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Abstract

Prediction algorithms assign numbers to individuals that are popularly understood as indi-
vidual “probabilities”—what is the probability of 5-year survival after cancer diagnosis?—and
which increasingly form the basis for life-altering decisions. Drawing on an understanding of
computational indistinguishability developed in complexity theory and cryptography, we in-
troduce Outcome Indistinguishability. Predictors that are Outcome Indistinguishable yield a
generative model for outcomes that cannot be efficiently refuted on the basis of the real-life
observations produced by Nature.

We investigate a hierarchy of Outcome Indistinguishability definitions, whose stringency
increases with the degree to which distinguishers may access the predictor in question. Our
findings reveal that Outcome Indistinguishability behaves qualitatively differently than previ-
ously studied notions of indistinguishability. First, we provide constructions at all levels of the
hierarchy. Then, leveraging recently-developed machinery for proving average-case fine-grained
hardness, we obtain lower bounds on the complexity of the more stringent forms of Outcome
Indistinguishability. This hardness result provides the first scientific grounds for the political
argument that, when inspecting algorithmic risk prediction instruments, auditors should be
granted oracle access to the algorithm, not simply historical predictions.
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1 Introduction

Prediction algorithms “score” individuals, mapping them to numbers in [0, 1] that are popularly
understood as “probabilities” or “likelihoods:” the probability of 5-year survival, the chance that
the loan will be repaid on schedule, the likelihood, that the student will graduate within for years, or
that it will rain tomorrow. Algorithmic risk predictions increasingly inform consequential decisions,
but what can these numbers really mean? Five-year survival, four-year graduation, rain tomorrow,
are not repeatable events. The question of “individual probabilities” has been studied for decades
across many disciplines without clear resolution.1

One interpretation relies on the coarseness of the representation of individuals to the prediction
algorithm—the shape of a tumor’s boundaries and the age of the patient; the student’s grades,
test scores, and a few bits about the family situation; the atmospheric pressure, humidity level,
and winds—to partition individuals into a small number of “types.” This leads to a natural
interpretation of the predictions: amongst the individuals of this type, what fraction exhibit a
positive outcome? In the context of modern data science, however, it is typical to make predictions
based on a large number of expressive measurements for each individual—the patient’s genome-
wide risk factors; the borrower’s online transactions and browsing data; the student’s social media
connections. In this case, when each individual resolves to a unique set of covariates, the frequency-
based interpretation fails.

Another view imagines the existence of a party—Nature—who selects, for each individual, a prob-
ability distribution over outcomes; then, the realized outcome is determined by a draw from this
distribution. Note that Nature may select the outcomes using complete determinism (i.e., probabil-
ities in {0, 1}). This view of the world gives rise to a statistical model with well-defined individual
probabilities, but reasoning about these probabilities from observational data presents challenges.
Given only observations of outcomes, we cannot even determine whether Nature assigns integer or
non-integer probabilities. Perhaps Nature is deterministic, but we do not have enough information
or computing resources to carry out the predictions ourselves. Thus, even if we posit that outcomes
are determined by individual probabilities, we cannot hope to recover the exact probabilities gov-
erning Nature, so this abstraction does not appear to provide an effective avenue for understanding
the meanings of algorithmic risk scores.

1.1 Predictions that Withstand Observational Falsifiability

Given the philosophical uncertainty regarding the very existence of randomness, we explore the
criteria for an ideal predictor. We can view the outputs of a prediction algorithm as defining a
generative model for observational outcomes. Ideally, the the outcomes from this generative model
should “look like” the outcomes produced by Nature. To this end, we introduce and study a
strong notion of faithfulness—Outcome Indistinguishability (OI). A predictor satisfying outcome
indistinguishability provides a generative model that cannot be efficiently refuted on the basis of
the real-life observations produced by Nature. In this sense, the probabilities defined by any OI

1See the inspiring paper, and references therein, of Philip Dawid [Daw15], discussing several notions of individual
risk based on different philosophical understandings of probability “including Classical, Enumerative, Frequency,
Formal, Metaphysical, Personal, Propensity, Chance and Logical conceptions of Probability” and proposing a new
approach to characterizing individual risk which, the author concludes, remains elusive.
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predictor provide a meaningful model of the “probabilities” assigned by Nature: even granted full
access to the predictive model and historical outcomes from Nature, no analyst can invalidate the
model’s predictions. Our study contributes a computational-theoretic perspective on the deeper
discussion of what we should demand of prediction algorithms–a subject of intense study in the
statistics community for over 30 years (see, e.g., the forecasting work in [Daw82,FV98,FL99,SSV03,
San03])—and how they should be used. For example, one of our results provides scientific teeth
to the political argument that, if risk prediction instruments are to be used by the courts (as they
often are in the United States), then at the very least oracle access to the algorithms should be
granted for auditing purposes.

Outcome Indistinguishability presents a broad framework evaluating algorithmic risk predictions.
This paper focuses on the fundamental setting of predicting a binary outcome, given an individual’s
covariates, a simple prediction setup that already highlights many of the challenges and subtleties
that arise while defining and reasoning about OI. Nothing precludes extending OI to reason about
algorithms that make predictions about more general (e.g., continuous) outcomes.

Basic notation. We assume that individuals are selected from some discrete domain X , for exam-
ple, the set of d-bit strings2. We model Nature as a joint distribution, denoted D∗, over individuals
and outcomes, where o∗i ∈ {0, 1} represents Nature’s choice of outcome for individual i ∈ X. We
use i ∼ DX to denote a sample from Nature’s marginal distribution over individuals and denote by
p∗i ∈ [0, 1] the conditional probability that Nature assigns to the outcome o∗i , conditioned on i. We
emphasize, however, that Nature may choose p∗i ∈ {0, 1} to be deterministic; our definitions and
constructions are agnostic as to this point.

A predictor is a function p : X → [0, 1] that maps an individual i ∈ X to an estimate p̃i of the
conditional probability of o∗i = 1. For a predictor p̃ : X → [0, 1], we denote by (i, õi) ∼ D(p̃) the
individual-outcome pair, where i ∼ DX is sampled from Nature’s distribution over individuals, and
then the outcome õi ∼ Ber(p̃i) is sampled from the Bernoulli distribution with parameter p̃i.

Outcome Indistinguishability. Imagine that Nature selects p∗i = 1 for half of the mass of
i ∼ DX and p∗i = 0 for the remainder. If the two sets of individuals are easy to identify then we can
potentially recover a close approximation to p∗. Suppose, however, that the sets are computationally
indistinguishable, in the sense that given i ∼ DX , no efficient observer can guess if p∗i = 1 or p∗i = 0
with probability significantly better than 1/2. In this case, producing the estimates p̃i = 1/2 for
every individual i ∈ X captures the best computationally feasible understanding of Nature: given
limited computational power, the outcomes produced by Nature may faithfully be modeled as a
random. In particular, if Nature were to change the outcome generation probabilities from p∗ to
p̃ we, as computationally bounded observers, will not notice. In other words, predictors satisfying
OI give rise to models of Nature that cannot be falsified based only on observational data.

In the most basic form of the definition, a predictor p̃ : X → [0, 1] is Outcome Indistinguishable with
respect to a family of distinguishers A if samples from Nature’s distribution (i, o∗i ) ∼ D∗ cannot be
distinguished by A from samples from the predictor’s distribution (i, õi) ∼ D(p̃), meaning that for

2Individuals can be arbitrarily complex; they are represented to the algorithm as elements of X . Strictly speaking,
distributions over X are induced distributions over the representations, and our results apply whether or not there
are collisions. We do not assume that Nature’s view is restricted to the representation.
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each algorithm A ∈ A, the probability that A outputs 1 is (nearly) the same on samples from each
of the two distributions, D∗ and D(p̃).

Definition (Outcome Indistinguishability). Fix Nature’s distribution D∗. For a class of distin-
guishers3 A and ε > 0, a predictor p̃ : X → [0, 1] satisfies (A, ε)-outcome indistinguishability (OI)
if for every A ∈ A,∣∣∣∣ Pr

(i,o∗i )∼D∗
[ A(i, o∗i ; p̃) = 1 ]− Pr

(i,õi)∼D(p̃)
[ A(i, õi; p̃) = 1 ]

∣∣∣∣ ≤ ε.
The definition of Outcome Indistinguishability can be extended in many ways, for example to
settings where distinguishers receive multiple samples from each distribution, or when they have
access to the program implementing p̃, and to the case of non-Boolean outcomes.

In the extreme, when we think of A as the set of all efficient computations, outcome indistinguisha-
bility sets a demanding standard for predictors that model Nature. Given an OI predictor p̃, even
the most skeptical scientist—who, for example, does not believe that Nature can be captured by
a simple computational model—cannot refute the model’s predictions through observation alone.
This framing seems to give an elegant computational perspective on the scientific method, when
consider p̃ as expressing a hypothesis that cannot be falsified through observational investigation.

1.2 Our Contributions

The most significant contributions of this work can be summarized as follows:

(1) We define a practically-motivated four-level hierarchy of increasingly demanding notions of
Outcome Indistinguishability. The levels of the hierarchy arise by varying the degree to which
the distinguishers may access the predictive model in question.

(2) We provide tight connections between the two lower levels of the hierarchy to multi-accuracy and
multi-calibration, two notions defined and studied in [HKRR18]. Establishing this connection
immediately gives algorithmic constructions for these two levels.

(3) We describe a novel algorithm that constructs OI predictors directly. This construction es-
tablishes an upper bound on the complexity of OI for the upper levels of the hierarchy (and,
consequently, also allows us to recover the results of [HKRR18] through the OI framework).

(4) We show a lower bound for the upper levels of the hierarchy, demonstrating the tightness of
our constructions. We prove that, under plausible complexity-theoretic assumptions, at the
top two levels of the hierarchy the complexity of the predictors cannot be polynomial in the
complexity of the distinguishers in A and in the distinguishing advantage 1/ε.

Additionally, we revisit the apparent interchangeability of the terms “test” and “distinguisher”
in the literature on pseudorandomness, drawing a distinction that is relevant to the forecasting
problem. Our reults clarify the mathematical relationship between notions in the two literatures.

3Like the predictors, distinguishers have access only to the finite representations of individuals as elements of X .

3



Next, we present a colloquial illustration of the different notions of the hierarchy. While very
natural, the notions within the hierarchy have not been fully considered in the literature on either
forecasting or pseudorandomness.

The Outcome Indistinguishability Hierarchy. Imagine a medical board that wishes to audit
the output of a program p̃ used to estimate the chances of five-year survival of patients under a
given course of treatment. We can view the medical board as a distinguisher A ∈ A. To perform
the audit, the board receives historical files of patients and their five-year predicted (i.e., drawn
from D(p̃)) or actual (drawn from D∗) outcomes. The requirement is that these two cases be
indistinguishable to the board.

(1) To start, the board is only given samples, and must distinguish Nature’s samples (i, o∗i ) ∼ D∗
from those sampled according to the predicted distribution (i, õi) ∼ D(p̃). The board gets no
direct access to predictions p̃i of the program; we call this variant no-access-OI.

(2) Naturally, the board may ask to see the predictions p̃i for each sampled individual. In this
extension—sample-access-OI — the board must distinguish samples of the form (i, o∗i , p̃i) and
(i, õi, p̃i), again for (i, o∗i ) ∼ D∗ and (i, õi) ∼ D(p̃).

(3) Oracle-access-OI allows the board to make queries to the program p̃ on arbitrary individuals,
perhaps to examine how the algorithm behaves on related (but unsampled) patients.

(4) Finally, in code-access-OI, the board is allowed to examine not only the predictions from p̃ but
also the actual code, i.e., the full implementation details of the program computing p̃.

On a different axis, we also consider multiple-sample variants of OI and show how these relate to
the single-sample variants described above. Multiple-sample OI is closer to the problem of online
forecasting (e.g., daily weather forecasting); we explore connections between this variant of OI and
the forecasting literature in Section 1.4.

The Lower Levels of the OI Hierarchy. We begin by examining the relationship between
the different levels of the hierarchy. We show that no-access-OI and sample-access-OI are closely
related to the notions of multi-accuracy and multi-calibration [HKRR18], respectively, studied in
the algorithmic fairness literature. Very loosely, for a collection C of subpopulations of individuals,
(C, α)-multi-calibration asks that a predictor p̃ be calibrated (up to α error4) not just overall, but
also when we restrict our attention to subpopulations S ⊆ X for every set S ∈ C. Here, calibration
over S means that if we restrict our attention to individuals i ∈ S for which p̃i = v, then the
fraction individuals with positive outcomes (i.e., i ∈ S such that o∗i = 1) is roughly v. We prove
that sample-access-OI with respect to a set of distinguishers A is “equivalent” to C-multi-calibration
in the sense that each notion can enforce the other, for closely related classes C and A.

Theorem 1 (Informal). For any class of distinguishers A and ε > 0, there exists a (closely
related) collection of subpopulations CA and αε > 0, such that (CA, αε)-multi-calibration implies

4Defining approximate calibration is subtle; see a discussion in Section 4 with the formal definition of approximate
multi-calibration.
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(A, ε)-sample-access-OI. Similarly, for any collection of subpopulations C and α > 0, there exists a
(closely related) class of distinguishers AC and εα > 0, such that (AC , εα)-sample-access-OI implies
C-multi-calibration.

Importantly, the relation between the class of distinguishers and collection of subpopulations pre-
serves most natural measures of complexity; in other words, if we take A to be a class of efficient
distinguishers, then evaluating set membership for the populations in C will be efficient (and vice
versa). No-access-OI is similarly equivalent to the weaker notion of multi-accuracy, which requires
accurate expectations for each S ∈ C, rather than calibration.

Feasibility and Constructions. We consider the question of whether efficient OI predictors
always exist. In particular, we ask, Can we bound the complexity of OI predictors, independently of
the complexity of Nature’s distribution? The picture we uncover is subtle; we will see that Outcome
Indistinguishability differs qualitatively from prior notions of indistinguishability.

First off, leveraging feasibility results for the fairness notions from [HKRR18], we can obtain efficient
predictors satisfying no-access-OI or sample-access-OI, by reduction to multi-accuracy and multi-
calibration. Informally, for each of these levels, we can obtain OI predictors whose complexity scales
linearly in the complexity of A and inverse polynomially in the desired distinguishing advantage
ε. The result is quite generic; for concreteness, we state the theorem using circuit size as the
complexity measure.

Theorem 2. Let A be a class of distinguishers implemented by size-s circuits. For any D∗ and
ε > 0, there exists a predictor p̃ : X → [0, 1] satisfying (A, ε)-sample-access-OI (similarly, no-
access-OI) implemented by a circuit of size O(s/ε2).

Turning now to oracle-access-OI and code-access-OI predictors, we obtain a general-purpose algo-
rithm for constructing OI predictors, even when the distinguishers are allowed arbitrary access to
the predictor in question. This construction extends the learning algorithm for multi-calibration
of [HKRR18] to the more general setting of OI. When we allow such powerful distinguishers, the
learned predictor p̃ is quantitatively less efficient than in the weaker notions of OI. In this intro-
duction, we state the bound informally, assuming the distinguishers are implemented by circuits
with oracle gates (a formal treatment appears in Section 5). As an example, if we let A be the set
of oracle-circuits of some fixed polynomial size (in the dimension d of individual’s representations),
and allow arbitrary oracle queries, then p̃ will be of size dO(1/ε2).

Theorem 3 (Informal). Let A be a class of oracle-circuit distinguishers implemented by size-s
circuits that make at most q oracle calls to the predictor in question. For any D∗ and ε > 0, there
exists a predictor p̃ : X → [0, 1] satisfying (A, ε)-oracle-access-OI implemented by a (non-oracle)
circuit of size s · qO(1/ε2).

Intuitively, code-access-OI can implement any of the prior levels through simulation: given the
code for p̃, the distinguishers can execute oracle calls (or calls to p̃i) whenever needed.5 At the
extreme of efficient OI, we consider code-access-OI with respect to the class of polynomial-sized

5There is some subtlety in making this intuition formal, related to encoding and decoding the description of the
predictor, but the overhead is mild; see Section 5.
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distinguishers. Importantly, we allow the complexity of these distinguishers to grow as a (fixed)
polynomial in both the dimension of individuals d and the length of the description of the predictor
p̃, which we denote by n. For this most general version of OI, the complexity may scale doubly
exponentially in poly(1/ε); nevertheless, the bound is independent of the complexity of p∗.

Theorem 4 (Informal). For some d ∈ N, let X ⊆ {0, 1}d be represented by d-bit strings. Suppose
for some k ∈ N, A is a class of distinguishers implemented by circuits of size (d + n)k, on inputs
i ∈ X and descriptions of predictors in {0, 1}n. For any D∗ and ε > 0, there exists a predictor

p̃ : X → [0, 1] satisfying (A, ε)-code-access-OI implemented by a circuit of size d2O(1/ε2)
.

Hardness via Fine-Grained Complexity. We establish a connection between the fine-grained
complexity of well-studied problems and the complexity of achieving oracle-access-OI. Under the
assumption that the (randomized) complexity of counting k-cliques in n-vertex graphs is nΩ(k),
we demonstrate that the construction of Theorem 3 is optimal up to polynomial factors. Specifi-
cally, we rule out (under this assumption) the possibility that the complexity of a oracle-access-OI
predictor can be a fixed polynomial in the complexity of the distinguishers in A and in the distin-
guishing advantage ε. This hardness result holds for constant distinguishing advantage ε and for
an efficiently-sampleable distribution D∗. This hardness results are in stark contrast to the state of
affairs for sample-access-OI (see Theorem 2). Concretely, in the parameters of the upper bound, the
result based on the hardness of clique-counting rules out any predictor p̃ satisfying oracle-access-OI
of (uniform) size significantly smaller than dΩ(1/ε).

Theorem 5 (Informal). For k ∈ N, assume there exist α > 0 s.t. there is no o(nα·k)-time random-

ized algorithm for counting k-cliques. Then, there exist: X ⊆ {0, 1}d
2

, an efficiently-sampleable
distribution D∗, and a class A of distinguishers that run in time Õ(d3) and make Õ(d) queries, s.t.
for ε = 1

100k , no predictor p̃ that runs in time (dα·k · log−ω(1)(d)) can satisfy (A, ε)-oracle-access-OI.

See Corollary 6.9 for a formal statement. This lower bound is robust to the computational model:
assuming that clique-counting requires nΩ(k)-sized circuits implies a similar lower bound on the
circuit size of oracle-access-OI predictors. The complexity of clique counting has been widely
studied and related to other problems in the fine-grained and parameterized complexity literatures,
see the discussion in Section 6.2. We note that, under the plausible assumption that the fine-grained
complexity of known clique counting algorithms is tight, our construction shows that obtaining
oracle-access-OI is as hard, up to sub-polynomial factors, as computing p∗. We emphasize that this
is the case even though the running time of the distinguishers can be arbitrarily small compared
to the running time of p∗.

Hardness via BPP 6= PSPACE. We also show that, under the (milder) assumption that BPP 6=
PSPACE, there exists a polynomial collection of distinguishers and a distribution D∗, for which no
polynomial-time predictor p̃ can be OI. The distinction from the fine-grained result (beyond the
difference in the assumptions) is that here D∗ is not efficiently sampleable, and the distinguishing
advantage for which OI is hard is much smaller.

Theorem 6 (Informal). Assume that BPP 6= PSPACE. Then, there exist: X ⊆ {0, 1}d, a distri-
bution D∗ (which can be sampled in exp(poly(d)) time), and a class A of poly(d) distinguishers

6



that run in time poly(d), s.t. for ε = 1
poly(d) , no predictor p̃ that runs in time poly(d) can satisfy

(A, ε)-oracle-access-OI.

Discussion. We highlight a few possible interpretations and insights that stem from our technical
results. The ability to construct predictors that satisfy outcome indistinguishability can be viewed
both positively and negatively. On the one hand, the feasibility results demonstrate the possibility
of learning generative models of observed phenomena that withstand very powerful scrutiny, even
given the complete description of the model. On the other hand, OI does not guarantee statistical
closeness to Nature (it need not be the case that p∗ ≈ p̃). Thus, the feasibility results demonstrate
the ability to learn an incorrect model that cannot be detected by efficient inspection.

More generally, the computational perspective of OI underscores an inherent limitation in trying to
recover the exact laws governing Nature from observational data alone. We illustrate this perspec-
tive through a comparison to pseudorandomness. Traditionally in pseudorandomness, our object
of desire is random (e.g., a large string of random bits fed to a BPP algorithm), and we show that
a simple deterministic object suffices to “fool” efficient observers. In outcome indistinguishability,
our object of desire is a model of Nature, which may obey highly-complex deterministic laws. In
this work, we show that a simple random model of Nature—namely, D(p̃) for an OI predictor
p̃—suffices to “fool” efficient observers. In this sense, attempting to recover the “true” model of
Nature based on real-world observations is futile: no efficient analyst can falsify the outcomes of
the random model defined by p̃, agnostic to the “true” laws of Nature.

The most surprising (and potentially-disturbing) aspect of our results may be the complexity of
achieving oracle-access-OI and code-access-OI. In particular, for these levels, we show strong evi-
dence that there exist p∗ and A that do not admit efficient OI predictors p̃, even when A is a class
of efficient distinguishers! That is, there are choices of Nature that cannot be modeled simply, even
if all we care about is passing simple tests. This stands in stark contrast to the existing literature
on indistinguishability, where the complexity of the indistinguishable object is usually polynomial
in the distinguishers’ complexity and distinguishing advantage, regardless of the complexity of the
object we are trying to imitate.

The increased distinguishing power of oracle access to the predictor in oracle-access-OI seems to
have practical implications. Currently, there are many conversations about the appropriate usage
of algorithms when making high-stakes judgments about members of society, for instance in the
context of the criminal justice system. Much of the discussion revolves around the idea of auditing
the predictions, for accuracy and fairness. The separation between oracle-access-OI and sample-
access-OI provides a rigorous foundation for the argument that auditors should at the very least
have query access to the prediction algorithms they are auditing: given a fixed computational
bound, the auditors with oracle-access may perform significantly stronger tests than those who
only receive sample access.

1.3 Technical Overview

Next, we give a technical overview of the main results. Our goal is to convey the intuition for our
findings, deferring the technical details to subsequent sections.
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Relating OI and multi-calibration. To build intuition for the equivalence, as described infor-
mally in Theorem 1 and formally in Section 4, we begin by describing the construction that estab-
lishes the lower level of the equivalence, between multi-accuracy and no-access-OI (distinguishers
that do not directly observe p̃i). Informally, for a collection of subpopulations C, multi-accuracy
guarantees that the expectations of p∗i and p̃i are approximately the same, even when conditioning
on the event that i ∈ S (simultaneously for every S ∈ C).

Given a subpopulation S, we define the multi-accuracy violation ∇S(p̃) to be the absolute value
of the above difference in conditional expectations. This can be viewed as a direct analogue of
the distinguishing advantage ∆A(p̃) (the absolute difference between the acceptance probability
of A on a sample from D∗ vs D(p̃)). To translate between the notions, we define two mappings
(subpopulations to distinguishers, and distinguishers to subpopulations) that allow us to upper-
bound one quantity in terms of the other. Specifically, given a collection of subpopulations C, we
define a family of distinguishers A = {AS}, where for all S ∈ C, AS(i, b) = 1 [ i ∈ S ∧ b = 1 ].

Note that the probability that each AS accepts on a sample (i, õi) ∼ D(p̃) is the joint probability
that i ∈ S and õi = 1, which can be directly related to the expectation of p̃i conditioned on i ∈ S.
This allows us to express the multi-accuracy violation in terms of the distinguishing advantage,

as ∇S(p̃) =
∆AS

(p̃)

Pri∼DX [i∈S] . By taking the accuracy parameter in no-access-OI to be sufficiently

small, we can guarantee that no-access-OI implies multi-accuracy. Similarly, to implement outcome
indistinguishability from multi-accuracy, we define two sets S(A,0) and S(A,1) for every distinguisher
A ∈ A and b ∈ {0, 1}, S(A,b) = {i ∈ X : A(i, b) = 1}.

Using similar arguments, we show that ∆A(p̃) can be upper-bounded by ∇S(A,0)
(p̃) + ∇S(A,1)

(p̃),
for which multi-accuracy (w.r.t the constructed family of subpopulations) provides a bound. Note
that the constructions are very closely related; in fact, repeating the translation twice reaches a
“stable point”. That is, given C (or given A), we can construct a canonical pair (C′,A′) such that
C′-multi-accuracy implies A′-no-access-OI, and vice versa. Importantly, C′ is (essentially) of the
same complexity as C (resp., A′ compared to A), and the degradation in the accuracy parameters
only results from the fact that multi-accuracy is defined for a collection of arbitrarily small sets.

Showing a similar equivalence for multi-calibration follows the same general construction, but re-
quires more care. We begin with the observation that for a fixed predictor p̃, C-multi-calibration
can be viewed as C̃-multi-accuracy, where each subpopulation in C̃ is obtained as the intersection
of some subpopoulation S ∈ C and “level-set” of p̃: {i ∈ S ∧ p̃i = v}. Thus, at an intuitive level,
we can model the constructions similarly in terms of the sets in C̃. A number of technical subtleties
arise due to the precise notion of approximate calibration from [HKRR18], which is necessary to
provide sufficiently strong fairness guarantees; we discuss these issues in more detail in Section 4.

Constructing OI predictors. We establish the complexity of OI predictors (as in Theorems 3
and 4) by describing a learning algorithm that, given a class of distinguishers A, an approximation
parameter ε, and samples from Nature’s distribution (i, o∗i ) ∼ D∗, constructs a predictor satisfying
outcome indistinguishability, for any level of the OI hierarchy. To start, inspired by the approach
of [HKRR18], we consider a reduction from the task of constructing an OI predictor to auditing
for OI. Specifically, the auditing problem receives a candidate predictor p, and must determine
whether for all A ∈ A, the distinguishing advantage ∆A(p) < ε is small; if there is an A ∈ A
that has nontrivial advantage in distinguishing D∗ from D(p), then the auditor must return such
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a distinguisher. Naively, the auditor can be implemented by exhaustive search: for each A ∈ A,
the auditor—using the samples from D∗ as well as generated samples from D(p)—evaluates the
advantage of ∆A(p), returning A if ∆A(p) > ε.6

Suppose we’re given some candidate predictor p; by iteratively auditing and updating, we aim to
construct a circuit computing a predictor p̃ that satisfies OI. To start, given the predictor p, if the
auditor certifies that p passes (A, ε)-OI, then trivially we have succeeded in our construction. If,
however, there is a distinguisher A ∈ A with a nontrivial advantage, then p fails the audit; in this
case, the successful distinguisher A ∈ A witnesses some “direction” along which p fails to satisfy OI.
If we can update along this direction, a standard potential argument (akin to that of boosting or
gradient descent) demonstrates that the updated predictor has made “progress” towards satisfying
OI. Then, we can recurse, calling the auditor on the updated predictor. We argue, the process
must terminate with an OI predictor after not too many rounds of auditing and updating.

Thus, the crux of the construction is to solve the following problem: given a circuit computing a
predictor p and a distinguisher A ∈ A that witnesses ∆A(p) > ε, derive a new circuit computing
an updated predictor p′ that has made progress towards OI. A subtle issue arises when making this
intuition rigorous for oracle-access-OI and code-access-OI. At these levels of OI, the distinguishers
may access the predictor in question, so there seems to be some circularity in the construction:
to obtain the OI predictor p̃, we need to call the distinguishers A ∈ A; but to evaluate the
distinguishers A ∈ A, we may need to access p̃. We argue that, in fact, there is no issue; to
avoid the circularity, in each iteration, we can use the current predictor p(t) as the “oracle” for the
distinguishers in A. If p(t) passes auditing by oracle distinguishers Ap

(t)
, then this predictor satisfies

oracle-access-OI. If p(t) fails auditing, then we can still use the distinguisher Ap
(t)

to derive an update
that we argue makes progress towards Nature’s predictor p∗. Of course, because D∗ = D(p∗), p∗

satisfies OI. Thus, the potential argument still works, and we guarantee termination after a bounded
number of updates.7

To finish the construction, we leverage the concrete assumptions about the model of distinguishers
to build up the circuit computing p̃. We focus on obtaining oracle-access-OI for size s oracle circuits
that make at most q queries to p̃. The argument above ensures that in the t-th iteration, we can
implement each oracle distinguisher using (non-oracle) circuits, where each of the q oracles calls is
replaced with a copy of the current predictor p(t) hard-coded in place of the oracle gates. Then, we
can derive an updated circuit p(t+1) by combining the circuits computing p(t) and computing Ap

(t)

(taking an addition of the outputs, with appropriate scaling). This recursive construction—where
we build the circuit computing p(t+1) by incorporating multiple copies of p(t)—suggests a recurrence
relation characterizing an upper bound on the eventual circuit size. Intuitively, with a base circuit
size of s, and q oracle calls (determining the branching factor), the size of p(t) grows roughly as
s · qt. Leveraging an upper bound on the number of iterations T = O(1/ε2), the claimed bound
follows.

Establishing the upper bound on the complexity of code-access-OI follows by a similar high-level
argument, but there are some additional complications. Briefly, because the distinguishers take,
as input, the description of a circuit computing the predictor in question, we need to work with

6For the sake of the overview of the construction, we ignore algorithmic issues of sample and time complexity in
certifying that the estimate of each ∆A(p) is sufficiently close.

7A similar argument holds for code-access-OI, using the description of p(t) as input.
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a class of distinguishers that grows with the complexity of the predictor itself. We deal with the
technicalities needed to encode and decode predictors so that we can simulate the lower levels
within code-access-OI. We discuss these issues in full detail in Section 5.

Lower bounds for oracle-access-OI. To relate the complexity of evaluating oracle-access-OI
predictors to complexity-theoretic assumptions such as the hardness of clique counting or PSPACE-
complete problems (as done in the informal results stated in Theorems 5 and 6), we consider the
task of constructing an OI predictor that needs to withstand the scrutiny of a distinguisher that can
make oracle queries. Suppose we guarantee that any such predictor must compute a moderately
hard function f on at least part of its domain. Then, a distinguisher could use oracle access to the
predictor (on that part of the domain) to perform expensive computations of f at unit cost, while
scrutinizing other parts of the domain. As we’ll see, pushing this intuition, we show how efficient
oracle distinguishers can perform surprisingly powerful tests to distinguish p̃ from p∗.

With this intuition in mind, we divide the domain X into m disjoint subsets X1, . . . ,Xm. As a first
step, we want to make sure that it is moderately hard to achieve OI when the distribution D∗ is
restricted to X1: for i ∈ X1, we set o∗i = f1(i), where f1 is a moderately hard Boolean function. We
will guarantee that any oracle-access-OI predictor p̃ needs to compute f1 on inputs in X1 by adding
a distinguisher A1 that verifies, for inputs i ∈ X1, that oi = f1(i). At this point, it isn’t clear that
anything interesting is happening: the complexity of achieving OI (i.e., computing f1) is not yet
higher than the complexity of the distinguisher (which also needs to compute f1). However, we can
now add a distinguisher A2 that verifies, for inputs in X2, that p̃ also correctly computes a harder
function f2. The key point is for the distinguisher to verify that oi = f2(i) without computing f2

itself! To achieve this, the distinguisher can use its oracle access to p̃. In particular, assuming that
p̃ correctly computes f1 on inputs X1, we can use a downwards self-reduction from computing f2

on inputs in X2 to computing f1 on inputs in X1.

The construction proceeds along these lines, using a sequence of functions {fj}j∈[m], where for
every j ∈ [m] and i ∈ Xj , we set o∗i = fj(i). Now, for every j ∈ [2, . . . ,m], we want the function
fj to be harder to compute than fj−1, and we want a downwards self-reduction from computing
fj to computing fj−1. The distinguisher Aj uses the given predictor p̃ as an oracle to fj−1, and
verifies that for i ∈ Xj , oi = fj(i). We emphasize that the complexity of the oracle distinguisher Aj
is proportional to the cost of the downwards self-reduction, which can (and will) be significantly
smaller than the complexity of computing fj .

While intuitively appealing, the discussion above ignores an important point: OI only provides
an approximate guarantee on the real-valued predictions, not exact recovery of the sequence of
fucntions {fj}. Starting at the first level of functions, an ({A1}, ε)-oracle-access-OI predictor p̃
only has to correctly compute f1 in a limited sense. First, p̃ only needs to be correct on average
for random inputs; it can err completely on some inputs. Second, while we will choose f1 (and all
the fj ’s) to be a Boolean function, the predictor p̃ itself need not be Boolean. Nonetheless, for any
input i, the distinguisher A1 accepts the input (i, õi) only when õi = f1(i), so taking ε small enough
guarantees that for any ({A1}, ε)-oracle-access-OI predictor p̃, with all but small probability over
a draw of i from DX restricted to X1, rounding p̃(i) gives the correct value of f1. The probability
of an error raises a new problem: the distinguisher A2, which uses oracle calls to p̃ to compute
f1, might receive incorrect answers! Indeed, we expect the downwards self-reduction from f2 to
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f1 to make multiple queries (since f2 is harder to compute), and so the error probability will be
amplified. To handle this difficulty, we also want a worst-case to average-case reduction for f1:
from computing f1 on worst-case inputs in X1, to computing f1 w.h.p. over random inputs drawn
from DX restricted to X1. Indeed, we’ll want a similar reduction for each of the functions in the
hierarchy. For each j ∈ [2, . . . , k], the distinguisher Aj will use the downwards self reduction, to
fj−1, using the worst-case to average-case reduction for fj−1 to reduce the error probability of p̃
before answering the downward self-reduction’s oracle queries.

We can now make an inductive argument: assume that any p̃ that is OI for the distinguishers
{A1, . . . , Aj−1} must compute fj−1 correctly w.h.p. over inputs drawn from DX restricted to Xj−1.
Then p̃ is a very useful oracle for the j-th distinguisher Aj , which uses the downwards self-reduction
and worst-case to average-case reductions, together with its oracle access to p̃, to compute fj (and
verify that oi = fj(i)). The key point is that Aj can do this (via oracle access to p̃), even though
its running time is much smaller than the time needed to compute fj . In turn, we conclude that
any p̃ that is OI for the distinguishers {A1, . . . , Aj} must compute fj correctly w.h.p. over inputs
drawn from DX restricted to Xj . At the top (m-th) level of the induction, we conclude that a
predictor that is OI for the entire collection of distinguishers must compute fm correctly w.h.p.
over random inputs. Finally, since we have a worst-case to average-case reduction for fm, this
implies that achieving OI is almost as hard as worst-case (randomized) computation of fm.

To instantiate this framework, we need a collection of functions {fj : {0, 1}n → {0, 1}}mj=1 with
three properties: (1) “Scalable hardness”: The complexity of computing fj should increase with j.
A natural goal is nΘ(j) time complexity, where the lower bound should apply for randomized (BPP)
algorithms; (2) Downwards self-reduction: A reduction from computing fj to computing fj−1, with
fixed polynomial running time and query complexity (ideally Õ(n), though we will use a collection
where the complexity is a larger fixed polynomial); (3) Worst-case to average-case reduction: A
reduction from computing fj in the worst case, to computing fj w.h.p. over a distribution Dj .

The clique counting problem presents a natural candidate, where fj−2 counts the number of j-
cliques in an unweighted input graph with n vertices.8 The complexity of this well-studied problem
is believed to be nΘ(j). Goldreich and Rothblum [GR18] recently showed a worst-case to average-
case reduction for this problem, where the reduction runs in Õ(n2) times and makes poly(log n)
queries. The problem also has a downwards self-reduction from counting cliques of size j to counting
cliques of size (j−1), which runs in time O(n3) and makes n oracle queries (on inputs of size O(n2)).
The above construction utilized a sequence of Boolean functions, whereas the output of the clique-
counting function is an integer in [nj ]. We use the Goldreich-Levin hardcore predicate [GL89] to
derive a Boolean function that is as hard to compute as clique counting. The full details are in
Section 6.

The above framework can be also be instantiated using the algebraic variants of fine-grained com-
plexity problems studied in the work of Ball, Rosen, Sabin, and Vasudevan [BRSV17, BRSV18].
Interestingly, downwards self-reducability also comes up in their work [BRSV18], where it is used to
argue hardness for batch evaluation of many instances. Their algebraic variants of the k-orthogonal-
vectors and k-SUM problems seem directly suited to our construction. We focus on clique counting
because of the tightness of the upper and lower bounds that have been suggested and studied in
the literature.

8Clique counting is trivial for cliques of size 1 or 2, and begins being interesting for 3-cliques, or triangle counting.
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For PSPACE hardness of oracle-access-OI, we use a PSPACE-complete problem that is both down-
wards self-reducible and random self-reducible, due to Trevisan and Vadhan [TV07]. The details
are in Section 6.3. The permanent [Lip89] (or scaled-down variants thereof, see [GR18]) seems to
be another promising candidate for our construction. In a different direction, it is interesting to
ask whether moderately hard cryptographic assumptions, as suggested by Dwork and Naor [DN92],
could also provide candidates.

1.4 Broader Context and Related Notions

A Socio-Technical Path of Progress. A sufficiently rich representation of real-life individuals
implies a mapping from individuals to their representation as input to the predictor that has no
collisions. In other words, given enough bits of information in the representation, each individual
will have a unique representation. Still, this richness does not mean that the representation con-
tains the right information to determine the values of the p∗i , even information-theoretically. For
example, modulo identical twins, individuals’ genomes suffice to uniquely represent every person,
but sequences of DNA are insufficient to determine an individual’s ability to repay a loan. Alter-
natively, the necessary information may be present, but its interpretation may be computationally
infeasible.

Generally, we assume that the representation of individuals is fixed and informative. Our anal-
ysis demonstrates that OI is feasible by using a potential argument. Specifically, we describe an
algorithm that iteratively looks for updates to the current set of predictions that will step closer
towards indistinguishability. We guarantee that the algorithm terminates in a bounded number of
steps by arguing that after sufficiently many updates, the predictor we hold is essentially p∗.

In practice, however, it may be the case that our features will be insufficiently rich to capture
p∗. Given a simple representation, even if we require a predictor p̃ that satisfies OI using a very
computationally-powerful set of distinguishers (e.g., polynomial-sized circuits), there will be an
inherent, information-theoretic limitation that prevents p̃ from converging to p∗. While, given this
representation of individuals, it may be impossible to distinguish Nature’s outputs o∗ from õ drawn
according to p̃, it may be possible to distinguish the outputs if we obtain an enriched representation
of individuals. Moreover, obtaining an enriched representation may even be easy, in that it can be
accomplished (by a human) in time polynomial in the size of the original representation!

The OI framework can be extended naturally, allowing for the representation of individuals to be
augmented throughout time. Given such an enriched representation, we can continue iteratively
updating p̃, based on the new representation. Specifically, we can obtain new training data, concate-
nate the old and enriched representations to form a new representation, initialize a new predictor to
equal p̃, and enrich the collection of distinguishers to operate on the new representation. The new
class of distinguishers retains and adds to the old distinguishing power, so p̃ likely will no longer
satisfy OI; thus, we can apply our algorithm, starting at p̃, updating until the predictor fools the
new class of distinguishers. By applying the same potential argument, we can can guarantee that
this process of augmenting the representations cannot happen too many times. Any augmenta-
tion that significantly improves the distinguishing advantage between p∗ and p̃ must result in new
updates that allow for significant progress towards p∗.
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Prediction Indistinguishability In this work, we also investigate a notion we call Prediction
Indistinguishability (PI). In PI we require the stronger condition that (p∗, o∗) be indistinghishable
from (p̃, o∗). While Prediction Indistinguishability is intuitively appealing, there are very sim-
ple distinguishers that show it is too much to ask for: a predictor p̃ is PI with respect to these
distinguishers if and only if p̃ is statistically close to p∗. But indistinguishability as a concept in
computational complexity theory is interesting precisely when coming up with p̃ that is statistically
close to p∗ is impossible. Moreover, since we never see the values p∗—we don’t even know if ran-
domness exists!—we cannot hope to have indistinguishability of the p̃ from the “true” probabilities
and it is strange even to pose such a criterion. Nonetheless, we show that PI and OI are equivalent
when indistinguishability is with respect to tests that are passed by all natural histories with high
probability (Section 3), which we discuss in more detail next.

Tests vs. Distinguishers The framing of outcome indistinguishability draws directly from the
notion of computational indistinguishability, studied extensively in the literature on cryptography,
pseudorandomness, and complexity theory (see, e.g., [Gol06, Gol09, Vad12, Gol08] and references
therein). A comparison to the extensive literature on online forecasting clarifies the semantic
distinction between two concepts: tests (in the forecasting literature) and distinguishers (in the
complexity literature).

The forecasting literature focuses on an online setting where there are two players, Nature and
the Algorithm. Nature controls the data generating process (e.g., the weather patterns), while the
Algorithm tries to assess, on each Day t − 1, the probability of an event on Day t (e.g., will it
rain tomorrow?). There are many possibilities for Nature; by definition, in this literature, Nature
calls the shots, in the following sense: On Day t− 1, Nature assigns a probability p∗t that governs
whether it will rain or not on Day t. Note that Nature is free to select p∗t ∈ {0, 1}, in which case
the outcomes are determinsitic, o∗t = p∗t

In the early 1980s, [Daw82] proposed that, at the very least, forecasts should be calibrated. More
stringent requirements were obtained by considering large (countable) numbers of sets of days, such
as odd days, even days, prime-numbered days, days on which it has rained for exactly 40 preceding
days and nights, and so on, and requiring calibration for each of these sets simultaneously [SSV03].
This is the “moral equivalent” of multi-calibration in the world of infinite sequences of online
forecasting.

A signal result in the forecasting literature, due to Sandroni [San03] applies to a more general
set of tests than calibration tests. Consider infinite histories, that is, sequences of (prediction,
outcome) pairs. We say a history is natural if it is a sequence ((p1, o1), (p2, o2), . . . ) where ∀t we
have ot ∼ Ber(pt). Note that certain natural histories may have no connection to any real-life
weather phenomena, instead corresponding to a valid but unrealistic choice of p. A test takes
as input a (not necessarily natural) history and outputs a bit. The test is usually thought of as
trying to assess whether an algorithm’s predictions are “reasonably accurate” with respect to the
actual observations. This implicitly focuses attention on tests that natural histories pass with high
probability (over the draws from the Bernoulli distributions), and indeed, calibration tests fall into
this category. The goal of the Algorithm, then, is to generate predictions p̃ for which the histories
((p̃1, o

∗
1), (p̃2, o

∗
2), . . . ) pass the test. Here p̃i is the Algorithm’s forecasted probability of rain for

Day i and o∗i is the Boolean outcome, rain or not, that actually occured on Day i.
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Sandroni’s powerful result [San03], proves, non-constructively9, the existence of an Algorithm that,
given any test T , yields a history which passes T with probability at least as great as the minimum
probability with which any natural history ((p1, o ∼ Ber(p1)), (p2, o ∼ Ber(p2)) . . . ) passes T
(again, the probability is over the draws from the Ber(pi), i ≥ 1).

There are two major differences between tests in the forecasting literature and distinguishers in the
complexity-theoretic literature.10 The first is that tests have semantics—you want to pass the test,
and the higher the probability of passing a test the better. In contrast, distinguishers output 0 or 1
with no semantics, and our goal is to produce an object such that the distinguisher outputs 1 with
the same probability as the objects that we are imitating. In this case, getting the distinguisher
to output 1 with higher probability may be worse. The second difference is that in the forecasting
setting we want natural histories to pass the test with high probability: if natural histories fail
the test, how can we interpret the Algorithm’s inability to pass the test as an indication that the
Algorithm is inaccurate? As a result, the Algorithm does not compete with the actual Nature p∗,
but only with the hypothetical Nature that passes the test with the lowest probability.

To highlight these differences, consider a distinguisher that considers two sets of individuals, S
and T . For each set, the distinguisher estimates the outcome probabilities αS and αT—that is,
averaged over the individuals i ∈ S (respectively, T ), the probability that o∗i = 1—and outputs
0 with probability |αS − αT | and 1 otherwise. Note that for some Natures the distinguisher will
output 1 with very small probability. Nevertheless, in cases where Nature treats S and T equally,
the distinguisher will output 1 with high probability and, OI guarantees that p̃ must also treat S
and T equally. Many properties of samples from a distribution are quite naturally and directly
specified through the language of distinguishers, and not obviously through the language of tests.
In light of this discussion, the connection between sample-access-OI and multi-calibration is very
interesting: it shows how to reduce a collection of distinguishers into a collection of tests, and even
more specifically to a collection of calibration tests.

Algorithmic fairness. Tests are also implicit in the literature on algorithmic fairness, where they
are sometimes referred to as auditors. One line of work, the evidence-based fairness framework—
initially studied in [HKRR18, KGZ19, DKR+19]—relates directly to outcome indistinguishability
and centers around tests that Nature always passes. Broadly, the framework takes the perspec-
tive that, first and foremost, predictors should reflect the “evidence” at hand—typically specified
through historical outcome data—as well as the statistical and computational resources allow.

Central to evidence-based fairness is the notion of multi-calibration [HKRR18], which was also stud-
ied in the context of rankings in [DKR+19]. Recently, [JLP+20] provide algorithms for achieving an
extension of multi-calibration that ensures calibration of higher moments of a scoring function, and
show how it can be used to provide credible prediction intervals. [SCM20] study multi-calibration
from a sample-complexity perspective. In a similar vein, [ZME20] study a notion of individualized
calibration and show it can be obtained by randomized forecasters.

Evidence-based fairness is part of a more general paradigm for defining fairness notions, some-
times referred to as “multi-group” notions, which has received considerable interest in recent

9The result leverages Fan’s minimax theorem.
10Unfortunately, and confusingly, the literature on indistinguishability often conflates the notions, referring to

distinguishers as tests.
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years [HKRR18, KNRW18, KRR18, KGZ19, KNRW19, DKR+19, SCM20, BL19, JLP+20]. This ap-
proach to fairness aims to strengthen the guarantees of notoriously-weak group fairness notions,
while maintaining their practical appeal. For instance, [KRR18,KNRW18,KNRW19] give notions
of multi-group fairness based on parity notions studied in [DHP+12] and [HPS16]. [BL19] extend
this idea to the online setting. Other approaches to fairness adopt a different perspective, and
intentionally audit for properties that Nature does not necessarily pass. Notable examples are
group-based notions of parity [HPS16,KMR16,KNRW18,KNRW19].

Computational and Statistical Learning. Prediction tasks have also been studied extensively
in the theoretical computer science and machine learning communities, both in the offline PAC
model [Val84], as well as in the online model [LW94, FS97]; see [SSBD14] and references therein.
Relatedly, [BM07] also show a multi-calibration-style guarantee in the online “sleeping experts”
setting. More broadly, our work is also in conversation with more applied approaches to learning
distributions and generative models including GANs [GPAM+14] or auto-encoders [KW14]. The
perspective of generating (statistically) indistinguishabile samples was also recently considered in
a work introducing the problem of “sample amplification” [AGSV19].

Organization. The remainder of the manuscript is structured as follows.

• Section 2 defines OI formally and shows a number of propositions relating the various notions
of OI to one another.

• Section 3 introduces the notion of prediction indistinguishability, and investigates the rela-
tionship of OI distinguishers to forecasting-style tests.

• Section 4 demonstrates the connections between the first two levels of the OI hierarchy to
multi-accuracy and multi-calibration.

• Section 5 describes our construction of OI predictors, establishing the feasibility of the final
two levels.

• Finally, Section 6 describes the construction establishing a conditional lower bound against
the final levels.

2 Outcome Indistinguishability

Throughout this work, we study how to obtain predictors that generate outcomes that cannot be
distinguished from natural outcomes. Specifically, we model Nature as a joint distribution over
individuals and outcomes, denoted D∗. Individuals come from a discrete domain X ; throughout,
we will assume that each i ∈ X can be resolved to some d-dimensional boolean string i ∈ {0, 1}d,
which represents the “features” of the individual. In this work, we focus on boolean outcomes
Y = {0, 1}. Thus, D∗ is supported on X ×Y ⊆ {0, 1}d×{0, 1}. We use i ∼ DX to denote a sample
from Nature’s marginal distribution over individuals.

We say that a predictor is a function p : X → [0, 1] that maps individuals to an estimate of
the conditional probability of the individual’s outcome being 1. For ease of notation, we use
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pi = p(i) to denote a predictor’s estimate for individual i. Note that the marginal distribution over
individuals DX paired with a predictor induce a joint distribution over X × Y. Given a predictor
p, we use (i, oi) ∼ D(p) to denote an individual-outcome pair, where i ∼ DX is sampled from
Nature’s distribution over individuals, and the outcome oi ∼ Ber(pi) is sampled—conditional on
i—according to the Bernoulli distribution with parameter pi.

With this basic setup in place, we are ready to introduce the main notion of this work—outcome
indistinguishability (OI). Intuitively, when developing a prediction model, a natural goal would be
to learn a predictor p̃ : X → [0, 1] whose outcomes “look like” Nature’s distribution D∗. Outcome
indistinguishability formalizes this intuition, and is parameterized by a family of distinguisher
algorithms A. In the most basic form of OI, each A ∈ A receives as input a labeled sample from
one of two distributions, Nature’s distribution D∗ or the predictor’s distribution D(p̃).

(i, o∗i ) ∼ D∗︸ ︷︷ ︸
Nature’s distribution

(i, õi) ∼ D(p̃)︸ ︷︷ ︸
Predictor’s distribution

In other words, in each distribution the individual i is sampled according to nature’s marginal
distribution on inputs, denoted i ∼ DX . The distribution over outcomes, however, varies: condi-
tioned on the individual i, the distinguisher either receives the corresponding natural outcome o∗i ,
or receives an outcome sampled as õi ∼ Ber(p̃i). In its most basic form, a predictor p̃ satisfies OI
over the family A if for all A ∈ A, the probability that A accepts the sample (i, oi) is (nearly) the
same for Nature’s distribution and the predictor’s distribution. In addition to the sample from D∗
versus D(p̃), we can also allow the distinguishers to access the predictor p̃ itself. This setup allows
us to define a prototype for a notion of OI.

Definition 2.1 (Outcome Indistinguishability). Fix Nature’s distribution D∗. For a class of dis-
tinguishers A and ε > 0, a predictor p̃ : X → [0, 1] satisfies (A, ε)-outcome indistinguishability (OI)
if for every A ∈ A,∣∣∣∣ Pr

(i,o∗i )∼D∗
[ A(i, o∗i ; p̃) = 1 ]− Pr

(i,õi)∼D(p̃)
[ A(i, õi; p̃) = 1 ]

∣∣∣∣ ≤ ε.
The subsequent sections introduce multiple variants of outcome indistinguishability, highlighting
four distinct access patterns to p̃. By allowing the distinguishers increasingly liberal access to the
predicitve model p̃, the indistinguishability guarantee becomes increasingly strong.

Remark on nature. We primarily model Nature D∗ as a fixed and unknown joint distribution
over X × Y. The presentation of some result benefits from an equivalent view, based on the
agnostic PAC framework [Hau92,KS94,KSS94]. In this view, we imagine that individuals i ∼ DX
are sampled from the marginal distribution over X , and then Nature selects outcomes conditioned
on i. Throughout, we will use p∗ : X → [0, 1] to denote the function that maps individuals to the
true conditional probability of outcomes given the individual. That is, for all i ∈ X :

p∗i = Pr
(i,o∗i )∼D∗

[ o∗i = 1 | i ] .

In our notation, we can imagine that Nature specifies the distribution over individuals i ∼ DX , then
specifies the “natural predictor” p∗ and samples the outcome for an individual i as o∗i ∼ Ber(p∗i );
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in other words, D∗ = D(p∗). We emphasize that this view—of Nature selecting a predictor—
is an abstraction that is sometimes instructive in our analysis of OI. Nevertheless, we make no
assumptions about p∗ other than it defines a valid conditional probability distribution for each
i ∈ X . In particular, p∗ need not come from any realizable or learnable class of functions.

Expectations and norms. We often will take expectations over Nature’s marginal distribution
over individuals, possibly conditioned on membership in particular subpopulations S ⊆ X . A
simple but important observation is that for any subpopulation S ⊆ X , the expectation of the
natural outcome is equal to the expectation of p∗.

Pr
(i,o∗i )∼D∗

[ o∗i = 1 | i ∈ S ] = E
(i,o∗i )∼D∗

[ o∗i | i ∈ S ] = E
i∼DX

[ p∗i | i ∈ S ]

Similarly, we may compare predictors over the distribution of individuals. For any two predictors
p, p′ : X → [0, 1], we use the following `1-distance to measure the statistical distance between their
outcome distributions D(p) and D(p′).∥∥p− p′∥∥

1
= E

i∼DX

[ ∣∣pi − p′i∣∣ ]
We only use the ‖·‖1 notation when the distribution on individuals DX is clear from context.

Supported predictions. In many definitions, we can reason about predictors as arbitrary func-
tions p : X → [0, 1], but to be an effective definition, we need to discuss functions that are imple-
mented by a realizable model of computation. Importantly, this means we will think of predictors
as mapping individuals i ∈ X to a range of values pi that live on a discrete subset of [0, 1]. We
assume for any predictor p : X → [0, 1], the predictor’s support is a discrete set of values in [0, 1]
that receive positive probability over DX . For any subpopulation S ⊆ X , we denote the support of
p on S as

suppS(p) =

{
v ∈ [0, 1] : Pr

i∼DX
[ pi = v | i ∈ S ] > 0

}
In this way, for any v ∈ supp(p), the conditional distribution over individuals i ∼ DX where we
condition on the event pi = v is well-defined.

When possible, we obtain results agnostic to the exact choice of discretization. Sometimes, we need
to reason about the discretization explicitly and map the values of supp(p) onto a known grid with
fixed precision; we introduce additional technical details as needed in the subsequent sections.

Distinguishers and subpopulations. The notion of outcome indistinguishability is parame-
terized by a family of distinguishing algorithms, which we denote as A. To instantiate a concrete
notion of OI (at any of the four levels we define), we must specify A within a fixed realizable model
of computation. In practice, it may make sense to use a class of learning-theoretic distinguishers,
(e.g., decision-trees, halfspaces, neural networks). In this work, we focus on more abstract models
of distinguishers. When our proofs allow, we will treat A as an arbitrary class of computations,
but for certain results, it will be easier to assume something about the model of computation in
which A ∈ A are implemented (e.g., time-bounded uniform, size-bounded non-uniform).
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Recall, we assume the domain of individuals X ⊆ {0, 1}d can be represented as d-dimensional
boolean vectors for d ∈ N, and that the distinguishing algorithms A ∈ A take as input an individual
i ∈ X and an outcome oi ∈ {0, 1}. Often, we will think of the dimension d as fixed. In this case,
we can think of A as a fixed class of distinguishers of concrete complexity: for example, if the class
A is implemented by circuits, then we can reason about their size as s(d) = s for some fixed s ∈ N.
When we think of the dimension as growing, then we need to consider ensembles of distinguishing
families, where the family is parameterized by d ∈ N.

The same issues arise when we discuss multi-calibration, which is parameterized by a collection
of “efficiently-identifiable” subpopulations C ⊆ {0, 1}X . Here, efficiently-identifiable refers to the
fact that we assume for each S ∈ C, there exists some efficient computational model that given
i ∈ X , can compute the predicate 1 [ i ∈ S ] (i.e., the characteristic function of S). Again, whenever
possible, our treatment does not depend on the exact model of computation.

Circuits. As suggested above, some results are most naturally stated with a concrete model of
computation in mind. In these cases, we will describe the distinguishers and subpopulations as
computed by a collection of circuits. Fixing such a model of circuits will be useful when relating
the complexity of a class of distinguishers A to that of a class of subpopulations C, as well as
showing the feasibility of obtaining circuits that implement OI predictors. Analogous results could
be proved instead for uniform classes.

Throughout, we say that a family of distinguishers A (resp., subpopulations C) for X ⊆ {0, 1}d is
implemented by a family of circuits of size s(d), if for each A ∈ A (resp., S ∈ C), there exists a
bounded fan-in circuit over the complete boolean basis cA that computes the distinguisher A on all
inputs, with at most s(d) gates (or equivalently, by bounded fan-in, Θ(s(d)) wires).

Specifying the model of computation for the most stringent levels of OI requires some care. The
third level—oracle-access-OI—allows the distinguishers oracle-access to the predictor in question.
For each A ∈ A, we denote the oracle distinguisher as Ap̃, which has random access to p̃i for any
i ∈ X . The fourth level—code-access-OI—allows the distinguishers direct access to the description
of the predictor in question, denoted 〈p̃〉. In this case, it makes sense to allow the ensemble of
distinguishers to be parameterized by the length of the description n = |〈p̃〉| in addition to the
dimension d. We discuss the specific assumptions about the implementation of these notions in
subsequent sections.

2.1 Defining the Levels of Outcome Indistinguishability

With the general framework and preliminaries in place, we are ready to define the various levels of
outcome indistinguishability. In this section, we focus on the definitions of each notion—no-access-
OI, sample-access-OI, oracle-access-OI, and code-access-OI. Along the way, we show some relations
between the notions, but defer most of our investigation of the notions to subsequent sections. We
begin introducing each notion in the single-sample setting, and discuss OI for distinguishers that
receive multiple samples in Section 2.2.
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2.1.1 No-Access-OI

The weakest model of distinguisher receives no direct access to the predictive model p̃, and must
make its judgments based only on the observed sample. In this framework, the only access to the
predictor is indirect, through the sampled outcomes.

Definition 2.2 (No-Access-OI). Fix Nature’s distribution D∗. Let Z = X × {0, 1}. For a class of
distinguishers A ⊆ {Z → {0, 1}} and ε > 0, a predictor p̃ : X → [0, 1] is (A, ε)-no-access-OI if for
every A ∈ A, ∣∣∣∣ Pr

(i,o∗i )∼D∗
[ A(i, o∗i ) = 1 ]− Pr

(i,õi)∼D(p̃)
[ A(i, õi) = 1 ]

∣∣∣∣ ≤ ε.
We remark that from a statistical perspective, no-access-OI already defines a strong framework for
indistinguishability. Even at this baseline level, if we allow a computationally-inefficient class of
distinguishers, no-access-OI can be used to require closeness in statistical distance. For instance,
consider a family of “subset” distinguishers, where for a subset S ⊆ X , the distinguisher AS is
defined as follows.

AS(i, oi) =

{
oi if i ∈ S
0 o.w.

If we take A = {AS : S ⊆ X} to be the family of all subset distinguishers, then the only predictors
p̃ that satisfy no-access-OI will be statistically close to Nature’s predictor p∗. Of course, this class
of distinguishers includes inefficient tests (necessary to certify ‖p∗ − p̃‖1 is small). Our interest will
be on the guarantees afforded by OI when we take A to be a class of efficient distinguishers.

2.1.2 Sample-Access-OI

To strengthen the distinguishing power, we define sample-access-OI, which allows distinguishers
to observe the prediction for the individual in question. Specifically, in addition to the sampled
individual i ∼ D and outcome oi (drawn according to nature or the predictor p̃), the distinguisher
receives the prediction p̃i.

Definition 2.3 (Sample-Access-OI). Fix Nature’s distribution D∗. Let Z = X ×{0, 1}× [0, 1]. For
a class of distinguishers A ⊆ {Z → {0, 1}} and ε > 0, a predictor p̃ : X → [0, 1] is (A, ε)-sample-
access-OI if for every A ∈ A,∣∣∣∣ Pr

(i,o∗i )∼D∗
[ A(i, o∗i , p̃i) = 1 ]− Pr

(i,õi)∼D(p̃)
[ A(i, õi, p̃i) = 1 ]

∣∣∣∣ ≤ ε.
Sample-access-OI is a strengthening of no-access-OI: for any no-access-OI distinguisher, on input
(i, oi, p̃i), a sample-access-OI distinguisher can simply ignore the prediction p̃i, and simulate the
original no-access-OI distinguisher.
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2.1.3 Oracle-Access-OI

The next strengthening of OI allows distinguishers to make queries to p̃, not just on the sampled
individual i ∼ D, but also on any other j ∈ X . Such a query model needs to be formalized; at a
high level, we assume the distinguishers in the class A ∈ A are augmented with oracle access to p̃,
denoted as Ap̃.

Definition 2.4 (Oracle-Access-OI). Fix Nature’s distribution D∗. Let Z = X ×{0, 1}. For a class
of oracle distinguishers A ⊆ {Z → {0, 1}} and ε > 0, a predictor p̃ : X → [0, 1] is (A, ε)-oracle-
access-OI if for every Ap̃ ∈ A,∣∣∣∣ Pr

(i,o∗i )∼D∗

[
Ap̃(i, o∗i ) = 1

]
− Pr

(i,õi)∼D(p̃)

[
Ap̃(i, õi) = 1

]∣∣∣∣ ≤ ε.
The exact formulation of such oracle distinguishers will vary based on the model of computation
in which A is defined. In Section 5, we give one concrete formalization for distinguishers that are
implemented efficiently as boolean circuits. Independent of the exact model, oracle-access-OI can
implement sample-access-OI: on input (i, oi), the oracle-access-OI distinguisher can access p̃i using
a single query and then simulate the sample-access-OI distinguisher.

Lunchtime-OI and Sample-Access-OI. Oracle-access-OI generally defines a stronger notion of
indistinguishability than sample-access-OI, but we show that if the oracle-access-OI distinguishers
are non-adaptive—asking only pre-processing queries—then they can be simulated by a family of
(non-uniform) sample-access-OI distinguishers. This result demonstrates that the power of oracle-
access distinguishers over sample-access distinguishers derives from the ability to query p̃ adaptively,
based on the sample in question. In particular, in Section 6 we show that oracle-access-OI is strictly
more powerful than sample-access-OI. The construction follows by exploiting correlations within
D∗ across different i, j ∈ X , which can be tested efficiently by querying p̃ adaptively.

In fact, this collapse from oracle-access-OI to sample-access-OI will hold for an even more powerful
class of distinguishers, which are allowed “lunchtime attack” style pre-processing on p̃. Consider
the following model of pre-processing analysis. For some t ∈ N, given a family of distinguishers A,
suppose that for each A ∈ A, there exists a pre-processing algorithm Rp̃A : 1d → {0, 1}t with oracle

access to p̃. Given access to p̃ for input domain X ⊆ {0, 1}d, the pre-processing algorithm Rp̃A(1d)
produces an advice string a ∈ {0, 1}t. Then, oracle access to p̃ is revoked, and the distinguisher A
receives a individual-outcome-prediction sample (i, oi, p̃i) from one of the two distributions, given
access to a.11 That is, the lunchtime variant of (A, ε)-oracle-access-OI holds if for every A ∈ A and
a = Rp̃A(1d), ∣∣∣∣ Pr

(i,o∗i )∼D∗
[ Aa(i, o∗i , p̃i) = 1 ]− Pr

(i,õi)∼D(p̃)
[ Aa(i, õi, p̃i) = 1 ]

∣∣∣∣ ≤ ε.
Note that computing Rp̃A(1d) need not be efficient, but importantly, its analysis of p̃ must be
summarized into t bits. For this variant of oracle-access-OI, we show the following inclusion.

11Note that, as in sample-access-OI, we additionally give p̃i as input to the lunchtime distinguisher. We exclude
the prediction p̃i as input in Definition 2.4 because, in general, an adaptive oracle-access-OI distinguisher can query
p̃i as desired. Without feeding the prediction as input, lunchtime-OI actually collapses to no-access-OI.
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Proposition 2.5. Fix Nature’s distribution D∗. Let Z = X × {0, 1} × [0, 1]. Suppose A ⊆
{Z → {0, 1}} is a class of lunchtime distinguishers implemented by size-s circuits. Then, there ex-
ists a class of sample-access distinguishers A′ implemented by size-s circuits, such that any predictor
p̃ : X → [0, 1] that satisfies (A′, ε)-sample-access-OI must also satisfy (A, ε)-oracle-access-OI.

Proof. Given a class of lunchtime distinguishers A, we define a new class A′ of sample-access
distinguishers as follows.

A′ =
{
A′a : A ∈ A, a ∈ {0, 1}t

}
where A′a is defined as

A′a(i, oi, pi) = Aa(i, oi, pi)

for all i ∈ X and oi ∈ {0, 1} and pi ∈ [0, 1]. In other words, for each A ∈ A, we introduce 2t

fixed distinguishers that have the possible output of Rp̃A(1d) hard-coded. If A is implemented by

a circuit with access to the advice string output by Rp̃A(1d), then for any a ∈ {0, 1}t, A′a can be
implemented by circuits with the same number of wires. We argue that (A′, ε)-sample-access-OI
implies (A, ε)-oracle-access-OI.

Suppose there is some A ∈ A such that Aa distinguishes between the natural and modeled distri-
bution. Then, by construction, there exists some A′a ∈ A′ that also distinguishes the distributions
with the same advantage. Thus, by contrapositive, if a predictor p̃ satisfies (A′, ε)-sample-access-OI,
then it also satisfies (A, ε)-oracle-access-OI.

Note that we state and prove Proposition 2.5 for distinguishers implemented by circuits, but the
construction is quite generic. This style of hard-coding works very naturally for any non-uniform
class model of distinguishers. Even if we work with a uniform model of distinguishers, if the length
of the advice string t ∈ N is a constant (independent of d the dimension of individuals X ), then
for each A ∈ A we can define a TM that has a ∈ {0, 1}t hard-coded as part of its description. The
number of distinguishers in A′ grows by a factor of 2t.

2.1.4 Code-Access-OI

The strongest notion of distinguishers we consider receive—as part of their input—the description
〈p̃〉 of a circuit that computes p̃. In this model, which we call code-access-OI, the distinguishers
can accept or reject their sample based on nontrivial analysis of the circuit computing p̃, not just
its evaluation on domain elements. We assume that |〈p̃〉| = n for some n ∈ N.

Definition 2.6 (Code-Access-OI). Fix Nature’s distribution D∗. Let Z = X × {0, 1} × {0, 1}n for
n ∈ N. For a class of distinguishers A ⊆ {Z → {0, 1}} and ε > 0, a predictor p̃ : X → [0, 1] is
(A, ε)-code-access-OI if for every A ∈ A,∣∣∣∣ Pr

(i,o∗i )∼D∗
[ A(i, o∗i , 〈p̃〉) = 1 ]− Pr

(i,õi)∼D(p̃)
[ A(i, õi, 〈p̃〉) = 1 ]

∣∣∣∣ ≤ ε.
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There are a number of subtle technicalities in how we define code-access-OI, relating to how we
encode 〈p̃〉. In particular, if we want to be able to simulate the prior notions of OI within code-
access-OI, then we need to allow the complexity of the distinguishers in A to scale with the com-
plexity of p̃. Even evaluating p̃ on a single domain element requires that A can compute circuit
evaluation. This technicality sets code-access-OI apart from the prior notions, where it sufficed to
think of the domain as fixed in dimension, and thus think of the distinguishers’ complexity as fixed
as well. We discuss these issues in detail in Section 5, where we discuss the feasibility of OI.

2.2 Multiple sample OI

Throughout this work, we focus on distinguishers that receive a single sample from nature or the
modeled distribution, with varying levels of access to p̃. A natural generalization of this model
allows distinguishers to access multiple samples. We define the generic variant as follows (where
each of no-access-OI, sample-access-OI, oracle-access-OI, and code-access-OI follow by allowing
distinguishers the analogous degree of access to p̃).

Definition 2.7. Fix Nature’s distribution D∗. Let m ∈ N and Z = (X × {0, 1}). For a class
of multi-sample distinguishers Am ⊆ {Zm → {0, 1}} and ε > 0, a predictor p̃ : X → [0, 1] is
(Am, ε)-OI if for every Am ∈ Am,∣∣∣∣∣ Pr

(i1,o∗i1
),...,(im,o∗im )∼(D∗)m

[
Am

(
(i1, o

∗
i1), . . . , (im, o

∗
im); p̃

)
= 1

]
− Pr

(i1,õi1 ),...,(im,õim )∼D(p̃)m
[ Am ((i1, õi1), . . . , (im, õim); p̃) = 1 ]

∣∣∣∣∣ ≤ ε.
We leave full exploration of multi-sample-OI to future work, but make the following observation. If
the class of distinguishers we use admits a hybrid argument, then the multi-sample distinguishers’
advantage can be bounded generically in terms of the single-sample advantage. As an example, we
show the following proposition for oracle-access-OI.

Proposition 2.8. Fix Nature’s distribution D∗. Let A be the class of size-s single-sample distin-
guishers, and for m ∈ N let Am be the class of size-s m-sample distinguishers. Suppose we allow
A pre-processing samples from D∗ and oracle-access to p̃. For ε > 0, if a predictor p̃ : X → [0, 1] is
(A, ε/m)-oracle-access-OI, then it is (Am, ε)-oracle-access-OI.

Proof. Suppose there exists some m-sample distinguisher Am ∈ Am that distinguishes between
nature and the model p̃ with advantage at least ε. We show that there is a single-sample randomized
distinguisher A ∈ A that distinguishes between nature and the model with advantage at least ε/m.
By contrapositive, if p̃ is (A, ε/m)-oracle-access-OI, then it must be (Am, ε)-oracle-access-OI.

Consider the following sequence of hybrid distributions over m samples, (i1, oi1), . . . , (im, oim),
where Dk = (D∗)m−k ×D(p̃)k is a product distribution of m− k independent samples from nature
and k samples from the model. Note that assuming pre-processing access to samples from D∗
and oracle access to p̃, each Dk is sampleable. Specifically, to obtain a sample from Dk, we will
draw m samples from D∗, and then for each j ∈ {m− k + 1, . . . ,m}, we resample the outcome by
evaluating p̃ij and then randomly drawing õij ∼ Ber(p̃ij ).
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Observing that D0 = (D∗)m and Dm = D(p̃)m, we can write the distinguishing probability of Am
as a telescoping sum over distinguishing probabilities over the hybrid distributions.

Pr
(i1,o∗i1

),...,(im,o∗im )∼(D∗)m

[
Ap̃m

(
(i1, o

∗
i1), . . . , (im, o

∗
im)
)

= 1
]

− Pr
(i1,õi1 ),...,(im,õim )∼D(p̃)m

[
Ap̃m ((i1, õi1), . . . , (im, õim)) = 1

]

=
m∑
j=1

(
Pr

(I,O)∼Dj−1

[
Ap̃m(I,O) = 1

]
− Pr

(I,O)∼Dj

[
Ap̃m(I,O) = 1

])
≥ ε

Thus, the following randomized single-sample oracle-access-OI distinguisher succeeds with advan-
tage at least ε/m: as pre-processing, sample a random index j ∼ [m] and draw a sample from the
hybrid distribution Dj ; on input (i, oi), replace the jth sample with the input (i, oi), and run Am
on the resulting m-sample input. If the input is drawn from nature, then the resulting sample is
drawn from Dj−1, whereas if the input is from the model, then the resulting sample is drawn from
Dj . Thus, the distinguishing advantage of A is the average distinguishing advantage between Dj−1

and Dj , or ε/m.

We state Proposition 2.8 for oracle-access-OI (and thus, by simulation, code-access-OI), due to
the ease of running the hybrid argument with oracle access to p̃. Note that we use circuit-size as
the complexity measure for concreteness, but the argument will go through for most complexity
measures of Am. Similar hybrid arguments can also be made for no-access-OI and sample-access-
OI, provided the model of computation of the distinguishers admits “hard-coding” the outcome
values

{
õim−k+1

, . . . , õim
}

, and
{
p̃i1 , . . . , p̃im−k

}
if needed (for sample-access-OI). In particular, for

any non-uniform class of multi-sample distinguishers A, there exists a class A′ of single-sample
distinguishers that simulates the distinguishers in A with the choices hard-coded.

3 Prediction Indistinguishability

Before discussing the properties of OI further, we turn our attention to an idealized notion of
indistinguishability, which we refer to as prediction indistinguishability (PI). Describing this notion
requires the equivalent view on Nature’s distribution D∗, where we imagine that Nature selects
a marginal distribution over individuals and a true outcome predictor p∗. Distinguishers receive
as input an individual-outcome pair (i, o∗i ) ∼ D∗ from Nature’s distribution, and either Nature’s
prediction p∗i or the model’s estimate of the parameter p̃i.

We show that achieving PI may require learning Nature’s predictor p∗ very precisely, even when A
is a very simple class of distinguishers. This result shows that PI is generally infeasibille due to the
ability to access p∗i directly: even computationally-weak PI distinguishers are incredibly powerful
at distinguishing between p∗ and p̃. In a sense, the hardness of PI motivates our focus on OI.
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Statistical closeness through PI. Prediction indistinguishability requires that the joint dis-
tribution of such individual-outcome-prediction triples cannot be significantly distinguished by a
family of algorithms A.

Definition 3.1 (Prediction Indistinguishability). Fix Nature’s distribution D∗. Let Z = X ×
{0, 1} × [0, 1]. For a class of distinguishers A : Z → [0, 1] and ε > 0, a predictor p̃ : X → [0, 1]
satisfies (A, ε)-Prediction Indistinguishability (PI) if for every A ∈ A,∣∣∣∣ Pr

(i,o∗i )∼D∗
[ A(i, o∗i , p

∗
i ) = 1 ]− Pr

(i,o∗i )∼D∗
[ A(i, o∗i , p̃i) = 1 ]

∣∣∣∣ ≤ ε.
We emphasize that prediction indistinguishability departs from outcome indistinguishability in an
essential way, by assuming the distinguisher may receive direct access to Nature’s prediction p∗i .

12

We show that prediction indistinguishability is too strong a notion of indistinguishability to be
broadly useful. Specifically, we show that using a very simple distinguisher, we can test for statis-
tical closeness between nature’s predictor p∗ and the model’s predictor p̃. Given the hardness of
recovering individual-level predictions in statistical distance (both information-theoretic and com-
putational), this reduction allows us to conclude that, in general, prediction indistinguishability is
infeasible.

Consider the randomized distinguisher A`1 defined as follows.

A`1(i, oi, pi) =

{
0 w.p. |oi − pi|
1 o.w.

We argue that if a candidate p̃ passes this single PI-distinguisher, it must have small statistical
distance to p∗.

Proposition 3.2. Fix Nature’s distribution D∗ and constant ε, τ ≥ 0; suppose Nature’s predictor
p∗ : X → [0, 1] is such that p∗ = f + δ for a boolean function f : X → {0, 1} and δ : X → [−1, 1]
where ‖δ‖1 ≤ τ . Then any ({A`1} , ε)-PI predictor p̃ : X → [0, 1] is statistically close to p∗,
satisfying

‖p∗ − p̃‖1 ≤ 4τ + ε.

Proof. Consider the difference in probabilities of acceptance under that natural and modeled dis-
tributions.

Pr
(i,o∗i )∼D∗

[ A`1(i, o∗i , p
∗
i ) = 1 ]− Pr

(i,o∗i )∼D∗
[ A`1(i, o∗i , p̃i) = 1 ]

= E
(i,o∗i )∼D∗

[ 1− |o∗i − p∗i | ]− E
(i,o∗i )∼D∗

[ 1− |o∗i − p̃i| ]

= E
i∼DX

[ p∗i · (p∗i − p̃i) + (1− p∗i ) · (p̃i − p∗i ) ] (1)

12The assumption that p∗ meaningfully exists such that p∗i can be given as input to a distinguisher breaks the
abstraction of D∗, but is a common assumption in the forecasting literature. Still, this is another sense in which PI
is an idealized variant of OI, because we can never actually generate individual-outcome-prediction samples from D∗.
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Assuming that p̃ is ({A`1} , ε)-PI, we can upper bound this quantity by ε. Under the assumption
that p∗ = f + δ for boolean f , we will lower bound the quantity in terms of ‖p∗ − p̃‖ and τ .

(1) = E
i∼DX

[ (fi + δi) · (fi + δi − p̃i) + (1− fi − δi) · (p̃i − fi − δi) ]

≥ E
i∼DX

[ fi · (fi + δi − p̃i) + (1− fi) · (p̃i − fi − δi) ]− 2 ‖δ‖1

≥ E
i∼DX

[ fi · (fi − p̃i) + (1− fi) · (p̃i − fi) ]− 3 ‖δ‖1

= E
i∼DX

[ |fi − p̃i| ]− 3 ‖δ‖1

≥ ‖f − p̃‖1 − 3τ

≥ ‖p∗ − p̃‖1 + 4τ

Thus, in combination, we can conclude

‖p∗ − p̃‖1 − 4τ ≤ (1) ≤ ε

and the proposition follows.

We can therefore port any hardness results for recovering p∗ in statistical distance to obtaining
prediction indistinguishability. For example, if we take p∗ to be a random boolean function, then
`1-recovery is information-theoretically impossible unless we observe the outcome o∗i for a 1 −
O(ε) fraction of inputs i ∈ X . If we restrict ourselves to relatively simple functions, `1-recovery
may be information-theoretically feasible, but computationally infeasible: for instance, if p∗ is a
pseudorandom function, then any computationally-efficient estimate of p̃ will fail ({A`1} , ε)-PI.

PI when distinguishers don’t reject natural histories. While in full generality, PI may be
infeasible, we show that for a certain broad class of distinguishers —derived from tests used in the
forecasting literature—OI and PI are actually equivalent. Recall, in [San03], the goal is to learn
a predictive model that passes tests as well as nature, where the tests may be over histories of
outcomes. Importantly, in the forecasting literature, the predictor is compared to every possible
choice of nature, and only needs to perform as well as the “worst” nature.

We show that for tests that accept natural histories with high probability, PI and OI are essentially
the same condition. This requirement—that every possible nature must pass the tests—turns out
to be very restrictive. We formulate these tests as a restricted family of multi-sample distinguishers.

Definition 3.3 (Tests that rarely reject nature). Let m ∈ N and ε ≥ 0, and suppose A is a family
of m-sample PI distinguishers. We say that A rejects nature with probability at most ε if for every
choice of Nature’s distribution D∗ = D(p∗) for predictor p∗ : X → [0, 1], for every A ∈ A,

Pr
(i1,o∗i1

),...,(im,o∗im )∼D(p∗)m

[
A((i1, o

∗
i1 , p

∗
i1), . . . , (im, o

∗
im , p

∗
im)) = 1

]
≥ 1− ε.

Despite the fact that these PI distinguishers receive access to the true generating parameters of
the model, we show the tests are very limited in their distinguishing abilities. In fact, we will show
that the equivalence between PI and OI holds for distinguishers satisfying an even weaker property,

25



which we call the valid-model property. Specifically, we will assume that for all A ∈ A, there exists
an acceptance probability qA, such that for all p : X → [0, 1],∣∣∣∣∣ Pr

(i1,oi1 ),...,(im,oim )∼D(p)m
[ A ((i1, oi1 , pi1), . . . , (im, oim , pim)) = 1 ]− qA

∣∣∣∣∣ ≤ ε.
Essentially, such valid-model distinguishers may test whether the outcomes oij are actually sampled
from the model Ber(pij ) over the collection of samples they receive, but cannot depend on the value
of pij (independently of oij ). Tests that rarely reject nature satisfy the valid-model property with
qA = 1 for all A ∈ A.

Proposition 3.4. Fix Nature’s distribution D∗. Suppose for ε ≥ 0, A is a family of distinguish-
ers satisfying the valid-model property. Then, PI and sample-access-OI over A are equivalent;
specifically,

• if p̃ is (A, ε)-sample-access-OI, it is (A, 3ε)-PI

• if p̃ is (A, ε)-PI, it is (A, 3ε)-sample-access-OI.

Proof. Suppose that A is a family satisfying the valid-model property. First, we show that for all
A ∈ A, by the valid-model property, the acceptance probabilities over D(p̃) and D∗ = D(p∗), when
we feed A the correct generating probabilities, must be similar.

Pr
(i1,õi1 ),...,(im,õim )∼D(p̃)m

[ A ((i1, õi1 , p̃i1), . . . , (im, õim , p̃im)) = 1 ] (2)

≤ qA + ε (3)

≤ Pr
(i1,o∗i1

),...,(im,o∗im )∼D(p∗)m

[
A
(
(i1, o

∗
i1 , p

∗
i1), . . . , (im, o

∗
im , p

∗
im)
)

= 1
]

+ 2ε (4)

These inequalities (and their reverse) follow directly from the valid-model assumption on A. Using
this closeness, we can show both directions of the equivalence.

First, suppose the OI distinguishing advantage is bounded by ε.∣∣∣∣∣ Pr
(i1,o∗i1

),...,(im,o∗im )∼(D∗)m

[
A
(
(i1, o

∗
i1 , p̃i1), . . . , (im, o

∗
im , p̃im)

)
= 1

]
− Pr

(i1,õi1 ),...,(im,õim )∼D(p̃)m
[ A ((i1, õi1 , p̃i1), . . . , (im, õim , p̃im)) = 1 ]

∣∣∣∣∣ ≤ ε (5)

Applying the valid-model inequalities (from (5)→(2)→(3)→(4)), we can bound the PI distinguish-
ing advantage by 3ε.

Next, suppose the PI distinguishing advantage is bounded by ε.∣∣∣∣∣ Pr
(i1,o∗i1

),...,(im,o∗im )∼(D∗)m

[
A
(
(i1, o

∗
i1 , p̃i1), . . . , (im, o

∗
im , p̃im)

)
= 1

]
− Pr

(i1,o∗i1
),...,(im,o∗im )∼(D∗)m

[
A
(
(i1, o

∗
i1 , p

∗
i1), . . . , (im, o

∗
im , p

∗
im)
)

= 1
] ∣∣∣∣∣ ≤ ε (6)
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Applying the valid-model inequalities (from (2)→(3)→(4)→(6)), we can bound the OI distinguish-
ing advantage by 3ε.

4 OI and Evidence-Based Fairness

With the formal definitions of the variants of OI in place, we turn to understanding the guaran-
tees implied by OI. In this section, we show a tight connection between the notion of outcome
indistinguishability and notions of evidence-based fairness.

Evidence-based fairness notions. We review two related notions—multi-accuracy and multi-
calibration—which require a predictor p̃ : X → [0, 1] to display “consistency” with p∗, not simply
on the population X as a whole, but also on structured subpopulations of S ⊆ X . The notions
are parameterized by a class of subpopulations C ⊆ {0, 1}X , which controls the strength of the
guarantee: the richer the class of subpopulations, the stronger the consistency requirement.

For conceptual and algorithmic reasons, it is natural to define the collection C in terms of a concept
class (e.g., conjunctions, halfspaces, decision trees), where each function in the class c : X → {0, 1}
defines the characteristic function for a subpopulation Sc ∈ C. We review the definitions of multi-
accuracy and multi-calibration, and refer the reader to [HKRR18,Kim20] for more in-depth coverage
of the definitions and algorithms for achieving the notions.

We start with the notion of multi-accuracy. Given a collection of subpopulations C, multi-accuracy
requires that a predictor p̃ reflect the expectations of p∗ correctly over each subpopulation S ∈ C.

Definition 4.1 (Multi-Accuracy [HKRR18]). Fix a distribution over individuals DX and Nature’s
predictor p∗ : X → [0, 1]. For a collection of sets C ⊆ {0, 1}X and α ≥ 0, a predictor p̃ : X → [0, 1]
satisfies (C, α)-multi-accuracy if for every S ∈ C,∣∣∣∣ E

i∼DX
[ p∗i | i ∈ S ]− E

i∼DX
[ p̃i | i ∈ S ]

∣∣∣∣ ≤ α (7)

Predictors that satisfy multi-accuracy cannot introduce significant bias in their predictions over
any subpopulation defined within C. Still, because we average over S, multi-accuracy may allow
the predictor to make distinctions between individuals with similar p∗ values. For instance, if every
individual i ∈ X has p∗i = 1/2, then a random boolean function that predicts p̃i ∈ {0, 1} for each
i ∈ X will satisfy multi-accuracy for C of bounded complexity.

Multi-calibration prevents this type of disparate treatment of similar individuals by requiring the
predictor p̃ to be calibrated with respect to p∗ over each S ∈ C. Here, a set of predictions is calibrated
if amongst the individuals i ∈ X who receive prediction p̃i = v, their actual expectation is v.
Intuitively, calibration goes further than accuracy in expectation and requires that the predictions
can be meaningfully interpreted as conditional probabilities.

Technically, to reason about approximate calibration in a way that provides strong guarantees and
is practically realizable, we need to work with discretized predictors. Recall that for a predictor p̃,
we use suppS(p̃) = {v ∈ [0, 1] : Pri∼DX [ p̃i = v | i ∈ S ] > 0} to denote the support of p̃ on S ⊆ X .
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Definition 4.2 (Multi-Calibration [HKRR18]). Fix a distribution over individuals DX and Nature’s
predictor p∗ : X → [0, 1]. For a collection of sets C ⊆ {0, 1}X and parameters α > 0, a predictor p̃ :
X → [0, 1] satisfies (C, α)-multi-calibration if for every set S ∈ C and supported value v ∈ suppS(p̃)
such that Pri∼DX [ p̃i = v | i ∈ S ] ≥ α/ |suppS(p̃)|,∣∣∣∣ E

i∼D
[ p∗i | p̃i = v ∧ i ∈ S ]− v

∣∣∣∣ ≤ α. (8)

Intuitively, by conditioning on the value of p̃ in addition to membership in S, multi-calibration
prevents a predictor from treating similar individuals differently. If a multi-calibrated predictor
says that the value p̃i = v, then the “probability” of their outcome being 1 can be thought of as v,
where the probability is taken over the randomness in the outcome and the random selection of a
member of any S ∈ C for which i ∈ S.

We include two technical remarks about Definition 4.2:

• Observe that the definition of multi-calibration excludes from consideration level sets where
Pri∼DX [ p̃i = v | i ∈ S ] < α/ |suppS(p̃)|. This exclusion is a technicality needed in order to
learn multi-calibrated predictors from a small set of training data. Because the tolerance is
scaled by the support size of p̃, the total fraction of any subpopulation S ∈ C that can be ex-
cluded is α. Effectively, this means that predictors have to be confident in their predictions—a
more refined predictor with many supported values must satisfy the multi-calibration con-
straints on smaller slices.

• The notion of approximate calibration used in Definition 4.2 enforces that the expectation
of p̃ and p∗, conditioned on i ∈ S and p̃i = v, are the same up to a tolerance of α. This
relative error guarantee (which becomes more stringent for smaller sets) is deliberate and best
captures the intuition that calibrated predictions should “mean what they say.”13

Relating OI to multi-accuracy and multi-calibration. In the next sections, we demonstrate
a tight connection between no-access-OI and multi-accuracy, and sample-access-OI and multi-
calibration. We will show that we can implement the OI notion as an instance of multi-group
fairness, and vice versa. In particular, given any distinguisher class A, we can construct a corre-
sponding class of subpopulations CA, such that multi-calibration over CA implies sample-access-OI
over A; and given any class of subpopulations C, we can construct a corresponding distinguisher
class AC such that sample-access-OI over AC implies multi-calibration over C (with small loss in the
approximation parameters). In fact, the transformation between distinguishing algorithms A and
subpopulations C is tight enough that if we repeat the construction a constant number of times,
the classes hit a “fixed point” (e.g., CAC = C).

An important quantity in the analysis of outcome indistinguishability is the advantage of a distin-
guisher A with respect to a particular predictor p. For example, in sample-access-OI:

13A natural alternative notion of approximation would allow for absolute error, where the slack on the conditional
expectation in (8) is scaled as α/Pri∼DX [ p̃i = v ∧ i ∈ S ]. While easier to work with algorithmically, this constraint
provides minimal guarantees of consistency with p∗. For instance, the predictor that randomly assigns individuals
one of 1/α values will, with high probability, have Pri∼DX [ p̃i = v ∧ i ∈ S ] ≈ α for all S ∈ C, and thus, each of the
constraints would be vacuously satisfied.
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∆A(p) ,

∣∣∣∣ Pr
(i,o∗i )∼D∗

[ A(i, o∗i , pi) = 1 ]− Pr
(i,oi)∼D(p)

[ A(i, oi, pi) = 1 ]

∣∣∣∣
It will be natural to define analogous quantities for the evidence-based fairness notions we mentioned
above; we refer to these as the multi-accuracy violation and multi-calibration violation, respectively.
Given a set S and possibly a value v ∈ [0, 1], these are defined as follows:

∇MA
S (p) ,

∣∣∣∣ E
i∼DX

[ p∗i | i ∈ S ]− E
i∼DX

[ pi | i ∈ S ]

∣∣∣∣
=

∣∣∣∣ Pr
(i,o∗i )∼D∗

[ o∗i = 1 | i ∈ S ]− Pr
(i,oi)∼D(p)

[ oi = 1 | i ∈ S ]

∣∣∣∣

∇MC
S,v (p) ,

∣∣∣∣ E
i∼DX

[ p∗i | pi = v ∧ i ∈ S ]− v
∣∣∣∣

=

∣∣∣∣ Pr
(i,o∗i )∼D∗

[ o∗i = 1 | pi = v ∧ i ∈ S ]− v
∣∣∣∣

Since the subscript allows us to distinguish between the two violations, we will typically just write
∇(p), and the corresponding fairness notion will be clear from context: ∇S for the multi-accuracy
violation, and ∇v,S for the multi-calibration violation.

4.1 No-Access-OI and Multi-Accuracy

In this section we show that no-access-OI and multi-accuracy are very closely related. In particular,
we prove that each can be implemented using the other, by an appropriate choice of the distinguisher
class (resp., of the collection of sets) and accuracy parameters.

Theorem 4.3. Fix Nature’s distribution D∗. Let Z = X × {0, 1}.

• Implementing multi-accuracy using OI: Suppose C ⊆ {0, 1}X is a collection of subpopulations,
and let γC ≥ minS∈C Pri∼DX [ i ∈ S ]. Then there exists a family of distinguishers AC ⊆
{Z → {0, 1}} such that for any α > 0, if a predictor p̃ : X → [0, 1] satisfies (AC , α · γC)-no-
access-OI, then p̃ satisfies (C, α)-multi-accuracy.

• Implementing OI using multi-accuracy: Suppose A ⊆ {Z → {0, 1}} is a family of determin-
istic distinguishers. Then there exists a collection of subpopulations CA ⊆ {0, 1}X such that
for any ε > 0, if a predictor p̃ satisfies (CA, ε/2)-multi-accuracy, then p̃ satisfies (A, ε)-no-
access-OI.

Note that proof reveals the additional property that the complexity of C and A are essentially
equivalent. That is, for each S ∈ C, we construct a distinguisher AS ∈ AC such that the complexity
of evaluating set membership 1 [ i ∈ S ] is nearly identical to that of computing AS(i, b) for b ∈
{0, 1}.
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Proof. We prove each direction separately.

Implementing multi-accuracy using OI. Fix a collection of sets C. We define a collection of |C|
distinguishers AC = {AS : S ∈ C}, where for each S ∈ C, the distinguisher AS is defined as:

AS(i, b) = 1 [ i ∈ S ∧ b = 1 ]

For any predictor p̃ and set S ∈ C, we can relate the multi-accuracy violation ∇S(p̃) to the distin-
guishing advantage ∆AS (p̃), as follows.

∇S(p̃) =

∣∣∣∣ Pr
(i,o∗i )∼D∗

[ o∗i = 1 | i ∈ S ]− Pr
(i,õi)∼D(p̃)

[ õi = 1 | i ∈ S ]

∣∣∣∣
=

1

Pri∼DX [i ∈ S]
·
∣∣∣∣ Pr
(i,o∗i )∼D∗

[ o∗i = 1 ∧ i ∈ S ]− Pr
(i,õi)∼D(p̃)

[ õi = 1 ∧ i ∈ S ]

∣∣∣∣
=

1

Pri∼DX [i ∈ S]
·
∣∣∣∣ Pr
(i,o∗i )∼D∗

[ AS(i, o∗i ) = 1 ]− Pr
(i,õi)∼D(p̃)

[ AS(i, õi) = 1 ]

∣∣∣∣
=

1

Pri∼DX [i ∈ S]
·∆AS (p̃)

Therefore, if p̃ satisfies (AC , α · γC)-no-access-OI, we derive the following string of inequalities.

∇S(p̃) =
∆AS (p̃)

Pri∼DX [i ∈ S]
≤ ∆AS (p̃)

γC
≤ α · γC

γC
= α

Thus, for every S ∈ C we have ∇S(p̃) ≤ α, and we conclude that p̃ satisfies (C, α)-multi-accuracy.

Implementing OI using multi-accuracy. Fix a collection of deterministic distinguishers A. We define
a collection of 2 · |A| sets CA =

{
S(A,b) : A ∈ A, b ∈ {0, 1}

}
, where for each A ∈ A and b ∈ {0, 1},

the subpopulation S(A,b) is defined as

S(A,b) = {i ∈ X : A(i, b) = 1}

For any predictor p̃ and distinguisher A ∈ A, we can relate the distinguishing advantage ∆A(p) to
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the multi-accuracy violations ∇S(A,1)
and ∇S(A,0)

, as follows.

∆A(p̃) =

∣∣∣∣ Pr
(i,o∗i )∼D∗

[ A(i, o∗i ) = 1 ]− Pr
(i,õi)∼D(p̃)

[ A(i, õi) = 1 ]

∣∣∣∣
=

∣∣∣∣∣∣
∑

b∈{0,1}

(
Pr

(i,o∗i )∼D∗
[ A(i, b) = 1 ∧ o∗i = b ]− Pr

(i,õi)∼D(p̃)
[ A(i, b) = 1 ∧ õi = b ]

)∣∣∣∣∣∣
≤

∑
b∈{0,1}

∣∣∣∣ Pr
(i,o∗i )∼D∗

[ A(i, b) = 1 ∧ o∗i = b ]− Pr
(i,õi)∼D(p̃)

[ A(i, b) = 1 ∧ õi = b ]

∣∣∣∣
=

∑
b∈{0,1}

∣∣∣∣ Pr
(i,o∗i )∼D∗

[
i ∈ S(A,b) ∧ o∗i = b

]
− Pr

(i,õi)∼D(p̃)

[
i ∈ S(A,b) ∧ õi = b

]∣∣∣∣
=

∑
b∈{0,1}

Pr
i∼DX

[
i ∈ S(A,b)

]
·
∣∣∣∣ Pr
(i,o∗i )∼D∗

[
o∗i = b

∣∣ i ∈ S(A,b)

]
− Pr

(i,õi)∼D(p̃)

[
õi = b

∣∣ i ∈ S(A,b)

]∣∣∣∣
=

∑
b∈{0,1}

Pr
i∼DX

[
i ∈ S(A,b)

]
· ∇S(A,b)

(p̃)

≤ ∇S(A,0)
(p̃) +∇S(A,1)

(p̃)

Therefore, if p̃ satisfies (CA, ε/2)-multi-accuracy, then we have ∆A(p̃) ≤ ε for every A ∈ A; we
conclude that p̃ satisfies (A, ε)-no-access-OI.

4.2 Sample-Access-OI and Multi-Calibration

In this section we establish a similar relationship, this time proving that sample-access-OI and
multi-calibration can each be implemented using the other. One technical subtlety is that unlike
the previous level, we need to work with some fixed discretization of the predictor in question.
Formally, for any m ∈ N, we use p̃1/m to denote the “rounded” version of a predictor p : X → [0, 1],
with respect to the grid Gm =

{
1

2m ,
2

2m , . . . ,
2m−1

2m

}
that partitions the interval [0, 1] into m “bins”

of width 1/m:

∀i ∈ X : p̃
1/m
i ≡ u(pi)

where for v ∈ [0, 1], u(v) ∈ Gm is the closest value to v that is on the grid: u(v) ≡ argminu∈Gm |u− v|.
Note that by definition, for every i ∈ X ,

∣∣∣p̃1/m
i − pi

∣∣∣ ≡ |u(pi)− pi| ≤ 1/2m.

Theorem 4.4. Fix nature’s distribution D∗. Let Z = X × {0, 1} × [0, 1].

1. Implementing multi-calibration using OI: Suppose C ⊆ {0, 1}X is a collection of subpopula-
tions, and let γC ≥ minS∈C Pri∼DX [ i ∈ S ]. Then for every m ∈ N, there exists a family
of distinguishers AC,m ⊆ {Z → {0, 1}} such that for any α > 0 and for every predictor
p : X → [0, 1], if p̃1/m satisfies (AC,m, α2 · γC/m)-sample-access-OI, then p̃1/m satisfies (C, α)-
multi-calibration.

2. Implementing OI using multi-calibration: Suppose A ⊆ {Z → {0, 1}} is a family of deter-
ministic distinguishers. Then for every m ∈ N, there exists a collection of subpopulations
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CA,m ⊆ {0, 1}X such that for any ε > 0 and for every predictor p̃ : X → [0, 1], if p̃1/m satisfies
(CA,m, ε/4)-multi-calibration, then p̃1/m satisfies (A, ε)-sample-access-OI.

Proof. We prove each direction separately.

Implementing multi-calibration using OI. Fix C and m ∈ N. We define a family of |C| ·m distin-
guishers, AC,m = {AS,u | u ∈ Gm, S ∈ C}, where:

Au,S(i, b, v) = 1 [ i ∈ S ∧ b = 1 ∧ |u− v| ≤ 1/2m ]

For any subpopulation S ∈ C and value u ∈ Gm, we can relate the distinguishing advantage
∆Au,S (p̃1/m) to the multi-calibration violation ∇u,S(p̃1/m), as follows:

∆Au,S (p̃1/m)

=

∣∣∣∣ Pr
(i,o∗i )∼D∗

[
Au,S(i, o∗i , p̃

1/m
i ) = 1

]
− Pr

(i,õi)∼D(p̃1/m)

[
Au,S(i, õi, p̃

1/m
i ) = 1

]∣∣∣∣
=

∣∣∣∣ Pr
(i,o∗i )∼D∗

[
i ∈ S ∧ o∗i = 1 ∧

∣∣∣u− p̃1/m
i

∣∣∣ ≤ 1/2m
]
− Pr

(i,õi)∼D(p̃1/m)

[
i ∈ S ∧ õi = 1 ∧

∣∣∣u− p̃1/m
i

∣∣∣ ≤ 1/2m
]∣∣∣∣

=

∣∣∣∣ Pr
(i,o∗i )∼D∗

[
i ∈ S ∧ o∗i = 1 ∧ p̃1/m

i = u
]
− Pr

(i,õi)∼D(p̃1/m)

[
i ∈ S ∧ õi = 1 ∧ p̃1/m

i = u
]∣∣∣∣

= Pr
i∼DX

[p̃
1/m
i = u ∧ i ∈ S] ·

∣∣∣∣ Pr
(i,o∗i )∼D∗

[
o∗i = 1

∣∣∣ p̃1/m
i = u ∧ i ∈ S

]
− Pr

(i,õi)∼D(p̃1/m)

[
õi = 1

∣∣∣ p̃1/m
i = u ∧ i ∈ S

]∣∣∣∣
= Pr

i∼DX
[p̃

1/m
i = u ∧ i ∈ S] · ∇u,S(p̃1/m)

Suppose p̃1/m satisfies (AC,m, ε)-sample-access-OI for ε = α2·γC
m . To prove p̃1/m satisfies multi-

calibration, we must bound the multi-calibration violation ∇u,S(p̃1/m) whenever u, S are such that

Pri∼DX

[
p̃

1/m
i = u

∣∣∣ i ∈ S ] ≥ α/suppS(p̃1/m).

Suppose u, S satisfy Pri∼DX

[
p̃

1/m
i = u

∣∣∣ i ∈ S ] ≥ α/suppS(p̃1/m) ≥ α/m. Note that this implies

Pr
i∼DX

[
p̃

1/m
i = u ∧ i ∈ S

]
= Pr

i∼DX

[
p̃

1/m
i = u

∣∣∣ i ∈ S ] · Pr
i∼DX

[ i ∈ S ] ≥ α · γC
m

Using the above, we obtain:

∇u,S(p̃1/m) =
∆Au,S (p̃)

Pri∼DX [p̃
1/m
i = u ∧ i ∈ S]

≤ α2 · γC/m
α · γC/m

= α

Which guarantees that p̃1/m satisfies (C, α)-multi-calibration, as required.

Implementing OI using multi-calibration. Fix a collection of deterministic distinguishers A and
m ∈ N. We define a family of 2m · |A| sets, CA,m = {SA,b,u | A ∈ A, b ∈ {0, 1} , u ∈ Gm}, where:
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SA,b,u = {i ∈ X : A(i, b, u) = 1}

To simplify notation, in what follows we denote

γA,b,u , Pr
i∼DX

[p̃
1/m
i = u ∧ i ∈ SA,b,u]

For any distinguisher A ∈ A, we can relate the distinguishing advantage ∆A(p̃1/m) to the multi-
calibration violations ∇SA,b,u(p̃1/m) for b ∈ {0, 1} and u ∈ Gm, as follows:

∆A(p̃1/m) =

=

∣∣∣∣ Pr
(i,o∗i )∼D∗

[
A(i, o∗i , p̃

1/m
i ) = 1

]
− Pr

(i,õi)∼D(p̃1/m)

[
A(i, õi, p̃

1/m
i ) = 1

]∣∣∣∣
=

∣∣∣∣∣∣
∑
u,b

[
Pr

(i,o∗i )∼D∗

[
o∗ = b ∧ p̃1/m

i = u ∧A(i, b, u) = 1
]
− Pr

(i,õi)∼D(p̃1/m)

[
õi = b ∧ p̃1/m

i = u ∧A(i, b, u) = 1
] ]∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
u,b

γA,b,u ·
[

Pr
(i,o∗i )∼D∗

[
o∗ = b

∣∣∣ p̃1/m
i = u ∧ i ∈ SA,b,u

]
− Pr

(i,õi)∼D(p̃1/m)

[
õi = b

∣∣∣ p̃1/m
i = u ∧ i ∈ SA,b,u

] ]∣∣∣∣∣∣
≤
∑
u,b

γA,b,u ·
∣∣∣∣[ Pr

(i,o∗i )∼D∗

[
o∗ = b

∣∣∣ p̃1/m
i = u ∧ i ∈ SA,b,u

]
− Pr

(i,õi)∼D(p̃1/m)

[
õi = b

∣∣∣ p̃1/m
i = u ∧ i ∈ SA,b,u

] ]∣∣∣∣
=
∑
u,b

γA,b,u ·
∣∣∣∣[ Pr

(i,o∗i )∼D∗

[
o∗ = 1

∣∣∣ p̃1/m
i = u ∧ i ∈ SA,b,u

]
− Pr

(i,õi)∼D(p̃1/m)

[
õi = 1

∣∣∣ p̃1/m
i = u ∧ i ∈ SA,b,u

] ]∣∣∣∣
=
∑
u,b

γA,b,u · ∇SA,b,u(p̃1/m)

Suppose p̃1/m satisfies (C, α)-multi-calibration, for some α > 0. Recall that, by definition, multi-
calibration provides a bound on the multi-calibration violation ∇SA,b,u(p̃1/m) whenever A, b, u are

such that Pri∼DX

[
p̃

1/m
i = u

∣∣∣ i ∈ SA,b,u ] < α/suppSA,b,u(p̃1/m). We therefore proceed by splitting

the above sum into two parts, which we denote by Ismall and Ilarge. In particular, for u ∈ Gm and
b ∈ {0, 1}:

(u, b) ∈ Ismall ⇐⇒ Pr
i∼DX

[
p̃

1/m
i = u

∣∣∣ i ∈ SA,b,u ] < α/m

And we let Ilarge = Gm × {0, 1} − Ismall. As mentioned, for these “large” sets, multi-calibration
guarantees an upper bound of α on the multi-calibration violation:
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∑
(u,b)∈Ilarge

γA,b,u · ∇SA,b,u(p̃1/m) =
∑

u:(u,0)∈Ilarge

γA,0,u · ∇SA,0,u(p̃1/m) +
∑

u:(u,1)∈Ilarge

γA,1,u · ∇SA,1,u(p̃1/m)

≤ max
u:(u,0)∈Ilarge

∇SA,0,u(p̃1/m) + max
u:(u,1)∈Ilarge

∇SA,1,u(p̃1/m)

≤ 2α

Where the above uses the fact that
∑

i aixi ≤ maxi xi whenever
∑

i ai ≤ 1.

For the “small sets” we use a trivial upper bound on the multi-calibration violation, but exploit
the fact that the overall mass there is small:

∑
(u,b)∈Ismall

γA,b,u · ∇SA,b,u(p̃1/m) ≤
∑

(u,b)∈Ismall

γA,b,u

=
∑

(u,b)∈Ismall

Pr
i∼DX

[p̃
1/m
i = u ∧ i ∈ SA,b,u]

≤
∑

(u,b)∈Ismall

Pr
i∼DX

[
p̃

1/m
i = u

∣∣∣ i ∈ SA,b,u ]
≤

∑
(u,b)∈Ismall

α/m

≤ 2α

Put together, we obtain

∆A(p̃1/m) ≤
∑

(u,b)∈Ismall

γA,b,u · ∇SA,b,u(p̃1/m) +
∑

(u,b)∈Ilarge

γA,b,u · ∇SA,b,u(p̃1/m) ≤ 4α

Taking α = ε/4, we conclude that p̃1/m satisfying (C, ε/4) multi-calibration guarantees that for
every A ∈ A, ∆A(p̃1/m) ≤ ε. This means p̃1/m satisfies (A, ε)-sample-access-OI.

5 Outcome Indistinguishability beyond Multi-Calibration

In this section, we give a generic construction that shows how to construct predictors satisfying
outcome indistinguishability (for any level of access to p̃). We analyze the resulting complexity
of p̃ for each notion of OI. Informally, for no-access-OI and sample-access-OI, the construction
establishes that the existence of OI predictors whose complexity scales linearly with the complexity
of A and inverse polynomially on ε. Note that by the reductions of Section 4 and prior algorithmic
results of [HKRR18], we could obtain predictors for no-access-OI and sample-access-OI with similar
guarantees through reduction to obtaining multi-accuracy or multi-calibration, respectively.
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Algorithm 1 Construct Outcome Indistinguishability

p(0)(·)← 1/2 //initialize to constant predictor

repeat for t = 0, 1, . . .

for all A ∈ A.
∆

(t)
A ← Pr

(i,o∗i )∼D∗

[
A(i, o∗i ; p

(t)) = 1
]
− Pr

(i,õi)∼D(p(t))

[
A(i, õi; p

(t)) = 1
]

end for // distinguishing advantage of A

if ∃A ∈ A s.t.
∣∣∣∆(t)

A

∣∣∣ > ε then

δ
(t)
A (·)← A(·, 1; p(t))−A(·, 0; p(t)) // update defined by delta

p(t+1)(·)← π[0,1]

(
p(t)(·) +

∆
(t)
A
2 · δ

(t)
A (·)

)
// project onto interval [0,1]

continue // next iteration upon update

end if
return p̃ = p(t) // return when no A distinguishes

For oracle-access-OI and code-access-OI, the construction establishes novel bounds on the complex-
ity required to obtain each notion. We prove that, in each case, OI predictors p̃ exist in complexity
that scales independently of the complexity of Nature’s predictor p∗, but with considerably worse
dependence on the approximation parameter, growing exponentially with 1/ε for oracle-access-OI
and doubly-exponentially with 1/ε for the most general form of code-access-OI. In Section 6, we
show evidence that some exponential dependence on 1/ε is necessary under plausible complexity
conjectures.

Our proof is constructive: we describe an algorithm (Algorithm 1) that iteratively refines a can-
didate predictor, until no more distinguishers A ∈ A can distinguish between the distributions
induced by the model and p∗. The resulting predictor, naturally, satisfies outcome indistinguisha-
bility. Thus, the remaining analysis bounds the number of iterations necessary to terminate, and
how the complexity of p̃ scales with each additional iteration. We describe the algorithm in a
generic manner that works for distinguishers with any degree of access to the candidate model.

The iterative algorithm can be viewed as a variant of gradient descent or boosting, following the
works of [TTV09, HKRR18, KGZ19]. In this exposition, we focus on demonstrating the feasibil-
ity of the resulting OI predictors, not on the feasibility of implementing the algorithm efficiently
(statistically or computationally) which is the focus of [HKRR18]. We discuss issues of sample
complexity and running time briefly in Section 5.4.

Consider Algorithm 1. The procedure starts with an (arbitrary) initial guess of the constant

function p
(0)
i = 1/2 for all i ∈ X . Then, in each iteration t, we check if there is any A ∈ A that

distinguishes Nature’s distribution D∗ and the predictor’s distribution D(p(t)). If there is no such
A ∈ A, then the procedure terminates—by construction this p̃ = p(t) is (A, ε)-OI. If there is some

A ∈ A for which
∣∣∣∆(t)

A

∣∣∣ > ε, then we perform an additive update to p(t) that is designed to bring

p(t+1) closer to the optimal predictor p∗.
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Bounding the iteration complexity. First, we show that the procedure is guaranteed to ter-
minate after a finite number of updates.

Lemma 5.1. Algorithm 1 terminates after at most T ≤ O(1/ε2) iterations.

Proof. Fixing Nature’s distribution D∗, recall we use p∗ : X → [0, 1] to denote Nature’s predictor
(i.e., the true conditional probability distribution of outcomes). The iteration complexity follows
by a potential argument. For a predictor p : X → [0, 1], we define a potential function φ(p) to track
the mean squared error to p∗.

φ(p) = E
i∼DX

[
(p∗i − pi)2

]
The potential is bounded φ(p) ≤ 1 for all predictors p (including the initial constant predictor).
Thus, to bound the number of iterations by T ≤ O(1/ε2), we show that after every update the
potential drops significantly; specifically, φ(p(t))− φ(p(t+1)) ≥ Ω(ε2).

φ
(
p(t)
)
− φ

(
p(t+1)

)
= E

i∼DX

[ (
p∗i − p(t)

)2
−
(
p∗i − p(t+1)

)2
]

≥ E
i∼DX

 (p∗i − p(t)
)2
−

(
p∗i − p(t) −

∆
(t)
A

2
· δ(t)
A (i)

)2


= ∆
(t)
A · E

i∼DX

[ (
p∗i − p

(t)
i

)
· δ(t)
A (i)

]
−

(∆
(t)
A )2

4
· E
i∼DX

[
δ

(t)
A (i)2

]
≥ ∆

(t)
A · E

i∼DX

[ (
p∗i − p

(t)
i

)
· δ(t)
A (i)

]
−

(∆
(t)
A )2

4

We complete the proof by showing that if the update in Algorithm 1 occurs based on A ∈ A, then

Ei∼DX

[
(p∗i − p

(t)
i ) · δ(t)

A (i)
]

= ∆
(t)
A ≥ ε, so the overall progress is at least 3ε2/4.

∆
(t)
A = Pr

(i,o∗i )∼D∗

[
A(i, o∗i ; p

(t)) = 1
]
− Pr

(i,õi)∼D(p(t))

[
A(i, õi; p

(t)) = 1
]

=
∑

b∈{0,1}

(
Pr

(i,o∗i )∼D∗

[
A(i, b; p(t)) = 1 ∧ o∗i = b

]
− Pr

(i,õi)∼D(p(t))

[
A(i, b; p(t)) = 1 ∧ õi = b

])

=
∑

b∈{0,1}

(
E

(i,o∗i )∼D∗

[
A(i, b; p(t)) · 1 [ o∗i = b ]

]
− E

(i,õi)∼D(p(t))

[
A(i, b; p(t)) · 1 [ õi = b ]

])

=
∑

b∈{0,1}

E
i∼DX

[
A(i, b; p(t)) ·

(
Pr

o∗i∼Ber(p∗i )
[ o∗i = b ]− Pr

õi∼Ber(p
(t)
i )

[ õi = b ]

) ]

= E
i∼DX

[
A(i, 1; p(t)) ·

(
p∗i − p

(t)
i

)
+A(i, 0; p(t)) ·

(
(1− p∗i )− (1− p(t)

i )
) ]

= E
i∼DX

[ (
p∗i − p

(t)
i

)
·
(
A(i, 1; p(t))−A(i, 0; p(t))

) ]
= E

i∼DX

[ (
p∗i − p

(t)
i

)
· δ(t)
A (i)

]
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Thus, each iteration causes the potential to drop by at least Ω(ε2), and the number of iterations is
bounded by T ≤ O(1/ε2).

Bounding the predictor’s complexity. In the remainder of this section, we discuss how to
actually implement the updates to build up the circuit that computes p̃. At a high level, we
maintain a circuit to compute p(t) in each iteration. Initially, p(0) computes a constant function.
Then, at each iteration, we build p(t+1) from p(t) by constructing a new circuit that computes the

addition of p(t) and (a scaling of) δ
(t)
A . Importantly, δ

(t)
A can be computed using two evaluations

of some A ∈ A; hence, the size of the circuit computing the eventual p̃ will depend on the circuit
complexity of the family of distinguishers A.

For no-access-OI and sample-access-OI, the bounds on circuit complexity follow directly from this
overview. We overview this analysis next. When considering oracle-access-OI and code-access-OI,
the distinguishers at each iteration depend non-trivially on the current predictor in question. As
such, in each iteration, we need to incorporate p(t), not only to maintain the existing predictions,

but also to compute Ap
(t)

itself within the computation of δ
(t)
A . For each variant, we describe how

to implement these distinguishers in a way that we can bound the complexity of the eventual p̃
produced.

Concrete complexity assumptions. To discuss the complexity needed to represent predictors
satisfying OI, we must fix a model of computation for the distinguishers. We analyze Algorithm 1
assuming that each A ∈ A is implemented by boolean circuits satisfying some minimal properties.
While we analyze the complexity of p̃ in terms of circuit size, we could similarly analyze the time
or space complexity needed to evaluate p̃ under a uniform distinguishing model.

Recall, we assume that each i ∈ X can be represented by a boolean vector in {0, 1}d. When relevant,
we parameterize the class of distinguishers by the dimension d. We assume that the distinguisher
class A can be implemented by bounded fan-in circuits of size s(d). Typically, we think of d ∈ N
as fixed by the prediction problem at hand; correspondingly, we can think of s(d) = s to be a fixed
bound on the circuit size for some s ∈ N.

Finally, we make an observation and a few technical assumptions for convenience of analysis. First,
we note that Algorithm 1 can be implemented to build p̃ using computations up to a fixed precision
of Θ(ε), while maintaining the iteration complexity T = O(1/ε2) (i.e., with only a constant factor
increase). Assuming a fixed precision, we make some additional assumptions about the complexity
of implementing logic over values from [0, 1], needed to implement the circuit built by Algorithm 1.
Specifically, the circuit we build requires operations to:

• fixed-precision addition over [0, 1];

• multiplication of fixed-precision values in [0, 1] by b ∈ {0, 1}; and

• maintaining fixed-precision values in [0, 1] (i.e., projection)

We assume that each of these operations can be implemented for Θ(ε)-precision in w(ε) gates.
Throughout, for technical simplicity, we assume that s(d) ≥ d ≥ 3 · w(ε).
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5.1 Recovering bounds for No-Access-OI and Sample-Access-OI

To begin, we show that Algorithm 1 produces circuits for no-access-OI and sample-access-OI of
complexity that scales linearly in the complexity of the distinguishers and inverse polynomially in
the approximation parameter ε. The analysis will be identical for each notion, so we state the
theorem for the stronger notion of sample-access-OI.

Theorem 5.2. Let X ⊆ {0, 1}d for d ≤ s ∈ N, and suppose A is a class of distinguishers imple-
mented by size-s circuits. For any choice of Nature’s distribution D∗ and ε > 0, there exists an
(A, ε)-sample-access-OI predictor p̃ : X → [0, 1] implemented by a circuit of size O

(
s/ε2

)
.

Proof. Initially, p(0) is a constant function, which Algorithm 1 knows and may access. In each
iteration of Algorithm 1, p(t+1) is formed by combining a circuit for p(t) with a circuit computing

δ
(t)
A . Computing δ

(t)
A requires two calls to A. For sample-access-OI distinguishers, we must pass

p
(t)
i as input to each copy of the circuit computing A.14 Leveraging the existing circuit for p(t), we

can feed its output wires into the corresponding inputs to A. Thus to compute p(t+1), we require

2d wires from the output of p(t) into the distinguishers to compute δ
(t)
A , which can be computed

in 2s gates. Finally, we need to perform a scalar multiplication, a finite-precision addition, and
projection onto [0, 1], which by assumption can be handled in 3w ≤ d gates. Thus, in total, each
iteration adds O(d + s) = O(s) new gates. By the bounded iteration complexity of T = O(1/ε2),
the eventual circuit computing p̃ can be bounded in size by O(s/ε2).

5.2 Obtaining Oracle-Access-OI

In oracle-access-OI, we allow distinguishers to make oracle calls to the predictor in question p̃.
We model these distinguishers by circuits that may include p̃-oracle-gates. We assume that such
gates have d labeled input wires, which can be resolved to an i ∈ X , and output p̃i. We measure
the complexity of such oracle circuits in terms of the size of the circuits and the number of oracle
queries. Again, we assume the dimension d ∈ N is fixed, so drop the dependence on the d.

Definition 5.3 (Oracle circuits). For s, q ∈ N, a family of distinguishers A is implemented by
(s, q)-oracle circuits if for each A ∈ A, given a predictor p : X → [0, 1], the distinguisher Ap is
implemented by some size-s circuit that includes at most q p-oracle gates.

Importantly, because Algorithm 1 builds up a circuit for p̃ iteratively, in each iteration t ≤ O(1/ε2)
the algorithm has access to a circuit computing p(t). Thus, in order to implement each oracle
distinguisher Ap

(t)
, we can hardwire copies of p(t) into A whenever it makes an oracle call. Overall,

we can prove the following bound on the total size of the circuit that computes p̃.

Theorem 5.4. Let X ⊆ {0, 1}d and d ≤ s, q ∈ N, and suppose A is a class of distinguishers
implemented by (s, q)-oracle circuits. For any choice of Nature’s distribution D∗ and ε > 0, there
exists an (A, ε)-oracle-access-OI predictor p̃ : X → [0, 1] implemented by a circuit of size s ·qO(1/ε2).

14For no-access-OI, in each iteration, evaluating δ
(t)
A requires two calls to some A ∈ A, but no calls to p(t). This

property allows the circuit computing p̃ to make calls to each δ
(t)
A in parallel, so the depth of the eventual circuit

can be bounded by the depth of the circuits computing A (with small overhead to compute the addition of all of the
updates).
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Proof. For any class of (s, q)-oracle distinguishers, we show how to construct p̃ as in Algorithm 1
(without oracle gates). This implementation leads to a recurrence relation for s(t) expressing the size
of the circuit implementing p(t) for each of the t iterations. Solving the recurrence for T = O(1/ε2)
yields the stated bound.

To begin, the initial predictor p(0), the constant 1/2 function, requires a circuit of size s(0) ≤ d ≤ s.
Additionally, we note that the predictor p(0) is available to Algorithm 1 in iteration t = 0. These
two observations form the basis of our recurrence.

Consider iteration t + 1 of Algorithm 1. By assumption each distinguisher is implemented by an
(s, q)-oracle circuit with p(t)-oracle circuits. Importantly, the algorithm has access to a size s(t)

circuit implementing p(t). Thus, to evaluate Ap
(t)

for any A ∈ A, we can implement oracle gates
using the explicit circuit for p(t) in a total size of s+ q · s(t). If the predictor is updated (i.e., does

not terminate) the new predictor p(t+1) requires two calls to the distinguishing circuit Ap
(t)

, one

call to p(t), a multiplication of δ
(t)
A by a scalar, an addition, and a projection onto [0, 1]. By our

assumption that the necessary operations can each be computed in w gates for 3w ≤ s, we can
express the size of the updated circuit as follows.

s(t+1) ≤ 2 ·
(
s+ q · s(t)

)
+ s(t) + 3w

≤ 3s+ (2q + 1) · s(t)

Solving the recurrence15, we bound the size of the circuit after T = O(1/ε2) iterations needed to
compute the (A, ε)-oracle-access-OI predictor p̃.

s(T ) ≤ 3s · (2q + 1)T+1 − 1

2q

≤ s · qO(T )

By the bound on the number of iterations from Lemma 5.1, the bound of s · qO(1/ε2) on the circuit
complexity of p̃ follows.

5.3 Obtaining Code-Access-OI

In all the previous levels of OI, we worked without loss of generality with a distinguisher class of
fixed concrete complexity (e.g., size-s circuits). Because code-access-OI considers distinguishers
that take the description of p̃ as input, it is most natural to consider a family whose complexity
scales with that of p̃. We will consider a distinguishers implemented by a non-uniform family that
is parameterized by both the dimension d and the length of the description of p̃, which we denote
n. Concretely, we measure the complexity of the distinguishers and the resulting p̃ in terms of the
size s(d, n) of the circuits in A.

For computations over the description of circuits to be meaningful, it is important to fix a rep-
resentation of the description of p̃; we denote this canonical description by 〈p̃〉. The proposition
follows by using the adjacency list representation of the circuit and applying any constant-stretch
pairing function.

15The solution follows by the Taylor approximation 1
1−x = 1 + x+ x2 + . . . taking x = 2q + 1.
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Proposition 5.5. Suppose k, s ∈ N and k ≤ s. For any size-s bounded fan-in circuit c : {0, 1}k →
{0, 1}, there exists a canonical encoding 〈c〉 of the description of the circuit, and a canonical encoding
〈〈c〉, x〉 of the description-input pairing, each of length O(s log(s)) bits.

Throughout our discussion of code-access-OI, we will still assume that the dimension d is fixed;
thus, we will assume that the distinguishers are of fixed size s(d) with respect to the dimension,
but growing with respect to the length of the encoding n,

s(d, n) = s(d) + f(n)

for various functions f . As before, we will assume that the base distinguisher size s is at least on the
order of the dimension d and cost of operations w, so that d+w ≤ O(s(d)). Given this assumption,
and the simplicity of the initial constant predictor p(0), for all classes of distinguishers we consider
here, we may assume a base size s(1) of the predictor p(1) after one iteration of Algorithm 1 as

s(1) ≤ O(s(d)).

In addition to this base case, we can give a generic recurrence for the growth of p(t) in terms of the
size of the distinguishers.

Lemma 5.6. Suppose A is a class of code-access-OI distinguishers implemented by s(d, n)-sized
circuits, and let n(s) = O(s log(s)) upper bound the length of the encoding of size-s circuits. For
any iteration t of Algorithm 1, let p(t) be the current predictor and s(t) denote the size of its circuit.
Then, the predictor size can be recursively bounded as

s(t+1) ≤ O
(
s
(
d, n(s(t))

))
+ s(t).

Proof. As in the analysis for oracle-access-OI, Algorithm 1 updates p(t) to p(t+1) using two calls to
the algorithm that distinguishes p(t) and p∗, one call p(t), and three operations of cost at most w.
Thus, we can bound the growth rate of s(t) recursively as

s(t+1) ≤ 2 · s
(
d, n(s(t))

)
+ s(t) + 3w

≤ O
(
s
(
d, n(s(t))

))
+ s(t),

where the simplified inequality follows by the assumption that w ≤ O(s(d)) ≤ O(s(d, n)).

We can apply Lemma 5.6 to obtain bounds on s(T ), under various concrete assumptions about
s(d, n). In particular, for different choices of s(d, n), the different levels of OI can be implemented
in the framework of code-access-OI. For each level, we recover the bounds on the resulting circuit
size up to low order terms (e.g., polylogarithmic factors in the distinguisher size). This blow-up
follows as a consequence of the generality of the framework of code-access-OI, and the need to
encode 〈p̃〉 as input to the distinguisher and decode 〈p̃〉 if the distinguisher wants to evaluate p̃.
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Sublinear distinguishers. To start, suppose we choose a class of distinguishers of complexity
independent of p̃, s(d, n) = s(d). In this case, as p̃ grows in complexity, the distinguishers’ access
to 〈p̃〉 becomes relatively limited. Such distinguishers can still implement no-access-OI tests by
ignoring 〈p̃〉; we show that the complexity of such predictors grows similarly to the complexity
needed to satisfy no-access-OI. In fact, we bound the complexity of a code-access-OI predictor even
for distinguishers that have (strongly) sublinear access to p̃.

Theorem 5.7. Let X ⊆ {0, 1}d for d ∈ N. For any fixed constant δ ∈ [0, 1), suppose A is a class
of distinguishers implemented by size-s(d, n) circuits for

s(d, n) ≤ s(d) +

(
n

log(n)

)δ
.

For any choice of Nature’s distribution D∗ and ε > 0, there exists an (A, ε)-code-access-OI predictor

p̃ : X → [0, 1] implemented by a circuit of size O
(
s(d) · ε−

2
1−δ
)

.

Proof. We bound the size of the predictor p̃ produced by Algorithm 1 when using a class of dis-
tinguishers with sublinear access to 〈p̃〉. Applying Lemma 5.6, we can derive a recurrence for the
growth rate of the predictor at each iteration,

s(t+1) ≤ O

s(d) +

(
n(s(t))

log(n(s(t)))

)δ+ s(t)

≤ O(s(d)) + s(t) + b ·
(
s(t)
)δ

(9)

for some constant b > 0, where (9) follows by Proposition 5.5 bounding the length of the description
〈p(t)〉 in terms of s(t). For a sufficiently large constant B > 0, this recurrence can be bounded by

s(T ) ≤ B · s(d) · T
1

1−δ . First, we know s(1) ≤ O(s(d)). Then, inductively, assume that the claimed
recurrence holds for all t′ ≤ t.

s(t+1) ≤ O(s(d)) +B · s(d) · t
1

1−δ + b ·
(
B · s(d) · t

1
1−δ
)δ

≤ O(s(d)) +B · s(d) · t
1

1−δ + b ·Bδ · s(d)δ · t
δ

1−δ

≤ B · s(d) ·
(
t

1
1−δ + t

1
1−δ−1

)
≤ B · s(d) · (t+ 1)

1
1−δ

Recalling that Algorithm 1 terminates after T = O(1/ε2) iterations, the resulting circuit for p̃ is

bounded by s(T ) ≤ O
(
s(d) · ε−

2
1−δ
)

for fixed constant δ.

Quasilinear distinguishers. Next, we handle distinguishers whose complexity may grow quasi-
linearly in the size of the description 〈p̃〉. Our focus on quasilinear distinguishers is due to the fact
that the circuit evaluation problem has quasilinear circuits; thus, using such distinguishers we can
hope to simulate sample-access-OI and oracle-access-OI. Specifically, we rely upon the existence of
universal circuits of the following form.
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Theorem 5.8 (Corollary of Theorem 3.1 from [LW12]). There exists a (polylog-time uniform)
universal circuit family {Cn} of size O (n · poly log(n)), such that for any bounded fan-in circuit
c : {0, 1}k → {0, 1} and input x ∈ {0, 1}k, where |〈〈c〉, x〉| = n,

Cn (〈〈c〉, x〉) = c(x).

By pairing this result with Proposition 5.5, we can bound the size needed to evaluate p̃. Recall
that for a circuit p of size s, the description |〈p〉| can be written in O(s log(s)) bits. Thus, in
combination, we will assume that given the description 〈p〉, the circuit p can be evaluated by a
distinguisher using s · (log(s))c gates for some c ∈ N.

We analyze the growth rate of the circuit produced by Algorithm 1 if we allow distinguishers that
can make q calls to the current model predictor. Specifically, we consider distinguishers of size

s(d, n(s)) ≤ s(d) + s · (log(s))c

This growth rate bounds the size of the predictors needed to implement oracle-access-OI within
the framework of code-access-OI. As we’ll see, the dependence on q and the base distinguisher size
s(d) remains roughly the same, with overhead due to encoding and decoding p(t) at each iteration,
rather than wiring it directly.

Theorem 5.9. Let X ⊆ {0, 1}d for d ∈ N. For a constant c > 0, suppose A is a class of
distinguishers implemented by size-s(d, n) circuits for

s(d, n(s)) ≤ s(d) + s · (log(s))c .

For any choice of Nature’s distribution D∗ and ε ∈ (0, 1), there exists an (A, ε)-code-access-OI pre-

dictor p̃ : X → [0, 1] implemented by a circuit of size s(d)·qO(1/ε2) ·(1/ε)O(1/ε2) ·(log(s(d) · q))O(1/ε2).

Proof. By Lemma 5.6, we can bound the growth rate at the tth iteration as follows

s(t+1) ≤ O
(
s(d) + q · s(t) ·

(
log(s(t))

)c)
+ s(t)

≤ b ·
(
s(d) + q · s(t) ·

(
log(s(t))

)c)
for some constant b > 0. For notational convenience, let Ξ = s(d) · (2c)2cbq. We will show that the
recurrence can be bounded as follows.

s(T ) ≤ s(d) · ((2c)2cbq)T · ((T − 1)!)2c ·
(
log(s(d) · (2c)2cbq)

)cT
= s(d) · ((2c)2cbq)T · ((T − 1)!)2c · (log(Ξ))cT

Again, we know that s(1) ≤ O(s(d)). To see the recurrence, consider the expression for s(t+1)
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assuming the inductive hypothesis for s(t).

s(t+1) ≤ b · s(d) + bq · s(t) ·
(

log(s(t))
)c

≤ b · s(d) + bq ·
(
s(d) ·

(
(2c)2cbq

)t · ((t− 1)!)2c · (log(Ξ))ct
)

·
(

log
(
s(d) ·

(
(2c)2cbq)

)t · ((t− 1)!)2c · (log(Ξ))ct
))c

≤ s(d) · (2c)2ct · (bq)t+1 · ((t− 1)!)2c · (log(Ξ))ct

· (t · log(Ξ) + 2ct · log(t) + ct · log log(Ξ))c

≤ s(d) · (2c)2ct · (bq)t+1 · ((t− 1)!)2c · (log(Ξ))ct · (2ct)2c · log(Ξ)c

= s(d) ·
(
(2c)2cbq

)t+1 · (t!)2c · log (Ξ)c·(t+1)

Taking b and c to be constants, the bound on the recurrence can be simplified and bounded as
follows,

s(T ) ≤ s(d) · qO(1/ε2) · (1/ε)O(1/ε2) · (log(s(d) · q))O(1/ε2)

where T ≤ O(1/ε2) follows by the iteration complexity of Algorithm 1.

Polynomial distinguishers. In the limits of efficient distinguishers, we may allow the compu-
tation over 〈p̃〉 to grow polynomially. Such distinguishers, in principle, could run nontrivial tests
on the description 〈p̃〉 itself beyond simply evaluating p̃. We show that predictors satisfying this
strong notion of OI exist, in complexity independent of that of p∗, albeit doubly exponential in the
number of iterations of Algorithm 1.

Theorem 5.10. Let X ⊆ {0, 1}d for d ∈ N. For any constant k ∈ N, suppose A is a class of
distinguishers implemented by size-s(d, n) circuits for

s(d, n) ≤ (s(d) + n)k .

For any choice of Nature’s distribution D∗ and ε > 0, there exists an (A, ε)-code-access-OI predictor

p̃ : X → [0, 1] implemented by a circuit of size O
(
s(d)2O(1/ε2)

)
.

Proof. Applying Lemma 5.6, we can bound the growth rate of the size of p(t) for all t ≥ 1 loosely
through the following recurrence.

s(t+1) ≤
(
s(d) + n(s(t))

)k
+ s(t)

≤
(

3 · s(t) log(s(t))
)k

≤
(

3 · s(t)
)2k

This recurrence can be bounded as

s(T ) ≤ 3((2k)T+1−1)/(2k−1) · (s(d))(2k)T
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for a sufficiently large constant B. To start, s(1) ≤ O(s(d)). Then, inductively, we bound the
growth as follows.

s(t+1) ≤ 32k ·
(

3((2k)t+1−1)/(2k−1) · (s(d))(2k)t
)2k

≤ 3((2k)t+2−1)/(2k−1) · (s(d))(2k)t+1

Again, by the bound on the number of iterations T = O(1/ε2) and by the assumption that k = O(1)

is a constant, we can simplify the expression for the size of p̃ to s(T ) ≤ s(d)2O(1/ε2)
.

5.4 Learning Outcome Indistinguishability Predictors from Samples

While we describe Algorithm 1 primarily to establish the complexity of representing predictors p̃
that satisfy oracle-access-OI and code-access-OI, in principle, it could be implemented as a learning
algorithm that works over labeled samples {(i, o∗i )} drawn from nature. We remark on the statistical
and computational complexity of learning such predictors.

Bounding the sample complexity. The main statistical cost for implementing Algorithm 1

comes from the need to estimate ∆
(t)
A for each A ∈ A at each iteration t ≤ O(1/ε2). Using standard

concentration inequalities and union bounding, we can upper bound the number of samples per
fixed iteration needed to estimate Pr(i,o∗i )∼D∗

[
A(i, o∗i ; p

(t) = 1
]

to accuracy Θ(ε). For instance,

applying Hoeffding’s inequality, we can see that mt ≥ Ω
(

log(|A|/δ)
ε2

)
labeled samples suffice to

estimate ∆
(t)
A for each A ∈ A with probability at least 1− δ.

Naively, we can take a fresh set of labeled samples for each iteration, so by iteration complexity

T ≤ O(1/ε2), then in total, m1:T ≥ Ω
(

log(|A|/δε)
ε4

)
labeled samples suffice. Importantly, we cannot

simply union bound over the iterations because the statistics we need to estimate at the tth itera-
tion depend on p(t), and thus, depend on the estimates from earlier iterations. More sophisticated
approaches to bounding the sample complexity are possible. For instance, to beat the approach of
naive resampling, [HKRR18] apply the machinery for proving generalization in adaptive data anal-
ysis via differential privacy [DMNS06,DFH+15a,DFH+15b,DFH+15c,BNS+16,JLP+20], resulting
in improved sample complexity.16

Bounding the computational complexity. While we bound the iteration complexity effi-
ciently, naively, each iteration requires at least Ω(|A|) time to iterate through each A ∈ A. If
we take A to be an arbitrary class of distinguishers, this complexity bound cannot be improved
significantly under natural complexity-theoretic assumptions, even for no-access-OI. In particular,
in the context of learning multi-accurate and multi-calibrated predictors, [HKRR18] demonstrated
that the search problem for a violated constraint requires agnostic learning, a notoriously hard
problem (e.g., [Reg10,KMV08,Fel10]).

On the positive side, [HKRR18] also showed a reverse direction: if C is taken to be a class of (agnos-
tically) learnable functions, then (C, α)-multi-calibrated predictors are also learnable (in complexity

16 [Kim20] covers the approach of [HKRR18] for establishing generalization in detail.
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that scales with the complexity of learning C). By analogy, if we take A to be a structured class of
distinguishers there is hope that the problem of searching for a distinguisher A ∈ A with significant
advantage may be reducible to an efficient learning problem. Such a reduction would follow from
techniques similar to those discussed in [HKRR18,Kim20].

6 Barriers to Efficient Outcome Indistinguishability

We define ensembles of scalably hard functions, and show that they imply the hardness of oracle-
access-OI. In Section 6.2 we show a candidate construction of scalably hard functions from clique
counting and deduce that hardness of clique counting implies hardness of oracle-access-OI. In
Section 6.3 we show results based on the existence of hard functions in PSPACE.

See Section 1.3 for a technical overview of these results, and for a discussion of further candidates
based on fine-grained complexity assumptions.

6.1 Scalable Hardness and Hardness of OI

Definition 6.1 (Ensembles of functions, of distributions and of collections thereof). An ensemble
of functions {fn : Xn → Yn}n∈N is computable in time t(n) if there exists a Turing machine that,
on inputs of the form {(1n, x) : x ∈ Xn}, runs in time t(n) and correctly computes fn(x). Similarly,
an ensemble of distributions {Dn}n∈N is sampleable in time t(n) if there exists a (probabilistic)
Turing machine that, on input 1n, runs in time t(n), and whose output distribution is Dn.

An ensemble of collections of functions F = {{fi,n : Xn → Yn}m(n)
i=1 }n∈N , where the n-th collection

is of size m(n), is computable in time t(n) if there exists a Turing machine that, on inputs of the
form {(1n, i, x) : i ∈ [1, . . . ,m(n)], x ∈ Xn}, runs in time t(n) and outputs fi,n(x). We say that
computing the ensemble requires randomized time `(n) if it is not computable in randomized time
o(`(n)) (i.e. there is no Turing machine running in this time that computes the function correctly

w.h.p. over its coins). Similarly, an ensemble of collections of distributions D = {{Di,n}m(n)
i=1 }n∈N ,

is sampleable in time t(n) if there exists a (probabilistic) Turing machine that, on inputs of the
form {(1n, i) : i ∈ [1, . . . ,m(n)]}, runs in time t(n), and whose output distribution is Di,n.

Definition 6.2 (Scalable hardness). Let F = {{fi,n : Xn → Yn}m(n)
i=1 } be an ensemble of collections

of functions, where {Xn, Yn ⊆ {0, 1}poly(n)} and m(n) = poly(n). We say that the ensemble F has
scalable hardness if the following conditions hold:

• Complexity bounds. The ensemble F can be computed in time tf (n), and requires ran-
domized time `f (n).

• Downwards self-reduction. There is an oracle Turing Machine Q s.t.:

∀n ∈ N , i ∈ [1, . . . ,m(n)], x ∈ Xn : Qfi−1,n(1n, i, x) = fi,n(x),

where we define f0,n to be the all-zero function 0̄ (i.e. for i = 1 the oracle does not help Q in
its computation). Let tQ(n) and qQ(n), which we refer to as the runtime and query complexity
(respectively) of F ’s downward self-reduction, bound the (worst case) running time and query
complexity (respectively) of Q on inputs of the form (1n, ·, ·).
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• Random self-reduction. There is an oracle Turing Machine R, an error rate µ : N →
[0, 1], and an ensemble of collections of distributions D = {{Di,n}i∈[1,...,m(n)]}n∈N that can be
sampled in time tD(n), where each Di,n is over Xn, s.t. for every n ∈ N , i ∈ [1, . . . ,m(n)] and
every function f∗ : Xn → {0, 1}, if it holds that Prx∼Di,n [ f∗(x) 6= fi,n(x) ] < µ(n), then:

∀x ∈ Xn : Pr
[
Rf
∗
(1n, i, x) = fi,n(x)

]
≥ 2/3,

where this latter probability is only over the coin tosses of R.

Let tR(n) and qR(n), which we refer to as the runtime and query complexity of F ’s random
self-reduction (respectively), bound the (worst case) running time and query complexity (re-
spectively) of R on inputs of the form (1n, ·, ·). We refer to µ(n) as F ’s error rate and we
refer to tD(n) as F ’s sampling time.

Non-Boolean to Boolean scalable hardness. We will be particularly interested in scalably
hard Boolean functions, where the range is {0, 1} (for all n ∈ N ). We use the Goldreich-Levin
hardcore predicate [GL89] to transform non-Boolean scalably hard functions into Boolean ones
by taking an inner product of the output with a random input string. The degradation in the
parameters is polynomial in the output length of the original functions:

Proposition 6.3 (Non-Boolean to Boolean scalable hardness). Let F = {fi,n : Xn → {0, 1}y(n)}
be an ensemble of collections of functions with scalable hardness (see Definition 6.2) where each
collection in the ensemble is of size m(n) and the range of the functions is {0, 1}y(n). Let tf (n)
and `f (n) be F ’s complexity upper and lower bounds (respectively), let tQ(n) and qQ(n) be F ’s
downward self-reduction’s runtime and query complexity (respectively), let tR(n) and qR(n) be F ’s
random self-reduction’s runtime and query complexity (respectively), let tD(n) be F ’s sampling time
and let µ(n) be F ’s error rate.

Then there exists an ensemble G = {gi,n :
(
Xn × {0, 1}y(n)

)
→ {0, 1}} of collections of Boolean

functions with scalable hardness, where each collection is of the same size m(n) and where the
following hold:

• The complexity upper and lower bounds (respectively) of G are tg(n) = O(tf (n)) and `g(n) =
Ω(`f (n)/y(n) · log(y(n))).

• The runtime and query complexity of G’s downwards self-reduction are (respectively) t′Q(n) =

O(tQ(n) + (qQ(n) · y2(n))) and q′Q(n) = O(qQ(n) · y(n)).

• The runtime and query complexity of G’s random self-reduction are (respectively) t′R(n) =
Õ(tR(n) + (qR(n) · y2(n))) and q′R(n) = Õ(qR(n) · y(n)). The sampling time of G is t′D(n) =
O(tD(n) + y(n)) and the error rate is µ′(n) = ((1/4 − α) · µ(n)) for an arbitrarily small
constant α > 0.

Proof. The collection G is defined by gi,n(x, r) = 〈x, r〉, where x ∈ Xn, r ∈ {0, 1}y(n) and 〈·, ·〉 is
the inner product over GF[2]. The complexity upper bound follows by construction. The lower
bound follows because computing fi,n on an input x can be reduced to computing each of its y(n)
output bits, and each output bit can be computed by a call to gi,n (where we take the majority of
log(y(n)) such calls to gi,n to reduce any probability of error).
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The downwards self-reduction for gi,n on input (x, r) uses the downwards self-reduction for fi,n on
input x. Each call to fi−1,n can be simulated as described above, using y(n) calls to gi−1,n. Thus,
the increase in the query complexity is a multiplicative y(n) factor, the increase in the runtime is
due to the time needed to make these additional queries.

The random self-reduction for gi,n is to a distribution D′ obtained by sampling x from F ’s “hard”
distribution Di,n and appending a uniformly random Boolean string r of length y(n). The sampling
time follows by construction. The random self-reduction R′ for gi,n gets access to an oracle g∗ that
computes gi,n correctly with high probability over an input drawn from D′. On input (x, r), R′

computes fi,n on x and takes the inner product with r. Computing fi,n(x) is done by applying the
random self-reduction for fi,n on input x. The latter reduction needs access to an oracle f∗ with
error rate at most µ (over inputs drawn from Di,n). We use the oracle to g∗ to simulate such an
oracle. Let α > 0 be a constant, and assume that for input x ∈ Xn:

Pr
r∼Uy(n)

[g∗(x, r) = gi,n(x, r)] ≥ 3/4 + α.

In this case, we can reconstruct the j-th bit of fi,n(x) with probability greater than half by XORing
the values g∗(x, r) and g∗(x, r⊕e(j)) (where r is uniformly random and e(j) is the j-th unit vector).
By repeating this O(log(y(n)) + log(qR(n))) times and taking the majority, we reconstruct the j-th
bit of fi,n(x) with all but 1/(100qR(n) · y(n)) probability. Repeating this for each of the bits and
taking a union bound, we recover fi,n(x) with all but 1/100qR(n) probability.

Now, since the error rate of g∗ is at most µ(1/4− α), we get that:

Pr
x∼Di,n

[
Pr

r∼Uy(n)
[g∗(x, r) 6= gi,n(x, r)] > 1/4− α

]
< µ.

Thus, when R′g
∗

invokes fi,n’s random self-reduction R, it is simulating an oracle f∗ that, for all
but a µ-fraction of the inputs drawn from Di,n, computes fi,n correctly with all but 1/100qR(n)
probability over its own coins. By the guarantee of fi,n’s random self-reduction, and taking a union
bound over the error probability in answering all of R’s queries, we conclude that the invocation of
R will return the correct answer with probability at least (2/3− 1/100). The error probability can
be reduced to 2/3 by repeating (a constant number of times).

The number of queries made by the reduction R′ is (by construction) O(qR(n) · y(n) · (log(y(n)) +
log(qR(n)))). The running time of R′ is O(tR(n) + (qR(n) · (log(y2(n)) + log(qR(n))))).

Hardness of OI from scalable hardness. We show that ensembles of scalably hard Boolean
functions imply that OI is hard. Note that by Proposition 6.3 we derive a similar conclusion for
ensembles of scalably hard non-Boolean functions. The complexity upper and lower bounds follow
by construction.

Theorem 6.4. Suppose F is an ensemble of collections of functions with scalable hardness (see
Definition 6.2), where the functions are all Boolean (i.e. Yn = {0, 1} for all n), and each collection
in the ensemble is of size m(n). Let tf (n) and `f (n) be F ’s complexity upper and lower bounds
(respectively), let tQ(n) and qQ(n) be F ’s downward self-reduction’s runtime and query complexity
(respectively), let tR(n) and qR(n) be F ’s random self-reduction’s runtime and query complexity
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(respectively), and let tD(n) be F ’s sampling time. Suppose further that F ’s error rate µ(n) is at
most 0.06.

Then there exist:

• an ensemble of predictors p∗ = {p∗n : Zn → {0, 1}} , where Zn ⊆ ([1, . . . ,m(n)]×Xn), that is
computable in time O(tf (n)),

• an ensemble of distributions H = {Hn}, which can be sampled in time O(tD(n)), where each
Hn is over Zn,

• and an ensemble {An} of collections of distinguishers, where the n-th collection is of size
m(n), that is computable in time O (tQ(n) + (tR(n) · qQ(n) · log(qQ(n)))),

such that for every ensemble of predictors {p̃n : Zn → [0, 1]} computable in time o
(
`f (n)
qR(n) − tR(n)

)
,

for infinitely many values of n, the predictor p̃n is not (An, ε(n))-OI with respect to p∗n and the
distributions Hn, where ε(n) = 1/100m(n).

Proof. Fix a value of n, and let m = m(n). We construct p∗ = p∗n and the distribution H = Hn as
follows:

• The domain is Z = Zn = {(i, x) : i ∈ [1, . . . ,m(n)], x ∈ Xi,n}, where Xi,n is the domain of
the i-th function in the collection Fn. We use Zi to denote the subset of Z where the first
coordinate is fixed to i (note that these subsets are disjoint).

• For an input in Z we have p∗(i, x) = fi,n(x), where fi,n is the i-th function in the collection
Fn. Note that the range of p∗ is Boolean.

• The distributionH (over Z), has a uniform marginal distribution on i ∈ [1, . . . ,m]. Condition-
ing on a fixed value of i, the conditional distribution on x is Di = Di,n (the i-th distribution
in the collection Dn).

The collection of distinguishers {A1, . . . , Am} is described in Figure 2. Each of these distinguishers
gets oracle access to a predictor p : Z → [0, 1]. On input (j ∈ [1, . . . ,m], x ∈ Xj,n, o ∈ {0, 1}), they
try to distinguish whether or not o is drawn by p∗.

The bound on the running time of theAi’s follows by construction: A1 runs in time tQ(n), simulating
Q(1n, 1, x) and answering all oracle calls using the 0 oracle. For i ≥ 2, the distinguisher Ai runs the
downwards self-reduction, answering each of its oracle queries (which are meant to be answered by
fi−1,n) by running the random self-reduction R(1n, i−1, x) multiple times, and taking the majority
of its answers (the repetition lowers the error probability, see below). The oracle queries in each
invocation of R (which are to inputs in Xi−1,n) are answered using the given predictor p (restricted
to inputs in Zi−1, i.e. with the first coordinate fixed to (i− 1)), rounding its answers to 0 or 1. By
construction, the running time is O(tQ(n) + (tR(n) · qQ(n) · log(qQ(n)))).

The intuition behind the hardness of achieving OI for the class of distinguishers A (see also Section
1.3) is that if p̃ is OI and is “correct on average” in computing fi−1 over random inputs, then
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Algorithm 2 Distinguisher Api (j, x, o)

if i 6= j, output 0
otherwise, if i = 1, output 1 iff o = Q0̄(1n, 1, x) //using the all-0 oracle to compute f1

otherwise, if i ≥ 2:

for x′ ∈ Xi−1,n, let:

• g(x′) = dp(i− 1, x′)c //rounding p’s answers

• g′(x′) = Rg(1n, i− 1, x′) //random self-reduction

• g′′(x′) computes the majority answer in t = O(log(qQ(n)))
independent executions of g′ on x′ //boosting the success probability

output 1 iff o = Qg
′′
(1n, i, x) //downwards self-reduction to compute fi,n(x)

in the distinguisher Ai (which gets oracle access to p̃), the procedure g′′, which uses F ’s random
self reduction, computes fi−1 correctly w.h.p. on every input in Xi−1. By the downwards self-
reducability of F , this implies that for every input (i, x, o), w.h.p. over its coins the distinguisher
Ai (with oracle access to p̃) accepts if and only if o = fi(n). Since it is always true that o = fi(n)
when o is drawn by p∗, the fact that p̃ is OI implies that it should also be true w.h.p. when o is
drawn by p̃. When we say a (real-valued) predictor p̃ “correctly computes” a Boolean function like
fi, we mean that when the value outputted by the predictor is rounded, the resulting boolean value
agrees with fi.

The distinguisher A1 is constructed so that output indistinguishability w.r.t. this distinguisher
implies that p̃ much be “correct on average” in computing f1. This is the basis for an inductive
argument, which shows that pt must also be “correct on average” in computing fi for every possible
value of i. Plugging (the rounding of) p̃ into the random self-reduction R, we obtain a machine
that computes F correctly for every input (w.h.p. over its coins). Since computing F requires
randomized time `f (n), we conclude that computing p̃ requires time ((`f (n)/qR(n))− tR(n)). The
formal induction argument follows from the following two claims:

Claim 6.5 (induction basis). For every predictor p̃ : Z → [0, 1] that satisfies ({A1}, ε(n))-OI w.r.t
p∗, it must be the case that:

Pr
x∼D1

[ dp̃(1, x)c = f1,n(x) ] ≥ 0.98.

Proof of Claim 6.5. The distinguisher A1 accepts its input (j, x, o) iff j = 1 and o = f1(x). Since
p∗(j, x) = fj(x) we have that:

Pr
(j,x)∼H,o∗∼p∗(j,x)

[ A1(j, x, o∗) = 1 ] = 1/m(n).

If p̃ is ({A1}, ε(n))-OI w.r.t p∗, where ε(n) = 1/100m(n), we have that:

Pr
(j,x)∼H,õ∼p̃(j,x)

[ A1(j, x, õ) = 1 ] ≥ 0.99/m(n).

49



Now, since A1 rejects when either j 6= 1 or õ 6= f1,n(x), and since the distribution H is uniformly
random over its first coordinate, we conclude that:

Pr
x∼D1,õ∼p̃(1,x)

[ õ 6= f1,n(x) ] < 0.01.

In particular, we conclude that:

Pr
x∼D1

[ |p̃(1, x)− f1,n(x)| ≥ 0.5 ] < 0.02,

and the claim follows.

Claim 6.6 (induction step). For every predictor p̃ : Z → [0, 1] and i ∈ [2, . . . ,m]. If p̃ is
({Ai}, ε(n))-OI w.r.t p∗ and also:

Pr
x∼Di−1

[ dp̃(i− 1, x)c = fi−1,n(x) ] ≥ 0.94, (10)

then:

Pr
x∼Di

[ dp̃(i, x)c = fi,n(x) ] ≥ 0.94,

Proof of Claim 6.6. The condition in Equation (10) implies that p̃ is “correct on-average” for com-
puting fi−1: after rounding, it agrees with fi−1 w.h.p. over random inputs from Di−1. When we
run the distinguisher Ai with oracle access to p̃, by the random self-reducability of F , we con-
clude that for each input x ∈ Xi−1, the procedure g′ computes fi−1 correctly with probability 2/3.
The procedure g′′, which runs t = O(log(qQ(n))) independent invocations of g′, thus has an error
probability bounded by 1/100qQ(n). The procedure Qg

′′
(1n, i, ·) runs F ’s downwards self-reduction

using g′′ as an oracle. Taking a union bound over Q’s oracle calls, we conclude that the probability
that they are all answered correctly is at least 0.99. When this is the case, Qg

′′
(1n, i, ·) correctly

computes the function fi. Thus, we conclude that for any x ∈ Xi, the distinguisher Ai(i, x, o)
accepts w.p. at least 0.99 if o = fi(x), and otherwise it rejects w.p. at least 0.99.:

Pr
x∼Di,o∗∼p∗(i,x)

[ Ai(i, x, o
∗) = 1 ] ≥ 0.99.

Since p̃ is ({Ai}, ε(n))-OI w.r.t p∗, where ε(n) = 1/100m(n), and since Ai(j, x, o) always rejects if
j 6= i and the distribution H is uniformly random over its first coordinate, it must be the case that:

Pr
x∼Di,õ∼p̃(i,x)

[ Ai(i, x, õ) = 1 ] ≥ 0.98.

Now, since Ai(i, x, o) rejects w.p. at least 0.99 when o 6= fi,n(x), we conclude that:

Pr
x∼Di,õ∼p̃(i,x)

[ õ 6= fi,n(x) ] < 0.03.

In particular, we conclude that:

Pr
x∼Di

[ |p̃(i, x)− fi,n(x)| ≥ 0.5 ] < 0.06,

and the claim follows.
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6.2 Hardness of OI from Clique Counting

In this section we use the clique-counting problem to construct an ensemble of functions with
scalable hardness, and derive a hardness result for OI. We describe this result, and conclude the
section with a discussion of related work on the complexity of clique counting.

Theorem 6.7 (Scalable hardness from clique counting). For k ∈ N , let tcc(k, n) be the upper
bound for counting the number of cliques of size k in an n-vertex graph. Suppose further that there
is no o(`cc(k, n))-time randomized algorithm for counting k-cliques.

Then for every m ∈ N , there exists an ensemble F of functions with scalable hardness (see Defini-
tion 6.2), where:

• each collection in the ensemble is of size m, the domain is of size log |Xn| = Õ(n2), and the
range is [nm],

• the ensemble can be computed in time tf (n) = tcc,m(n) and requires time `f,m(n) = `cc,m(n),

• the runtime of F ’s downwards self-reduction is tQ(n) = Õ(n3) and its query complexity is
qQ(n) = n,

• the runtime of F ’s random self-reduction is tR(n) = Õ(n2) and its query complexity is qR(n) =
poly(log n). F ’s sampling time is Õ(n2) and the error rate is 1/4− ε for an arbitrarily small
constant ε > 0.

Proof. In a nutshell, we want fi,n, given an (unweighted) n-vertex graph, to output the number
of cliques of size i in that graph. Note, however, that we need fi,n to be a Boolean function. We
achieve this by taking a hardcore predicate of the clique counting function. In particular, we use
the Goldreich-Levin hardcore predicate [GL89], taking an inner product of the count with a random
input string. The construction follows.

Taking Gn to be the set of n-vertex graphs, we define fi,n : Gn → [1, . . . ,
(
n
i

)
] to be the number of

cliques of size i in a given graph (note that this number is at most
(
n
i

)
). The upper and lower bounds

on the running time of computing fi,n follow directly from the complexity of clique counting.

Downwards self-reduction. We use the downwards self-reduction for clique counting, which
uses the observation that for every vertex v in a graph G, there is a bijection betweeen the i-cliques
in G that include the vertex v, and the (i− 1)-cliques in the graph G(v) of v’s neighbors (the graph
where we keep edges between v’s neighbors and erase all other edges). When we sum the numbers
of (i− 1) cliques in the n graphs G(v), each i-clique in G is counted exactly i times. Dividing the
sum by j gives the number of j-cliques in G:

i · fi,n(G) =
∑
v∈[n]

fi−1,n(G(v)),

where G(v) is the graph induced by vertex v’s neighbors (we identify the set of vertices with [n]).
The downwards self-reduction runs in time Õ(n3) and makes n oracle queries.
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Random self-reduction. We use the random self-reduction for clique counting [GR18], the
claimed bounds follow from their result:

Theorem 6.8 ( [GR18] Theorem 1.1, worst-case to average-case reduction for counting cliques).
For any constant t, there exists a distribution Dt,n on n-vertex graphs and a Õ(n2)-time worst-
case to average-case reduction of counting t-cliques in n-vertex graphs to counting t-cliques in
graphs generated according to this distribution, such that the reduction outputs the correct value
with probability 2/3 provided that the error rate (of the average-case solver) is a constant smaller
than one fourth. Furthermore, the reduction makes poly(log n) queries, and the distribution Dt,n

can be sampled in Õ(n2)-time and is uniform on a set of exp(Ω̃(n2)) graphs.

We remark that recent works of Boix-Adsera, Brennan and Bressler [BBB19], Goldreich [Gol20],
and Dalirrooyfard, Lincoln and Vassilevska Williams [DLW20] show other worst-case to average-case
reductions for clique counting and other fine-grained complexity problems. However, the reductions
in these works require sub-constant error rates, and thus it is not clear that our construction can
be instantiated using these results.

Hardness of OI. Putting together Theorem 6.4 (which gives scalably hard functions with polylog
output length) and Proposition 6.3 (which shows how to go from non-Boolean to Boolean scalable
hardness) together, we derive a Boolean scalably hard function collection (the degradataion in the
parameters is poly-logarithmic). Plugging this collection into Theoream 6.4, we obtain p∗ for which
OI is hard, based on the complexity of counting cliques in a graph. The resulting corollary is stated
below.

Corollary 6.9. For k ∈ N , let tcc(k, n) be an upper bound for the time complexity of counting the
number of cliques of size k in an n-vertex graph. Suppose further that there is no o(`cc(k, n))-time
randomized algorithm for counting k-cliques.

Then for every m ∈ N , there exist:

• an ensemble of predictors p∗ = {p∗n : Zn → {0, 1}} , where the domain consists of strings of
length Õ(n2), and p∗ is computable in time Õ(tcc(m,n)),

• an ensemble of distributions H = {Hn}, which can be sampled in quasi-linear time (i.e. time
Õ(n2)), where each Hn is over Zn,

• and an ensemble {An} of collections of distinguishers, where each collection is of size m, that
is computable in time Õ(n3),

such that for every ensemble {p̃n : Zn → [0, 1]} of predictors that are computable in time
(
`cc(m,n) · log−ω(1)(n)

)
,

for infinitely many values of n, the predictor p̃n is not (An, ε(n))-OI with respect to p∗n and the
distributions Hn, where ε(n) = 1/100m.
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The complexity of clique counting. The complexity of clique counting, and of clique detection
(which is no harder), has been widely studied and related to other computational problems. Chen
et al. [CCF+05] and Chen et al. [CHKX06] show that detecting k-cliques in no(k) time would refute
the Exponential Time Hypothesis (ETH) [IP01], and that counting k-cliques in no(k)-time would
refute #ETH. The clique detection problem is complete for the parameterized complexity class
W [1] (see Downey and Flum [DF99]), and the clique counting problem is complete for #W [1]
(Flum and Grohe [FG04]). It has been conjectured that the fastest known algorithms for clique
counting and detection are tight: in particular, that there is no nωk−o(1)-time algorithm for detecting
3k-cliques (where ω is the matrix multiplication exponent). Abboud, Backurs and Vassilevska
Williams [ABW18] showed several implications of this conjecture. For constant k, Abboud, Lewi
and Williams [ALW14] show that the k-SUM conjecture implies a ndk/2e−o(1) lower bound for k-
clique detection. Abboud [Abb19] shows that detecting k-cliques in O(nεk/logk)-time would refute
the Set-Cover Conjecture.

Under the conjecture (see above) that 3k−cliques cannot be counted in randomized time nωk−o(1),
we obtain (for the same k) a distribution D∗ of nature that can be sampled in time O(nkω), and
a collection A of 3k distinguishers, which all run in O(n3) time, so that there is no (A, 1/300k)-
oracle-access-OI predictor whose running time is smaller than nωk by more than a polylogarithmic
factor.

6.3 Scalable Hardness from BPP 6= PSPACE

In this section we construct an ensemble of functions with scalable hardness that are PSPACE-
hard to compute. This construction is based on the PSPACE complete problem of Trevisan and
Vadhan [TV07] (which is both random self-reducible and downwards self-reducible). Under the
assumption that BPP 6= PSPACE, we derive a hardness result for OI. We note that in this result
(unlike our hardness results that are based on fine-grained complexity), Natures predictor p∗ is
not poly-time compuable (alternatively, Nature’s distribution D∗ cannot be sampled in polynomial
time). We also note the hard-to-obtain indistinguishability advantage is polynomially small (rather
than a constant in the aforementioned results).

Theorem 6.10 (Scalable hardness from BPP 6= PSPACE [TV07], Lemma 4.1). Suppose that
BPP 6= PSPACE. Then there exists an ensemble F of functions with scalable hardness (see Defi-
nition 6.2), where:

• each collection in the ensemble is of size m(n) = poly(n), the domain and the range are of
size exp(poly(n)),

• the ensemble can be computed in exp(poly(n)) time and requires super-polynomial time in n,

• the runtime and query complexity of F ’s downwards self-reduction are poly(n),

• the runtime and query complexity of F ’s random self-reduction are poly(n). F ’s sampling
time is poly(n) and the error rate is is 1/4− ε for an arbitrarily small constant ε > 0.

We note that Trevisan and Vadhan [TV07] only claimed a random self-reduction with error rate
1/poly(n). The error rate claimed above (and, indeed, error rates that are very close to 1) is implied
by the worst-case to average-case (or rare-case) reduction of Sudan, Trevisan and Vadhan [STV01].
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Putting together Theorem 6.10 and Proposition 6.3, we derive a Boolean scalably hard function
collection (the degradataion in the parameters is polynomial). Plugging this collection into Theo-
ream 6.4, we obtain p∗ for which OI is hard, assuming BPP 6= PSPACE. The resulting corollary is
stated below.

Corollary 6.11. Suppose that BPP 6= PSPACE. Then there exist:

• an ensemble of predictors p∗ = {p∗n : Zn → {0, 1}} , where the domain consists of strings of
length poly(n), and p∗ is computable in time exp(poly(n)),

• an ensemble of distributions H = {Hn}, which can be sampled in poly(n) time, where each
Hn is over Zn,

• and an ensemble {An} of collections of distinguishers, where each collection is of size m(n) =
poly(n), that is computable in time poly(n),

such that for every ensemble {p̃n : Zn → [0, 1]} of predictors that are computable in time poly(n),
for infinitely many values of n, the predictor p̃n is not (An, ε(n))-OI with respect to p∗n and the
distributions Hn, where ε(n) = 1/m(n).

Acknowledgments. MPK thanks Dylan McKay for suggesting useful references on the circuit
evaluation problem. GNR thanks Amir Abboud for helpful discussions about the fine-grained
complexity of clique counting.
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