THE COMMUNICATION COMPLEXITY OF THE EXACT GAP-HAMMING PROBLEM

ANUP RAO AND AMIR YEHUDAYOFF

Abstract

We prove a sharp lower bound on the distributional communication complexity of the exact gap-hamming problem.

1. Introduction

The gap-hamming function $\mathrm{GH}=\mathrm{GH}_{n, k}:\{ \pm 1\}^{n} \rightarrow\{0,1, \star\}$ is defined by

$$
\mathrm{GH}(x, y)= \begin{cases}1 & \langle x, y\rangle \geq k \\ 0 & \langle x, y\rangle \leq-k \\ \star & \text { otherwise }\end{cases}
$$

where $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}$ is the standard inner product (the Hamming distance between x and y is $\frac{n-\langle x, y\rangle}{2}$). This problem naturally fits into the framework of twoparty communication complexity; for background and definitions, see the books [7, 9]. Alice gets x, Bob gets y, and their goal is to compute $\mathrm{GH}(x, y)$. It is a promise problem - the protocol is allowed to compute any value when the input corresponds to $a \star$, and it needs to be correct only on the remaining inputs. The standard choice for k is $\lceil\sqrt{n}\rceil$, so we write GH_{n} to denote $\mathrm{GH}_{n,\lceil\sqrt{n}\rceil}$.

The gap-hamming problem was introduced by Indyk and Woodruff in the context of streaming algorithms [5], and was subsequently studied and used in many works and in various contexts (see [6, 12, 1, 2, 3] and references within). Proving a sharp $\Omega(n)$ lower bound on its randomized communication complexity was a central open problem for almost ten years, until Chakrabarti and Regev [4] solved it. Later, Vidick [11], Sherstov [10], and [8] found simpler proofs. The difficulties in proving this lower bound are explained in [4, 10.

The exact gap-hamming function is defined by

$$
\mathrm{EGH}_{n, k}(x, y)= \begin{cases}1 & \langle x, y\rangle=k \\ 0 & \langle x, y\rangle=-k \\ \star & \text { otherwise }\end{cases}
$$

As before, we write EGH_{n} to denote $\mathrm{EGH}_{n,\lceil\sqrt{n}]}$. The exact gap-hamming function is easier to compute than gap-hamming; the protocol only needs to worry about inputs

[^0]whose inner product has magnitude exactly k. Proving a sharp lower bound on the randomized communication complexity of EGH was left as an open problem.

One of the difficulties in proving a lower bound for EGH is the following somewhat surprising property: for infinitely many values of n, the deterministic communication complexity of EGH_{n} is 2 . The reason is that there is a simple deterministic protocol of length 2 that computes $\langle X, Y\rangle \bmod 4$ for all n. The players announce the parities of their inputs $\frac{n-\sum_{j=1}^{n} X_{j}}{2} \bmod 2$ and $\frac{n-\sum_{j=1}^{n} Y_{j}}{2} \bmod 2$. Because $n=\langle X, Y\rangle \bmod 2$, this data determines $\left\langle\dot{X}^{2}, Y\right\rangle \bmod 4$. For example, this deterministic protocol computes EGH_{n} when \sqrt{n} is an odd integer, because then we have $-\sqrt{n} \neq \sqrt{n} \bmod 4$.

We overcome this difficulty and show that EGH is extraordinary in that although it is a natural problem with communication complexity $O(1)$ for infinitely many n 's, the following holds.
Theorem. The randomized communication complexity of EGH_{n} is at least $\Omega(n)$ for infinitely many values of n.

There is a natural reduction between different parameters n, k, and from randomized protocols to distributional protocols. Denote by $U_{n, k}$ the uniform distribution over the set of pairs $(x, y) \in\{ \pm 1\}^{n} \times\{ \pm 1\}^{n}$ so that $\langle x, y\rangle \in\{ \pm k\}$. For each integer t, given inputs $x, y \in\{ \pm 1\}^{n}$, the players can use padding and public randomness (and no communication) to generate $\left(X^{\prime}, Y^{\prime}\right)$ that is distributed according to $U_{t n, t k}$ for $k=\langle x, y\rangle$. In other words, from a protocol that solves $\mathrm{EGH}_{t n, t k}$ over the distribution $U_{t n, t k}$, we get a randomized protocol that solves $\mathrm{EGH}_{n, k}$. So, to prove the lower bound stated above, it suffices to prove the following distributional lower bound.

Theorem 1. For every $\beta>0$, there are constants $n_{0}>0$ and $\alpha>0$ so that the following holds. Let n, k be positive even integers so that $n>n_{0}$ and $k<\alpha \sqrt{n}$. Any protocol that computes $\mathrm{EGH}_{n, k}$ over inputs from $U_{n, k}$ with success probability 2/3 must have communication complexity at least $(1-\beta) n$.

Theorem 1 is sharp in the following two senses. First, if $k \neq n \bmod 2$ then $\mathrm{EGH}_{n, k}$ is trivial, and if k is odd then the deterministic communication complexity of $\mathrm{EGH}_{n, k}$ is 2 . Secondly, for every $\alpha>0$, there is $\beta>0$ so that if $k>\alpha \sqrt{n}$ then the randomized communication complexity of $\mathrm{EGH}_{n, k}$ is at most $(1-\beta) n$. In the randomized protocol, Alice gets x, Bob gets y and the public randomness is a sequence $I_{1}, I_{2}, \ldots, I_{m}$ of i.i.d. uniform elements in $[n]$ for $m \leq O\left(\frac{n}{\alpha^{2}}\right)$. By a standard coupon collector argument, the number of (distinct) elements in the set $S=\left\{I_{1}, \ldots, I_{m}\right\}$ is at most $(1-\beta) n-1$ with probability at least $\frac{5}{6}$. If $|S|>(1-\beta) n-1$, the parties "abort", and otherwise Alice sends to Bob the value of x_{s} for all $s \in S$. Bob uses this data to compute $z=\operatorname{sign}\left(\sum_{j=1}^{m} x_{I_{j}} y_{I_{j}}\right)$. Bob sends the output of the protocol z to Alice. Chernoff's bound says that if $\mathrm{EGH}_{n, k}(x, y) \neq \star$ then $\operatorname{Pr}\left[z=\mathrm{EGH}_{n, k}(x, y)\right] \geq \frac{5}{6}$. The union bound implies that the overall success probability is at least $\frac{2}{3}$.

The lower bounds [4, 11, 10, 8] for GH are based on anti-concentration. Roughly speaking, these works prove that $\operatorname{Pr}[\langle X, Y\rangle \in I]<p$ for all small intervals $I \subset \mathbb{R}$
and some small $p>0$. The main ingredient for our lower bound on the complexity of EGH is the following "smoothness" result (which implies anti-concentration).

Theorem 2. For every $\epsilon>0$, there is $c_{0}>0$ so that the following holds. Let $A, B \subseteq\{ \pm 1\}^{n}$ be of size $|A| \cdot|B| \geq 2^{(1+\epsilon) n}$. Let (X, Y) be uniformly distributed in $A \times B$. For every integer k,

$$
\left\lvert\, \operatorname{Pr}[\langle X, Y\rangle=k]-\mathbb{P}\left[\langle X, Y\rangle=k+4 \left\lvert\, \leq \frac{c_{0}}{n}\right.\right.\right.
$$

Here is a simple application of the smoothness theorem. Consider the function f defined by $f(k)=\operatorname{Pr}[\langle X, Y\rangle=k]$, where here X, Y are uniformly random in a large rectangle as in Theorem 2. The theorem shows that the "derivative" of f is bounded from above, so that if f takes a large value at a point then it takes large values on a large neighborhood of that point. For example, if $f\left(k_{0}\right) \geq \Omega\left(\frac{1}{\sqrt{n}}\right)$ for some k_{0} then $f(k) \geq \frac{9}{10} f\left(k_{0}\right)$ for all k so that $\left|k-k_{0}\right| \ll \sqrt{n}$ and $k=k_{0} \bmod 4$. In particular, $f\left(k_{0}\right) \leq O\left(\frac{1}{\sqrt{n}}\right)$.

Theorem 2 is sharp in the following two senses. First, even for the case $A=B=$ $\{ \pm 1\}^{n}$, there is a k so that ${ }^{1}$

$$
\left\lvert\, \operatorname{Pr}[\langle X, Y\rangle=k]-\operatorname{Pr}\left[\langle X, Y\rangle=k+4 \left\lvert\, \geq \Omega\left(\frac{1}{n}\right)\right.\right.\right.
$$

So, $O\left(\frac{1}{n}\right)$ is the best upper bound possible. Secondly, as the deterministic protocol described above shows, there are sets A, B of size $|A|=|B|=2^{n-1}$ so that for all $j \in\{1,2,3\}$,

$$
|\operatorname{Pr}[\langle X, Y\rangle=0]-\operatorname{Pr}[\langle X, Y\rangle=j]|=\operatorname{Pr}[\langle X, Y\rangle=0]=\Omega\left(\frac{1}{\sqrt{n}}\right)
$$

So, +4 is the minimum gap for which an $O\left(\frac{1}{n}\right)$ upper bound holds.

2. Smoothness

To prove smoothness, we use the following theorem that was initially used to prove anti-concentration [8].
Theorem 3. For every $\beta>0$ and $\delta>0$, there is $c>0$ so that the following holds. Let $B \subseteq\{ \pm 1\}^{n}$ be of size $2^{\beta n}$. For each $\theta \in[0,1]$, for all but $2^{n(1-\beta+\delta)}$ vectors $x \in\{ \pm 1\}^{n}$ it holds that

$$
|\underset{Y}{\mathbb{E}}[\exp (2 \pi i \theta\langle x, Y\rangle)]|<2 \exp \left(-c n \sin ^{2}(4 \pi \theta)\right)
$$

Surprisingly, the constant 4π on the r.h.s. on the theorem above plays a crucial role in our arguments.

[^1]Proof of Theorem 2. Let $\beta>0$ be so that $|B|=2^{\beta n}$ so that $|A| \geq 2^{(1-\beta+\epsilon) n}$. Theorem 3 with $\delta=\frac{\epsilon}{3}$ promises that for each $\theta \in[0,1]$, the size of

$$
A_{\theta}=\left\{x \in A:|\underset{Y}{\mathbb{E}}[\exp (2 \pi i \theta\langle x, Y\rangle)]|>2 \exp \left(-c n \sin ^{2}(4 \pi \theta)\right)\right\}
$$

is at most $2^{n(1-\beta+\delta)}$. For each $x \in A$, define $S_{x}=\left\{\theta \in[0,1]: x \in A_{\theta}\right\}$.
Fix x such that $\left|S_{x}\right| \leq 2^{-\delta n}$. Bound

$$
\begin{aligned}
& |\underset{Y}{\operatorname{Pr}}[\langle x, Y\rangle=k]-\underset{Y}{\operatorname{Pr}}[\langle x, Y\rangle=k+4]| \\
& =\left|\underset{Y}{\mathbb{E}}\left[\int_{0}^{1} \exp (2 \pi i \theta(\langle x, Y\rangle-k))-\exp (2 \pi i \theta(\langle x, Y\rangle-k-4)) \mathrm{d} \theta\right]\right| \\
& \leq \int_{0}^{1}|\exp (4 \pi i \theta)-\exp (-4 \pi i \theta)| \cdot|\underset{Y}{\mathbb{E}}[\exp (2 \pi i \theta\langle x, Y\rangle)]| \mathrm{d} \theta \\
& \leq 2 \int_{0}^{1}|\sin (4 \pi \theta)| \cdot|\underset{Y}{\mathbb{E}}[\exp (2 \pi i \theta\langle x, Y\rangle)]| \mathrm{d} \theta
\end{aligned}
$$

Continue to bound

$$
\begin{aligned}
& \int_{0}^{1}|\sin (4 \pi \theta)| \cdot|\underset{Y}{\mathbb{E}}[\exp (2 \pi i \theta\langle x, Y\rangle)]| \mathrm{d} \theta \\
& \leq 2^{-\delta n}+\int_{0}^{1}|\sin (4 \pi \theta)| \cdot \exp \left(-c n \sin ^{2}(4 \pi \theta)\right) \mathrm{d} \theta
\end{aligned}
$$

The integral goes around the circle twice, and it is identical in each quadrant. So,

$$
\begin{aligned}
& \int_{0}^{1}|\sin (4 \pi \theta)| \cdot \exp \left(-c n \sin ^{2}(4 \pi \theta)\right) \mathrm{d} \theta \\
& =8 \int_{0}^{1 / 8} \sin (4 \pi \theta) \cdot \exp \left(-c n \sin ^{2}(4 \pi \theta)\right) \mathrm{d} \theta \\
& \leq 32 \pi \int_{0}^{\infty} \theta \cdot \exp \left(-16 c n \theta^{2}\right) \mathrm{d} \theta \\
& \leq \frac{c_{1}}{n} \int_{0}^{\infty} \phi \cdot \exp \left(-\phi^{2}\right) \mathrm{d} \phi \leq \frac{c_{2}}{n}
\end{aligned}
$$

where $c_{1}, c_{2}>0$ depend on ϵ, and we used $\frac{\eta}{\pi} \leq \sin (\eta) \leq \eta$ for $0 \leq \eta \leq \frac{\pi}{2}$.
Finally, because

$$
\underset{x}{\mathbb{E}}\left|S_{x}\right|=\underset{\theta}{\mathbb{E}} \frac{\left|A_{\theta}\right|}{2^{n}} \leq 2^{n(-\beta+\delta)}
$$

the number of $x \in A$ for which $\left|S_{x}\right|>2^{-\delta n}$ is at most $2^{-\delta n}|A|$. Hence,

$$
\left|\operatorname{Pr}_{X, Y}[\langle X, Y\rangle=k]-\operatorname{Pr}_{X, Y}[\langle X, Y\rangle=k+4]\right| \leq 2^{-\delta n}+2\left(2^{-\delta n}+\frac{c_{2}}{n}\right) \leq \frac{c_{0}}{n} .
$$

3. The Lower bound

Proof of Theorem 1. Suppose the assertion of the theorem is false. The space of inputs can be partitioned into rectangles R_{1}, \ldots, R_{L} with $L \leq 2^{(1-\beta) n}$, where the output of the protocol on each R_{ℓ} is fixed.

Let X, Y be i.i.d. uniformly at random in $\{ \pm 1\}^{n}$. Let E denote the event that $|\langle X, Y\rangle|=k$. Define the collection of "typical" rectangles as

$$
\mathbb{T}=\left\{\ell \in[L]: \operatorname{Pr}_{X, Y}\left[E \mid R_{\ell}\right] \geq \frac{\operatorname{Pr}_{X, Y}[E]}{10} \quad \& \quad \operatorname{Pr}_{X, Y}\left[R_{\ell}\right] \geq 2^{-\left(1-\frac{\beta}{2}\right) n}\right\}
$$

For $\alpha \leq 2$, because $k=n \bmod 2$, we have $\operatorname{Pr}_{X, Y}[E] \geq \frac{p}{\sqrt{n}}$ for some universal constant $p>0$. The contribution of non-typical rectangles is small:

$$
\begin{aligned}
\sum_{\ell \notin \mathbb{T}} \operatorname{Pr}_{X, Y}\left[R_{\ell} \mid E\right] & =\frac{1}{\operatorname{Pr}_{X, Y}[E]} \sum_{\ell \notin \mathbb{T}}{\underset{X}{X}}^{\operatorname{Pr}}\left[R_{\ell}\right] \underset{X, Y}{\operatorname{Pr}}\left[E \mid R_{\ell}\right] \\
& <\frac{1}{\operatorname{Pr}_{X, Y}[E]}\left(L 2^{-\left(1-\frac{\beta}{2}\right) n}+\frac{\operatorname{Pr}_{X, Y}[E]}{10}\right)<\frac{1}{5},
\end{aligned}
$$

for n large enough. Because $k=-k \bmod 4$ and $|k|<\alpha \sqrt{n}$, for each $\ell \in \mathbb{T}$, Theorem 2 with $\epsilon \geq \frac{\beta}{2}$ implies that

$$
\begin{aligned}
& \left|\operatorname{Pr}_{X, Y}\left[\langle X, Y\rangle=k \mid R_{\ell} \wedge E\right]-\operatorname{Pr}_{X, Y}\left[\langle X, Y\rangle=-k \mid R_{\ell} \wedge E\right]\right| \\
& =\left|\operatorname{Pr}_{X, Y}\left[\langle X, Y\rangle=k \mid R_{j}\right]-\operatorname{Pr}_{X, Y}\left[\langle X, Y\rangle=-k \mid R_{j}\right]\right| \cdot \frac{1}{\operatorname{Pr}_{X, Y}\left[E \mid R_{j}\right]} \\
& \leq \alpha \sqrt{n} \frac{c_{0}}{n} \cdot \frac{10 \sqrt{n}}{p}<\frac{1}{6},
\end{aligned}
$$

for α small enough. So, the probability of error conditioned on R_{ℓ} for $\ell \in \mathbb{T}$ is at least $\frac{5}{12}$. The total probability of error is at least

$$
\sum_{\ell \in \mathbb{T}} \operatorname{Pr}_{X, Y}\left[R_{\ell} \mid E\right] \cdot \frac{5}{12}>\frac{4}{5} \cdot \frac{5}{12}=\frac{1}{3} .
$$

This contradicts the correctness of the protocol.
Acknowledgement. We thank Oded Regev for helpful suggestions.

References

[1] J. Brody and A. Chakrabarti. A multi-round communication lower bound for gap hamming and some consequences. In $C C C$, pages $358-368,2009$.
[2] J. Brody, A. Chakrabarti, O. Regev, T. Vidick, and R. De Wolf. Better gap-hamming lower bounds via better round elimination. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 476-489. 2010.
[3] A. Chakrabarti, G. Cormode, and A. McGregor. A near-optimal algorithm for estimating the entropy of a stream. ACM Transactions on Algorithms, 6(3):51, 2010.
[4] A. Chakrabarti and O. Regev. An optimal lower bound on the communication complexity of gap-hamming-distance. SIAM Journal on Computing, 41(5):1299-1317, 2012.
[5] P. Indyk and D. Woodruff. Tight lower bounds for the distinct elements problem. In FOCS, pages 283-288, 2003.
[6] T. S. Jayram, R. Kumar, and D. Sivakumar. The one-way communication complexity of hamming distance. Theory of Computing, 4(1):129-135, 2008.
[7] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 2006.
[8] A. Rao and A. Yehudayoff. Anti-concentration in most directions. arXiv:1811.06510, 2018.
[9] A. Rao and A. Yehudayoff. Communication complexity and applications. Cambridge University Press, 2020.
[10] A. A. Sherstov. The communication complexity of gap hamming distance. Theory of Computing, 8(1):197-208, 2012.
[11] T. Vidick. A concentration inequality for the overlap of a vector on a large set. Chicago Journal of Theoretical Computer Science, 1:1-12, 2012.
[12] D. P. Woodruff. The average-case complexity of counting distinct elements. In $I C D T$, pages 284-295, 2009.

School of Computer Science, University of Washington
E-mail address: anuprao@cs.washington.edu
Department of Mathematics, Technion-IIT
E-mail address: amir.yehudayoff@gmail.com

[^0]: Part of this work was done while the authors were visiting the Simons Institute for the Theory of Computing. A.Y. is supported by ISF grant 1162/15.

[^1]:

