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Abstract

In this paper, we propose a new conjecture, the XOR-KRW conjecture, which is a relaxation
of the Karchmer-Raz-Wigderson conjecture [KRW95]. This relaxation is still strong enough to
imply P 6⊆ NC1 if proven. We also present a weaker version of this conjecture that might be
used for breaking n3 lower bound for De Morgan formulas. Our study of this conjecture allows
us to partially answer an open question stated in [GMWW17] regarding the composition of the
universal relation with a function. To be more precise, we prove that there exists a function
g such that the composition of the universal relation with g is significantly harder than just a
universal relation. The fact that we can only prove the existence of g is an inherent feature of
our approach.

The paper’s main technical contribution is a method of converting lower bounds for multiplexer-
type relations into lower bounds against functions. In order to do this, we develop techniques
to lower bound communication complexity using reductions from non-deterministic communica-
tion complexity and non-classical models: half-duplex and partially half-duplex communication
models.

1 Introduction

1.1 Background

Proving lower bounds on the Boolean formula complexity is one of the classical problems of
computational complexity theory. For over 40 years, the researchers had been developing the
methods for proving lower bounds — starting with the works of Subbotovskaya [Sub61] and
Khrapchenko [Khr71] all the way to the celebrated work of H̊astad [H̊as98]. As a result, the re-
searchers managed to achieve a cubic lower bound on the formula complexity of an explicit Boolean
function (Andreev’s function). This lower bound has been unbeaten for over 20 years.

Karchmer, Raz, and Wigderson [KRW95] suggested an approach is for proving superpolynomial
formula size lower bound for Boolean functions from class P. The suggested approach is to prove
lower bounds on the formula depth of the block-composition of two arbitrary Boolean functions.

Definition 1. Let f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1} be Boolean functions. The
block-composition f ⋄ g : ({0, 1}n)m → {0, 1} is defined by

(f ⋄ g)(x1, . . . , xm) = f(g(x1), . . . , g(xm)),

where x1, . . . , xm ∈ {0, 1}n.
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Let D(f) denotes the minimal depth of De Morgan formula for function f . It is easy to show
that D(f ⋄ g) ≤ D(f) +D(g) by constructing a formula for f ⋄ g by substituting every variable in a
formula for f with a copy of formula for g. Karchmer, Raz, and Wigderson [KRW95] conjectured
that this upper bound is roughly optimal.

Conjecture 2 (The KRW conjecture). Let f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1} be
non-constant functions. Then

D(f ⋄ g) ≈ D(f) + D(g).

If the conjecture is true then there is a polynomially computable function that does not have
De Morgan formula of polynomial size, and hence P 6⊆ NC1. Consider the function h : {0, 1}n ×
{0, 1}n → {0, 1}, which interprets its first input as a truth table of a function f : {0, 1}logn → {0, 1}
and computes the value of the block-composition of logn/ log logn functions f on its second input:

h(f, x) = ( f ⋄ · · · ⋄ f
︸ ︷︷ ︸

log n/ log logn

)(x).

It is not hard to see that h ∈ P. To show that h 6∈ NC1, let f̃ be a function with maximal depth
complexity. By Shannon’s counting argument f̃ has depth complexity roughly log n. Assuming the
KRW conjecture, f̃ ⋄ · · · ⋄ f̃ has depth complexity roughly logn · (log n/ log log n) = ω(log n), and
hence f̃ ⋄ · · · ⋄ f̃ 6∈ NC1. Any formula for h must compute f̃ ⋄ · · · ⋄ f̃ if we hard-wire f = f̃ in it, so
h 6∈ NC1. This argument is especially attractive since it does not seem to break any known meta
mathematical barriers such as the concept of “natural proofs” by Razborov and Rudich [RR97]
(the function h is very special, so the argument does not satisfy “largeness” property). It worth
noting that the proof would work even assuming some weaker version of the KRW conjecture, like
D(f ⋄ g) ≥ D(f) + ǫ ·D(g) or D(f ⋄ g) ≥ ǫ ·D(f) + D(g) for some ǫ > 0.

The seminal work of Karchmer and Wigderson [KW88] established a correspondence between
De Morgan formulas for non-constant Boolean function f and communication protocols for the
Karchmer-Wigderson game for f .

Definition 3. The Karchmer-Wigderson game (KW game) for Boolean function f : {0, 1}n →
{0, 1} is the following communication problem: Alice gets an input x ∈ {0, 1}n such that f(x) = 0,
and Bob gets as input y ∈ {0, 1}n such that f(y) = 1. Their goal is to find a coordinate i ∈ [n] such
that xi 6= yi. The KW game can be considered as a communication problem for the Karchmer-
Wigderson relation for f :

KWf = {(x, y, i) | x, y ∈ {0, 1}n, i ∈ [n], f(x) = 0, f(y) = 1, xi 6= yi}.

Karchmer andWigderson showed that the communication complexity of KWf is exactly equal to
the depth formula complexity of f . This correspondence allows us to use communication complexity
methods for proving formula depth lower bounds. In fact, Conjecture 2 can be reformulated in
terms of communication complexity of the Karchmer-Wigderson game for the block-composition of
two arbitrary Boolean functions. Let CC(R) denotes deterministic communication complexity of
relation R. For convenience, we also define a block-composition for relations, so that the following
equality holds: KWf⋄g = KWf ⋄ KWg. This leads to the following reformulation of the KRW
conjecture.
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Conjecture 4 (The KRW conjecture (reformulation)). Let f : {0, 1}m → {0, 1} and g : {0, 1}n →
{0, 1} be non-constant functions. Then

CC(KWf ⋄KWg) ≈ CC(KWf ) + CC(KWg).

The study of Karchmer-Wigderson games had already been shown to be a potent tool in the
monotone setting — the monotone KW games were used to separate then monotone counterpart
of classes NC1 and NC2 [KRW95]. Therefore, there is reason to believe that the communication
complexity perspective might help to prove new lower bounds in the non-monotone setting.

In a series of works [EIRS01, HW90, GMWW17, DM16] several steps were taken towards proving
this conjecture. In the first two works [EIRS01, HW90] the authors proved the similar bound for
the block-composition of two universal relations.

Definition 5. The universal relation of length n,

Un = {(x, y, i) | x, y ∈ {0, 1}n, i ∈ [n], xi 6= yi}.

A communication problem for the universal relation is a generalization of a Karchmer-Wigderson
game: Alice and Bob are given n-bit distinct strings and their goal is to find a coordinate i ∈ [n]
such that xi 6= yi. The only difference with the KW-game for some function, is that players do not
have a proof that their inputs are different. The block-composition of the universal relations is a
more complicated object that generalizes the block-composition of functions in the same manner.
In some cases, it is more convenient to consider a non-promise version of the universal relation,
where Alice and Bob can be given the same input — in that case, they have to output ⊥. This
problem corresponds to the non-promise universal relation of length n,

U′
n = Un ∪ {(x, x,⊥) | x ∈ {0, 1}n}.

It is easy to see, that for any non-constant f : {0, 1}n → {0, 1}, KWf ⊂ Un ⊂ U′
n, and hence

the communication game for KWf trivially reduces to a communication game for Un or U′
n. Thus,

proving lower bounds for the universal relations seems to be a natural first step.
In the subsequent work [GMWW17], the authors proved a lower bound on the block-composition

of the Karchmer-Wigderson relation for an arbitrary function and the universal relation. This
result is presented in terms of the number of leaves rather than formula depth. In the last paper
of this series [DM16] the authors presented an alternative proof for the block-composition of an
arbitrary function with the parity function in the framework of the Karchmer-Wigderson games
(this result was originally proved in [H̊as98] using an entirely different approach). Their result gives
an alternative proof of the cubic lower bound for Andreev’s function [H̊as98].

In the last section of [EIRS01], the authors introduced the same function multiplexer commu-
nication game, that is very similar to the Karchmer-Wigderson game for the multiplexer function.

Definition 6. The multiplexer function of size n is a function Mn : {0, 1}2n ×{0, 1}n → {0, 1} with
two arguments, such that Mn(f, x) = fx. It is convenient to interpret the string f as a truthtable
of some function f : {0, 1}n → {0, 1}, so we can say that Mn(f, x) = f(x).

In the KW game for Mn, Alice gets a function f : {0, 1}n → {0, 1} and x ∈ {0, 1}n, such that
f(x) = 0, Bob gets a function g : {0, 1}n → {0, 1} and y ∈ {0, 1}n, such that g(y) = 1. Their goal
is to find a coordinate i ∈ [2n + n] such that (f, x)i 6= (g, y)i. The authors of [EIRS01] suggest to
consider a promise version of this game where players are promised that f = g, so they only need
to find the differing coordinate between x and y.
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Definition 7. In the same function multiplexer communication game MUXn, Alice gets a function
g : {0, 1}n → {0, 1} and x ∈ {0, 1}n such that g(x) = 0, Bob gets the same function g : {0, 1}n →
{0, 1} and y ∈ {0, 1}n such that g(y) = 1. Their goal is to find a coordinate i ∈ [n] such that
xi 6= yi.

The same function multiplexer communication game can be considered as a generalization of
the Karchmer-Wigderson games for Boolean functions on n bits. Indeed, solving the KW game
for any g : {0, 1}n → {0, 1} can be reduced to the same function multiplexer game: Alice and Bob
are given g and the corresponding x and y. It looks natural to study the block-composition of the
KW game for an arbitrary function and the same function multiplexer game. Unfortunately the
existing approaches to use a lower bound of this type to separate P andNC1 crash into the following
obstacle. Suppose we proved some lower bound on the block-composition of KWf with MUXn.
Now we want to show that this implies the existence of some hard function h, such that the lower
bound also applies to KWf ⋄KWh. It seems almost obvious that the complexity of MUXn is equal
to the complexity of the hardest function: given some function g in the MUXn game the players
can use the optimal protocol for KWg. However, this argument is incorrect, because in this case,
the communication protocol depends on the input, e.g. for some g Alice sends the first message,
while for some other g the first message is sent by Bob. This is not possible in the classical model
of communication complexity. There is a natural workaround — we can consider only alternating
protocols where Alice sends every odd message and Bob sends every even message. The drawback
of this approach is that all the lower bounds in this setting have to be multiplied by 1/2 when
translated to the unrestricted case, that might make them useless for proving non-trivial bounds.
This obstacle motivated the study of half-duplex communications models [HIMS18b]. The detailed
explanation how a lower bound on the block-composition of the KW game for an arbitrary function
and the same function multiplexer might be used to separate P and NC1 can be found in [Mei19]
(to the best of our knowledge, this result was independently proved by Russell Impagliazzo).

Further in the paper we are going to talk about the multiplexer game meaning the following
non-promise version of the same function multiplexer communication game:

Definition 8. In the non-promise same function multiplexer communication game MUX′
n, Alice

gets a function f : {0, 1}n → {0, 1} and x ∈ {0, 1}n such that f(x) = 0, Bob gets a function
g : {0, 1}n → {0, 1} and y ∈ {0, 1}n such that g(y) = 1. Their goal is to find a coordinate i ∈ [n]
such that xi 6= yi, or output ⊥ if f 6= g.

Remark. The KW game for Mn can also be considered as a generalization of KW games using the
same reduction. On the other hand, it is unclear whether lower bounds on the block-composition
with it implies any new results. Moreover, the following lower bound applies. Let L(f) denotes the
minimal size of De Morgan formula computing f .

Theorem 9. For any m,n ∈ N with n ≥ 6 logm, and any non-constant function f : {0, 1}m →
{0, 1},

CC(KWf⋄Mn) ≥ logL(f) + n−O(log n).

The proof is given in Appendix A.

1.2 The XOR-KRW conjecture

As an alternative to the block-composition, we define a new composition operation.
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Definition 10. For any n,m, k ∈ N with k | n, and functions f : {0, 1}n → {0, 1} and g : {0, 1}k →
{0, 1}k the XOR-composition f ⊞m g : ({0, 1}n)m → {0, 1} is defined by

(f ⊞m g)(x1,1, . . . , xn/k,m) = f
(
g(x1,1)⊕ · · · ⊕ g(x1,m), . . . , g(xn/k,1)⊕ · · · ⊕ g(xn/k,m)

)
,

where xi,j ∈ {0, 1}k for all i ∈ [n/k] and j ∈ [m], and ⊕ denotes bit-wise XOR.

We suggest the following generalization of the KRW conjecture.

Conjecture 11 (The XOR-KRW conjecture). There exist m ∈ N and ǫ > 0, such that for all
natural n, k ∈ N with k | n, and every non-constant f : {0, 1}n → {0, 1}, there exists g : {0, 1}k →
{0, 1}k,

D(f ⊞m g) ≥ D(f) + ǫk −O(1).

Using the ideas from [KRW95] one can show that XOR-KRW implies separation of P and NC1.

Theorem 12. If Conjecture 11 is true then P 6= NC1.

Proof. Suppose Conjecture 11 is true. Let f be any non-constant function from {0, 1}logn to {0, 1},
and let m ∈ N be provided by Conjecture 11. For every t ∈ N, consider a function ht defined by:

ht(x, g1, g2, . . . gt) = (f ⊞m g1 ⊞m g2 ⊞m · · ·⊞m gt)(x),

where x ∈ {0, 1}mt logn and gi : {0, 1}logn → {0, 1}logn for all i ∈ [t]. Conjecture 11 implies that
there exist m ∈ N and g1, . . . , gt : {0, 1}log n → {0, 1}logn, such that D(f⊞mg1⊞mg2⊞m · · ·⊞mgt) =
D(ht) ≥ ǫt log n−O(t). For t = log n that gives us

D(hlog n) ≥ ǫ log2 n−O(logn).

Now lets estimate the size of the input of hlog n. Each gi requires n logn bits of description, x
requires mlogn logn = nlogm log n = nO(1). So, the size of the input to hlog n is N = nO(1) bits,
and D(hlog n) ≥ ǫ logn n − O(logn) = Ω(log2N). Thus, hlog n 6∈ NC1. On the other hand, we can
compute hlogn in a natural way in P.

The idea behind the XOR-KRW conjecture is influenced by the constructions used in the areas
of pseudorandomness and cryptography. The proof of hardness of the composition of the universal
relations is based on the idea that any protocol that makes progress solving the top relation is
leaking very little information about the actual inputs of the composition. We hope that the
additional entanglement provided by taking entry-wise xor of multiple copies of a gadget function
g will make it possible to use the same kind of argument about the composition of functions.

In this paper we will focus on specific case of k = n. Which might look weird at first as it is
not the regime we need for the KRW conjecture in order to separate P and NC1. But let us scale
our ambitions down a bit. One of the current major challenges of circuit complexity is to beat the
Ω(n3) lower bound for a specific formula. This bound was proved by H̊astad in [H̊as98] and was
not improved rather than by lower terms since then. If we only aim to prove a supercubic lower
bound for a specific formula then we can only focus on the case k = n. For k = n, the definition of
the XOR-composition a bit simpler.
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Definition 13 (A special case of Definition 10 for k = n). For n,m ∈ N and functions f : {0, 1}n →
{0, 1} and g : {0, 1}n → {0, 1}n the XOR-composition f ⊞m g : ({0, 1}n)m → {0, 1} is defined by

(f ⊞m g)(x1, . . . , xm) = f (g(x1)⊕ · · · ⊕ g(xm)) ,

where xi ∈ {0, 1}n for all i ∈ [m].

This definition allows us to formulate a weak version of the XOR-KRW conjecture.

Conjecture 14 (The weak XOR-KRW conjecture). For all n ∈ N, there exists ǫ > 0 such that
for every non-constant function f : {0, 1}n → {0, 1} there exists m ∈ N and non-constant function
g : {0, 1}n → {0, 1}n:

D(f ⊞m g) ≥ D(f) + ǫn.

We also introduce a version of this conjecture for a formula size rather than depth.

Conjecture 15 (The weak XOR-KRW conjecture for formula size). For all n ∈ N, there exists
ǫ > 0 such that for every non-constant function f : {0, 1}n → {0, 1} there exists m ∈ N and
non-constant function g : {0, 1}n → {0, 1}n:

L(f ⊞m g) ≥ 2ǫn · L(f).

Note that there are nlogn+1 pairs of functions f : {0, 1}log n → {0, 1} and g : {0, 1}logn →
{0, 1}logn. So the weak XOR-KRW conjecture implies the existence of a function h = f ⊞m g
for some f : {0, 1}logn → {0, 1}, g : {0, 1}logn → {0, 1}logn and m ∈ N, such that CC(KWh) ≥
(1 + ǫ) log n. In order to prove a cubic lower bound for the Andreev’s function one needs to
hardwire a hard function into it’s description. We define a modified Andreev’s function that takes
the XOR-composition of functions instead.

Definition 16. For n ∈ N that is a power of two, any m ∈ N, and any functions f : {0, 1}logn →
{0, 1} and g : {0, 1}logn → {0, 1}logn the XOR-composed Andreev’s function Andr⊞m is defined by

Andr⊞m(f, g, x1, . . . , xm log n) = (f ⊞m g)
(
⊕n(x1), · · · ,⊕n(xm logn)

)
,

where xi ∈ {0, 1}n for i ∈ [m logn], and ⊕n(x) denotes the sum of all bits of x modulo 2.

Note that the input size of Andr⊞m is Θ(n logn).

Theorem 17. Conjecture 15 implies that L(Andr⊞m) = Ω(n3+ǫ) for some m ∈ N.

The proof of this theorem is identical to the original proof of H̊astad with only difference that
we can now hardwire functions f and g for some hard f and g provided by the conjecture.

As the main result of this paper we show that some form of XOR-KRW conjecture holds for
composition of the universal relation and the KW game for some hard function.

We don’t see any particular barrier why our technique would not handle case of k < n. However
it feels that this setting is significantly more sensitive and would require more intricate proof. While
this is clearly a very interesting direction we feel that for now it might be more important to focus
on proving XOR-KRW for the case k = n and getting a supercubic lower bound for formulas.
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1.3 Techniques and Results

The main technical contribution of the paper is a method of converting lower bounds for multiplexer-
type relations into lower bounds against functions. We propose a new composition operation, the
XOR composition, and define two communication problems based on it: a XOR-composition of
the universal relation with the KW game for some function g, we denote it UFg

n, and the XOR-
composition of the universal relation with the multiplexer relation, we denote it UMn (the formal
definitions of the problems are given in Section 3). In order to prove lower bounds on the complexity
of these problems we use two types of techniques. The first type of techniques is built on reductions
from non-deterministic communication complexity. The second type of techniques is based on non-
classical communication complexity models: half-duplex and partially half-duplex communication
models. These methods allows us to partially answer an open question from [GMWW17] showing
a lower bound for the composition of the universal relation with a function.

Theorem 43. For all n ∈ N, there exists g : {0, 1}n → {0, 1}n such that

CC(UFg
n) ≥ 1.5n−O(logn).

The answer is partial because the original open question was to prove a composition result for
U ⋄ KWf for every function f , and we prove that there exists some hard function g for which a
composition result holds. We also only focus on the case where both f and g have the same domain.

As an important intermediate step towards the main result, we also prove a lower bound on a
composition of the universal relation with the multiplexer relation.

Theorem 31. For all n ∈ N, CC(UMn) ≥ 1.5n− o(n).

A corresponding result for the block-composition is unknown.

1.4 Organization of this paper

In Section 2, we review the required preliminaries. Then, in Section 3, we define two communi-
cation problems that correspond to the XOR-composition of the universal relation with the KW
game for a function and the XOR-composition of the universal relation with the multiplexer re-
lation. In Section 4, we prove a lower bound for the XOR-composition of the universal relation
with the multiplexer relation using a reduction from non-deterministic communication complexity
(Theorem 31). In Section 5, we prove a lower bound for the XOR-composition of the universal
relation with the KW game for some function using the same ideas together with the results from
half-duplex communication complexity (Theorem 43). Section 6 contains a conclusion and open
problems. In Appendix A, we prove Theorem 9.

2 Preliminaries

2.1 Notation

Let us mention the notation used in this paper. We use [k] as a shortcut for {1, . . . , k}, B as a
shortcut for {0, 1} and ◦ to denote concatenation of binary strings. Working with binary strings
we use ⊕ for entry-wise xor: ∀u, v ∈ B

k : (v ⊕ u)i = vi ⊕ ui. For a set of tuples S we use πi(S) to
denote the projection of S on the ith coordinate: πi(S) = {ei | (e1, e2, . . . , ei, . . . ) ∈ S}.
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2.2 Communication complexity

We expect that the reader is familiar with the standard definitions of communication complexity
that can be found in [KN97]. In addition, it will be important to understand how the nodes of
communication protocol relate to combinatorial rectangles of the input matrix. Throughout the
paper whenever we discuss rectangles we always mean the rectangles of the input matrix of the
communication problem under consideration. If some rectangle has equal sides, i.e., it is equal to
A×A for some set A, then we call it a square.

We are going to use the following simple theorem that is a generalization of the well-known lower
bound for the equality function. For any non-empty finite set S, the equality on S is a function
EQS : S × S → B, such that for all a, b ∈ S,

EQS(a, b) = 1 ⇐⇒ a = b.

Theorem 18. For any non-empty finite set S, CC(EQS) ≥ log |S|.
Proof. For any a, b ∈ S, a 6= b, a communication transcript on input (a, a) must be different from
a transcript on input (b, b). Thus, the length of the longest transcript is at least log |S|.

For convenience, we are going to use some basic results from non-deterministic communication
complexity. Let X and Y be non-empty finite sets.

Definition 19. We say that a function f : X × Y → B has non-deterministic communication
protocol of complexity d if there are two functions A : X × B

d → B and B : Y × B
d → B such that

• ∀(x, y) ∈ f−1(1) ∃w ∈ B
d : A(x,w) = B(y, w) = 1,

• ∀(x, y) ∈ f−1(0) ∀w ∈ B
d : A(x,w) 6= 1 ∨B(y, w) 6= 1.

The non-deterministic communication complexity of f , denoted NCC(f), is the minimal complexity
of a non-deterministic communication protocol for f .

In contrast to deterministic case, the definition of non-deterministic complexity is asymmetric
and hence the complexity a function and its negation might be different. We will use the following
lower bound for the negation of the equality function. For any non-empty finite set S the non-
equality on S is a function NEQS : S × S → B, such that

NEQS(a, b) = 1− EQS(a, b).

Theorem 20. For any non-empty finite set S, NCC(NEQS) ≥ log log |S|.
Proof. Assume, for the sake of contradiction, that for some S, NCC(NEQS) = d ≤ log log |S| − 1.
Then the following deterministic protocol solves EQS : Alice sends A(x,w) for all possible w ∈ B

d,
Bob replies with 1 if and only if there is some w ∈ B

d : A(x,w) = B(x,w) = 1. The complexity of
this protocol is 2d + 1 ≤ 2log log |S|−1 + 1 = 1

2 log |S|+ 1 < log |S| that contradicts Theorem 18.

Notable property of non-deterministic communication complexity is that it does not involve
any communication at all. For our purposes it will be easier for us to think about the following
alternative definition of non-deterministic communication.1

1We came up with this definition for the purposes of this paper, but later we found it in lecture notes for a course
read by Prahladh Harsha (http://www.tcs.tifr.res.in/~prahladh/teaching/2011-12/comm/lectures/l03.pdf),
so we consider it as a part of folklore knowledge.
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Definition 21. We say that a function f : X × Y → B has privately non-deterministic communi-
cation protocol of complexity d if there is a function f̂ : (X×B

d)× (Y ×B
d) → B of (deterministic)

communication complexity at most d such that

• ∀(x, y) ∈ f−1(1) ∃wx, wy ∈ B
d : f̂((x,wx), (y, wy)) = 1,

• ∀(x, y) ∈ f−1(0) ∀wx, wy ∈ B
d : f̂((x,wx), (y, wy)) = 0.

The privately non-deterministic communication complexity of f , denoted NCC′(f), is the minimal
depth of a privately non-deterministic communication protocol for f .

This alternative definition of non-deterministic communication uses private witnesses instead
of a public one, and hence the players need to communicate. Let us prove the equivalence of these
definitions.

Theorem 22. For any function f : X × Y → B,

NCC(f) + 2 ≥ NCC′(f) ≥ NCC(f).

Proof. To prove the first inequality, we suppose that there is a non-deterministic protocol of com-
plexity d for f defined by functions A and B. Lets show that there is a privately non-deterministic
protocol for f of complexity d+ 2. We define a function f̂ : (X × B

d)× (Y × B
d) → B such that

f̂((x,wx), (y, wy)) = 1 ⇐⇒ A(x,wx) = B(y, wy) = 1 ∧ wx = wy.

This function has a deterministic protocol with d + 2 bits of communication: given some x Alice
privately guesses wx ∈ B

d and sends wx ◦ A(x,wx) to Bob, Bob privately guesses wy ∈ B
d and

replies with 1 if and only if A(x,wx) = B(y, wy) = 1 and wx = wy, otherwise he replies with 0.
Now we show the second inequality by constructing a non-deterministic protocol of complexity

d given a privately non-deterministic protocol of complexity d. Let f̂ defines the privately non-
deterministic protocol for f , and let Π is a (deterministic) protocol for f̂ of depth d. In the
non-deterministic protocol for f Alice and Bob interpret the public non-deterministic witness w
as a transcript of Π on ((x,wx), (y, wy)) for some (unknown) wx and wy. We define a function
A(x,w) such that A(x,w) = 1 if and only if there exists wx ∈ B

d such that w is a valid transcript
for (x,wx) leading to output 1. Similarly, we define function B(y, w) such that B(y, w) = 1 if and
only if there exists wy ∈ B

d such that w is a valid transcript for (y, wy) leading to output 1. The
resulting non-deterministic protocol for f defined by A and B has complexity d.

Corollary 23. For any non-empty finite set S, NCC′(NEQS) ≥ log log |S|.

2.3 Half-duplex communication complexity

The essential property of the classical model of communication complexity proposed by Yao is
that in every round of communication one player sends some bit and the other one receives it.
In [HIMS18b], the authors suggest a generalization of the classical communication model, the half-
duplex model, where the players are allowed to speak simultaneously. Every round2 each player
chooses one of three actions: send 0, send 1, or receive. There are three different types of rounds.

2We assume that the players have some synchronising mechanism, e.g., synchronised clock, that allows then
understand when each round begins.
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• If one player sends some bit and the other one receives then communication works like in the
classical case, we call such rounds normal or classical.

• If both players send bits during the round then these bits get lost (the same happens if two
persons try to speak via a “walkie-talkie” simultaneously), these rounds are called spent.

• If both players receive, these rounds are called silent.

In [HIMS18b], the authors consider three variations of this model based on what happens in silent
rounds. We are going to focus on one of the models — half-duplex communication with adversary,
where in silent round both players receive some bits. In order to solve a communication problem
in half-duplex communication model with adversary the players have to devise a protocol that is
correct for any bits that were received in silent rounds (the protocol must give a correct answer
even if these bits were chosen by an adversary).

In the classical case, a protocol is a binary rooted tree that describes communication of players
on all possible inputs: every internal node corresponds to a state of communication and defines
which of players is sending this round. Unlike the classical case in half-duplex communication player
does not always know what the other’s player action was — the information about it can be “lost”,
i.e., in spent rounds player do not know what the other player’s action was. It means that a player
might not know what node of the protocol corresponds to the current state of communication. The
protocol for half-duplex communication can be described by a pair of rooted trees of arity 4 that
describe how Alice and Bob communicate on all possible inputs and for any bits they receive in
silent rounds. The arity 4 stands for four possible events: send 0, send 1, receive 0, and receive 1.

We can also think about half-duplex communication in a following way. In the classical commu-
nication protocol player’s action (send or receive) is always defined by the previous communication.
In half-duplex communication player’s action can also depend on the input. We will also consider
an intermediate model where player’s action depends on the previous communication and a part
of the input. We call such a model partially half-duplex communication model. In communication
problems for partially half-duplex communication players receive inputs divided in two parts. Alice
receives (f, x), Bob receives (g, y). They can use half-duplex protocols but with a restriction: if
f = g then the communication must have no non-classical rounds.

Let P be a communication problem with classical communication complexity k. It is not hard to
see that half-duplex communication complexity is bounded between k/2 and k — classical protocol
can be used in the half-duplex model and every half-duplex protocol can be simulated by a classical
protocol of double depth where Alice sends only in even rounds and Bob sends only in odd rounds.
In [HIMS18b], a series of non-trivial bounds were proved.

Let CChd denotes half-duplex communication complexity a communication proble.

Theorem 24 ([HIMS18b]). For any non-empty finite set S, CChd(EQS) ≥ log |S|/ log 2.5.

The main motivation to study half-duplex communication comes from the following lemma.

Lemma 25. For all n ∈ N, there exist a function f : Bn → B such that

CC(KWf ) ≥ CChd(MUX′
n)−O(logn).

The statement of this lemma seems almost trivial since it is easy to prove that there exists a
function f such that CC(KWf ) ≥ n−O(logn), and at the same time CChd(MUX′

n) ≤ n+O(logn).
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The interesting part is hidden in the way we prove it. In the proof, Alice and Bob use the shortest
protocols for given functions, and hence the lower bound on MUX′

n would imply the existence of a
hard function. Later when we will consider a multiplexer as a part of a composition, we will still
be able to use the same argument to show the existence of a hard function.

Proof. Suppose that CC(KWf ) ≤ d for all f : Bn → B. Consider the following half-duplex protocol
for MUX′

n. For every f : Bn → B let Πf be the shortest (classical) protocol for f . Alice, who is
given f and x, follows protocol Πf using x as her input. Meanwhile Bob, who is given g and y,
follows protocol Πg using y as his input. If f is different from g they might use different protocols,
which is fine because we are in the half-duplex communication model.

When Alice reaches some leaf of Πf she starts listening until the end of round d. Bob does the
same. After d rounds of communication Alice has a candidate i for xi 6= yi, which is a valid output
as long as f = g. Bob has a candidate j for xj 6= yj . Now Alice and Bob just need to check that
indeed xi 6= yj and i = j, which can be done in O(logn). They output i if i = j and ⊥ otherwise.
The total number of rounds of this half-duplex protocol for MUX′

n is d+O(logn).

This lemma shows that if we had a good understanding of half-duplex complexity we could
translate lower bounds for multiplexer into the existence of a hard function. Unfortunately we
will need to use a couple more tricks. Let CCphd denotes partially half-duplex communication
complexity of a communication problem with adversary.

Lemma 26. For all n ∈ N, there exists a function f : Bn → B such that

CC(KWf ) ≥ CCphd(MUX′
n)−O(logn).

Proof. The proof follows from proof of Lemma 25 by observing that the protocol for MUX′
n in

there is partially half-duplex.

To show that this is actually useful we prove a lower bound tailored specifically for this type of
protocols.

Lemma 27. For all n ∈ N, CCphd(MUX′
n) ≥ n−O(logn).

Proof. Let NEQ2n be a shortcut for non-equality on B
2n . We will show that CCphd(MUX′

n) = d
implies NCC(NEQ2n) ≤ d+O(log n). Let Π be a half-duplex protocol for MUX′

n. The main idea is
that in partially half-duplex protocols for MUX′

n any non-classical round indicates that the given
functions are different. The non-deterministic protocol for NEQ2n goes as follows: the players guess
a number t ≤ d, a bit string T ∈ B

t and two bits b1, b2 ∈ B. The players interpret T as a transcript
of the first t rounds of Π such that it has only classical rounds (so, the communication can be
described by t bits). Then they check that this transcript leads to a leaf that is marked with ⊥ or
the next round of communication is a non-classical one. To be more more precise, suppose Alice
and Bob are given f ∈ B

2n and g ∈ B
2n , respectively. The players guess a quadruple (t, T, b1, b2)

as described. They have to check that

• there exist x ∈ f−1(0) and y ∈ g−1(1) such that T is a valid transcript of the first t rounds
of the protocol for MUX′

n on input ((f, x), (g, y)) assuming that all rounds are classical,

• if b1 = 0 then T is a transcript that ends up at a leaf labeled with ⊥,

11



• if b1 = 1 and b2 = 0 then both players were supposed to receive on round t+ 1,

• if b1 = 1 and b2 = 1 then both players were supposed to send on round t+ 1.

Alice verifies that there exists x such that f(x) = 0 and T correctly describes first t rounds of
communication on input (f, x). In addition, Alice checks the second condition and partially checks
the last two conditions (i.e., if the third condition applies then Alice checks that she was supposed
to receive on round t+1, and if the fourth condition applies then she checks that she was supposed
to send). Bob does the symmetric thing for y such that g(y) = 1. If there exist x and y that
pass all the checks then the protocol for MUX′

n on ((f, x), (g, y)) either returns ⊥ or contains a
non-classical round. In both cases this is sufficient proof that f 6= g. Moreover, such a witness
exists if and only if f 6= g. The size of the witness is d+ log d+ 2 = d+O(logn).

The described protocol can be used to non-deterministically solve non-equality for binary strings
of length 2n. Theorem 20 implies NCC(NEQ2n) ≥ n, so we can conclude that d ≥ n−O(logn).

The proof of this Lemma illustrates the important idea of reducing an instance of NEQ to the
problem under consideration. Further in the paper, we will repeatedly use the similar reductions.

3 The Problems

The goal of this project is to prove a lower bound for the XOR-composition of functions. In this
paper, we are presenting a step in this direction by proving a lower bound on the XOR-composition
of the universal relation and a function.

Definition 28 (Special case of Definition 13 for m = 2). For functions f : Bn → B and g : Bn → B
n

the XOR-composition f ⊞ g is defined by

(f ⊞ g)(x, y) = f(g(x)⊕ g(y)),

where x, y ∈ B
n.

To simplify our life a bit more we will stop applying g to one of the arguments. If we can prove
a lower bound for f(x⊕ g(y)) for some g it will also imply a lower bound for f(g′(x, b0)⊕ g′(y, b1)),
where the function g′ takes one more bit of input and satisfies the following relations

g′(z, b) =

{

g(z), b = 1,

z, b = 0.

The lower bound for f(x⊕ g(y)) implies a lower bound for f(g′(x, b0)⊕ g′(y, b1)) on a subset of all
inputs where b0 = 0 and b1 = 1, and hence implies a lower bound on all inputs. We will use this
simplification in the definition of both problems below.

We would like to prove a lower bound for KW-game for f ⊞ g. We will start this journey by
considering a version of this game f replaced with the non-promise universal relation.

Definition 29. Let g : Bn → B
n. A communication game UFg

n is the XOR-composition of U′
n and

KWg in the following way: Alice is given xa, ya ∈ B
n and Bob is given xb, yb ∈ Bn. Their goal is to

find i ∈ [2n] such that (xa ◦ ya)i 6= (xb ◦ yb)i. If xa ⊕ g(ya) = xb ⊕ g(yb) they can output ⊥.
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The trivial upper bound for CC(UFg
n) is CC(KWg) + n + O(logn) ≤ 2n + O(logn): Alice

sends her whole input xa to Bob, and Bob compares it with xb. If he finds a difference he sends
the answer to Alice using O(logn) bits of communication. Otherwise, they simulate the shortest
protocol for KWg. We are going to prove that there exists a function g : Bn → B

n such that
CC(UFg

n) ≥ 1.5n−O(log n).
Next we will move the function g to be a part of the input rather than being hardwired into

definition of the problem.

Definition 30. In a communication problem UMn Alice is given xa, ya ∈ B
n and ga : Bn → B

n, Bob
is given xb, yb ∈ B

n and gb : B
n → B

n. Their goal is to find i ∈ [2n] such that (xa ◦ ya)i 6= (xb ◦ yb)i.
If xa ⊕ ga(ya) = xb ⊕ gb(yb) or ga 6= gb they can output ⊥.

The trivial upper bound for CC(UMn) is 2n + O(logn): Alice sends xa and ya to Bob, Bob
compares it with xb and yb, and then he either finds a difference or realizes that ga 6= gb. At the
end, Bob sends the answer to Alice using O(logn) bits of communication. We are going to prove
that CC(UMn) ≥ 1.5n−O(log n).

We start with proving the lower bound for the harder problem UMn and then use the similar
techniques together lower bounds on the half-duplex communication complexity to prove the lower
bound on UFg

n.

4 Lower bound for UMn

Let P be a set of all permutations of Bn. Let t > 1 be an integer constant, N = 2n, T = 2t, and
consider the following domain

X = B
n × B

n × P.

We are going to prove the following lower bound for UMn on the rectangle R = X × X .

Theorem 31. For all n ∈ N, CC(UMn) ≥ CCR(UMn) ≥ 1.5n− o(n).

The proof consists of two stages. At the first stage we go down the protocol tree and find a
node at depth almost n (more precisely at depth n−t) such that its rectangle contains many inputs
that could be given to both to Alice and to Bob. Then we show that solving the problem on any
large square requires depth about n

2 . For the first stage we will use the following general lemma.

Lemma 32. Let P be a communication problem such that on a square S×S every monochromatic
rectangle A×B has |A∩B| ≤ |S|

2r for some r ≥ 1. Then every protocol that solves P on S × S has

a node at depth d ≤ r with rectangle A×B such that |A ∩B| ≥ |S|
2d
.

Proof. Proof by induction: the base case d = 0 is obvious. Now suppose that there exists a node at
depth d−1 with a rectangle A′×B′ such that |A′∩B′| ≥ |S|

2d−1
. As d−1 < r we know that A′×B′ is

not monochromatic, and hence this node is not a leaf. W.l.o.g, assume that this node corresponds
to Alice speaking. Let A0 ×B′ and A1 ×B′ be the children’s rectangles, where A′ = A0 ⊔A1. So,
for some i ∈ {0, 1} we have |Ai ∩B′| ≥ 1

2 |A′ ∩B′| ≥ |S|
2d
. Which concludes the proof.

We derive the following lemma from Lemma 32.

Lemma 33. For all natural d ≤ n, any protocol tree that solves UMn on R has a node at depth d
with a corresponding rectangle A×B such that |A ∩B| ≥ N2 · |P|/2d.
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Proof. Every monochromatic rectangle A×B of UMn is labeled with either an index or ⊥. In the
first case, |A ∩ B| = 0. In the second case, for any a = (ga, xa, ya) ∈ A and b = (gb, xb, yb) ∈ B
we have ga 6= gb or xa ⊕ ga(ya) = xb ⊕ gb(yb). We can subdivide all the elements of C = A ∩ B
into 2n groups C =

⊔

z∈Bn Cz, such that (g, x, y) ∈ Cz if and only if x ⊕ g(y) = z. For every
two distinct z1, z2 ∈ B

n and inputs (g1, x1, y1) ∈ Cz1 , (g2, x2, y2) ∈ Cz2 , the permutations g1 and
g2 are different (otherwise, ⊥ would not be the correct output on this pair of inputs). Therefore,
every permutation g ∈ P appear in at most one group. For fixed g ∈ P and z ∈ B

n, there are
only 2n pairs (x, y) : x ⊕ g(y) = z. That gives an upper bound on the number of elements in C,
|C| ≤ 2n · |P| = |X |/2n. Application of Lemma 32 for d ≤ n concludes the proof.

For the second lemma it is convenient to define the following combinatorial object that helps
to understand the structure of a subset of inputs.

Definition 34. For a subset of inputs S ⊆ X we define a domain graph to be a bipartite graph
GS = (US , VS , ES), such that US ⊆ P, VS ⊆ B

n × B
n, and (g, (x, y)) ∈ ES ⇐⇒ (g, x, y) ∈ S.

The statement of the next lemma seems to be very technical. The high-level idea is the following.
We consider a large enough subset of inputs S ⊆ X with two additional properties saying that every
function in S is defined on sufficiently many inputs and that for fixed g ∈ P and y ∈ B

n there are
only a few x ∈ B

n such that (g, x, y) ∈ S. The first property is easy to achieve and the second
comes from the proof of Theorem 31. The lemma shows that from such S we can extract a large
set H that will allow us reduce solving non-deterministic communication problem NEQH to solving
(deterministic) communication problem UMn on S × S.

Lemma 35. Let S ⊆ X be a subset of inputs such that |S| ≥ N ·N !, and let GS = (US , VS , ES) be
a domain graph of S. If ming∈US

{degGS
(g)} ≥ 4N and

∀g ∈ P, ∀y ∈ B
n,
∣
∣{x ∈ B

n | (g, (x, y)) ∈ ES}
∣
∣ ≤

√
N, (1)

then there is a set H ⊆ US of size 2Ω(
√
N) such that for all distinct g1, g2 ∈ H, there exist (x, y):

(g1, x, y), (g2, x, y) ∈ S, and g1(y) 6= g2(y).

Before we prove this lemma, lets look how it is used in the proof of Theorem 31.

Proof of Theorem 31. We start with applying Lemma 33 for d = n − t to find a rectangle A × B
such that |A ∩ B| ≥ 2NTN !. Let S = A ∩ B and GS = (US , VS , ES) be a domain graph of S.
Average degree of the vertices in US is at least 2NTN !/N ! = 2NT . To increase the minimum
degree we throw out all the vertices of low degree. Let S′ = S \ {(g, x, y) | degGS

(g) < 4N}.
The size of |S′| > |S| − 4N · |P| = (2T − 4)NN !. Taking T ≥ 4, we have |S′| > 4NN !. Let
GS′ = (US′ , VS′ , ES′) be a domain graph of S′. If there are g ∈ P and y ∈ B

n such that
∣
∣{x ∈

B
n | (g, (x, y)) ∈ ES′}

∣
∣ >

√
N then to solve UMn on S′ × S′ the players have to solve the equality

problem for {x ∈ B
n | (g, (x, y)) ∈ ES′} that requires at least log(

√
N) = n/2.

Otherwise we apply Lemma 35 to construct a set H of size 2Ω(
√
N). We are going to show that

the protocol for UMn on S′ × S′ can be used to non-deterministically solve NEQH . Suppose that
Alice and Bob are given g1 ∈ H and g2 ∈ H respectively, and they want to non-deterministically
verify that g1 6= g2 using a privately non-deterministic protocol. Alice privately guesses (xa, ya)
such that (g1, xa, ya) ∈ S′, Bob privately guesses (xb, yb) such that (g2, xb, yb) ∈ S′. Then the players
run the protocol for UMn on S′×S′. If the protocol outputs ⊥ then the private guesses give a valid
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proof of g1 6= g2. Otherwise, if the protocol finds some i ∈ [2n] such that (xa, ya)i 6= (xb, yb)i then
the players reject the guesses (i.e., the function defining the privately non-deterministic protocol
on these inputs equals 0). By Lemma 35, such private guesses exists for all distinct g1, g2 ∈ H.
On the other hand, the statement of the problem UMn guarantees that the protocol can output ⊥
only if g1 6= g2. Thus, the depth of the protocol for UMn on S′ is at least

NCC′(NEQH) ≥ log log |H| ≥ log
√
N −O(log log(N)) = n/2−O(log n).

To conclude the proof we need to chose a value for the parameter t. The proof requires T ≥ 4,
so any constant t ≥ 2 will do.

Now it is time to prove Lemma 35.

Proof of Lemma 35. We are going to construct a rooted tree T (S) such that

• each leaf ℓ is labeled with a set of functions Fℓ ⊆ US ,

• each internal node v is labeled with a pair (xv, yv) ∈ VS ,

• for every leaf ℓ labeled with Fℓ and every it’s ancestor labeled with (x, y) there exists a ∈ B
n

such that ∀g ∈ Fℓ, g(y) = a and (g, x, y) ∈ S.

• for every two leaves labeled with F1 and F2, and their lowest common ancestor labeled with
(x, y): F1 ∩ F2 = ∅ and for all g1 ∈ F1, g2 ∈ F2, such that g1(y) 6= g2(y),

• the number of leaves is a least 3
√

N

N .

Having such a tree the set H is constructed by taking one function from every list. Indeed, the
structure of the tree guarantees that for every g1, g2 ∈ H, g1 6= g2, there exist (x, y), the label of the
least common ancestor of corresponding leaves, such that (g1, x, y), (g2, x, y) ∈ S, and g1(y) 6= g2(y).

The tree is defined recursively. For a set Z ⊆ S, let T (Z) be a (non-empty) rooted tree. Let
GZ = (UZ , VZ , EZ) be a domain graph of Z. If ming∈UZ

{degGZ
(g)} ≥ 2N then the rooted tree

T (Z) consists of a root node labelled with (xZ , yZ), where (xZ , yZ) is a vertex of maximal degree
in VZ , and a set of subtrees — for every a ∈ B

n such that ∃g ∈ UZ : (g, xZ , yZ) ∈ Z, g(yZ) = a
there is a subtree T (Za) attached to the root node, where

Za = {(g, x, y) | (g, x, y) ∈ Z, y 6= yZ , g(yZ) = a}

Otherwise T (Z) consists of one leaf node labeled with UZ .
We are going to lower bound the number of leaves in T (S) by lower bounding the number of

nodes at depth
√
N + 1. Let z be some node of T (S) at depth d ≤

√
N labeled with (xZ , yZ)

corresponding to a root node of a subtree T (Z) for some Z ⊆ S. Let GZ = (UZ , VZ , EZ) be a
domain graph of Z. Due to the condition (1) the minimal degree of vertices in UZ can be lower
bounded by 4N − d

√
N ≥ 3N . At the same time |VZ | ≤ N(N − d). Let T (Za1), . . . , T (Zak) — be

the subtrees attached to z. Note that π1(Zai)∩π1(Zaj ) = ∅ for all i 6= j, so the number of functions
appearing in Za1 , . . . , Zak is exactly the number of functions in Z defined on (xZ , yZ). Given that
(xZ , yZ) is a vertex of maximal degree in VZ , the number of functions in the subtrees can be lower
bounded as follows,

∣
∣π1(Za1) ⊔ · · · ⊔ π1(Zak)

∣
∣ ≥ |EZ |

|VZ |
≥ 3N |UZ |

N(N − d)
=

3|UZ |
N − d

.
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Thus by induction the total number of functions that appear in the sets at depth d+ 1 is at least

3d · |US |
N(N − 1) · · · (N − d)

=
3d · |US | · (N − d− 1)!

N !
,

where the size of US is at least |S|/N2 ≥ N !/N . Now we are ready to lower bound the number of
nodes at depth d + 1. Note that the number of permutations with k values fixed is (N − k)!, and
hence a node at depth d+ 1 has at most (N − d− 1)! functions in its set. The number of nodes at
depth d+1 is at least the total number of functions at depth d+1 divided by the upper bound on
the number of functions in one node, that is

3d · |US | · (N − d− 1)!

N !
/(N − d− 1)! ≥ 3d

N
.

For d =
√
N + 1 we get the desired bound 3

√
N

N = 2Ω(
√
N) on the number of leaves.

5 Lower bound for UFg
n

Our final goal is to show hardness of Un⊞g for some function g : Bn → B
n. Showing the lower bound

for UMn was the first step in this direction. As we discussed it is might be tempting to try to show
that that hardness of multiplexer implies existence of a hard function. Unfortunately, the question
whether that is true has remained open for decades. To get around this issue we will gradually
extend the lower bound for UMn using results from half-duplex communication complexity.

We start with extending the lower bound for UMn to the half-duplex model.

Theorem 36.

CChd(UMn) ≥
(

1

log 5
2

+
1

4

)

n−O(1) ≥ 1.006n−O(1)

The proof of this theorem mimics the proof for the classical case (Theorem 31). During the first
stage, given a protocol for UMn we will find a large enough square S×S, such that it is significantly
easier to solve UMn on this square. Then we will show that on every big square the problem is still
hard. The following lemma lower bounds the size of a square for the first stage.

Lemma 37. Let Π be a half-duplex protocol of length d that solves a communication problem on
a rectangle U × U . For every t ≤ d there exist a subset S ⊂ U of size at least (25)

t · |U |, and a
half-duplex protocol Π′ of length d− t that gives the same output as Π for all inputs from S × S.

Proof. In [HIMS18a, Theorem 22], it is shown for t = 1. The general case follows by induction.

Now we are ready to proof Theorem 36.

Proof of Theorem 36. Suppose CChd(UMn) = d and let t = n−3
log 2.5 . According to Lemma 37 there

is a subset S ⊂ X of size

|S| ≥
(
2

5

)t

· |X | = 8

N
·N2N ! = 8NN !,

and a half-duplex protocol length d− n−3
log 2.5 that can solve UMn on S×S. Any half-duplex protocol

can be transformed into a classical one while at most doubling the length [HIMS18b]. Then there
is a length 2(d− n−3

log 2.5) classical protocol that solves UMn on S × S.
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By applying the same argument as in the proof of Theorem 31 where we used Lemma 35 to
solve NEQH using privately non-deterministic protocol, we can show

2

(

d− n− 3

log 2.5

)

≥ n

2
.

Which gives us the following lower bound

d ≥
(

1

log 2.5
+

1

4

)

n−O(1) > 1.006n−O(1).

Out next step is to relate the complexities of problems UFg
n and UMn.

Lemma 38. There exists g : Bn → B
n such that

CC(UFg
n) ≥ CChd(UMn)

The proof is almost identical to the proof of Lemma 25 and we will omit it. We only note that,
in contrast to Lemma 25, the statement of this Lemma does not seem to be trivial. Immediately
we get the following theorem.

Theorem 39. There exists g : Bn → B
n such that

CC(UFg
n) ≥ 1.006n.

To improve this bound we will have to look deeper into the protocol structure and use the fact
that it is partially half-duplex.

Definition 40. A half-duplex protocol for UMn is called partially half-duplex if it has the following
property: whenever Alice and Bob are given the same function they are not allowed to perform
non-classical communication. In other words, in a partially half-duplex protocol Alice and Bob
never send or listen simultaneously if ga = gb.

We are going to need the following analogue of Lemma 38.

Lemma 41. There exists g : Bn → B
n such that

CC(UFg
n) ≥ CCphd(UMn)

Similarly to the proof of Lemma 26, we only need to notice that the protocol for UMn that
would appear in the proof of Lemma 38 is partially half-duplex.

The following Lemma proves a lower bound on the partially half-duplex complexity of UMn.

Lemma 42. The shortest partially half-duplex protocol for UMn has length 3
2n−O(log n).

Together with Lemma 38, this lemma immediately implies our main result that the XOR-KRW
holds for a composition of the universal relation with the KW-game for some function.

Theorem 43. For all n ∈ N, there exists g : Bn → B
n such that

CC(UFg
n) ≥ 1.5n−O(logn).
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Once again we are going to split the proof of Lemma 42 in two parts. First, we will find a node
in the protocol with a large square, and then we will show that the problem is still hard on this
square. The following lemma shows that there is a large square.

Lemma 44. If there exists a partially half-duplex protocol of length d for UMn, then there exist a
subset of inputs S : |S| ≥ 8NN ! and a partially half-duplex protocol of length d−n+3 that correctly
solves UMn on S × S.

Proof. Let Z be a subset of inputs where Alice’s and Bob’s inputs are identical. First, we need
to notice that if Alice and Bob are given an element from Z, then they perform only classical
communication. That means that there are only 2d different nodes of the protocol after d rounds
of communication such that corresponding rectangles contain elements from Z. So we can find a
node at level n− 3 such that the corresponding rectangle has at least 8NN ! elements of the Z. Let
S be this set of elements. Clearly we can solve UMn on S×S by a protocol of length d−n+3.

The following lemma shows that UMn is still hard on a sufficiently large square.

Lemma 45. Any partially half-duplex protocol that solves UMn on a square S × S, where |S| ≥
8NN !, has length n

2 −O(logn).

Proof. We will use the same dichotomy as in Theorem 31. Let S′ = S \{(g, x, y) | degGS
(g) < 4N},

so |S′| > 4NN !. Let GS′ = (US′ , VS′ , ES′) be a domain graph of S′. The minimal degree of the
vertices in US′ is at least 4N .

Suppose there are g ∈ P and y ∈ B
n such that |Sg,y| =

∣
∣{x ∈ B

n | (g, (x, y)) ∈ ES′}
∣
∣ >

√
N .

The protocol is partially half-duplex, so we know that it has only classical rounds for inputs from
Sg,y × Sg,y. To solve UMn on Sg,y × Sg,y the players would have to solve the equality problem for
{x ∈ B

n | (g, (x, y)) ∈ ES′} that requires at least log(
√
N) = n/2.

Otherwise we apply Lemma 35 to construct a set H of size at least 2Ω(2n/2). Then the protocol
for UMn on S′ × S′ can be used to non-deterministically solve NEQH with additive overhead of
O(logn). The reduction from NEQH to UMn is identical to the one we have seen in the proof of
Theorem 31. Alice and Bob are given g1 ∈ H and g2 ∈ H respectively, and they want to non-
deterministically verify that g1 6= g2 using a privately non-deterministic protocol. Alice privately
guesses (xa, ya) such that (g1, xa, ya) ∈ S′, Bob privately guesses (xb, yb) such that (g2, xb, yb) ∈ S′.
Then the players run the protocol for UMn on S′ × S′. If the protocol outputs ⊥ then the private
guesses certify that g1 6= g2, otherwise the players reject the guesses. Lemma 35 provides that such
private guesses exist for all distinct g1, g2 ∈ H. The definition of UMn ensures that the protocol
output ⊥ only if g1 6= g2.

Thus, the depth of the protocol for UMn on S′ is at least

NCC′(NEQH) ≥ log log |H| ≥ log
√
N −O(log log(N)) = n/2−O(log n).

Now we can compose the proof for Lemma 42.

Proof of Lemma 42. Suppose that there is a partially half-duplex protocol of length d that solves
UMn. First we use Lemma 44 to find a large square S×S with complexity d−n+3. Then we use
Lemma 45 to show that d− n+ 3 ≥ n/2−O(logn), and hence d ≥ 1.5n−O(log n).

18



6 Conclusion

In this paper we presented a lower bound for UFg
n for some function g. Our result complements the

result from [GMWW17] where a lower bound for KWg ⋄ Un was shown. It remains to understand
if the techniques from these two papers can be forced to work in harmony. We are very optimistic
about it: the structure of our proof reminds of the first results regarding Um ⋄ Un from [EIRS01]:
we maintain the symmetry for as long as possible and then show that some of the hardness still
remains in the problem. The proof from [GMWW17] shows how to substitute the symmetry with
some hardness measure and hopefully the same magic can be applied to this instance.

6.1 Open questions

1. Is there a generic ways to convert lower bounds for classical communication into half-duplex
and partially half-duplex?

2. Is there another proof of the results from this paper, that doesn’t rely on non-classical models?

3. Prove lower bound of 2n − o(n) for UMn in classical, partially half-duplex or half-duplex
model.

4. Prove that for some f, g : Bn → B
n, CC(KWf⊞g) ≥ (1 + ǫ)n.
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A Proof of Theorem 9

Theorem 9. For any m,n ∈ N with n ≥ 6 logm, and any non-constant function f : Bm → B,

CC(KWf⋄Mn) ≥ log L(f) + n−O(logn).

Proof. First of all, we show that for any non-constant function f : Bm → B,

CC(KWf⋄Mn) ≥ CC(KWf ⋄Un)−O(logn)

by reducing KWf ⋄Un to KWf⋄Mn , and then we apply the improved lower bound on CC(KWf ⋄Un)
proved in [GMWW17, KM18].

Consider a communication game KWf ⋄Un: Alice and Bob are given (x,X) and (y, Y ) respec-
tively, where x ∈ f−1(0), y ∈ f−1(1), X,Y ∈ B

m×n, and they want to find a position where X and
Y differ.

The following construction describes a reduction from this game to KWf⋄Mn . Given x and X
Alice defines functions s1, . . . , sn:

si(r) =

{

x[i], r = Xi

0, otherwise,
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where Xi is the ith row of X. Given y and Y Bob defines functions t1, . . . , tn in the same way.
The reduction guarantees that (f⋄Mn)(s1, X1, . . . , sm, Xm) = 0 and (f⋄Mn)(t1, Y1, . . . , tm, Ym) =

1, and hence the players can simulate the KW game for f ⋄ Mn on these inputs. There are two
possible outcomes of such a game: Alice and Bob find a difference between either some rows Xi

and Yi or some functions si and ti.
In the first case, we are done — we’ve found a difference between X and Y . In the second case,

Alice and Bob find a position where two functions si and ti differ for some i ∈ [m], i.e., at the end
of the protocol they both know some r such that si(r) 6= ti(r). Then either r = Xi or r = Yi.
Using two bits of communication Alice and Bob can find out which of these two cases applies. If
r = Xi 6= Yi then Bob can find a position where r = Xi and Yi differ, and send it to Alice using
log n bits. The other case is symmetric.

The reduction shows that

CC(KWf ⋄Un) ≤ CC(KWf⋄Mn) +O(log n).

To complete the proof we use the following bound from [GMWW17, KM18]:

CC(KWf ⋄Un) ≥ log L(f) + n−O(log∗ n).
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