to implement HashInv in order to sample coins and
messages that are consistent with a transcript and that hash to some value for both doubly-efficient proofs
and for constant-round proofs.

Consider the simpler goal of, given a transcript γ = (α1, β1, . . . , αi, βi), sampling from Coinsx(γ). We
use Claim 4.2 as follows:

• Doubly-Efficient Proofs: For doubly-efficient proofs the task described above will be relatively easy.
Since we can efficiently sample transcripts of the protocol, we can set D to be U`. Samp can therefore
be easily implemented. Dep on input ρ will output the transcript consistent with ρ, γ = Πi

x(ρ) up to
round i. Dep is efficient because the protocol is doubly-efficient. g will be the identity function. Note
that g(D) conditioned on Dep(D) = d is exactly the distribution Coinsx(γ). Then Claim 4.2 implies
that if f = Dep(Samp(·)) is invertible then there exists an algorithm that can be used to sample from
Coinsx(γ).

• Constant-Round Proofs: For general constant-round proofs we have to take a different strategy since
the protocol itself is inefficient. The structure of our construction is iterative. Assuming there exists
an efficient sampler Ai such that for γ = (α1, β1, . . . , αi), A

i(γ) ≡ Coinsx(γ), we show a function f i+1

that uses Ai as a sub-procedure such that if f i+1 is invertible, then there is an efficient sampler Ai+1

such that, given γ′ = (α′1, β
′
1, . . . , α

′
i+1), samples from Coinsx(γ′).

Suppose for specific i it were possible to, given γ = (α1, β1, . . . , αi), sample from Coinsx(γ) using an
algorithm Ai. We show how to implement sampling of coins which will work with transcripts up to
round i+1. The idea is that if we can sample coins that are consistent with γ = (α1, β1, . . . , αi) then for
a fixed βi we can sample a the next verifier message αi+1 from the distribution of next verifier messages
that are both consistent with γ and βi. Inverting this sampler will allow us to sample coins consistent
with transcripts of the form (α1, β1, . . . , αi+1). In more detail, let f i be as follows: Take in as auxiliary
inputs γ = (α1, β1, . . . , αi) and βi and regular input randomness r. Sample ρ = Ai(γ; r) and output
αi+1 = V (γ, βi; r). Suppose there exists an inverter Inv for f i. Now, given γ = (α1, β1, . . . , αi+1) we
can sample coins consistent with γ as follows: Call Inv with auxiliary inputs γ′ = (α1, β1, . . . , αi) and
βi and regular input αi+1. This will return randomness r that causes Ai to output coins ρ that are
both consistent with γ′ and for whom V (γ′, βi; ρ) = αi+1 which is exactly identical to sampling coins
from Coinsx(γ).

We now formulate this in the language of Claim 4.2. For γ = (α1, β1, . . . , αi) let Dγ be the distribution
of choosing a random set of coins ρ from Coinsx(γ). Clearly we can implement Samp to sample Dγ

by receiving γ as auxiliary input and using Ai(γ). We set Dep to output the next verifier message α =
Vx(γ; ρ). Let γ′ = (α1, β1, . . . , ai, βi, αi+1) be the transcript until round i+ 1 which we want to sample
coins that are consistent with and let γ = (α1, β1, . . . , αi−1, βi−1, αi, βi) be its prefix until round i. We
set Dep to receive as auxiliary inputs γ and βi and output the next verifier message α = Vx(γ, βi; ρ). g
is, again, the identity function. The distribution g(Dγ) conditioned on Depγ,βi(Dγ) = αi+1 is identical
to Coinsx(γ) conditioned on Vx(γ;Coinsx(γ)) = αi+1. This is exactly the distribution Coinsx(γ′)
since the set of coins that are consistent with both γ′ and αi+1 is exactly the set of coins consistent
with γ. Together, using Claim 4.2 implies the existence of Ai+1 that samples from the coins consistent
with transcripts of length i + 1. To show the initial algorithm A0, transcripts of length 0 have no
prover messages, and so we can use the same techniques used for doubly-efficient interactive proofs.
This concludes the induction showing how coins can be sampled for every transcript length.

The induction described above can only be done a constant number of times while preserving the
efficiency of the functions. Suppose function A0 takes time t to compute. Then A1, which is the

44

inverter for the function described above that uses A0 as a sub-procedure, can run in time O(tc1) for

some (arbitrary) c1 ∈ N. This continues such that Ai runs in time O(t
∏i
j=0 cj) for some c1, . . . , ci ∈ N.

If i = ω(1), then this value can be super-polynomial. This restriction is the reason our technique
doesn’t extend to general protocols with a super-constant number of rounds.

In the general case, in which we wish to sample from Coinsx(γ) conditioned on the sample hashing
to some value, we add to Samp that it should also output a random hash function h and to Dep(ρ, h) in
addition to outputting a transcript of the protocol (or a message α in the case of constant-round proofs),
outputs h and y = h(ρ). Implementing HashInv for messages is similar to the ideas we use for coins. For
doubly-efficient proofs now Dep(h, ρ), rather than outputting γ = Πi

x(ρ) and y = h(ρ) outputs γ = Πi
x(ρ)

and y = h(V (γ; ρ)). Additionally, we set g(ρ) to calculate γ = Πi
x(ρ) and output Vx(γ; ρ) (recall that g is

the function used on D in Claim 4.2). For constant-round proofs we use Ai as before, but in this case we will
use it to be able to sample messages consistent with an i round transcript (rather than coins consistent with
an i+ 1-round transcript as in the previous explanation). Fix γ = (α1, β1, . . . , αi, βi). Then Samp samples
a random hash function h and uses A to sample ρ← Coinsx(γi−1). Dep(h, ρ) will output h(Vx(γ; ρ)).

Claim 4.2. Let D be a distribution, Samp be an efficient sampler for D with error δ1 and Dep and g
efficiently computable functions. Let f(r) , Dep(Samp(r)). Suppose that f has a distributional inverter
Inv with error δ2. Define A(d) , g(Samp(Inv(d))). Then when d ← Dep(D), the distributions A(d) and
g(D) conditioned on Dep(D) = d are (2δ1 + δ2)-close.

Proof. We begin by observing that:

∆
((
Samp(Uτ), Dep(Samp(Uτ))

)
,
(
D,Dep(D))

))
≤ δ1

Suppose towards contradiction that there exists a distinguisher B that has success probability greater than
δ1. Then it can be used to distinguish between Samp(Uτ) and D. Receiving a sample d we give (d,Dep(d))
to B and answer as it answers. If d ← D then (d,Dep(d)) ← (D,Dep(D)) and if d ← Samp(Uτ) then
(d,Dep(d)) ← Samp(Uτ), Dep(Samp(Uτ)) and so the distinguisher manages to distinguish the cases with
probability greater than δ1.

Now consider the inverter Inv. By definition of f and distributional inversion:

∆
((
Uτ , Dep(Samp(Uτ))

)
,
(
Inv(Dep(Samp(Uτ))), Dep(Samp(Uτ))

))
≤ δ2

Applying Samp and then g to the left expression of each part and substituting A(·) for g(Samp(Inv(·))) we
have that:

∆
((
g(Samp(Uτ)), Dep(Samp(Uτ))

)
,
(
A(Dep(Samp(Uτ))), Dep(Samp(Uτ))

))
≤ δ2

Now, we using the triangle inequality we replace the left hand side with (g(D), Dep(D)) by our initial
observation, so that

∆
((
g(D), Dep(D)

)
,
(
A(Dep(Samp(Uτ))), Dep(Samp(Uτ))

))
≤ δ1 + δ2

Finally, we use the triangle inequality to replace Samp(Uτ) to D on the right-hand side which increases the
statistical distance by at most δ1:

∆
((
g(D), Dep(D)

)
,
(
A(Dep(D)), Dep(D)

))
≤ 2δ1 + δ2

Let d ← Dep(D). To see that A(d) and g(D) conditioned on Dep(D) = d have statistical distance at
most delta = 2δ1 + δ2 notice that (g(D), Dep(D)) is identical to the process in which d is sampled from
Dep(D) and then z is sampled from D conditioned on Dep(D) = d and outputting (g(z), d).

45

Remark 4.3. An identical claim to Claim 4.2 if the distribution under question, Dz, is defined by auxiliary
input z ∈ S for some set S ⊆ {0, 1}∗. In this case since Samp receives this auxiliary input, f and A
also receive it. The inverter Inv will need to be an auxiliary-input distributional inverter. Furthermore, if
Inv only manages to invert for certain auxiliary-input lengths I ⊆ N, then A only samples close to g(Dz)
conditioned on Dep(Dz) = d when considering z ∈ S ∩ (∪i∈I{0, 1}i).

4.1.1 Doubly-Efficient Interactive Proofs

In this section we show how to implement hash inversion oracles for the distributions that we will require in
the emulation protocol when the protocol Π = 〈P, V 〉 that we are trying to emulate is doubly-efficient.

Proposition 4.4. Let Π = 〈P, V 〉 be a doubly-efficient interactive proof with r-rounds, ` bits of verifier
randomness and verifier messages of length m. Then there exists an efficiently computable function f with
the following property: Suppose there exists an auxiliary-input distributional inverter for f with error δ.
Then there exist efficient randomized algorithms A and B such that for every x ∈ L and 0 ≤ i ≤ 2r:

• For every 0 ≤ k ≤ `, if γ ← Πi
x(γ) h← H`,k and y ← h(Coinsx(γ)) then Ax,i,k(h, y, γ) and Coinsx(γ)

conditioned on h(Coinsx(γ)) = y are δ-close.

• For every 0 ≤ k ≤ m, if γ ← Πi
x(γ) h← Hm,k and y ← h(Msgx(γ)) then Bx,i,k(h, y, γ) and Msgx(γ)

conditioned on h(Msgx(γ)) = y are δ-close.

If the inverter inverts only for auxiliary inputs of length I ⊆ N, then implementation of A and B is for every
x ∈ L ∩ (∪t∈I{0, 1}t).

Proof. Fix x and i. We define distribution Di
x,k ≡ (H`,k,Πi

x(U`), U`) and functions:

• Sampix,k(h, ρ): Output h, ρ.

• Depcoinsx,k (h, ρ): Output h,Πi
x(ρ), h(ρ).

• Depmsgx,k (h, γ, ρ): Let Πi
x(ρ). Output h, γ, h(Vx(γ; ρ)).

• gcoinsx,k (h, ρ): Output ρ.

• gmsgx,k (h, ρ): Let Πi
x(ρ). Output Vx(γ; ρ).

Notice that all of the functions defined are efficient. The functions Depcoins,Depmsg,gcoins and gmsg are
efficiently computable since at most they calculate h and V which are efficient. Sampi calculates Πi

x(ρ)
which is efficient since Π is doubly-efficient. Additionally, observe the following properties:

1. Sampix,k(H`,k, U`) ≡ Di
x,k.

2. Depcoinsx,k (D) is identical to the distribution output by the process that samples h← H`,k, γ ← Πi
x(U`)

and y ← h(Coinsx(γ)).

3. Depmsgx,k (D) is identical to the distribution output by the process that samples h← H`,k, γ ← Πi
x(U`)

and y ← h(Msgx(γ)).

4. gcoinsx,k (D) ≡ U`.

5. gmsgx,k (D) is identical to the distribution of choosing γ ← Πi
x(U`) and outputting the last verifier message.

In the following, we omit the auxiliary inputs x and k for clarity. We now use Claim 4.2. Using Di,
Sampi, Depcoins and gcoins, and noticing that Samp(H`,k, U`) ≡ D, we get that if Sampi(Depcoins(·)) is
invertible with error δ, then there is an algorithm Ai such that: When d ← Depcoins(D), the distributions
Ai(d) and gcoins(D) conditioned on Depcoins(D) = d are δ-close. Unpacking this, we get that if (h, γ, y)

46

are drawn from the distribution described in Property 2, then Ai(h, γ, y) is δ-close to U` conditioned on
Πi
x(U`) = γ and h(U`) = y. The distribution U` conditioned on Πi

x(U`) = γ and h(U`) = y is identical to
Coinsx(γ) conditioned on h(Coinsx(γ)).

Using Di, Sampi, Depmsg and gmsg we get a similar claim. If Sampi(Depmsg(·)) is invertible with error
δ then there exists an algorithm Amsg,i such that: If (h, γ, y) are drawn from the distribution described in
Property 3, then Bi(h, γ, y) is δ-close to Msgx(γ) conditioned on h(Msgx(γ)) = y.

Observe that for every value of i the above algorithms required inversion of the functions Sampix,k(Depcoinsx,k (·))
and Sampix,k(Depmsgx,k (·)). Define:

fb,x,i,k(h, ρ) =

{
Sampix,k(Depcoinsx,k (h, ρ)) b = 0

Sampix,k(Depmsgx,k (h, ρ)) b = 1

Access to an auxiliary-input distributional inverter for f can be used to invert Sampix,k(Depcoinsx,k (·)) and

Sampix,k(Depmsgx,k (·)) for every i, and so inverting this function is sufficient to promise that all of the algo-

rithms exist. Finally, the proposition is true by setting Ax,i,k(h, γ, y) = Aix,k(h, γ, y) and Bx,i,k(h, γ, y) =

Bix,k(h, γ, y).

4.1.2 Constant-Round Interactive Proofs

Proposition 4.5. Let Π = 〈P, V 〉 be a constant-round interactive proof with r-rounds, ` bits of verifier
randomness and verifier messages of length m. Then there exist 2r efficiently computable functions with
the following property: Suppose there exists auxiliary-input distributional inverters with error δ for all of
the functions simultaneously. Then there exist efficient randomized algorithms A and B such that for every
x ∈ L and 0 ≤ i ≤ 2r:

• For every 0 ≤ k ≤ `, if γ ← Πi
x(γ) h← H`,k and y ← h(Coinsx(γ)) then Ax,i,k(h, y, γ) and Coinsx(γ)

conditioned on h(Coinsx(γ)) = y have statistical distance O(δ).

• For every 0 ≤ k ≤ m, if γ ← Πi
x(γ) h← Hm,k and y ← h(Msgx(γ)) then Bx,i,k(h, y, γ) and Msgx(γ)

conditioned on h(Msgx(γ)) = y have statistical distance O(δ).

If the inverter inverts only for auxiliary inputs of length I ⊆ N, then implementation of A and B is for every
x ∈ L ∩ (∪t∈I{0, 1}t).

Proof. We construct A and B by induction on the message number. Specifically, if it is possible, given
a transcript of length i, to sample coins that are consistent with a the transcript, then A and B can be
constructed to sample coins or messages that hash to some value and are consistent with a transcript of
length i+ 1. A for transcripts until round i+ 1 can then be used to sample coins that are consistent with a
transcript of length i+ 1.

Basis i = 0: In this case the transcript is of length 0. Thus we simply need to sample coins or messages
that hash to some value. Let f(h, ρ) = h(ρ). A distributional inverter for f with error δ can be used to
sample random coins that hash to y by calling it on (h, y). Similarly let g(h, ρ) = h(Vx(∅; ρ)) be the hash of
the first verifier message induced by randomness ρ. A distributional inverter for g with error δ can be used
to sample random coins that hash to y by calling it on (h, y) to receive ρ and outputting Vx(∅; ρ).

Induction Hypothesis: There exist i + 2 efficiently computable functions such that: Suppose they are
all simultaneously auxiliary-input distributionally invertible with error δ then there exist: Then there exist
efficient randomized algorithms Ai and Bi−1 such that for every x ∈ L:

• For every 1 ≤ j < i, 0 ≤ k ≤ `, if γ ← Πj
x(γ) h← H`,k and y ← h(Coinsx(γ)) then Aix,j,k(h, y, γ) and

Coinsx(γ) conditioned on h(Coinsx(γ)) = y have statistical distance at most (2i+1 − 1)δ.

• For every 1 ≤ j < i− 1, 0 ≤ k ≤ m, if γ ← Πj
x(γ) h← Hm,k and y ← h(Msgx(γ)) then Bix,j,k(h, y, γ)

and Msgx(γ) conditioned on h(Msgx(γ)) = y have statistical distance at most (2i+1 − 1)δ.

47

Induction Step 0 < i ≤ 2r: We have two cases. If transcripts that proceed untill round i end with a
verifier message or a prover message. In both cases, let Mx,k(γ) , Aix,i,0(⊥,⊥, γ). That is, Ai used with k
set to 0, in which case the hash function and image are defined as ⊥. Mx,k(γ), then, samples from Coinsx(γ)
with error δ1 = (2i+1 − 1)δ.

1. Verifier Message: Recall that the message distribution for transcripts that end in a verifier message
always returns the last message. Thus, Bi+1(h, y, γ) is trivial - it always returns the final message of
the transcript. We show how to implement Ai+1. By Claim 4.6, using M , there exists a function f coins

such that if it is invertible, then Ai+1 can be implemented with error 2δ(2i+1 − 1) + δ = (2i+2 − 1)δ.

2. Prover Message: In this case Ai+1 is trivial. Suppose γ = (γ′, β) where β is the final prover message.
Then Coinsx(γ) ≡ Coinsx(γ′). Therefore we define Ai+1 ≡ Ai. We show how to implement Bi+1.
By Claim 4.6, using M , there exists a function fmsg such that if it is invertible, then Ai+1 can be
implemented with error 2δ(2i+1 − 1) + δ = (2i+2 − 1)δ.

Claim 4.6. Let n ∈ N and fix 1 ≤ i ≤ 2r(n). Suppose that there exists an algorithm M such that: For
every x ∈ L ∩ {0, 1}n, given γi ← Πi

x(U`) then Mx,k(γ) and Coinsx(γ) are δ1-close. Then there exist two
functions f coins and fmsg with the following property. For every x ∈ L:

• If f coins is auxiliary-input distributionally invertible with error δ2, then there exists a randomized
algorithm Ai+1. For every 0 ≤ k ≤ `, if γ ← Πi+1

x (γ) h ← H`,k and y ← h(Coinsx(γ)) then
Ai+1
x,k (h, y, γ) and Coinsx(γ) conditioned on h(Coinsx(γ)) = y are (2δ1 + δ2)-close.

• If fmsg is auxiliary-input distributionally invertible with error δ2, then there exists a randomized algo-
rithm Bi+1.For every 0 ≤ k ≤ m, if γ ← Πi

x(γ) h ← Hm,k and y ← h(Msgx(γ)) then Bi+1
x,k (h, y, γ)

and Msgx(γ) conditioned on h(Msgx(γ)) = y are (2δ1 + δ2)-close.

Proof. We begin by showing Ai+1. Fix x, i and γ = (α1, β1, . . . , αi, βi). We define distribution Di
x,γ,k to

be the output of the following process: Choose h ← H`,k and ρ ← Coinsx(γ) and output (h, ρ, Vx(g; ρ)).
Additionally define functions:

• Sampix,γ,k(h, r): Let ρ←Mx,k(γ). Output h, ρ.

• Depcoinsx,γ,k (h, ρ): Output h, Vx(γ; ρ), h(ρ).

• gcoinsx,k (h, ρ): Output ρ.

Notice that since M is efficient, all of the functions defined are efficient. Additionally, observe the following
properties, supposing that Samp uses τ random coins:

1. ∆
(
Sampix,γ,k(H`,k, Uτ), Dx,γ,k

)
≤ δ1.

2. Depx,γ,k(D) is identical to the distribution output by the process that samples h ← H`,k, ρ ←
Coinsx(γ) and outputs h, α = V (γ; ρ) and y = h(ρ).

3. gx,k(D) is equivalent to Coinsx(γ).

Using Claim 4.2, if the function Dep(Samp(·)) is invertible with error δ2 then there exists an algorithm Ai+1

such that: Given auxiliary input γ and regular inputs (α, y) drawn from the distribution Dep(D) returns a
value distributed (2δ1 + δ2)-close to D conditioned on Dep(D) = (α, y). D conditioned on Dep(D) = (α, y)
reduces to (H`,k, Coinsx(γ)) conditioned on Vx(γ;Coinsx(γ)) = α and h(Coinsx(γ)) = y. Observe that
the set coins that are consistent with γ and lead to α is exactly the set of coins that lead to the transcript
(γ, α). Thus, when looking only at the “coin” part of it, as g does, the distribution reduces to Coinsx(γ, α)
conditioned on h(Coinsx(γ, α)) = y.

We now show Bi+1. Fix x, i and γ = (α1, β1, . . . , αi, βi). We define distribution Di
x,γ,k to be the out-

put of the following process: Choose h← H`,k and ρ← Coinsx(γ) and output (h, ρ, Vx(g; ρ)). Additionally
define functions:

48

• Sampix,γ,k(h, r): Let ρ←Mx,k(γ). Output h, ρ.

• Depcoinsx,γ,k (h, ρ): Output h, h(Vx(γ; ρ)).

• gcoinsx,k (h, ρ): Output Vx(γ; ρ).

Notice that since M is efficient, all of the functions defined are efficient. Additionally, observe the following
properties, supposing that Samp uses τ random coins:

1. ∆
(
Sampix,γ,k(H`,k, Uτ), Dx,γ,k

)
≤ δ1.

2. Depx,γ,k(D) is identical to the distribution output by the process that samples h← H`,k, and outputs
h, h(Msgx(γ)).

3. gx,k(D) is equivalent to Msgx(γ).

As in the previous case, we use Claim 4.2, which implies that if the function Dep(Samp(·)) is invertible
with error δ2 then there exists an algorithm Ai+1 such that: Given auxiliary input γ and regular inputs
(α, y) drawn from the distribution Dep(D) returns a value distributed (2δ1 + δ2)-close to D conditioned
on Dep(D) = (α, y). D conditioned on Dep(D) = (α, y) reduces to (H`,k, Coinsx(γ)) conditioned on
h(Vx(γ;Coinsx(γ))) = y.

4.2 Implementing Subset

As mentioned in the overview, our approach to emulation requires splitting the space of messages into subsets,
where belonging to a subset implies a bound on the number of coins that are consistent with the message.
Recall that SubsetδD,D, defined in Section 3.1, is as follows: Parametrized by a distribution D over {0, 1}`

and a partitioning of D, D = {Di}Ii=1. Receives as input a value ρ ← D. With probability 1 − δ returns
i ∈ [I] such that ρ ∈ Supp(Di).

In this section we show that if the prover has access to the HashInv oracles described in Section 4.1, then
it can implement SubsetD,D where, given input x and partial transcript γ, the distribution D will be the
verifier next message distribution Msgx(γ) (see Definition 2.11) and D will be a partitioning of the support
of the message distribution such that for every α ∈ Supp(Msgx(γ)), if α belongs to subset i, then the number
of coins that are consistent with the transcript (γ, α) is between (1 + ε)i−2 and (1 + ε)i+1. This partitioning
defines “approximate clusters” of the message distribution:

Proposition 4.7. Let Π = 〈P, V 〉 be an interactive proof. Fix x ∈ {0, 1}n and i ∈ [r]. Then for 0 < δ ≤ 1

there exists an oracle-aided PPTM that for γ ← Πi
x(U`) implements Subsetδ

′

Msgx(γ),D for error δ′ = 2−
1
ε ·(

ε
m`

)8
+O

((
m`
ε

)15 · δ
)

, and a partitioning D = {Di}
log1+ε(2

`)

i=1 such that for every α ∈ Di:

(1 + ε)i−2 ≤ |Coinsx(γ, α)| ≤ (1 + ε)i+1

The algorithm receives access to an oracle that for every γ′ acts as HashInvδCoinsx(γ′). Moreover, a call to

Subsetδ
′

Msgx(γ),D takes time O
((

m`
ε

)15
)

and makes O
((

m`
ε

)15
)

oracle calls.

Remark 4.8. The requirement that the oracle acts as HashInvδCoinsx(γ′) for any γ′ can be weakened to only

work when γ′ is a random transcript drawn from Πi+1
x (U`).

Proof. On input α, all that the algorithm will call the cardinality approximation procedure trying to ap-
proximate the number of coins consistent with the transcript γ, α and use that to find to which subset the

message belongs. In more detail: the algorithm for Subsetδ
′

Msgx(γ),D on input α←Msgx(γ) is as follows:

49

1. Execute the cardinality approximation procedure (Lemma 3.18) with approximation parameter ε and

failure probability 2−
1
ε ·
(
ε
m`

)8
, using HashInvδCoinsx(γ,α). Denote the value output by the procedure as

a.

2. Output max
{

1, 1 + min
{

log1+ε(2
`),
⌊
log1+ε(a)

⌋}}
.

Let a be the value output by Subsetδ
′

Msgx(γ),D on an execution on α←Msgx(γ). Then by Lemma 3.18, since

we use HashInvδCoinsx(γ,α) which has error δ, we have that a ∈ (1± ε) |Coinsx (γ, α)| except with probability:

2−
1
ε ·
(ε

m`

)8

+O

(
`4

ε6
log

(
2

1
ε ·
(
m`

ε

)8
)
· δ

)
= 2−

1
ε ·
(ε

m`

)8

+O

((
m`

ε

)15

· δ

)

In the case that this event does occur and a is in the correct range, we have that:

(1 + ε)−1a ≤ |Coinsx (γ, α)| ≤ (1− ε)−1a ≤ (1 + ε)2a

Fix α and let j = max
{

1, 1 + min
{

log1+ε(2
`),
⌊
log1+ε a

⌋}}
be the output of the algorithm with regards to in-

put α. Then conditioned on a being bounded as described above, we show that (1+ε)j−2 ≤ |Coinsx(γ, α)| ≤
(1 + ε)j+1. We have three number of cases:

• 1 ≤ a ≤ 2`: Then j =
⌊
log1+ε a

⌋
+ 1. In this case, (1 + ε)j−1 ≤ a < (1 + ε)j , and so:

(1 + ε)j−2 ≤ (1 + ε)−1a ≤ |Coinsx (γ, α)|

and
|Coinsx (γ, α)| ≤ (1 + ε)2a < (1 + ε)j+1

• 2` < a: Then j = log1+ε(2
`) + 1. Since |Coinsx (γ, α)| ≤ 2`, this implies:

(1 + ε)j−2 ≤ (1 + ε)−12` < (1 + ε)−1a ≤ |Coinsx (γ, α)|

and
|Coinsx (γ, α)| ≤ 2` < (1 + ε)j+1

• a < 1: Then j = 1. Since 1 ≤ |Coinsx (γ, α)| this implies:

(1 + ε)j−2 < 1 ≤ |Coinsx (γ, α)|

and
|Coinsx (γ, α)| ≤ (1 + ε)2a < (1 + ε)2 = (1 + ε)j+1

In every one of the cases is is true that (1 + ε)j−2 ≤ |Coinsx(γ, α)| ≤ (1 + ε)j+1.
Thus, we have that if α is a random message consistent with γ, then with probability at least

1− 2−
1
ε ·
(ε

m`

)8

+O

((
m`

ε

)15

· δ

)

the classification of α by SubsetMsgx(γ),D will imply the required bounds on the number of coins leading to

α. The running time of the cardinality approximation procedure is O
(
`4

ε6 log
(

2
1
ε ·
(
m`
ε

)8))
= O

((
m`
ε

)15
)

and it makes O
((

m`
ε

)15
)

calls to HashInv.

Two remarks should be made about the above procedure. The first is that since it is randomized the
algorithm might return different indices for the same message- even when it does not fail. It therefore
does not induce a partitioning. This is easily remedied by keeping a list of messages and their subsets,

50

The Emulation Protocol

Joint Input: x ∈ {0, 1}n

Parameters: Sampling error 0 < ε < 1

Prover Oracle Access: For every γ, HashInvδCoinsx(γ) and HashInvδMsgx(γ).

Protocol:

1. Let γ0 = ∅ and N0 = 2`.

2. For i = 1 to r:

(a) The prover uses HashInvδCoinsx(γ) in order to implement Subsetδ
′

Msgx(γ),D for δ′ = 2−
1
ε ·
(
ε
m`

)8
+

O
((

m`
ε

)15 · δ
)

, as described in Proposition 4.7.

(b) Execute the sampling via subsets protocol (Corollary 3.17) with parameters ε and I = log1+ε(2
`)

for the distribution Msgx(γi−1) and the partitioning D. The prover is given access to

HashInvδ
′

Msgx(γi−1) and Subsetδ
′

Msgx(γi−1),D, and input µ = (1 + ε)3. The function f is implemented

as follows: Receive as input i and p, return p(1 + ε)−(i+1) ·Ni−1.

(c) If the verifier does not reject, the protocol will end with both parties agreeing on some message
αi ∈ {0, 1}m and a subset index j ∈ {1, . . . , I}.

(d) The prover sends βi = Px (γi−1, αi) to the verifier

(e) Both parties output γi = (γi−1, αi, βi) and Ni = max
{

1, 2j−2
}

3. The final iteration ends with Nr and γr = α1β1, . . . , αr−1, βr−1, ρ. The verifier accepts if Nr = 1,
∀t ≤ r : αt = Vx (γt−1; ρ), and Vx (γr; ρ) accepts.

Figure 6: The Emulation Protocol

and beginning by checking if a message belongs to the list. If it does, return whatever was returned the
previous time the algorithm was queried with this message. Otherwise, execute the cardinality approximation
procedure and enter the message and result into the list. The second remark is that since the algorithm is
randomized, the partitioning D is not defined a-priory, but only during execution. The important property
is that there exists some partitioning of the message space that agrees (with probability δ′) with answers
given by SubsetMsgx(γ),D for which all messages in subset i, the number of coins leading to them is within
the correct range.

4.3 The Emulation Protocol

Proposition 4.9. Let Π = 〈P, V 〉 be an r-round interactive proof for language L with ` bits of randomness,
m-bit messages, completeness c, soundness error s, prover running time tP and verifier running time tV .
Suppose that Π ends with the verifier sending its entire randomness to the prover. Then the emulation
protocol described in Figure 6, with parameter 0 < ε < 1

2 is a public-coin interactive proof with the following
properties:

Verifier Efficiency: Running time O(tV), Randomness O (rm)

Prover Efficiency: Running time tP +O
((

m`
ε

)22 · r
)

, Oracle Calls: O
((

m`
ε

)22 · r
)

Number Of Messages: 2r + 1 (r + 1 rounds)

51

Completeness: For every x ∈ L, if for every γ, the prover has access to HashInvδCoinsx(γ) and HashInvδMsgx(γ)

then the probability that the verifier accepts when interacting with the honest prover on input x

is at least c−
(

28rε+O
((

m`
ε

)23 · rδ
))

.

Soundness: If x /∈ L then for any (computationally unbounded) cheating prover M∗, the probability that the

verifier accepts when interacting with M∗ on input x is at most O
(
ε−5r` · s 1

r

)
.

Remark 4.10. For the completeness property it is possible to relax the requirement on the oracles HashInvδCoinsx(γ)

and HashInvδMsgx(γ) such that they are only required to work for random transcripts rather than for all γ, i.e.

for any i ∈ [r] they are only required to work if γ ← Πi
x(U`). This observation is true since in Claim 4.13 we

analyze the protocol as if the previous transcript was chosen at random, and this is the only place in which
these oracles are used in the analysis.

Remark 4.11. Proposition 4.9 assumes that the protocol being emulated ends with the verifier sending over
its entire randomness to the prover. Any protocol can be trivially transformed to one of this form. Therefore
transforming protocols with r rounds that do not end with the verifier revealing its randomness yields
public-coin protocols with the same parameters as in Proposition 4.9, except with 2r + 3 messages (r + 2
rounds).

Proposition 4.9 when taking into consideration the above remark, and Propositions 4.4 and 4.5 yields
the following theorems showing that for every protocol, there are functions such that whenever they are
invertible emulation is possible:

Theorem 5 (Emulation of Doubly-Efficient Interactive Proofs). Let 〈P, V 〉 be a doubly-efficient interactive
proof for language L with completeness c, soundness s, verifier randomness `, r rounds, prover running time
tP and verifier running time tV which ends with the verifier sending its randomness to the prover. Then
there exists a single function f such that if f has an auxiliary-input distributional inverter with error δ
then for every 0 < ε < 1

2 , 〈P, V 〉 can be transformed into a public-coin interactive proof with the following
properties:

Verifier Efficiency: Running time O(tV), Randomness O (rm)

Prover Efficiency: Running time tP + poly(n)

Number Of Messages: 2r + 3 (r + 2 rounds)

Completeness: For every x ∈ L the probability that the verifier accepts when interacting with the honest

prover on input x is c−
(

28rε+O
((

m`
ε

)23 · rδ
))

.

Soundness: If x /∈ L then for any (computationally unbounded) cheating prover M∗, the probability that the

verifier accepts when interacting with M∗ on input x is at most O
(
ε−5r` · s 1

r

)
.

If the inverter for f inverts only for auxiliary inputs of length I ⊆ N, then the proof is complete for x ∈
L ∩ (∪t∈I{0, 1}t).

Theorem 6 (Emulation of Constant-Round Interactive Proofs). Let 〈P, V 〉 be a constant-round interactive
proof for language L with completeness c, soundness s, verifier randomness `, r rounds, prover running time
tP and verifier running time tV which ends with the verifier sending its randomness to the prover. Then
there exists a sequence of 2r + 3 functions (f1, . . . , f2r+3) where fi is dependent on inversion oracles for
(f1, . . . , fi−1), such that if every function is simultaneously auxiliary-input distributionally invertible with
error δ then for every 0 < ε < 1

2 , 〈P, V 〉 can be transformed into a public-coin interactive proof with the
following properties:

Verifier Efficiency: Running time O(tV), Randomness O (rm)

52

Prover Efficiency: Running time tP + poly(n)

Number Of Messages: 2r + 3 (r + 2 rounds)

Completeness: For every x ∈ L the probability that the verifier accepts when interacting with the honest

prover on input x is c−
(

28rε+O
((

m`
ε

)23 · rδ
))

.

Soundness: If x /∈ L then for any (computationally unbounded) cheating prover M∗, the probability that the

verifier accepts when interacting with M∗ on input x is at most O
(
ε−5r` · s 1

r

)
.

If the inverters invert simultaneously only for auxiliary inputs of length I ⊆ N, then the proof is complete
for x ∈ L ∩ (∪t∈I{0, 1}t).

Remark 4.12. Theorem 6 works only for constant-round proofs due to a dependency on the functions
(f1, . . . , f2r+3). In more detail, for every i, the running time of fi is polynomially related to the running time
of fi−1. Thus the running time of f2r+3 is exponential in r. Since the honest prover uses this function in
its computations, this limits the number of rounds that can be supported while keeping the prover overhead
polynomial.

4.3.1 Efficiency

The protocol makes r iterations in Step 2. In every iteration, the running time and number of random
bits used by the verifier while running the sampling via subsets protocol are O (m), and the running time

of the honest prover in the sampling via subsets protocol is O
(
µm3I4

ε3

)
= O

(
m4`4

ε7

)
and it makes the

same amount of oracle calls to HashInvδ
′

Messx(γ) and Subsetδ
′

Msgx(γi−1),D. By Proposition 4.7, due to how we

implement it, each call to Subsetδ
′

Msgx(γi−1),D takes time O
((

m`
ε

)15
)

and makes the same number of oracle

calls. Additionally, the prover executes P once, taking time tP,i. Therefore in iteration i, the prover takes

time tP,i+O
((

m`
ε

)22
)

Thus, in Step 2 altogether, the verifier uses randomness and runs in time O(rm), and

the prover runs in time tP +O
((

m`
ε

)22 · r
)

and makes O
((

m`
ε

)22 · r
)

calls to its oracles. Finally, in Step 3

the verifier tests that the transcript generated is consistent and accepting, which takes time tV . Noting that

rm ≤ tV , altogether, the verifier runs in time O(tV), and the verifier runs in time tP +O
((

m`
ε

)22 · r
)

.

The sampling via subsets protocol is a 3 message protocol, starting and ending with a prover message.
The prover then sends β, which can be merged with the final message of the sampling via subsets protocol,
and so the protocol has 3 messages in each iteration, beginning and ending with a prover message. We
can merge the prover’s messages at the beginning and ending of each iteration, except for the first prover
message. Since the final message of the original protocol is assumed to be a verifier message (its randomness),
there is no final prover message. Therefore there are 2r + 1 messages in total.

4.3.2 Completeness

Our goal is to show that if the prover is honest, the transcript that is generated behaves like a transcript
in the original protocol, and that in addition the size claim (the N values) is always a lower-bound on the
number of coins consistent with the protocol so far.

This will be done by induction - assuming that γi−1 is close to a random transcript up till round i − 1,
and that Ni−1 is a lower-bound on the number of coins that are consistent with γi−1, we show that γi is
close to a random transcript up till round i, and Ni is a lower-bound on the number of coins consistent with
γi.

Claim 4.13. Fix i ∈ [r] and let d = 14ε + O
((

m`
ε

)23 · δ
)

. Suppose that γi−1 ← Π
2(i−1)
x (U`) is a random

partial transcript of the original protocol up to round i−1, and Ni−1 ≤ |Coinsx(γi−1)|. Then with probability
1− d:

53

1. The γi is drawn from a distribution that is of statistical distance at most d from Π2i
x (U`).

2. 1 ≤ Ni ≤ |Coinsx(γi)|.

Remark 4.14. It is actually true that (γi, Ni) is d-close to a distribution (W1,W2) such that W1 is a random
transcript consistent with γi−1 and if γ′, N ′ are drawn from (W1,W2) then N ′ ≤ |Coinsx(γ′)|. Using this
description will result in a slightly better bound, but the above description is easier to digest.

Proof. We wish to use Corollary 3.17 to show that the output of the sampling via subsets protocol is close
to sampling from Msgx(γi−1) along with its subset index. In order to invoke Corollary 3.17, it must be the
case that for every k ∈ [I]:

1. (1 + ε)3 = µ ≥ maxα∈Supp(Dk) Pr[Msgx(γi−1)=α]

minα∈Supp(Dk) Pr[Msgx(γi−1)=α] .

2. There exists a distribution Zk over Supp(Dk) such that ∆ (Dk, Zk) ≤ 10ε.

3. For every p such that 0 < p ≤ Pr[D ∈ Supp(Dk)]: p(1 + ε)−(k+1)Ni−1 = f(k, p) ≤ 2H∞(Zk) where Zk
is the distribution from the previous item.

Fix k ∈ [I]. The first property is true by the definition of the partitioning: The prover has oracle
access to HashInvδCoinsx(γi−1) and HashInvδMessx(γi−1), and so by Section 4.2 this allows it to implement

Subsetδ
′

Msgx(γi−1),D for δ′ = 2−
1
ε ·
(
ε
m`

)8
+O

((
m`
ε

)15 · δ
)

and a partitioning such that if α ∈ Supp(Dk), then:

(1 + ε)k−2 ≤ |Coinsx(γi−1, α)| ≤ (1 + ε)k+1

Property 1 is true since the number of coins that lead to a message is precisely equivalent to its probability
in the message distribution. We have yet to show that items 2 and 3 are true. We define Zk as the uniform
distribution over all messages given in Supp(Dk). We use Claim 2.15 to show that Dk is close to flat. Set
z = (1 + ε)k+1 and let xα = |Coinsx(γi−1, α)|. Notice that:

(1− 5ε)xα < xα ≤ zα ≤ xα(1 + ε)3 ≤ xα(1 + 5ε)

Where (1+ε)3 < 1+5ε since ε < 1
2 . Further notice that for every α ∈ Supp(Dk), Pr[Zk = α] = z∑

α′∈Supp(Dk) z

and Pr[Dk = α] = xα∑
α′∈Supp(Dk) xα′

. Therefore by Claim 2.15, Dk is 10ε-close to Zk, the flat distribution

over the same support, proving Item 2.
We now turn to showing that Item 3 is true, namely that, given p ≤ Pr[Msgx(γi−1) ∈ Supp(Dk)]:

− log
(
p(1 + ε)−(k+1)Ni−1

)
= log f(k, p) ≤ H∞ (Zk)

There are at least Ni−1 coins which are consistent with γi−1, which since p ≤ Pr[Msgx(γi−1) ∈ Supp(Dk)]
implies that there are at least pNi−1 different coins leading to the support of Dk. This is because the message
distribution is defined as the probability that a message is output by choosing a random consistent coin, and
the distribution on coins is uniform. Each message in Dk has at most (1 + ε)k+1 consistent coins leading to

it and so the support of Dk is of size at least pNi−1

(1+ε)k+1 . Zk and Dk have identical supports, and since Zk
is uniform, its min-entropy is equal to the logarithm of the inverse of the size of its support. Therefore the
min-entropy of Zk is at least − log

(
p(1 + ε)−(k+1)Ni−1

)
.

We have shown that all of the requirements for Corollary 3.17 are held, which implies that the pair (αi, j)
are drawn from a distribution of statistical distance at most

10ε+ 3ε+O

((
mIµ

ε

)4

· δ′
)

= 13ε+O

((
m`

ε

)8

· δ′
)

= 14ε+O

((
m`

ε

)23

· δ

)
= d

54

from the distribution of drawing a message from Msgx(γi−1) along with the subset to which it belongs.
Thus, except with probability d, αi ∈ Supp(Dj), meaning that (1 + ε)j−2 ≤ |Coinsx(γi−1, αi)|. Noting

that it is always true that 1 ≤ |Coinsx(γ, α)| (since αi is consistent with γi−1), settingNi = max{1, (1+ε)i−2}
we have that, indeed, Ni ≤ |Coinsx(γi−1, αi)|. Since the prover’s messages do not affect the number of coins
consistent with the transcript, Coinsx(γi−1, αi) = Coinsx(γi−1, αi, βi). Together we have that except with
probability d, Ni ≤ |Coinsx(γi)|.

Since (αi, j) are close to being drawn from Msgx(γi−1) and the subset to which it belongs, we have
that αi is of statistical distance at most d from Msgx(γi−1). Then γi is distributed at most d-far from
(γi−1,Msgx(γi−1), P (γi−1,Msgx(γi−1))) (i.e. the distribution of continuing the transcript consistently with
γi−1). Since γi−1 was a random transcript up till round i− 1, this distribution is identical to Πi

x(U`).

As in Claim 4.13, we let d = 14ε+O
((

m`
ε

)23 · δ
)

. Since γ0 is empty in both the real and the emulated

execution, and all 2` coins are consistent with the empty transcript, the requirement needed to use Claim 4.13
for i = 1 is always true. Thus by induction, with probability 1− rd:

1. The distribution from which γr is drawn and the distribution of random transcripts, Πx(U`) are of
statistical distance at most rd.

2. 1 ≤ Nr ≤ |Coinsx(γr)|

We now turn to analysing the probability that in Step 3 of the protocol the verifier accepts if γr =
(α1, β1, . . . , αr−1, βr−1, ρ) is a random transcript and if Nr is a correct lower bound. The verifier tests
that Nr = 1, that for every t ≤ r, αt is the next verifier message implied by the randomness ρ and transcript
up to round t− 1. The transcript γr defines prefix transcripts γi for every 0 ≤ i < r. If γr is a random tran-
script of the protocol, then it is certainly true that for every i: V (γi−1; ρ) = V (α1, β1, . . . , αi−1, βi−1; ρ) = αi.
Therefore this test of the verifier will pass. To see why Nr = 1 recall that a transcript of the protocol ends
with the verifier sending its random coins ρ. Therefore there can only be one set of coins that are consistent
with a full transcript. Therefore |Coinsx(γr)| = 1. Since Nr is a correct lower bound of |Coinsx(γr)| it must
be that Nr = 1. Finally, the verifier tests that the original verifier accepts on transcript γr and randomness
ρ. Since γr is a random transcript, by the completeness of the original protocol, the verifier will accept with
probability c.

Taking into account that γr is not random, but only rd-close to random, and that the event that Nr is a
good bound only happens with probability 1− rd, we have that the verifier accepts with probability at least:

c− 2rd = c−

(
28rε+O

((
m`

ε

)23

· rδ

))

4.3.3 Soundness

Recall that for a transcript γ, the set Accx (γ) contains the coins that are consistent with γ such that if the
verifier were to use them in the original protocol, the prover would have a winning strategy. That is:

Accx(γ) = {ρ|ρ ∈ Supp(Coinsx(γ))|∃γ′ s.t. V (γ, γ′; ρ) = 1 and ρ ∈ Supp(Coinsx(γ, γ′))}

By the soundness property of the original protocol, |Accx (∅)| · 2−` ≤ s. In each round of the emulation
protocol, the prover helps the verifier to sample a new message. A malicious prover needs the protocol to
end with the verifier holding a string in Accx(∅), and should therefore try to steer the verifier in such a
way as to maximize the probability that this happens. For each round, 0 ≤ i ≤ r, we define the random
variable of the gap gi = Ni

|Accx(γi)| . We note that g0 = N0

|Accx(∅)| ≥
1
s . In the final stage of the protocol, the

verifier tests that Nr = 1 and will otherwise reject. Since there is only one set of coins consistent with γr
(i.e. |Accx (γr)| ≤ 1), in order for the verifier to accept it must be that gr = 1. We additionally note that in
order for the verifier to accept it must be that ρr is consistent with all of the previous partial transcripts.
This implies that all the partial transcripts are consistent with each other- there exists some set of random

55

coins which can explain each and every step (in particular, the random coins which have made the verifier
accept).

In Claim 4.15 we show that for every round, with high probability the gap will not shrink by much. Since
the gap is unlikely to shrink, the prover is unlikely to be able to bring the gap all the way from 1

s to 1.

Claim 4.15. Fix i ∈ [r], a partial transcript γi−1 and Ni−1 ∈ [2`]. Set gi−1 = Ni−1

|Accx(γi−1)| . Then for every

0 < λ ≤ 1:
Pr [gi ≤ λgi−1] = O

(
ε−5`λ

)
where gi = Ni

|Accx(γi)| is the gap after the end of the iteration and the probability is over the randomness of

the verifier in the iteration of the protocol.

Proof. Let I = log1+ε(2
`). We would like to upper bound the probability that the prover’s claim shrinks by

a λ-factor relative the number of consistent accepting coins. For 1 ≤ j ≤ I define

Sj =

{
α ∈ {0, 1}m s.t.

max
{

1, (1 + ε)j−2
}

|Accx (γi−1, α)|
≤ λgi−1

}
The set Sj contains all the messages which would decrease the gap by too much if subset j was chosen.
Invoking the soundness property of the sampling via subsets protocol, Corollary 3.17, we have that for every
1 ≤ j∗ ≤ I the probability that the protocol outputs (j∗, ρ) such that ρ ∈ Sj∗ is bounded from above by

8

ε3
· |Sj∗ |

minp′> ε
6I
f(j∗, p′)

=
48I

ε4
· |Sj

∗ |(1 + ε)i+1

Ni−1

We therefore focus on finding an upper bound on |Sj | for every possible value of j. Note that S1 and S2 are
identical and so we only need to analyze values of j of size at least 2.

By definition every α ∈ Sj has |Accx (γi−1, α)| ≥ (1+ε)j−2

λgi−1
. Since there are at most |Accx (γi−1)| accept-

ing coins consistent with γi−1, the number of messages in Sj is at most (1 + ε)−(j−2)λgi−1 |Accx (γi−1)|.
Substituting gi−1 = Ni−1

|Accx(γi−1)| this gives us that |Sj | ≤ (1 + ε)−(j−2)λNi−1. Therefore, if the value j is

chosen, the probability that the verifier ends up with an element in Sj is bounded by

48I

ε4
· |Sj |(1 + ε)i+2

Ni−1
≤ 48I(1 + ε)3

ε4
λ = O

(
ε−4Iλ

)
Recalling that I = log1+ε(2

`) = O(`ε), this value is bounded by O
(
ε−5`λ

)
.

Now, using Claim 4.15 we can bound the probability that the prover manages to make the verifier accept.
Since the prover must have gr = 1 in order to make the verifier accept, we will bound the probability that
the gap reduces from g0 = 1

s all the way to gr = 1. Using the union bound:

Pr [∃1 ≤ i ≤ r : gi ≤ λ · gi−1] ≤ O
(
ε−5r`λ

)
Therefore,

Pr [gr ≤ λr · g0] ≤ Pr [∃1 ≤ i ≤ r : gi ≤ λ · gi−1]

= O
(
ε−5r`λ

)
Since g0 = 1

s , and we wish for gr > 1, we can set λ = Θ(s
1
r) and get

Pr [gr ≤ 1] = O
(
ε−5r`s

1
r

)
We reiterate that if gr > 1, then the verifier will reject. Therefore the verifier will accept with probability at

most O
(
ε−5r`s

1
r

)
.

56

Piecemeal Emulation Protocol

Joint Input: x ∈ {0, 1}n

Parameter: 0 < ε ≤ 1
2

Prover Oracle Access: Approx, an ε-approximator for the protocol being emulated.

1. Let γ0 = ∅, and N0 = 2`.

2. For i = 1 to 2rm:

(a) Prover: Let N0
i ← Approx(γi−1, 0) and N1

i ← Approx(γi−1, 1). If i = 2rm then for every bit b
such that N b

i > 1, set N b
i = 1. Send N0

i and N1
i to the verifier.

(b) Verifier:

i. Test that Ni−1

N0
i +N1

i
≤ 1 + 3ε. Reject otherwise.

ii. Randomly choose a bit b ∈ {0, 1} from the Bernoulli distribution where 0 is chosen with

probability
N0
i

N0
i +N1

i
. Send b to the prover.

(c) Both parties set Ni = N b
i and γi = (γi−1, b).

3. Parse γ2rm into m-bit chunks γ2rm = α1, β1, . . . , αr−1, βr−1, ρ, where ρ is a set of random coins.

4. The verifier accepts if 0 < Nrm ≤ 1, Vx(γrm) accepts and if for every j ≤ r: αj =
Vx (α1, β1, . . . , αj−1, βj−1; ρ).

Figure 7: Piecemeal Emulation Protocol

5 Piecemeal Emulation Protocol

The piecemeal emulation protocol is built of iterations, where in each iteration the two parties add a single
bit to the transcript. Each iteration starts with a partial transcript γi−1 and a claim Ni−1 on the number of
coins that are consistent with γi−1, |Coinsx(γ)|.8 The prover sends the verifier two values N0

i and N1
i , where

each one is supposed to be the number of random coins consistent with the choice of the corresponding bit.
The verifier tests that the sum of the values is not too far from Ni−1 and chooses one of the the bits based
on their relative weight. The bit corresponding to the chosen value b is added to the transcript, and Ni is
set to equal N b

i . This is done until the two parties have constructed an entire transcript of the protocol. We
begin by defining what type of approximation algorithm the honest prover uses, and then state the theorem.

Definition 5.1 (ε-Approximator). Let L be a language and 〈P, V 〉 be an interactive proof for L. An ε-
approximator for 〈P, V 〉, denoted Approx, is a randomized algorithm such that for every x ∈ L and partial
transcript γ:

Approx(γ) ∈ (1± ε) |Coinsx(γ)|

Theorem 7. Let L be a language, 〈P, V 〉 be an interactive proof for L with r rounds, completeness c,
soundness error s, message length m, verifier randomness ` and verifier running time tV and let 0 ≤ ε ≤ 1

2 .
Suppose there exists an ε-approximator for 〈P, V 〉 with running time tA. Then there exists a public-coin
interactive proof for L with the following properties:

Verifier Efficiency: Running time tV +O (rm`), Randomness O (rm`).

Prover Efficiency: Running time O(rm · tA), Oracle Calls O(rm).

8recall that Coinsx(γ) is the set of coins that are consistent with γ, see Definition 2.9 for more details

57

Number Of Messages: 4rm (2rm rounds).

Completeness: For every x ∈ L the probability that the verifier accepts when interacting with the honest
prover is at least c− 6rmε.

Soundness: For any x /∈ L and (unbounded) cheating prover M∗ the probability that the verifier accepts when

interacting with M∗ on input x is at most s · (1 + 3ε)
2mr

.

Remark 5.2. It is possible to have a trade-off between the number of rounds, completeness and soundness and
the rest of the parameters if rather than constructing the transcript bit-by-bit it is constructed t = O(log n)
bits at a time. The prover sends 2t values in each round, and the verifier similarly to the bit-wise case tests
that their sum is not too far from the previous claim. The verifier then chooses a set of t bits randomly. This

would result in a public-coin protocol with 2rm
t rounds, completeness c− 6rmε

t , soundness error s·(1 + 3ε)
2mr
t

prover running time O(2trm · tA), O(2trm) prover oracle calls and verifier running time tV +O(2trm`).

5.1 Efficiency

The protocol is dominated by 2rm iterations. In each iteration the verifier receives 2 strings of length O (`).
It then does a simple test, and chooses one of the strings via weighted Bernoulli distribution. The verifier,
then, runs in time O (mr`) in Step 2. In Step 4 the verifier tests consistency and tests that V accepts, which
takes time tV . Altogether the verifier runs in time tV + O(mr`) and uses O(mr`) bits of randomness. The
prover, in each iteration makes two calls to Approx takes time 2tA and returns strings of length `. Therefore
the prover runs in time O (mr` · tA).

In each iteration of Step 2, there is one prover message, and one verifier message. Since there are 2rm
iterations, there are a total of 4rm messages sent in the protocol.

5.2 Completeness

We start our analysis by showing that if we begin iteration i of Step 2 of the protocol with γi−1 and Ni−1

such that Ni−1 is a good approximation of |Coinsx(γi−1)|, then the parties will end up with γi and Ni such
that Ni is a good approximation of |Coinsx(γ)|:

Claim 5.3. Fix x ∈ L and 1 ≤ i ≤ 2rm. Let γi−1 ← 〈P, V 〉 (x, U`)1,...,i−1 be the first i bits of a random
transcript of the original protocol, and Ni−1 ∈ (1 ± ε) |Coinsx(γi−1)|. Then the verifier will not reject in
round i and end up with a transcript γi and value Ni such that:

• γi is drawn from a distribution that is of statistical distance at most 3ε from 〈P, V 〉 (x, U`)1,...,i condi-
tioned on the first i− 1 bits equalling γi−1.

• Ni ∈ (1± ε) |Coinsx(γi)|.

Proof. By assumption on Approx, N0
i ∈ (1± ε) |Coinsx(γi−1, 0)| and N1

i (1± ε) |Coinsx(γi−1, 1)|. Recalling
that Ni−1 ∈ (1±) |Coinsx(γi−1)| and since Coinsx(γi−1) = Coinsx(γi−1, 0)∪Coinsx(γi−1, 1), it is true that:

Ni−1

N0
i +N1

i

≤ 1 + ε

1− ε
· |Coinsx(γi−1)|
|Coinsx(γi−1, 0)|+ |Coinsx(γi−1, 1)|

=
1 + ε

1− ε
≤ 1 + 3ε

Therefore the verifier’s test in Step 2.b.i will pass. Now note that whichever bit b is chosen, it is true that
Ni = N b

i ∈ (1± ε) |Coinsx(γi−1, b)|.
All that remains is to show that the transcript is distributed close to a random one. Let p0 be the

probability that 〈P, V 〉 (x, U`)1,...,i ends with 0 conditioned on the first i− 1 bits being equal to γi−1. Then:

p0 =
|Coinsx(γi−1, 0)|

|Coinsx(γi−1, 0)|+ |Coinsx(γi−1, 1)|

58

Due to the fact that:

N0
i

N0
i +N1

i

∈
(

1− ε
1 + ε

,
1 + ε

1− ε

)
· |Coinsx(γi−1, 0)|
|Coinsx(γi−1, 0)|+ |Coinsx(γi−1, 1)|

We have that the probability that 0 is chosen is within the range (1−ε
1+ε ,

1+ε
1−ε)p0, which is contained within

the (1± 3ε)p0. Defining p1 similarly to p0 but for the bit 1 we have that the probability that 1 is chosen is
within the range (1± 3ε)p1. Then the statistical distance between the choice of bit for a real transcript and
the distribution from which the bit would be chosen in the real protocol conditioned on γi−1 is at most:

1

2
|(1 + 3ε)p0 − p0 + (1 + 3ε)p1 − p1| < 3ε

The final iteration, when i = 2rm, is very slightly different, since the verifier may change the values N0
i

and N1
i if they are larger than 1. For every bit b′ ∈ {0, 1}, |Coinsx(γi−1, b

′| is either 0 or 1. Therefore if

N b′

i ∈ (1±ε) |Coinsx(γi−1, b
′)| and N b′

i > 1, it must be that |Coinsx(γi−1, b
′)| = 1, and so the approximation

is correct. The rest of the analysis is identical.

We now note that in round i = 0, γ0 is distributed identically to that of the original transcript as it is the
empty transcript, and there are always 2` strings consistent with this transcript. Thus, using the the above
claim inductively where in round i the previous transcript is 3(i− 1)ε-close to random, we get that the final
transcript, after 2mr rounds is 6rmε-close to being random. All that remains is to show that the verifier’s test
in Step 4 will pass supposing γ2rm = α1, β1, . . . , αr−1, βr−1, ρ is a random transcript. For a random transcript
of the original protocol it will always be the case that for every j ≤ r: αj = Vx (α1, β1, . . . , αj−1, βj−1; ρ).
By the completeness property of the original protocol the verifier will accept with probability at least c.
Furthermore, due to the honest prover making sure in Step 1 that in the final iteration both N0

2rm and N1
2rm

are bounded by 1, this test of the verifier will also pass. Thus if γ2rm were a random transcript, the verifier
would accept with probability at least c. Since the transcript is 6rmε-close to random, this event happens
with probability at least c− 6rmε.

5.3 Soundness

We begin by showing in Claim 5.4 that in a given round if the ratio between the number of accepting
coins and the number of coins that the prover claims are consistent with the transcript transcript is small,
then the probability that the verifier ends up accepting is small. Recall that Accx(γ) is the set of coins
for which the protocol has a legal accepting transcript (see Definition 2.10). The claim implies that the

probability that the verifier accepts by the end of the protocol is at most |Acc(γ0)|
N0

· (1 + 3ε)
2rm

. Noting that
|Acc(γ0)|

N0
= |Acc(∅)|

2`
= s, this implies that the probability that a malicious prover convinces the verifier is at

most s · (1− 3ε)
2rm

.

Claim 5.4. Fix 1 ≤ i ≤ 2rm, Ni−1 and γi−1. Then the probability that the verifier accepts is at most
|Acc(γi−1)|

Ni−1
· (1 + 3ε)

2rm−i
.

Proof. We prove the claim by reverse induction, starting with i = 2rm. Before beginning note that a full
transcript is only accepting if it is also consistent with the string at the end. This means that for every
partial transcript γ, Acc(γ) = Acc(γ, 0) ∪Acc(γ, 1).

Basis: We analyze the case of i = 2rm and show by case analysis that the probability that the verifier

accepts is at most (1 + 3ε) · |Acc(γi−1|
Ni−1

. Since we are deriving the final bit of the transcript, we have that

|Acc(γi−1)| ∈ {0, 1, 2} - i.e. the number of choices that will lead to an accepting transcript is 0, 1 or 2. We
have a number of options:

1. |Acc(γi−1)|
Ni−1

= 0: This implies that |Acc(γi−1)| = 0 and so there is no extension to to the transcript that

will make the verifier accept. Then no matter what the prover does the verifier will reject.

59

2. |Acc(γi−1)|
Ni−1

≥ 1
1+3ε : In this range of values, the claim is trivial as (1 + 3ε) · |Acc(γi−1|

Ni−1
≥ 1.

3. 0 < |Acc(γi−1)|
Ni−1

< 1
1+3ε : In order to cause the verifier to accept, the prover must send N0

i and N1
i that

satisfy 1
N0
i +N1

i
≤ 1

Ni−1
· (1 + 3ε). There are two options for the value of |Acc(γi−1)|:

(a) |Acc(γi−1)| = 1: Then there is only one bit b′ for which the verifier will accept. The probability
that bit b′ is chosen (and therefore that the verifier accepts) is:

N b′

i

N0
i +N1

i

≤ 1

N0
i +N1

i

≤ 1

Ni−1
· (1 + 3ε) =

|Acc(γi−1)|
Ni−1

· (1 + 3ε)

(b) |Acc(γi−1)| = 2: In this case we have that Ni−1 > 2 · (1 + 3ε). Since Ni−1

N0
i +N1

i
≤ 1 + 3ε this

implies that N0
i + N1

i > 2. Recall that in order to cause the verifier to accept, it must be that
0 ≤ N2rm ≤ 1. Since N0

i +N1
i > 2, only one of the two values can be smaller or equal to than 1

simultaneously and so, as in the previous case, there is only one bit b′ for which the verifier will
accept. Finally, the probability that the verifier accepts is:

N b′

i

N0
i +N1

i

≤ 1

N0
i +N1

i

≤ 1

Ni−1
· (1 + 3ε) <

|Acc(γi−1)|
Ni−1

· (1 + 3ε)

Induction Step: Suppose that in iteration i + 1, the verifier accepts with probability at most |Acc(γi)|Ni
·

(1 + 3ε)2rm−(i+1). We show that this implies that in round i the verifier accepts with probability at most
|Acc(γi−1)|

Ni−1
· (1 + 3ε)2rm−i. The prover sends two values, N0

i and N1
i . If Ni−1

N0
i +N1

i
> 1 + 3ε then the verifier

rejects, and so this must not be the case. Suppose that the verifier chose bit b, which happens with probability
Nbi

N0
i +N1

i
. Then by the induction hypothesis, the probability that the verifier accepts is at most |Acc(γi−1,b)|

Nbi
·

(1 + 3ε)2rm−(i+1). Therefore the probability that the verifier chooses bit b and the prover accepts afterwards
is at most:

N b
i

N0
i +N1

i

· |Acc(γi−1, b)|
N b
i

· (1 + 3ε)
2rm−(i+1)

=
|Acc(γi−1, b)|
N0
i +N1

i

· (1 + 3ε)
2rm−(i+1)

≤ |Acc(γi−1, b)|
Ni−1

· (1 + 3ε)
2rm−i

Where the final inequality is due to the fact that Ni−1

N0
i +N1

i
> 1 + 3ε. Then, to conclude:

Pr[Verifier Accepts] =
∑

b∈{0,1}

Pr[b chosen] Pr[Verifier Accepts when b chosen]

≤
(
|Acc(γi−1, 0)|

Ni−1
+
|Acc(γi−1, 1)|

Ni−1

)
· (1 + 3ε)

2rm−i

=
|Acc(γi−1)|

Ni−1
· (1 + 3ε)

2rm−i

6 Bipartiteness With Public-Coins Via the Piecemeal Protocol

In this section we give a concrete language and private-coin protocol with an efficient prover in the Interactive
Proofs of Proximity (IPP) model that can be transformed using our piecemeal emulation protocol into a
public-coin protocol. An ε-Proof of Proximity is similar to an interactive proof for a promise problem, except
that the verifier is given limited access to the input. For further discussion and motivation on the IPP model
see [RVW13]. We begin by introducing the bounded degree model:

60

Private-Coin Bipartiteness Protocol [RVW13]

Joint Input: A graph G on n vertices and bounded degree d given in the bounded-degree model.

1. Set L = Θ(log n).

2. Verifier: Pick a uniformly random vertex s ← [n], and perform a random walk of length L on G
starting at s and ending at v. Let b ∈ {0, 1} be the parity of real (non “self-loop”) steps in the
walk. Send (s, v) to the Prover.

3. Prover: Receive (s, v). Let p ∈ {0, 1} be the parity of the shortest path between s and v. Send p
to the Verifier.

4. Verifier: Accept if and only if b = p. Send all randomness used to the prover.

Figure 8: Private-Coin Bipartiteness Protocol

Definition 6.1 (The Bounded Degree Model). The input is an undirected n-vertex graph G = ([n], E), of
(constant) maximum degree d. The graph is represented as a function g : [n]×{1, . . . , d} → ([n]∪⊥), which
on input (v, i) outputs u ∈ [n] if u is the i-th neighbour of v (or ⊥ if v has fewer than i neighbours). Since
the degree is bounded by d, the number of (undirected) edges is at most d · n/2. The distance between two
graphs the fraction of edges on whose presence or absence they disagree. Note that by this definition, the
distance between two different graphs is at least 2

nd and at most 1.

Definition 6.2 (Random Walk). For this section, a random walk on a graph is always as follows: In each
step stay at the current vertex with probability 1/2 and otherwise walk a random neighbour. Note that every
step in the walk takes at most log d + 1 bits of randomness. Let Step be the function that takes in a vertex
u ∈ [n] and log d+ 1 bits of randomness and outputs the next step in a walk from u.

Definition 6.3 (Well-Mixing Graph). We say that a graph G with n nodes is well-mixing for random walks
of length L = L(n) if for any nodes s, v ∈ [n], the probability that a random walk of length L starting at s
reaches node v is at least 1

2n .

Consider the following promise problem Πε = (ΠY
ε ,Π

N
ε) parametrised by ε due to Rothblum, Vadhan

and Widgerson [RVW13]. The input is a graph G with n vertices and bounded degree d ∈ N.

• ΠY
ε : “YES” instances of the problem are bipartite graphs.

• ΠN
ε : “NO” instances are graphs that are ε-far from bipartite and are in addition well-mixing for walks

of length logn.

Remark 6.4. We stress that the notion of well-mixing considered in this work refers to random walks which
include self-loops (as described in Definition 6.2). This definition of random walks is the standard one in prior
work on this problem [GR99, GR02, RVW13]. Note that a bipartite graph can be “well mixing” for such
walks, and as such the additional constraint that NO cases are also ε-far from bipartite is crucial (otherwise
the YES and NO cases might intersect).

There exists a private-coin prover-efficient ε-Proof of Proximity for Πε:

Theorem 8 ([RVW13] From the proof of Theorem 5.1). For any specified ε = ε(n), the protocol described
in Figure 8 is a private-coin interactive proof of ε-proximity in the bounded degree model for Πε with the
following properties:

Verifier Efficiency: Running time Θ(log n), Randomness Θ(log n), Query complexity Θ(log n).

Prover Efficiency: Running time poly(n).

Number Of Messages: 3.

61

Communication Complexity: Θ(log n).

Completeness: For every G ∈ ΠY
ε the probability that the verifier accepts when interacting with the honest

prover is 1.

Soundness: For any G ∈ ΠN
ε and (unbounded) cheating prover P ∗ the probability that the verifier accepts

when interacting with P ∗ on input x is at most 1−Θ(ε).

Now consider how to convert the protocol of Figure 8 to use public-coins with an efficient prover. Suppose
we want to use Goldwasser and Sipser’s protocol [GS86]. Their protocol is prover-efficient when the verifier
randomness is logarithmic. Using this emulation on an r-round protocol with initial soundness error s and `
bits of randomness, the soundness error of the new public-coin protocol is Θ(` ·s 1

r). In order for this error to
be smaller than 1, it must be that s < `−r (up to constant factors). Due to this fact, we would like to shrink
the soundness error of the original protocol. This can be done by repeating the protocol in parallel a number
of times before emulation. Since, for prover-efficiency, we want to keep the number of verifier random coins
logarithmic, we can only repeat the protocol a constant number of times. Plugging in the properties of the
protocol described in Figure 8, we have that after parallel repetition, in order to keep this error under 1, it
must be that ε ≥ 1 − 1/ polylog(n). We do not know whether this emulation can be used to transform the
protocol to be public-coin while preserving prover efficiency when ε < 1− 1/ polylog(n). Nevertheless, using
the piecemeal protocol described in Theorem 7, we transform the proof of proximity described in Figure 8
into a public-coin proof of proximity for Πε for any ε = ε(n) with polynomial prover running time. For
completeness, we describe the resulting protocol, after slight reordering and optimization for readability, in
Figure 9.

We first show a general corollary of Theorem 7, showing that private-coin IPPs with logarithmic verifier
randomness can always be emulated by the public-coin described in Theorem 7 without affecting completeness
or the soundness error of the protocol.

Corollary 6.5 (Theorem 7 Applied on IPs with log n Randomness). Let L be a language, 〈P, V 〉 be an
interactive proof for L with r rounds, completeness c, soundness error s, message length m, verifier ran-
domness O(log n), verifier query complexity q and verifier running time tV . Then there exists a public-coin
interactive proof for L with the following properties:

Verifier Efficiency: Running time tV +O (rm log n), Randomness O (rm log n), Query complexity q.

Prover Efficiency: Running time O(rmpoly(n)).

Number Of Messages: 4rm (2rm rounds).

Completeness: For every x ∈ L the probability that the verifier accepts when interacting with the honest
prover is at least c.

Soundness: For any x /∈ L and (unbounded) cheating prover M∗ the probability that the verifier accepts when
interacting with M∗ on input x is at most s.

Proof. We first note that the protocol described in Theorem 7 works also for interactive proofs of proximity.
The verifier only queries the input at the end of the protocol when it makes sure that the transcript is legal.
This is done by running the private-coin verifier on the transcript, which means that the public-coin verifier
makes exactly the same number of queries to the input as the private-coin one. Since there are only O(log n)
bits of verifier randomness, a 0-Approximator that runs in poly(n) time can be built for the transcript:
Given a transcript prefix γ, enumerate over all possible choices of random coins for the verifier, and output
the number of coins that lead to transcripts that have γ as their prefix.

Remark 6.6. Notice that everything in the above proof remains identical if the prover has only oracle-access
to its input. Hence, Theorem 7 works also for proofs of proximity.

Using Corollary 6.5 and Remark 6.6 on the protocol given in Theorem 8 we obtain a public-coin protocol
for the “bipartiteness” problem Πε:

62

Theorem 9 (Public-Coin Protocol for Πε). For any specified ε = ε(n), there is a public-coin interactive
proof of ε-proximity in the bounded degree model for Πε with the following properties:

Verifier Efficiency: Running time polylog(n), Randomness polylog(n), Query complexity Θ(log n).

Prover Efficiency: Running time poly(n).

Number Of Messages: Θ(log n).

Communication Complexity: polylog(n).

Completeness: For every G ∈ ΠY
ε the probability that the verifier accepts when interacting with the honest

prover is 1.

Soundness: For any G ∈ ΠN
ε and (unbounded) cheating prover P ∗ the probability that the verifier accepts

when interacting with P ∗ on input x is at most 1−Θ(ε).

Proof. We plug the properties described in Theorem 8 into Corollary 6.5.

63

Public-Coin Bipartiteness Protocol

Joint Input: A graph G on n vertices given in the bounded-degree model.

Set L = Θ(log n).

Choose source:

1. Verifier: Choose s← [n] and send it to the Prover.

Choose target:

1. Prover: Go over all (2d)L different possible random coins. For every set of coins, follow
a walk on G of length L starting at s such that in every step we to each neighbour with
probability 1

2d , and with the remaining probability stay at the current vertex. Let S be the
set of all vertices reached during these walks. Notice that |S| = O(log n). For every u ∈ S let
Nu be the number of walks which led to a path that ended in vertex u. Send the set S and
all the values Nu to the Verifier.

2. Verifier: Test that
∑
u∈S Nu = (2d)L. If false, reject. Otherwise choose v from the distribution

where u ∈ S is chosen with probability Nu∑
t∈S Nt

. Record Nv and send v to the Prover.

Parity Claim:

1. Prover: Send the parity p ∈ {0, 1} of the shortest path between s and v to the Verifier.

Guided Random Walk:

1. Set w = s, N = Nv.

2. For j = 0 to L:

(a) Prover: Let Γ(w) be the neighbours of w. For every z ∈ Γ(w)∪{w} send Nz, the number
of random coins that imply random walks leading from w to v in exactly L − j steps to
the verifier.

(b) Verifier: Receive the values Nz. Test that N =
∑
z N

z. If false, reject. Otherwise choose

a random w′ ∈ Γ(w) ∪ {w} where w′ is chosen with probability Nw
′∑

z N
z . Send w′ to the

prover.

(c) Both parties update w = w′ and N = Nw′ .

3. Let π be the walk of length L taken in the previous step. The verifier queries the graph on
the walk π. If any part of the walk is illegal, or the path does not start at s and end with t,
reject. If the path is legal, then accept if N = 1, and the parity of the non-self-loop steps in
π is equal to p. Otherwise reject.

Figure 9: Public-Coin Bipartiteness Protocol

64

Acknowledgements

We would like to thank Ron Rothblum for making us aware of Kilian’s ideas which in turn developed into
our piecemeal emulation protocol. We would also like to thank Zvika Brakerski and Moni Naor for helpful
comments on the presentation of this work.

References

[Bab85] László Babai. Trading group theory for randomness. In Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages
421–429, 1985.

[BGG+88] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Hρastad, Joe Kilian, Silvio Micali, and
Phillip Rogaway. Everything provable is provable in zero-knowledge. In Advances in Cryptology
- CRYPTO ’88, 8th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 21-25, 1988, Proceedings, pages 37–56, 1988.

[BM89] László Babai and Shlomo Moran. Proving properties of interactive proofs by a generalized
counting technique. Inf. Comput., 82(2):185–197, 1989.

[BRSV18] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Proofs of work from
worst-case assumptions. In Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, pages
789–819, 2018.

[FGM+89] Martin Fürer, Oded Goldreich, Yishay Mansour, Michael Sipser, and Stathis Zachos. On com-
pleteness and soundness in interactive proof systems. Advances in Computing Research, 5:429–
442, 1989.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Advances in Cryptology - CRYPTO ’86, Santa Barbara, California,
USA, 1986, Proceedings, pages 186–194, 1986.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: inter-
active proofs for muggles. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 113–122, 2008.

[GL16] Oded Goldreich and Maya Leshkowitz. On emulating interactive proofs with public coins. Elec-
tronic Colloquium on Computational Complexity (ECCC), 23:66, 2016.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In Proceedings of the 17th Annual ACM Symposium on Theory
of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages 291–304, 1985.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their valid-
ity and a methodology of cryptographic protocol design (extended abstract). In 27th Annual
Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986, pages
174–187, 1986.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, New York, NY, USA, 1 edition, 2008.

65

[Gol18] Oded Goldreich. On doubly-efficient interactive proof systems. Foundations and Trends in
Theoretical Computer Science, 13(3):158–246, 2018.

[GR99] Oded Goldreich and Dana Ron. A sublinear bipartiteness tester for bounded degree graphs.
Comb., 19(3):335–373, 1999.

[GR02] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2002.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof
systems. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May
28-30, 1986, Berkeley, California, USA, pages 59–68, 1986.

[HK13] Thomas Holenstein and Robin Künzler. A protocol for generating random elements with their
probabilities. CoRR, abs/1312.2483, 2013.

[HMX10] Iftach Haitner, Mohammad Mahmoody, and David Xiao. A new sampling protocol and appli-
cations to basing cryptographic primitives on the hardness of NP. Electronic Colloquium on
Computational Complexity (ECCC), 17:1, 2010.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity based
cryptography (extended abstract). In 30th Annual Symposium on Foundations of Computer
Science, Research Triangle Park, North Carolina, USA, 30 October - 1 November 1989, pages
230–235, 1989.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from one-
way functions (extended abstracts). In Proceedings of the 21st Annual ACM Symposium on
Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 12–24, 1989.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of the Tenth
Annual Structure in Complexity Theory Conference, Minneapolis, Minnesota, USA, June 19-22,
1995, pages 134–147, 1995.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39(4):859–868, 1992.

[LR88] Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseudo-
random functions. SIAM J. Comput., 17(2):373–386, 1988.

[MP06] Silvio Micali and Rafael Pass. Local zero knowledge. In Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 306–315, 2006.

[OW93] Rafail Ostrovsky and Avi Wigderson. One-way fuctions are essential for non-trivial zero-
knowledge. In Second Israel Symposium on Theory of Computing Systems, ISTCS 1993, Natanya,
Israel, June 7-9, 1993, Proceedings, pages 3–17, 1993.

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity: del-
egating computation in sublinear time. In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 793–802, 2013.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[Sto83] Larry J. Stockmeyer. The complexity of approximate counting. In Proceedings of the 15th
Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston, Massachusetts,
USA, pages 118–126, 1983.

[Sud07] Madhu Sudan. Advanced Complexity Theory (Lecture 14): http://people.csail.mit.edu/

madhu/ST07/scribe/lect14.pdf. Scribe notes by Nate Ince and Krzysztof Onak, 2007.

66

http://people.csail.mit.edu/madhu/ST07/scribe/lect14.pdf
http://people.csail.mit.edu/madhu/ST07/scribe/lect14.pdf

[Vad00] Salil P. Vadhan. On transformation of interactive proofs that preserve the prover’s complexity. In
Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23,
2000, Portland, OR, USA, pages 200–207, 2000.

[Vad12] S.P. Vadhan. Pseudorandomness. Foundations and Trends(r) in T. Now Publishers, 2012.

A Black-Box Transformations

In this section we show that generic black-box reductions from private-coin proofs to public-coin ones do not
preserve the running time of the prover even in very restricted regimes. Black-box transformations between
private-coin and public-coin proofs are defined as follows:

Definition A.1 (Black-Box Reduction From IP to AM). A black-box reduction from private-coin protocol to
public-coin protocol is a pair of oracle-aided algorithms

〈
MP,V , AV

〉
such that for every language L and every

interactive proof 〈P, V 〉 for L,
〈
MP,V , AV

〉
constitutes a public-coin IP for L where on input x ∈ {0, 1}n M

and A are given input 1n, and oracle access to P (x) and V (x).

Note that in the above definition M and A are not given direct access to the input. Vadhan [Vad00]
showed that if one-way functions exist, then there is no black-box private to public coin reduction that
preserves the running time of the prover. We extend this result to show that it is true for even when
constraining the reduction to work on a much smaller class of private-coin proofs, namely proofs that are
doubly-efficient.

Theorem 10. Assuming the existence of one-way functions, there is no black-box transformation from
doubly-efficient private-coin proofs to doubly-efficient public-coin proofs. Moreover this impossibility extends
to:

• Transformations that result in public coin arguments.

• Transformations that allow the prover black-box access to the verfier-inversion function, i.e. for every
x and partial transcript γ the prover has black-box access to sampling from V −1

x (γ).

Theorem 10 states that there exist interactive proofs for which the prover is efficient, but it is still hard to
transform them in a black-box manner to public-coin proofs. Doubly-efficient proofs exist only for languages
in BPP, and so this result shows that black-box transformations from private to public coin are incredibly
difficult - they are hard even when restricted on languages which are easy to decide.

Organization: We begin in Appendix A.1 by giving an overview of our proof. In Appendix A.2 we
define a promise problem, and in Appendix A.3 show how to construct two distributions of instances of
the aforementioned promise problem for which prover efficiency-preserving reductions will be impossible.
Finally, in Appendix A.4 we prove Theorem 10.

A.1 Overview of The Black-Box Impossibility Result

Recall that a doubly-efficient interactive proof is a proof with the additional requirement that the honest
prover runs in polynomial time. In we show an impossibility result for transformations from private-coin
doubly-efficient proofs to public-coin doubly-efficient proofs that work in a black-box manner. Our result
is inspired by the ideas of Vadhan [Vad00]]. We proceed to overview the ideas behind this result, which
is shown by giving a specific promise problem and a private-coin doubly-efficient interactive proof for this
problem, and showing that in any black-box emulation of the proof the prover must run in super-polynomial
time. d We call the promise problem used to prove our impossibility result “Weak Disjoint Support”. An
instance of this problem consists of three circuits, X0, X1 and I. “YES” instances are those such that the
supports of X0 and X1 are disjoint, and “NO” instances are triples of circuits such that the distributions

67

induced by giving X0 and X1 a uniformly random input are identical. The circuit I acts as a “trapdoor” for
this problem: For any input y, I(y) returns whether or not y belongs to the support of X1. Distinguishing
between “YES” and “NO” cases is, then, easy: Set y = X0(0n) and return that it is a “YES” instance if
I(y) indicates that y /∈ Supp(X1). This language has a simple private-coin doubly-efficient interactive proof
with completeness 1 and soundness error 1

2 : The verifier samples r ← Un and b← {0, 1} and sends Xb(r) to
the prover. The honest prover receives y, and uses I to discover to which support y belongs, and sends this
to the verifier. The verifier accepts if the prover was correct.9

Consider what it would mean to have black-box access to the protocol: The new prover has access to
P and V and the new verifier has access to V . The function V simply receives randomness r and a bit b
and returns Xb(r), and so is equivalent to access to X0 and X1 on any input. P , given input y returns 1 if
y ∈ Supp(X1) and 0 otherwise, and so access to P reduces to access to an oracle that returns whether an
element is in the support of X1 or not - equivalent to access to I. Suppose there exist two distributions DY

and DN over circuits (X0, X1, I) such that: (a) Circuits drawn from DY are “YES” instances of weak disjoint
support (b) Circuits drawn from DN are “NO” instances of weak disjoint support (c) No efficient randomized
algorithm E can, given black-box access to (X0, X1, I) drawn from DY , generate y ∈ Supp(X0)∪ Supp(X1)
that is not the result of a previous query made by E to X0 or X1. (d) It is hard to distinguish between
DY and DN in polynomial time given black-box access only to X0 and X1. Using these distributions it
is possible to show that there is no private-coin to public-coin transformation that preserves the prover’s
running time.

Suppose towards contradiction that there exists a black-box private-coin to public-coin transformation,〈
MP,V , AV

〉
where M is efficient. As described above, access to V can be replaced with access to the inputs

X0 and X1 and access to P can be replaced with oracle access to I. Thus we can treat the protocol as〈
MX0,X1,I , AX0,X1

〉
. We will show that when (X0, X1, I)← DY , the prover MX0,X1,I can be replaced with

an efficient prover M̃X0,X1 that does not access the circuit I, while preserving the probability that the verifier
accepts when interacting with it on these inputs. Notice now two facts: (1) If (X0, X1, I) are drawn from

DY then in
〈
M̃X0,X1 , AX0,X1

〉
the verifier accepts with high probability and (2) If (X0, X1, I) are drawn

from DN then in an execution of
〈
M̃X0,X1 , AX0,X1

〉
the verifier accepts with small probability. We defer

proof of Fact (1) to later. Fact (2) follows directly from the soundness of the protocol
〈
MX0,X1,I , AX0,X1

〉
and property (b) of the distributions. Together, these two facts are sufficient to contradict property (d) of
the distributions as follows: We build a distinguisher BX0,X1 that can tell whether its oracles come from

DY or DN . B emulates the protocol
〈
M̃X0,X1 , AX0,X1

〉
and indicates that the inputs came from DY if the

verifier ends up accepting and that they came from DN otherwise. Due to Fats (1) and (2), B can tell what

distribution its inputs came from with non-negligible probability. Note additionally that since M̃ and A are
efficient so is B.

It remains to specify the prover M̃ and prove Fact (1). M̃ is defined as follows: Given access to oracles
X0 and X1 and input 1n emulate M on input 1n. For every query q made by M to Xb, add the tuple
(Xb(q), b) to a list of prior queries and return Xb(q) as the result to M . Given a query y to I, M̃ first
checks whether its list of prior queries contains (y, b) for some b. If so, it returns b and otherwise returns

0. We now show that when (X0, X1, I) are drawn from DY , M̃X0,X1 convinces the verifier with similar

probability to MX0,X1,I . The only difference between M̃ and M is how they treat queries y to I that are
in Supp(X0) ∪ Supp(X1) and are not the result of a previous call that the prover made to the circuits X0

and X1. Suppose towards a contradiction of property (c) of the distributions that M interacting with A can
generate a query y ∈ Supp(X0)∪Supp(X1) which is not the result of a previous query M made to X0 or X1.
Let q be a bound on the number of queries that M makes to I. We show an algorithm E that contradicts
property (c) of the distributions with probability 1/q: EX0,X1,I chooses i ← [q], runs M giving it random

9A natural question that arises is why the verifier needs the prover, and does not simply use I directly to decide the
language. While in this example it is true that the verifier gains no speedup by delegating the work to the prover, it suffices for
the impossibility result. It is possible to redefine the language in a way that it takes time Θ(nc) to solve trivially, but where
the verifier in the interactive proof still runs in time O(n). The proof of impossibility remains nearly identical.

68

coins as the messages from A and outputs the i’th query that M makes. Let us inspect the distribution of
M ’s view when interacting with A in the protocol. Recall that the view of a party consists of its internal
randomness and all messages received. Since the protocol is public-coin, during the interaction with the
prover all that the verifier does is sample uniformly random coins and send them, and in particular makes no
queries to X0 and X1. Therefore the view of the prover simulated by E is identical to that of the real one.
Notice that whereas in the public-coin setting the view of the prover is simply random coins, in a private-coin
protocol the view of the prover can depend on unknown queries to X0 or X1, made by the verifier (indeed,
the protocol for Weak Disjoint Support described in the beginning of this section uses has property). Now,
whenever M makes a query to y ∈ Supp(X0) ∪ Supp(X1) that has not been previously queried by it, E
succeeds if it chooses i correctly, which happens with probability 1/q, which is at least 1/ poly(n). This
gives a contradiction to property (c) of the distributions. Since we have shown that whenever (X0, X1, I)

are drawn from DY , M cannot generate queries to I for which M̂ would emulate the answers incorrectly,
we conclude that, indeed, M̂ emulates M correctly. This, in turn, means that for such inputs, the verifier

accepts with the same probability in
〈
M̃X0,X1 , AX0,X1

〉
as in

〈
MX0,X1,I , AX0,X1

〉
which, by property (a) of

the distributions and by completeness, is high. This proves Fact (1) as described above.
All that remains is to show that the distributions DY and DN exist. This means constructing X0, X1

and I. At high-level this is done by constructing a family of pseudo-random functions which are invertible
(given the secret key). In the “YES” case we must make sure that X0 and X1 are disjoint and in the “NO”
case they are essentially the same circuit with an additional randomization so that it will be hard to find
two inputs that lead to the same place. Since these functions are invertible it is easy to construct I. We
can make sure that property (c) of the distributions will be true with high probability since X0 and X1 will
be expanding to a high degree, and so it will be hard for any efficient party to find a string in the image of
the circuits that has non-zero probability (i.e. it will be hard to find y such that X−1

0 (y) and X−1
1 (y) are

non-empty).
Finally, we add two observations. The first is that if the circuits X0 and X1 are injective, then the

“trapdoor” circuit I is almost identical to finding preimages of the verifier function V . Specifically, on input
y rather than returning whether it is in the support of X1 or not, I could return X−1

0 (y) and X−1
1 (y). Given

this alteration to I, it is possible to simulate black-box access to V −1 using I, and so a prover that is given
access to I and V −1 can be simulated by one given access only to I. Together with the impossibility result
described above this shows that black-box transformations are hard even when the prover is able to easily
invert V . Our second observation is that the impossibility holds even if the resulting protocol is only a
computationally-sound argument rather than a (statistically-sound) proof. We do this by looking closely at
the proof of impossibility. To prove that B will reject instances from DN with high probability we claimed
that M given access to X0, X1 and the efficiently simulated I cannot convince the public-coin verifier. Since
X0 and X1 are efficient, this hybrid prover is efficient. Therefore even if we only assume that the emulated
protocol is secure against computationally bounded provers we get the same contradiction.

Remark A.2. Vadhan also extended his impossibility to apply to (honest-verifier) zero-knowledge, where
the parties additionally have access to the simulator. Getting a similar statement for doubly-efficient zero-
knowledge is intriguing, but the notion of zero-knowledge is not clear in this setting (see e.g. [MP06] or
[BRSV18] for works in this direction), and is beyond the scope of this work.

A.2 Weak Disjoint Support

Vadhan’s result shows that if one-way functions exist, then no black-box reduction exists that can convert
any private-coin interactive proof to a public-coin one while preserving the running time of the prover. A
weakness of his result is that the original private-coin proof for the Disjoint Support language does not seem
to have an efficient prover. This raises the question of whether this result still stands if the original proof was
doubly-efficient (i.e. the honest prover of the private-coin protocol runs in polynomial time for any input).
We answer this question in the affirmative, and extend this impossibility to scenarios where the prover is
given access to other oracles. We do this by a defining a variant of the Disjoint Support problem, which
we call “Weak Disjoint Support”, which has a doubly-efficient private-coin interactive proof but for which,

69

Interactive Proof for wDS

Joint Input: Circuits (X0, X1, I) ∈ wDC

Protocol:

1. Verifier: Choose b← {0, 1} and r ← {0, 1}n uniformly and send y = Xb (r).

2. Prover: Receive y and calculate r0 = I(y, 0) and r1 = I(y, 1). Reply with b′ = 0 if X0 (r0) = y and
otherwise send b′ = 1. In addition, also send r0 and r1.

The values r0 and r1 are sent to give the black-box reduction that has oracle access to P “more power”,
but are not used by the verifier in the original protocol.

3. Verifier: Receive b′, r0, r1. Accept if and only if b′ = b.

Figure 10: Private-Coin Interactive Proof for wDSτ

assuming one-way functions exist, there exists no black-box transformation to a public-coin interactive proof
(indeed, not even a computationally sound argument).

We proceed to define the “Weak Disjoint Support” promise Recall that the disjoint support problem
receives as input two circuits X0 and X1. In “YES” instances, the distributions implied by X0 and X1 are
disjoint, and in “NO” instances they are identical. In weak disjoint support, we add as input another circuit,
I, which is formed in such a way that I can be used to recover the preimage of any element in Supp (X0) or
Supp (X1). This will allow the prover in the private-coin interactive proof to always run in polynomial time,
making this a doubly-efficient interactive proof. Below is a formal definition of the promise problem:

Definition A.3 (Weak Disjoint Support). The Weak Disjoint Support problem, wDS = (wDSY , wDSN) is
as follows: The input is of the form of three circuits (X0, X1, I) such that X0, X1 : {0, 1}n → {0, 1}3n and
I : {0, 1}3n × {0, 1} → {0, 1}n and:

• For the “YES” instances, wDSY : Supp (X0) ∩ Supp (X1) = ∅.

• For the “NO” instances, wDSN : X0 (Un) ≡ X1 (Un).

• In both cases X0 and X1 are injective and for any y ∈ {0, 1}3n, and b ∈ {0, 1}:

I (y, b) =

{
X−1
b (y) y ∈ Supp (Xb)

0n o.w.

Denote by t0, t1 and tI the time required to evaluate X0, X1 and I respectively. It is immediate that this
promise problem is in P, since it can be decided by the simple procedure of running X0 on some arbitrary
value, say 0n, receiving some y, testing whether y ∈ Supp (X1) by evaluating w = I (y, 1), and then testing
whether indeed X1(w) = y. This procedure takes O (tX0

+ tX1
+ tI) time. This problem also has a doubly-

efficient IP with correctness 1 and soundness error 1
2 , shown in Figure 10, where the prover running time

is O (tX0 + tX1 + tI) and the verifier running time is O (max {tX0 , tX1}). Black-box access to the verifier
amounts to black-box access to X0 and X1, and black-box access to the prover represents the following
functionality:

P (y) =

(
0, X−1

0 (y) , X−1
1 (y)

)
y ∈ Supp (X0) ∩ Supp (X1)(

0, X−1
0 (y) , 0n

)
y ∈ Supp (X0) \Supp (X1)(

1, 0n, X−1
1 (y)

)
y ∈ Supp (X1) \Supp (X0)

(1, 0n, 0n) o.w.

70

A.3 Constructing the Distributions

Similarly to Vadhan, we define two efficiently sampleable distributions, Dn
Y and Dn

N . Dn
Y returns “YES”

instances of wDS and Dn
N outputs “NO” instances. Recall that instances of wDS are of the form X0, X1, I.

The distributions will be defined so that given only X0 and X1 as oracles, no efficient adversary will able to
distinguish instances sampled from Dn

Y to ones sampled from Dn
N . We also need an additional property, that

given X0 and X1 as oracles, it is unfeasible to find an element in the support of either circuit in polynomial
time, unless it is the result of a previous query to one of the circuits. We begin by defining a family of
functions, F , and then define the actual distributions using F and some additional tools.

A.3.1 Defining the Function Family F

Let P = {Pn} be a family of strong pseudo-random permutations where for each n ∈ N, all functions in Pn
are keyed permutations with range {0, 1}n and with keys drawn from {0, 1}s(n). Define F = {Fn}, where
every fk ∈ Fn is a keyed function from domain {0, 1}n to image {0, 1}3n with keys drawn from {0, 1}s(n)+3n

and is defined as follows:
fk,y (x) = pk(x‖02n)⊕ y

Where pk is a keyed PRP in Pn. That is, sampling from Fn reduces to sampling a PRP key from Pn and a
uniformly random string of length 3n. The inverse of fk,y is given by:

f−1
k,y (t) =

{
p−1
k (t1 ⊕ y1)1...n p−1

k (t1 ⊕ y1) ends with 02n

⊥ o.w.

Where p−1
k (t1 ⊕ y1)1...n are the first n bits of p−1

k (t1 ⊕ y1). We now wish to show a number of properties of
this function family:

Claim A.4 (Properties of the function family F). If pseudo-random permutations exist then there exists a
function family F = {Fn}n∈N as above such that:

1. Every fk ∈ Fn is one-to-one.

2. Let A be a PPTM. Then∣∣∣∣ Pr
fk←Fn

[
Afk,f

−1
k (1n) = 1

]
− Pr
g←Gn

[
Ag,g

−1

(1n) = 1
]∣∣∣∣ = negl (n)

where Gn is the set of random one-to-one functions from {0, 1}n to {0, 1}3n.

3. For every fixed x ∈ {0, 1}n, fk (x) is uniform in {0, 1}3n over the choice of k.

4. For every PPTM A, the success probability of A in the following experiment is negligible in n:

(a) Choose fk ← Fn

(b) Run Afk (1n) to obtain y.

(c) A succeeds if y is in the range of fk and A did not obtain y as a response to a query to fk.

Proof. We prove each item separately:

1. Every fk is one-to-one since pk is a permutation, and so it is easy to invert given the correct key.

2. This is proven via a hybrid. Consider some g ∈ Gn. Then there exists a permutation π′ such that
π′(x‖02n) = g(x) for every x. Therefore, it is impossible to distinguish a randomly drawn function
from Gn to the construction of f , if π were truly random. Since π is pseudo-random, this implies that
no efficient adversary can distinguish between functions drawn from Fn and funcitons drawn from Gn.

71

3. Recall the definition of fk,y (x) = πk(x)⊕y. Since y is chosen uniformly from {0, 1}3n, fk (x) is uniform
over its entire domain.

4. We show that succeeding in this test with non-negligible probability invalidates property 2. Consider
the same experiment, when given access to g, a random one-to-one function from {0, 1}n to {0, 1}3n.
Making only poly (n) queries, it is impossible to predict another element in the support of g. Therefore
no efficient A will be able to do this for functions drawn from Fn.

A.3.2 The Distributions

Lemma A.5. If one-way functions exist, then there are ensembles {Dn
Y } and {Dn

N} on triples of circuits
such that there exists N ∈ N such that for any n > N :

1. Dn
Y and Dn

N only produce pairs (X0, X1, I) such that X0, X1 both map {0, 1}n to {0, 1}3n, I is a
function from {0, 1}3n × [n]× {0, 1} to {0, 1} and the circuits are of size at most poly (n).

2. Pr [Dn
N ∈ wDSN] = 1 and Pr [Dn

Y ∈ wDSY] = 1− 2−n.

3. For every PPTM B:∣∣∣∣ Pr
(X0,X1,I)←DnY

[
BX0,X1 (1n) = 1

]
− Pr

(X0,X1,I)←DnN

[
BX0,X1 (1n) = 1

]∣∣∣∣ = negl (n)

4. For every PPTM M , the probability that M succeeds in the following experiment is bounded by a
negligible function in n:

(a) Select (X0, X1, I)← Dn
Y

(b) Run MX0,X1 (1n) to obtain output x (note that M does not get access to I).

(c) M succeeds if x ∈ Supp (X0) ∪ Supp (X1) and M did not obtain x as a response to a query to its
oracles.

Proof. If one-way functions exist then, by Lemmas 2.32 and 2.34, both pseudo-random functions and pseudo-
random permutations exist, and so does the function family given in Claim A.4. Let F = {Fn} be the function
family guaranteed by Claim A.4 and P = {Pn} be a family of pseudo-random permutations, where Pn are
permutations over {0, 1}n. The distributions {Dn,τ

Y } and {Dn,τ
N } are defined as follows:

• Dn,τ
Y : Select f0 and f1 independently from Fn. Let X0 and X1 be the circuits evaluating these

functions. Additionally, let X−1
0 and X−1

1 be the circuits calculating the functions f−1
0 and f−1

1

respectively. Choose ψ independently from Ψn and set I to be the circuit that:

– Receives inputs y, b.

– Tests that y ∈ Supp(Xb) using X−1
b . If true returns X−1

b (y).

– Otherwise returns 0n.

Output (X0, X1, I).

• Dn,τ
N : Select f randomly from Fn and π randomly from Pn. Let X0 be the circuit evaluating f ◦π and

let X1 be the circuit evaluating f . Set I as in the “YES” instance. Output (X0, X1, I).

We now prove that all the properties required by Lemma A.5 hold. The circuit sizes evaluating these
functions are bounded by poly (n) by the efficiency of P and F . Thus Property 1 holds.

For Property 2 note first that I always calculates the required function and that f and f◦π both induce the
same distribution on the range of f , and so Pr [Dn

N ∈ wDScN] = 1. To see that Pr [Dn
Y ∈ wDSY] = 1− 2−n,

72

note that for every x 6= y, by Property 3 of Claim A.4 it holds that f0 (x) = f1 (y) with probability 2−3n.

Hence, the probability that the range of f0 and f1 intersect is at most (2n)
2 · 2−3n = 2−n, so Property 2

holds.
Property 3 holds from the hardness properties of f0, f1 and π. For the distribution Dn

Y the black-box
access to X0 and X1 is indistinguishable from access to two random one-to-one functions from {0, 1}n to
{0, 1}3m. For the distribution Dn

N the black-box access to X0 and X1 is indistinguishable from access to a
random one-two-one function g from {0, 1}n to {0, 1}3n and g ◦ π where π is a random permutation. These
two cases are indistinguishable for efficient adversaries.

Property 4 follows from Property 4 of Claim A.4. The experiment is identical to that of Claim A.4, but
with two independent functions from Fn. Assume towards contradiction that there does exist such adversary
M . Then it would be possible to break property 4 of Claim A.4 - the adversary A receives oracle access to
f , chooses a new f ′ ← Fn uniformly, chooses uniformly which of f, f ′ will be X0 and which will be X1 and
then simulates M . f and f ′ are drawn identically to f0 and f1 in Dn

Y , and so M will return some value in
Supp (f) ∪ Supp (f ′). Given that it succeeded, The probability that it returns an element in f is 1

2 , since A
chose uniformly in which location to put f and which location to put f ′.

A.4 Proving Theorem 10

Assume towards contradiction that there exists a black-box transformation
〈
MP,V,V −1

, AV
〉

from private-

coin doubly-efficient proofs to doubly-efficient public-coin arguments, where the prover is additionally given

access to V −1. Then substituting the deIP for wDS described in Figure 10, we have that
〈
MX0,X1,P,V

−1

, AX0,X1

〉
is a doubly-efficient public-coin argument for wDS, with completeness c and soundness s, where c−s is non-
negligible. We assume without loss of generality that the argument begins with a communication phase, in
which all the verifier A does is toss uniformly random coins and send them to the prover, and the prover sends
its replies. When the communication phase is over the verifier looks at the transcript that was generated,
possibly makes calls to its oracles, and decides whether to accept or reject.

We begin by showing that the oracle for V −1 is superfluous when given oracle access to P . Recall that
access to P gives the following functionality:

P (y) =

(
0, X−1

0 (y) , X−1
1 (y)

)
y ∈ Supp (X0) ∩ Supp (X1)(

0, X−1
0 (y) , 0n

)
y ∈ Supp (X0) \Supp (X1)(

1, 0n, X−1
1 (y)

)
y ∈ Supp (X1) \Supp (X0)

(1, 0n, 0n) o.w.

In order to emulate V −1 on input y using P the prover can do the following: Call P (y) and receive result
(b, x0, x1). The prover then tests whether X0(x0) = y and X1(x1) = y. If the answer is yes to only one of
these tests, the prover returns the answer x which passed. If both tests pass, it randomly chooses b′ ← {0, 1}
and returns xb′ . If neither passes the test, it returns ⊥. Therefore any access to V −1 can be simply converted
to access to P , and so we can without loss of generality remove the access that M has to V −1.

Claim A.6. There exists efficient oracle-aided prover M̃ such that∣∣∣∣ Pr
(X0,X1,I)←DnY

[〈
MX0,X1,P , AX0,X1

〉
= 1
]
− Pr

(X0,X1,I)←DnY

[〈
M̃X0,X1 , AX0,X1

〉
= 1
]∣∣∣∣ = negl (n)

Proof. By Lemma A.5, the probability that (X0, X1, I) are “YES” instances of wDS with probability 1 −
negl (n). Conditioned on them being a “YES” instance, we have that Supp (X0) and Supp (X1) are disjoint.
Consider the prover’s access to P when the supports are disjoint:

P (y) =

(
0, X−1

0 (y) , 0n
)

y ∈ Supp (X0)(
1, 0n, X−1

1 (y)
)

y ∈ Supp (X1)

(1, 0n, 0n) o.w.

73

Given access to oracles X0 and X1 and input 1n emulate M on input 1n. For every query q made by M
to Xb, record the tuple (q,Xb(q), b) and return Xb(q) as the result to M . Given a query y to P , M̃ first
checks whether its list contains (q, y, b) for some q and b. If this is the case and b = 0, return (0, q, 0n).
If it is the case and b = 1 return (1, 0n, q). Finally, if there is no such entry in the list, return (1, 0n, 0n).

Clearly, whenever y is the output of a previous query to X0 or X1, M̃ gives M the same answer as P
would. The same is true for any y /∈ Supp(X0) ∪ Supp(X1). The final case is that M generates a query
y ∈ Supp(X0)∪Supp(X1) that is not the result of a previous query to either circuit. We show in Lemma A.7

that such a query is generated by M only with negligible probability, implying that M̃ emulates M correctly
except with negligible probability, concluding the proof.

Lemma A.7. When (X0, X1, I) ← Dn
Y , the prover MX0,X1,P cannot generate a query y ∈ Supp(X0) ∪

Supp(X1) that is not the result of a previous query to X0 or X1 except with negligible probability.

Proof. Recall that we are only looking at instances drawn from Dn
Y . Suppose towards contradiction that

M can generate such a query with non-negligible probability ε while making at most q queries. We show
an algorithm D that contradicts Property 4 of Lemma A.5 with probability ε/q: DX0,X1,I chooses i ← [q],
runs M giving it random coins as the messages from A and outputs the i’th query that M makes. Let us
inspect the distribution of M ’s view when interacting with A in the protocol. Recall that the view of a party
consists of its internal randomness and all messages received. Since the protocol is public-coin, during the
interaction with the prover all that the verifier does is sample uniformly random coins and send them, and
in particular makes no queries to X0 and X1. Therefore view of the prover simulated by D is identical to
that of the real one. Thus, whenever M makes a query to y ∈ Supp(X0) ∪ Supp(X1) that has not been
previously queried by it, D succeeds if it chooses i correctly, which happens with probability 1/q which, since
M is efficient is at least 1/ poly(n). Thus D breaks returns a query y ∈ Supp(X0) ∪ Supp(X1) which was
not the answer of a previous query to X0 or X1 with probability at least ε/ poly(n) which is non-negligible,
breaking Property 4 of Lemma A.5. Therefore with overwhelming probability, in a real execution of M no
such query is generated.

Since M̃ emulates M for elements drawn from wDSnY , and M accepts instances drawn from this distri-
bution with probability c− negl(n):

Pr
(X0,X1,I)←DnY

[〈
M̃X0,X1 , AX0,X1

〉
= 1
]

= c− negl (n)

Additionally, since Pr [Dn
N ∈ wDSN] = 1, and because the protocol is sound against efficient provers, which

includes M̃ :
Pr

(X0,X1,I)←DnN

[〈
M̃X0,X1 , AX0,X1

〉
= 1
]
≤ s

Now consider the PPTM BX0,X1 which simply emulates the protocol
〈
M̃X0,X1 , AX0,X1

〉
using its oracles.

Then
Pr

(X0,X1,I)←DnY

[
BX0,X1 = 1

]
≥ c− negl (n)

and
Pr

(X0,X1,I)←DnN

[
BX0,X1 = 1

]
≤ s

Since c− s is non-negligible, B breaks Property 3 of Lemma A.5. This implies that our initial assumption,
that there exists doubly-efficient public-coin argument with black-box access to the prover and verifier of the
deIP for wDS is false.

74

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

