
A note on the explicit constructions of tree codes over
polylogarithmic-sized alphabet

Siddharth Bhandari∗ Prahladh Harsha∗

February 19, 2020

Abstract

Recently, Cohen, Haeupler and Schulman gave an explicit construction of binary tree codes over
polylogarithmic-sized output alphabet based on Pudlák’s construction of maximum-distance-separable
(MDS) tree codes using totally-non-singular triangular matrices. In this short note, we give a unified
and simpler presentation of Pudlák and Cohen-Haeupler-Schulman’s constructions.

1 Introduction

We begin by recalling the definition of tree codes as introduced by Schulman in 1993 [Sch96]

Definition 1.1 (tree codes). Given two finite alphabets Σ and Γ and a parameter δ ∈ (0, 1), a tree code
TC : Σ∗ → Γ∗ with distance δ is a function mapping n-length strings over the alphabet Σ to n-length strings
over the alphabet Γ for every positive integer n satisfying the following two properties.

Online encoding: For every positive integer m, there exist functions ϕm : Σm → Γ such that for all n ∈ N,
x ∈ Σn and i ∈ [n], we have TC(x)i = ϕi(x1, . . . , xi). In other words, the ith symbol of the output only
depends on the first i symbols of the input and not on the latter symbols. The functions ϕi are referred to as
the encoding functions.

Distance: The (relative) distance of the tree code TC, denoted by δTC, (defined as follows) is at least δ.

δTC := inf
n,x 6=x′∈Σn

∆(TC(x),TC(x′))
n− split(x, x′)

,

where split(x, x′) is the largest integer s such that for all i ≤ s, we have xi = x′i . In other words, for every
positive integer n and any two distinct n-length strings x, x′ ∈ Σn, we have that the Hamming distance
between y = TC(x) and y′ = TC(x′) is at least δ(n− split(x, x′)).

The string y = TC(x) is said to be the tree code encoding of x. This encoding is said to be explicit if each of the
encoding functions ϕi can be computed in time polynomial in i.

It is known via the probabilistic method that for every finite alphabet Σ and distance parameter
δ ∈ (0, 1), there exists an alphabet Γ = Γ(Σ, δ) and a tree code TC : Σ∗ → Γ∗ with distance at least δ
(see Theorem 1.3 for the precise statement when Σ is a finite field). A long standing open problem is to
construct explicit tree codes matching the above construction (or even one for some distance parameter
δ ∈ (0, 1)). Since we do not yet know such explicit constructions, several intermediate variants and
special cases of the above definition of tree codes have been studied, some of which are interesting of
their own right. Below, we mention some of these variants.

∗Tata Institute of Fundamental Research, INDIA. email: {siddharth.bhandari,prahladh}@tifr.res.in. Research of the au-
thors supported by the Department of Atomic Energy, Government of India, under project no. 12-R&D-TFR-5.01-0500. Research
of the second author supported in part by the Swarnajayanti fellowship.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 19 (2020)

Truncated Tree Code: Instead of constructing a single tree code TC : Σ∗ → Γ∗ that works for all input
lengths, sometimes it is easier to construct a family of tree codes (indexed by n) each of which
works for all strings up to a fixed length n, i.e., TC(n) : Σ(≤n) → Γ(≤n). We will refer to these
tree-codes as n-truncated tree codes and the family {TC(n)}n∈Z>0 as truncated tree codes. While
dealing with n-truncated tree codes, we will use the superscript n to denote the maximum input
length. The notion of distance now becomes:

δ
TC(n) := inf

i≤n,x 6=x′∈Σi

∆(TC(x),TC(x′))
i− split(x, x′)

Note that for a truncated code {TC(n)}n, we have a family of encoding functions {ϕ
(n)
i : 1 ≤ i ≤ n}

for each n. In this case, we say that the truncated code is explicit if for each n and i ≤ n, ϕ
(n)
i is

computable in time polynomial in n. Note that it is polynomial in n and not just i as in the case of
(non-truncated) tree codes. Clearly, tree codes imply truncated tree codes but the other direction
is not known.

Input Alphabet: The classical tree-code considers binary input alphabet, i.e., Σ = {0, 1}. Sometimes,
it is convenient to have an algebraic structure on the input alphabet, say Σ is a finite field F or
even the set of non-negative integers Z≥0. When dealing with truncated tree-codes TC(n), one
may also consider tree codes whose input and output alphabets grow with n (i.e, {Σn}n, {Γn}n

corresponding to {TC(n)}n).

Output Alphabet: The holy grail is to construct tree codes over the binary alphabet with constant out-
put alphabet size. As an intermediate step, one typically constructs tree codes whose output al-
phabets grow with n. This is best formalized in the setting of truncated tree codes {TC(n) : Σ(≤n) →
Γ(≤n)

n }n∈Z≥0 where {Γn}n is a family of output alphabets whose size (may) grow with n. The for-
malism for the more standard (single) tree code is a little more involved. We let Γ = ∪nΓn and
TC : Σ∗ → Γ∗ subject to the constraint that the encoding functions ϕi satisfy ϕi : Σi → Γi. Note Γ
is not necessarily a finite alphabet, though each Γn is.

We are now ready to state the remarkable recent result of Cohen, Haeupler and Schulman that
constructs explicit binary tree codes over a polylogarithmic-sized output alphabet. 1

Theorem 1.2 (explicit tree codes with polylog alphabet [CHS18]). For all η ∈ [0, 1) there exists a family of
alphabets {Γn}n such that |Γn| = Oη(polylog(n)) with the following property. Let Γ = ∪nΓn. There exists a
tree code TC : {0, 1}∗ → Γ∗ with distance η such that the encoding functions ϕi satisfy satisfy ϕi : {0, 1}i → Γi.
Furthermore, the encoding functions ϕn are constructible in time polynomial in n.

Cohen, Haeupler and Schulam construct such tree codes in two steps. In the first step, they construct
tree codes over the integer alphabet using Newton polynomials. This construction is a special case of
Pudlák’s construction of "maximum-distance-separable (MDS)" tree codes using totally-non-singular
triangular matrices. In the second step, they perform an alphabet reduction to reduce the alphabet from
integers to a polylogarithmic-sized output alphabet.

Organization: The rest of this exposition is organized as follows. We give a short (but complete)
exposition of MDS codes, a la Pudlák, in Section 2 followed by the alphabet reduction technique of
Cohen-Haeupler-Schulman in Section 3.

The purpose of this note is only to give an exposition of the Cohen-Haeupler-Schulman construc-
tion. In particular, we place the Cohen-Haeupler-Schulman construction in the context of Pudlák’s
framework for constructing explicit tree codes. For a more comprehensive treatment of tree codes, we
refer the interested reader to Gelles’s survey on interactive communication [Gel17] and Pudlák’s excel-
lent paper [Pud16] discussing various potential approaches to obtain explicit tree codes.

1The theorem as stated here is marginally stronger than the one proved by Cohen-Haeupler-Schulman, in the sense that it
refers to explicit constructions of tree codes as opposed to truncated codes. See Remark 3.8 for more details.

2

1.1 Linear tree codes

A particularly appealing setting is when the input and output alphabet Σ, Γ are finite-dimensional vec-
tor spaces Fs, Fr respectively over some finite field F. In this setting, if the tree code TC : (Fs)∗ → (Fr)∗

further satisfies that TC|(Fs)n is a linear mapping for each n, then the tree code is said to F-linear.
For the case when s = 1, it is easy to check that the online encoding property of tree codes ensures

that if TC : F∗ → (Fr)∗ is F-linear, then there exist r-lower triangular matrices A0, . . . , Ar−1 ∈ FZ>0×Z>0

such that for any x ∈ Fn, we have TC(x)i = ((A(n)
0 (x))i, (A(n)

1 (x))i, . . . , (A(n)
r−1(x))i) ∈ Fr where A(n)

refers to the n× n-matrix formed by the restricting A to the top n columns and rows. By a change of
basis of the input strings, we may without loss of generality assume that A0 = I, the identity matrix
(we will not use this property, however our construction of distance-half linear tree codes will have this
property).

As in linear codes, the distance of a linear tree code can be characterized by the minimum weight of
non-zero codewords. More specifically, if TC : F∗ → (Fr)∗ is F-linear then

δTC = inf
n,x∈Fn\{0n}

wtFr (TC(x))
n− split(x, 0n)

,

where wtΓ(x) refers to the Hamming weight of x with respect to the alphabet Γ. Since Γ = Fr and
TC(x) ∈ (Fr)n = Frn, it is also natural to consider a variation of the above definition with Hamming
weight with respect to the finite field alphabet F instead.

δ̃TC := inf
n,x∈Fn\{0n}

wtF(TC(x))
r(n− split(x, 0n))

.

Clearly, δ̃TC ≤ δTC.
Schulman proved the existence of tree codes via the probabilistic method. The following statement

is due to Pudlák [Pud16, Theorem2.1] 2.

Theorem 1.3 (probabilistic construction of linear tree codes [Sch96, Pud16]). Let q = |F|, r = qd = |Σ|
and 0 < δ < r−1

r such that

logr(2q) + Hr(δ) ≤ 1

where Hr denotes the r-entropy function defined by

Hr(x) = x logr(r− 1)− x logr x− (1− x) logr(1− x).

Then, there exists a linear tree code TC : F∗ → Σ∗ with δ̃TC > δ. Moreover, if q, r and δ are fixed, then the
encoding functions ϕn can be constructed for every n in time 2O(n).

Note that there exists δ > 0 such that for every q > 2, there exist tree codes with rate 1/2 (i.e., d = 2)
and minimum relative distance ≥ δ. We do not know if binary (i.e., q = 2) tree codes with rate 1/2 can
have asymptotically positive minimum relative distance.

2 MDS tree codes, a la Pudlák

In this section, we present the treatment of linear tree codes following Pudlák [Pud16]. More precisely,
we present the “Singleton bound” for linear codes, define maximum-distance-separable (MDS) tree
codes and present a construction of MDS codes assuming the existence of totally-non-singular triangu-
lar matrices.

Proposition 2.1 (Singleton bound for tree codes [Pud16, Proposition 5.1]). For every n-truncated code,
TC(n) : Σ(≤n) → Γ(≤n) we have δ

TC(n) ≤ 1
n bn (1− log |Σ|/log |Γ|) + 1c.

2Pudlák provides two probabilistic constructions, one for truncated codes and another for untruncated codes. The theorem
stated here refers to the latter construction using cyclic Toeplitz matrices.

3

Proof. This proof will be an adaptation of the standard proof of the Singleton bound for codes to the
tree code setting. The proposition is trivially true when |Γ| ≥ |Σn| (in fact, in this case, there exist n-
truncated tree codes with distance 1). So we might as well assume that |Γ| < |Σn|. Let ` be the smallest
integer such that ` ≥ n · (log |Σ|/log |Γ|)− 1, which is at least 1 since n · (log |Σ|/log |Γ|) > 1. Consider the
mapping fn→` : Σn → Γ` defined as follows fn→`(x) := TC(n)(x)|[n−`+1,n] (i.e, the tree code encoding
restricted to the last ` symbols). Since |Σn| > |Γ`|, there must exist two strings x, x′ ∈ Σn such that
fn→`(x) = fn→`(x′) (i.e., the tree code encodings of x and x′ agree on the last ` symbols). Let i ≥ 1 be
the first place where x and x′ differ. Note that i ≤ n− `. Due to the online nature of tree codes we know
that TC(n)(x) and TC(n)(x′) agree on the first i − 1 coordinates (in addition to the last ` coordinates).
Therefore,

δ
TC(n) ≤

n− (`+ (i− 1))
n− i + 1

= 1− `

n− i + 1
≤ 1− `

n
= 1− 1

n

(⌈
n · log |Σ|

log |Γ|

⌉
− 1
)
=

1
n

⌊
n
(

1− log |Σ|
log |Γ|

)
+ 1
⌋

.

Notice that the aforementioned proof would have also worked with the following relaxed notion of
distance (that only considers strings of length n):

δ relaxed
TC(n) := inf

x 6=x′∈Σn

∆(TC(x),TC(x′))
n− split(x, x′)

.

For any non-zero y ∈ Γn and α ∈ (0, 1), the condition wt(y) ≥ bα · n + 1c is equivalent to the
condition that wt(y) > α · n. This combined with Proposition 2.1 motivates the following definition.

Definition 2.2 (MDS tree codes). A n-truncated tree code TC(n) : Σ(≤n) → Γ(≤n) is said to be maximum-
distance separable (MDS) if δ

TC(n) > 1− log |Σ|/log |Γ|. An MDS tree code is defined similarly.

Pudlák showed how the existence of certain type of matrices implies the existence of MDS codes. We
first define these special type of matrices. In the following, for a n× n matrix A and subsets I, J ⊆ [n]
of the rows and columns, the matrix A[I|J] refers to the submatrix of A restricted to the rows I and
columns J.

Definition 2.3 (totally-non-singular triangular matrix). A lower-triangular matrix A ∈ Fn×n is said to be
totally-non-singular if for every 1 ≤ r ≤ n and pair of sets I, J ⊆ [n] such that |I| = |J| = r and I = {1 ≤ i1 <
· · · ir ≤ n}, J = {1 ≤ j1 < · · · jr ≤ n} satisfying is ≥ js for all s ∈ [r], we have that the submatrix A[I|J] is
non-singular.

Given a lower-triangular matrix A ∈ Fn×n, consider the linear tree code TC
(n)
A : F(≤n) → (F2)≤n

defined by the pair of generator matrices (A0 = In, A1 = A). In other words, for any x ∈ Fk and i ≤ k,
we have (

TC
(n)
A (x)

)
i

:=
(

xi,
(

A(k)(x)
)

i

)
.

Theorem 2.4 (MDS linear tree codes [Pud16, Theorem 5.3]). If A ∈ Fn×n is a totally-non-singular lower-
triangular matrix, then the n-truncated tree code TC(n)

A has distance greater than 1/2 and is hence MDS.

Proof. We will in fact show the stronger property that δ̃ > 1/2. More precisely, for any non-zero code-
word x ∈ Fk with ` = split(0k, x) ∈ [0, k− 1], we need to show that the F-weight of y = TC(x) ∈ (F2)k

when viewed as a string in F2k is greater than (k− `). To this end, we define the following two sets of
column and row indices.

Cx := {j ∈ [k] : xj 6= 0}, Rx := {i ∈ [k] : i > `, (A(k)(x))i = 0}.

The number of non-zero coordinates in y (when viewed a string over F) is exactly |Cx|+ (k − `−
|Rx|) which is at strictly greater than (k− `) if |Cx| > |Rx|, which is proved in the claim below.

Claim 2.5. |Cx| > |Rx|

4

Proof. Assume otherwise and suppose that Cx = {j1 < j2 < . . . < jr} and Rx = {i1 < j2 < . . . < is}
for some s ≥ r. By definition of Cx, we have j1 = `+ 1. Since |Rx| ≥ |Cx| ≥ 1, we have that i1 > ` and
hence i1 ≥ j1. Let t be the maximum integer such that i1 ≥ j1, i2 ≥ j2, . . . , it ≥ jt. Let us observe the
action of the matrix A[{i1, . . . , it} | {j1, . . . , jt}] on the vector x|{j1,...,jt}. By maximality of t, we get that
either r = t or it+1 < jt+1. In either case, it is easy to see that A[{i1, . . . , it} | {j1, . . . , jt}](x|{j1,...,jt}) = 0.
However, this is contradiction to the total non-singularity of A. Therefore, |Cx| > |Rx|.

Claim 2.5 lends itself to the following alternate construction of a tree code which also has distance
greater than 1/2. For v ∈ F define v′ = (v, 0) ∈ F2 as the vector obtained by appending a zero to
v. Similarly, for a vector x ∈ Fk let x′ ∈ (F2)k be (x′1, x′2, . . . , x′k). Given a totally-non-singular lower-

triangular matrix A ∈ F2n×2n, consider the n-truncated tree code TC(n)
A,(1,1) : F(≤n) → (F2)(≤n) that maps

x ∈ Fk to A(2k)(x′) ∈ F2k. For a non-zero x ∈ Fk, let ` = split(0k, x). Let x′ ∈ F2k be the corresponding
non-zero vector and let `′ = split(02k, x). Clearly, `′ = 2`. Let y′ = TC

(n)
A,(1,1)(x′) Define sets Cx′ andRx′

as before. By definition, |Cx′ | ≤ 1/2 · (2k− `′) = k− ` and wtF(y′) = 2k− `′ − |R′x| > 2k− `′ − |Cx′ | (by
Claim 2.5). Hence, wtF(y′) > 2k− `′ − (k− `) = k− ` = 1/2(2k− `′). Hence, δ̃ distance of TC(n)

A,(1,1) is
greater than 1/2.

This alternate construction has the advantage that it can be generalized to obtain MDS tree codes
with distance δTC > r/r+s for integers r, s ≥ 1. Let A ∈ F(r+s)n×(r+s)n be a totally-non-singular lower-
triangular matrix. For v ∈ Fs define v′ ∈ Fr+s as the vector obtained by appending r zeros to v.
Similarly, for a vector x ∈ (Fs)k let x′ ∈ F(r+s)k be (x′1, x′2, . . . , x′k). For all x ∈ (Fs)k and k ≤ n define

TC
(n)
A,(s,r) : (Fs)(≤n) → (Fr+s)(≤n) as

x ∈ (Fs)k 7−→ A(r+s)kx′ ∈ (F(r+s))k.

An argument identical to the one above proves that this is an MDS code.

Theorem 2.6. TC
(n)
A,(s,r) is a n-truncated MDS tree code with distance r/r+s.

2.1 Instantiating the MDS tree codes

Pudlák suggested various examples of triangular totally-nonsingular matrices. One of these examples
is the the Pascal Matrix defined as follows:

Definition 2.7 (Pascal matrix). The Pascal matrix P ∈ Z
Z≥0×Z≥0
≥0 is the matrix whose (i, j)-entry for i, j ∈

Z≥0 is the binomial coefficient (i
j). For any n ∈ Z>0, we let Pn be the restriction of the (infinite) matrix P to the

first (n + 1) rows and (n + 1) columns. We will use the fact that for any n, the maximum value of any entry in
Pn is at most 2n.

Gessel and Viennot [GV85], using Lindström’s combinatorial interpretation of certain determinants
in terms of disjoint path systems [Lin73], proved the following remarkable theorem which immediately
yields the total-non-singularity of the Pascal matrix.

Lemma 2.8 ([GV85], Corollary 2). Let 0 ≤ a1 < a2 < a3 < . . . < an and 0 ≤ b1 < b2 < . . . < bn be
two sequences of n integers each. Define the n× n matrix M by Mi,j = (ai

bj
). If ai ≥ bi for each i ∈ [n] then

det(M) > 0.

Combining the above theorem with Theorem 2.4, we obtain the following result.

Theorem 2.9 (tree code over integers [CHS18, Theorem 1.3]). 3 There exists an explicit tree code over the
integers TCZ : Z

Z≥0
≥0 → (Z2

≥0)
Z≥0 with distance at least 1/2 satisfying the property that for any n ∈ Z>0 and

i ∈ {0, 1 . . . , n}, we have ((TCZ(a0, . . . , an))i)1 = ai and ((TCZ(a0, . . . , an))i)2 ≤ 2n maxj |aj|.
3Cohen-Haeupler-Schulman obtained this theorem by using the inverse of the Pascal matrix instead. If a lower-triangular is

totally-non-singular, then so is its inverse.

5

3 Alphabet Reduction

In this section, we show how to convert the tree code over the integers constructed in Theorem 2.9 to
one over the binary alphabet. By merely restricting the input alphabet of TCZ in Theorem 2.9 to integers
within the range {0, 1 . . . , 2s−1} and setting n = s, we obtain the following corollary.

Corollary 3.1 (tree code over large alphabet). For every s ∈ Z>0, there exist an explicit tree code over the
input alphabet {0, 1}s, TC(s) : {{0, 1}s}(≤s) → {{0, 1}3s}(≤s) with distance at least 1/2.

The tree code constructed in the above corollary has excellent distance albeit over a large super-
constant alphabet (both with respect to input and output). In the rest of this section, we will show how
to transform this tree code into one over the binary alphabet and polylogarithmic output alphabet.

We follow, roughly, the treatment of Cohen-Haeupler-Schulman [CHS18]. (Also, see Pudlák [Pud16,
Proposition 3.1] for the standard well-known alphabet reduction procedure from a polynomial-sized
output alphabet to constant-sized output alphabet. In some sense, the Cohen-Haeupler-Schulman re-
duction is an extension of this procedure to super-polynomial-sized alphabets.)

To this end, we define the notion of a lagged tree code.

Definition 3.2 (tree codes with lag). Given positive integers ` ≤ L, a tree code TC : Σ∗ → Γ∗ is said to
have `-lagged distance δ if the (relative) `-lagged distance δ

Lag `
TC (defined below) is at least δ. It is said to have

(`, L)-lagged distance δ if the (relative) (`, L)-lagged distance δ
Lag(`,L)
TC (defined below) is at least δ.

δ
Lag `
TC := inf

n,x 6=x′∈Σn ,n−split(x,x′)≥`

∆(TC(x),TC(x′))
n− split(x, x′)

,

δ
Lag(`,L)
TC := inf

n,x 6=x′∈Σn ,`≤n−split(x,x′)≤L

∆(TC(x),TC(x′))
n− split(x, x′)

.

The truncated versions of these lagged codes are defined appropriately.

In other words, lagged distance is a relaxation of the standard notion of distance when we consider
only pairs of strings x, x′ whose split(x, x′) lies in a particular interval.

The rest of the construction proceeds as follows. In step 1, we show that composing the integer tree
code in Corollary 3.1 with a standard error-correcting code yields a truncated tree code with constant
`-lagged distance for some ` = `(s). In step 2, we show that we can then obtain an untruncated code
with constant (`, L)-lagged distance by placing interleaving copies of the truncated code obtained in
step 1 along the infinite tree for some fixed function L = L(`). Finally, in step 3, we show show that a
superimposition of several (`, L)-lagged distance codes for increasing values of ` and L yields our final
code. The size of the final alphabet is determined by how fast the function L = L(`) grows which is in
turn determined by the function ` = `(s).

We begin by stating some basic error-correcting code that we need for step 1.

Proposition 3.3. For all δ ∈ [0, 1) there are constants sδ and cδ such that for all s ≥ sδ there is an explicit code
C : {0, 1}3s → ({0, 1}cδ)s with (relative) distance at least δ .

Proof. Using standard error-correcting codes, we know that for every δ ∈ [0, 1), there are constants
nδ ∈ Z>0, αδ ∈ (0, 1) and alphabet Σδ such that there exist explicit codes C̃ : {0, 1}n → Σn/αδ

δ for all
n ≥ nδ with distance δ over the alphabet Σδ

4.
Set sδ := nδ/3 and for s ≥ sδ, let C̃ : {0, 1}3s → Σ3s/αδ

δ be the above code for n = 3s. Choose cδ such

that 2cδ ≥ |Σδ|3/δ so that there exists an injective mapping Σ3/αδ
δ ↪→ {0, 1}cδ . Under this mapping, the

code C̃ : {0, 1}3s → Σ3s/αδ
δ can be viewed as C : {0, 1}3s → ({0, 1}cδ)s. Clearly, the distance of C is at least

that of C̃.
4There are several ways to obtain such codes. Take a constant-rate-constant-distance code and distance amplify it using the

ABNNR distance amplification technique. Or take Algebraic Geometric codes.

6

Step 1: truncated code with constant `-lagged distance: We describe the truncated-lagged tree code

TC
(s)
Lag ` : {0, 1}(≤s2) → {{0, 1}cδ}(≤s2)

that results by composing the tree code, TC(s) : ({0, 1}s)(≤s) → ({0, 1}3s)(≤s), in Corollary 3.1, which is
a distance half tree code, with the code C from Proposition 3.3.

Formally, let C be the code from Proposition 3.3 with output alphabet {0, 1}cδ and distance δ and
a ∈ N a large constant to be determined later. For every s ≥ sδ and ` ≥ as5 we describe an explicit
truncated-`-lagged tree code over the binary input alphabet, TC(s)

Lag ` : {0, 1}(≤s2) → {{0, 1}cδ}(≤s2) with
`-lagged distance at least δ(1/2− 3/2a).

The encoding process is a follows. Consider any x ∈ {0, 1}k and let x′ = (x′1, . . . , x′bk/sc) ∈ ({0, 1}s)bk/sc

obtained by grouping together blocks of s symbols and ignoring any leftover symbols. Let y′ =

(y′1, . . . , y′bk/sc) = TC(s)(x′), so y′ ∈ ({0, 1}3s)bk/sc and C(y′) = (C(y′1), . . . , C(y′bk/sc)) ∈ (({0, 1}cδ)s)bk/sc.

We construct TC(s)
Lag `(x) by letting for all i ∈ {1, . . . , s} and for all 1 ≤ j ≤ bk/sc such that js + i− 1 ≤ k:

TC
(s)
Lag `(x)js+i−1 = (C(y′)j)i.

In other words, we read groups of s symbols from x ∈ {0, 1}k, say x|[js+1,(j+1)s] and interpret each

block of s symbols as a step in TC(s). Thus, we obtain a symbol in {0, 1}3s which we then encode to a
symbol in ({0, 1}cδ)s using C. Then we "write" this s-character long string on the appropriate s-length
segment of TC(s)

Lag `(x), i.e., from (j + 1)s to (j + 2)s− 1.

Proposition 3.4. For all x ∈ {0, 1}k the encoding procedure of TC(s)
Lag `(x) is online and TC

(s)
Lag `(x)[1,s−1] = ε

where ε is the empty string.

Proof. The online nature of the encoding is clear by construction. For the latter part notice that we
don’t begin "writing" the encoding of TC(s)

Lag `(x) until we see the first block of s symbols and hence the

encoding starts only from TC
(s)
Lag `(x)s.

Lemma 3.5. TC
(s)
Lag ` : {0, 1}(≤s2) → {{0, 1}cδ}(≤s2) has `-lagged distance at least δ(1/2− 3/2a).

Proof. We need to show that for all u, v ∈ {0, 1}k such that b = k− split(u, v) ≥ ` we have

∆(TC(s)
Lag `(u),TC

(s)
Lag `(v))

b
≥ δ(1/2− 3/2a).

Notice that |u′| − split(u′, v′) ≥ bb/sc where u′ and v′ are analogues of x′ for u and v respectively. By
distance of tree code TC(s), we have ∆(TC(s)(u′),TC(s)(v′)) ≥ bb/sc

2 . By composition with C we obtain

that ∆(TC(s)
Lag `(u),TC

(s)
Lag `(v)) ≥ δs(bb/sc · 1/2 − 1). The bb/sc − 1 term arises as we may not have

enough length to encode C(u′)|bk/sc, i.e., it may be that k < bk/scs + s− 1.

Thus,
∆(TC(s)

Lag `(u),TC
(s)
Lag `(v))

b ≥ δs(bb/sc·1/2−1)
b ≥ δ(1/2− 3/2a) since b ≥ ` ≥ as.

Step 2: untruncated code with constant (`, O(`2)-lagged distance: We use interleaving copies of the
above truncated-`-lagged distance δ(1/2− 3/2a) tree code to construct a un-truncated-(`, O(`2))-lagged
distance δ(1/2− 3/2a) tree code. Formally, let C be the code from Proposition 3.3 with output alphabet
{0, 1}cδ and distance δ. For all ` ≥ as (where s ≥ sδ as in Proposition 3.3), we describe an explicit-
(`, O(`2))-lagged tree code over the binary input alphabet and output alphabet {0, 1}2cδ ,

TCLag ` : {0, 1}∗ → ({0, 1}2cδ)
∗
.

5We think of a as a constant and of ` and s as growing.

7

Consider any x ∈ {0, 1}k. We describe the encoding of x, i.e., TCLag `(x) below. Let i ≤ k be j(s2/2) + r
where r < s2/2.6 Then,

TCLag `(x)i = (TC
(s)
Lag `(x|[(j−1)s2/2,i]),TC

(s)
Lag `(x|[(j)s2/2,i])).

Notice that if j = 0 then x|[(j−1)s2/2,i] is the empty string.

In other words, we place a `-lagged tree code TC
(s)
Lag ` : {0, 1}s2 → {{0, 1}cδ}s2

at intervals of length

s2/2. So, for every x ∈ {0, 1}k and i > s2/2 there are two `-lagged tree codes whose encodings are
"written" on TCLag `(x)i.

Proposition 3.6. For all x ∈ {0, 1}k the encoding procedure of TCLag `(x) is online and TCLag `(x)|[1,s−1] = ε
where ε is the empty string.

Proof. The online nature of the encoding is by construction.
TCLag `(x)|[1,s−1] = ε follows from TC

(s)
Lag `(x)[1,s−1] = ε as shown in Proposition 3.4.

Lemma 3.7. TCLag ` : {0, 1}∗ → ({0, 1}2cδ)
∗ has (`, O(`2))-lagged distance at least δ(1/2− 3/2a).

Proof. We show that for all u, v ∈ {0, 1}k such that b = k − split(u, v) ≥ ` and b ≤ s2/2 we have
δ(TCLag `(u),TCLag `(v))

b ≥ δ(1/2− 3/2a). By construction we know that there is some j such that split(u, v)−
js2/2 ≤ s2/2 and k − js2/2 ≤ s2. Thus the encoding of u and v which include TC

(s)
Lag `(u|[js2/2,k])

and TC
(s)
Lag `(v|[js2/2,k]) differ on at least δ(1/2− 3/2a)b locations by virtue of TC(s)

Lag `. Thus, TCLag ` is a

(`, s2/2)-lagged tree code with distance δ(1/2− 3/2a).

Step 3: tree code with polylogarithmic output alphabet Finally, we superimpose several copies of the
above (`, O(`2))-lagged tree code for varying ` to get an explicit family of constant distance n-truncated
tree codes, {TC(n)}n with binary input alphabet and output alphabet of size O(polylog(n)). Formally,
there exists a family of alphabets {Γn}n such that |Γn| = polylog(n) with the following property. There
exists a constant-distance tree code TC(n) : {0, 1}(≤n) → Γ(≤n)

n such that the encoding functions are
constructible in time polynomial in n. TC(n) is a superimposition of polylog(n) many copies of the
(`, O(`2))-lagged tree code for varying ` such that for any two strings u, v, it is always the case that
split(u, v) lies in the stipulated range for one of these codes which witnesses the distance. We describe
TC(n) formally below.

For concreteness let us take δ = 1/4, a = 6 and ` = 6s in Lemma 3.7. Then for all s ≥ sδ we have
a (6s, s2/2)-lagged tree code with distance 1/16. In other words, for ` ≥ 6s1/4 we have a distance-
1/16-(`, `2/72)-lagged tree code. To construct TC(n) we will superimpose the encodings of TCLag `i

for
all i ∈ {1, . . . , j} where `1 = 6s1/4 and `i+1 = `2

i /72 and `2
j /72 = n, thus j = O(log log(n)). 7 More

precisely, for all x ∈ {0, 1}k let

TC(n)(x)i = ((x|[i−6s1/4,i]), (TCLag `1(x))i, . . . , (TCLag `j
(x))i).

Hence, TC(n)(x) ∈ Γk
n where |Γn| = O(polylog(n)) and the encoding functions take time polynomial in

n since each coordinate is computable in time polynomial in n.

Remark 3.8. The above construction yields a n-truncated tree code. To obtain a honest-to-god untrun-
cated tree code, we observe that the Cohen-Haeupler-Schulman construction can be done incrementally
in the following sense. Propositions 3.4, 3.6 and 3.9 state that the initial part of the tree code encodings
are empty. Hence, we might begin with a constant-sized alphabet (without printing the ε) and grow the
alphabet as and when needed

6We assume that s is even for simplicity.
7We ignore divisibility issues for the sake of simplicity.

8

Proposition 3.9. For all x ∈ {0, 1}n, i ∈ [n] and g such that `g > 6(i + 1) we have TCLag `g(x)i = ε. Hence,

TC(n)(x)i ∈ Γi where |Γi| = O(polylog(i)).

Proof. From Proposition 3.6 (with a = 6) we know that TCLag `j
(x)i = ε. In particular, we have that

TC(n)(x)i = ((x|[i−6s1/4,i]), (TCLag `1(x))i, . . . , (TCLag `g(x))i, ε, . . . , ε).

Putting the above together we get that there exists a family of alphabets {Γn}n such that |Γn| =
Oη(polylog(n)) with the following property. Let Γ = ∪nΓn. There exists a tree code TC : {0, 1}∗ → Γ∗

such that the encoding functions ϕi satisfy satisfy ϕi : {0, 1}i → Γi. Furthermore, the encoding functions
ϕn are constructible in time polynomial in n.

Theorem 3.10. There exists a family of alphabets {Γn}n such that |Γn| = Oη(polylog(n)) with the following
property. Let Γ = ∪nΓn. There exists a tree code TC : {0, 1}∗ → Γ∗ with distance 1/16 such that the encod-
ing functions ϕi satisfy ϕi : {0, 1}i → Γi. Furthermore, the encoding functions ϕn are constructible in time
polynomial in n.

Proof. The tree code we consider is the tree code TC as mentioned above the theorem statement. We
have already shown that TC : {0, 1}∗ → Γ∗ is such that the encoding functions ϕi satisfy ϕi : {0, 1}i →
Γi. Furthermore, the encoding functions ϕn are constructible in time polynomial in n.

Next, we show that the distance of TC(n) is at least 1/16. Consider u, v ∈ {0, 1}k and let b =

k − split(u, v). If b ≤ 6s1/4 then for all i ∈ {split(u, v) + 1, k} we have (TC(n)(u))i 6= (TC(n)(v))i as
they differ in the first coordinate. Now, suppose `i ≤ b ≤ `2

i /72 for some 1 ≤ i ≤ j. Then, by virtue of

TCLag `i
we know that ∆(TC(n)(u),TC(n)(v))

b ≥ 1/16. In any case, we have δ
TC(n) ≥ 1/16.

Notice that if we use the boosting trick mentioned in Theorem 2.6 we obtain a distance r/(r + s) tree
code over the integers for any r, s ∈ N. If we use this tree code in the procedure detailed in the proof
of Theorem 3.10 we obtain TC(n) with distance

(
1−O

(
r

r+s −O
(

1
a

))
δ
)

where δ is the distance of C in
Proposition 3.3 and a = `/s is as describe in the proof of Lemma 3.5. Hence, by choosing r/(r + s) and δ
close to 1 and a large enough we have established Theorem 1.2, which is restated below for convenience.

Theorem 1.2 (explicit tree codes with polylog alphabet [CHS18]). For all η ∈ [0, 1) there exists a family of
alphabets {Γn}n such that |Γn| = Oη(polylog(n)) with the following property. Let Γ = ∪nΓn. There exists a
tree code TC : {0, 1}∗ → Γ∗ with distance η such that the encoding functions ϕi satisfy satisfy ϕi : {0, 1}i → Γi.
Furthermore, the encoding functions ϕn are constructible in time polynomial in n.

4 Open Questions

Recall that the TCZ of Theorem 2.9 used in Corollary 3.1 was an explicit tree code over the integers
TCZ : Z

Z≥0
≥0 → (Z2

≥0)
Z≥0 with distance at least 1/2 satisfying the property that for any n ∈ Z>0 and

i ∈ {0, 1 . . . , n}, we have |(TCZ(a0, . . . , an))i| ≤ 2n maxj |aj|2. This in turn was used in step 1 of the
reduction process to small alphabets. If instead our TCZ had the property that |(TCZ(a0, . . . , an))i)| ≤
2polylog(n) maxj |aj|2, then the above reduction process to small alphabets would actually yield constant-
sized alphabets. 8 Since, TCZ of Theorem 2.9 was obtained using a totally-non-singular lower-triangular
matrix (specifically the Pascal Matrix), we are led to the following question about the existence of such
n× n matrices with entries only 2polylog(n) which if true would imply tree codes with constant distance
and constant-sized alphabets. Furthermore, if the matrices are explicit then we would get explicit tree
codes with constant distance and constant-sized alphabets.

8Strictly speaking, |(TCZ(a0, . . . , an))i)| ≤ 2 f (n) maxj |aj|2 yields a tree code whose (relative) (2 f (n), n f (n))-lagged distance is
constant. Thus, any function f (n) would suffice for constant-sized alphabets as long as we can show that there exists a constant
c such that g ◦ g ◦ . . . ◦ g︸ ︷︷ ︸

c−times

(n) = O(log log(n)) where g(n f (n)) = 2 f (n).

9

Question 1 (Existence of totally-non-singular lower-triangular matrices over small alphabets). Are there
n×n totally-non-singular lower-triangular matrices as defined in Definition 2.3 with entries of size O(2polylog(n)).
Further, are there such matrices which are explicit? (Pudlák [Pud16, Problem 1] states this question asking
whether the entries of such a matrix can be poly(n).)

The next question asks about the decoding process to accompany the constant-distance tree codes
of Theorem 1.2.

Question 2 (Efficient decoding of tree codes). Is there an efficient decoding procedure for the tree codes of
Theorem 1.2 which corrects a constant fraction of errors?

There has been recent work on this question by Narayanan and Weidner [NW20]. The authors use
a randomized polynomial time decoding algorithm to correct errors which scale roughly as the block
length to the three-fourths power, falling short of the constant fraction error correction guaranteed by
the constant distance.

Acknowledgements

We thank Madhu Sudan for various discussions while preparing this exposition, in particular, we thank
him for suggesting the alternate construction of distance 1/2-tree codes over the integers mentioned after
Claim 2.5.

References
[CHS18] GIL COHEN, BERNHARD HAEUPLER, and LEONARD J. SCHULMAN. Explicit binary tree codes with poly-

logarithmic size alphabet. In Proc. 50th ACM Symp. on Theory of Computing (STOC), pages 535–544. 2018.
eccc:2018/TR18-032. 2, 5, 6, 9

[Gel17] RAN GELLES. Coding for interactive communication: A survey. Foundations and Trends in Theoretical
Computer Science, 13(1-2):1–157, 2017. doi:10.1561/0400000079. 2

[GV85] IRA GESSEL and GÉRARD VIENNOT. Binomial determinants, paths, and hook length formulae. Adv. Math.,
58(3):300 – 321, 1985. 5

[Lin73] BERNT LINDSTRÖM. On the vector representations of induced matroids. Bull. Lond. Math. Soc., 5(1):85–90,
1973. 5

[NW20] ANAND KUMAR NARAYANAN and MATTHEW WEIDNER. On decoding Cohen-Haeupler-Schulman tree codes.
In Proc. 31st Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 1337–1356. 2020. arXiv:
1909.07413. 10

[Pud16] PAVEL PUDLÁK. Linear tree codes and the problem of explicit constructions. Linear Algebra and its Applica-
tions, 490:124–144, 2016. arXiv:1310.5684. 2, 3, 4, 6, 10

[Sch96] LEONARD J. SCHULMAN. Coding for interactive communication. IEEE Trans. Inform. Theory, 42(6):1745–
1756, 1996. (Preliminary version in 33rd FOCS, 1992). 1, 3

10

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://dx.doi.org/10.1145/3188745.3188928
https://dx.doi.org/10.1145/3188745.3188928
https://eccc.weizmann.ac.il/eccc-reports/2018/TR18-032
http://www.eng.biu.ac.il/~gellesr/survey.pdf
http://dx.doi.org/10.1561/0400000079
https://dx.doi.org/10.1016/0001-8708(85)90121-5
https://dx.doi.org/10.1112/blms/5.1.85
https://dx.doi.org/10.1137/1.9781611975994.81
http://arxiv.org/abs/1909.07413
http://arxiv.org/abs/1909.07413
https://dx.doi.org/10.1016/j.laa.2015.10.030
http://arxiv.org/abs/1310.5684
https://dx.doi.org/10.1109/18.556671

