
Monotone Circuit Lower Bounds from Robust Sunflowers

Bruno Pasqualotto Cavalar1, Mrinal Kumar2, and Benjamin Rossman3

1 Institute of Mathematics and Statistics, University of São Paulo brunopc@ime.usp.br
2 IIT Bombay mrinalkumar08@gmail.com

3 University of Toronto ben.rossman@utoronto.ca

Abstract. Robust sunflowers are a generalization of combinatorial sunflowers that have applications
in monotone circuit complexity [22], DNF sparsification [10], randomness extractors [15], and recent
advances on the Erdős-Rado sunflower conjecture [3,16,19]. The recent breakthrough of Alweiss, Lovett,
Wu and Zhang [3] gives an improved bound on the maximum size of a w-set system that excludes a
robust sunflower. In this paper, we use this result to obtain an exp(n1/2−o(1)) lower bound on the
monotone circuit size of an explicit n-variate monotone function, improving the previous best known
exp(n1/3−o(1)) due to Andreev [5] and Harnik and Raz [11]. We also show an exp(Ω(n)) lower bound
on the monotone arithmetic circuit size of a related polynomial via a very simple proof. Finally, we
introduce a notion of robust clique-sunflowers and use this to prove an n

Ω(k) lower bound on the
monotone circuit size of the CLIQUE function for all k 6 n

1/3−o(1), strengthening the bound of Alon
and Boppana [1].

1 Introduction

A monotone Boolean circuit is a Boolean circuit with AND and OR gates but no negations (NOT gates).
Although a restricted model of computation, monotone Boolean circuits seem a very natural model to
work with when computing monotone Boolean functions, i.e., Boolean functions f : {0, 1}n → {0, 1} such
that for all pairs of inputs (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ {0, 1}n where ai 6 bi for every i, we have
f(a1, a2, . . . , an) 6 f(b1, b2, . . . , bn). Many natural and well-studied Boolean functions such as Clique and
Majority are monotone.

Monotone Boolean circuits have been very well studied in Computational Complexity over the years, and
continue to be one of the few seemingly largest natural sub-classes of Boolean circuits for which we have
exponential lower bounds. This line of work started with an influential paper of Razborov [21] from 1985
which proved an nΩ(k) lower bound on the size of monotone circuits computing the Cliquek,n function on
n-vertex graphs for k 6 log n; this bound is super-polynomial for k = log n. Prior to Razborov’s result, super-
linear lower bounds for monotone circuits were unknown, with the best bound being a lower bound of 4n due
to Tiekenheinrich [25]. Further progress in this line of work included the results of Andreev [4] who proved
an exponential lower bound for another explicit function. Alon and Boppana [1] extended Razborov’s result

by proving an nΩ(
√
k) lower bound for Cliquek,n for all k 6 n2/3−o(1). A second paper of Andreev [5] from the

same time period proved an 2Ω(n1/3/ logn) lower bound for an explicit n-variate monotone function. Using

a different technique, Harnik and Raz [11] proved a lower bound of 2Ω((n/ logn)1/3) for a family of explicit
n-variate functions defined using a small probability space of random variables with bounded independence.
However, modulo improvements to the polylog factor in this exponent, the state of art monotone circuit

lower bounds have been stuck at 2n
1/3−o(1)

since 1987.4 To this day, the question of proving truly exponential
lower bounds for monotone circuits (of the form 2Ω(n)) for an explicit n-variate function) remains open!
(Truly exponential lower bounds for monotone formulas were obtained only recently [18].)

In the present paper, we are able to improve the best known lower bound for monotone circuits by

proving an 2Ω(n1/2/(logn)3/2) lower bound for an explicit n-variate monotone Boolean function (Section 2).
The function is based on the same construction first considered by Harnik and Raz, but our argument employs

4 Stasys Jukna (personal communication) observed that Andreev’s bound [5] can be improved to 2Ω((n/
√

logn)1/3)

using the lower bound criterion of [14].

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 181 (2020)

the approximation method of Razborov with recent improvements on robust sunflower bounds [3,19]. By
applying the same technique with a variant of robust sunflowers that we call robust clique-sunflowers, we are
able to prove an nΩ(k) lower bound for the Cliquek,n function when k 6 n1/3−o(1), thus improving the result
of Alon and Boppana when k is in this range (Appendix B). Finally, we are able to prove truly exponential
lower bounds in the monotone arithmetic setting to a fairly general family of polynomials, which shares some
similarities to the functions considered by Andreev and Harnik and Raz (Section 3).

1.1 Monotone circuit lower bounds and sunflowers

The original lower bound for Cliquek,n due to Razborov employed a technique which came to be known as the
approximation method. Given a monotone circuit C of “small size”, it consists into constructing gate-by-gate,
in a bottom-up fashion, another circuit C̃ that approximates C on most inputs of interest. One then exploits
the structure of this approximator circuit to prove that it differs from Cliquek,n on most inputs of interest,
thus implying that no “small” circuit can compute this function. This technique was leveraged to obtain
lower bounds for a host of other monotone problems [1].

A crucial step in Razborov’s proof involved the sunflower lemma due to Erdős and Rado. A family F of
subsets of [n] is called a sunflower if there exists a set Y such that F1 ∩ F2 = Y for every F1, F2 ∈ F . The
sets of F are called petals and the set Y =

⋂F is called the core. We say that the family F is ℓ-uniform if
every set in the family has size ℓ.

Theorem 1 (Erdős and Rado [7]). Let F be a ℓ-uniform family of subsets of [n]. If |F| > ℓ!(r−1)ℓ, then
F contains a sunflower of r petals.

Informally, the sunflower lemma allows one to prove that a monotone function can be approximated by
one with fewer minterms by means of the “plucking” procedure: if the function has too many (more than
ℓ!(r − 1)ℓ) minterms of size ℓ, then it contains a sunflower with r petals; remove all the petals, replacing
them with the core. One can then prove that this procedure does not introduce many errors.

The notion of robust sunflowers was introduced by the third author in [22], to achieve better bounds
via the approximation method on the monotone circuit size of Cliquek,n when the negative instances are

Erdős-Rényi random graphs Gn,p below the k-clique threshold.5 A family F ⊆ 2[n] is called a (p, ε)-robust
sunflower if

P
W⊆p[n]

[∃F ∈ F : F ⊆ W ∪ Y] > 1− ε,

where Y :=
⋂F and W is a p-random subset of [n]. Henceforth, we consistently write random objects using

boldface symbols (such as W , Gn,p, etc).

As remarked in [22], every ℓ-uniform sunflower of r petals is a (p, e−rpℓ

)-robust sunflower. Moreover, as
observed in [16], every (1/r, 1/r)-robust sunflower contains a sunflower of r petals. A corresponding bound
for the appearance of robust sunflowers in large families was also proved in [22].

Theorem 2 ([22]). Let F be a ℓ-uniform family such that |F| > ℓ!(2 log(1/ε)/p)ℓ. Then F contains a
(p, ε)-robust sunflower.

For many choice of parameters p and ε, this bound is better than the one by Erdős and Rado, thus leading
to better approximation bounds. In a recent breakthrough, this result was significantly improved in [3].

Theorem 3 (Theorem 2.5 of [3]). Let F be a ℓ-uniform family such that |F| > (log ℓ)ℓ · (log log ℓ ·
log(1/ε)/p)O(ℓ). Then F contains a (p, ε)-robust sunflower.

Because of the connection between robust sunflowers and sunflowers explained above, this result was used
by the authors to significantly improve the standard sunflower bounds of Erdős and Rado. Soon afterwards,
Rao [19] provided an alternative proof which slightly improved the bound. It is this bound we are going to
use, which we introduce in the next section.6

5 Robust sunflowers were called quasi-sunflowers in [22,10,15,16] and approximate sunflowers in [17]. Following
Alweiss et al [3], we adopt the new name robust sunflower.

6 Crucially for our application, the O(ℓ) exponent in the bound of Theorem 3 is only 2ℓ when ε = 2−Ω(ℓ). To get
any improvement over the Harnik-Raz bound, we require ℓ+ o(ℓ), which is given by the result of Rao [19].

2

1.2 Slice sunflowers

In what follows, let m be a positive integer such that m < n.

Definition 1. Let F be a family of subsets of [n] and let Y :=
⋂F . Let also W ⊆ [n] be a set of size m

chosen uniformly at random. The family F is called a (m, ε)-slice-sunflower if

P
W

[∃F ∈ F : F ⊆ W ∪ Y] > 1− ε.

Theorem 4 ([19]). There exists an universal constant B > 0 such that the following holds. Let p ∈ (0, 1)

and let F ⊆
(
[n]
ℓ

)
be such that |F| > (Bx log x)ℓ, where x = log(ℓ/ε)/p. Then F contains a (m, ε)-slice-

sunflower, where m = ⌊np⌋.

The theorem above is implicit in Rao [19]. For this reason, we include most of its proof in Appendix A,
closely following the argument and notation of [19].

2 Harnik-Raz function

The strongest lower bound known for monotone circuits computing an explicit n-variate monotone Boolean
function is exp

(
Ω
(
(n/ log n)1/3

))
, and it was obtained by Harnik and Raz [11]. In this section, we will prove a

lower bound of exp(Ω(n1/2/(log n)3/2)) for the same Boolean function they considered. We apply the method
of approximations [21] and the new robust sunflower bound [3,19]. We do not expect that a lower bound
better than exp(n1/2−o(1)) can be obtained by this technique, even with better sunflower bounds.

We start by giving a high level outline of the proof. We define the Harnik-Raz function fHR : {0, 1}n →
{0, 1} and find two distributions Y and N with support in {0, 1}n satisfying the following properties:

– fHR outputs 1 on Y with high probability (Lemma 1);
– fHR outputs 0 on N with high probability (Lemma 2).

Because of these properties, the distribution Y is called the positive test distribution, and N is called the
negative test distribution. We also define a set of monotone Boolean functions called approximators, and we
show that:

– every approximator commits many mistakes on either Y or N with high probability (Lemma 8);
– every Boolean function computed by a “small” monotone circuit agrees with an approximator on both

Y and N with high probability (Lemma 9).

Together these suffice for proving that “small” circuits cannot compute fHR. The crucial part where the
robust sunflower result comes into play is in the second item.

2.1 Technical preliminaries

For A ⊆ [n], let xA ∈ {0, 1}n be the binary vector with support in A. For a set A ∈ 2[n], let ⌈A⌉ be the
indicator function satisfying

⌈A⌉(x) = 1 ⇐⇒ xA 6 x.

Define also {0, 1}n=m :=
{
xA : A ∈

(
n
m

)}
. For a monotone Boolean function f : {0, 1}n → {0, 1}, let M(f)

denote the set of minterms of f , and let Mℓ(f) := M(f)∩{0, 1}n=ℓ. Elements of Mℓ(f) are called ℓ-minterms
of f . In what follows, we will mostly ignore ceilings and floors for the sake of convenience, since these do not
make any substantial difference in the final calculations.

3

2.2 The function

We now describe the construction of the function fHR : {0, 1}n → {0, 1} considered by Harnik and Raz [11].
First observe that, for every n-bit monotone Boolean function f , there exists a family S ⊆ 2[n] such that

f(x1, . . . , xn) = fS(x1, . . . , xn) :=
∨

S∈S

∧

j∈S

xj .

Indeed, S can be chosen to be the family of the coordinate-sets of minterms of f . Now, in order to construct
the Harnik-Raz function, we will suppose n is a prime power and let Fn be the field of n elements. Moreover,
we fix two positive integers c and k with c < k. For a polynomial P ∈ Fn[x], we let SP be the set of the
valuations of P in each element of {1, 2, . . . , k} (in other words, SP = {P (1), . . . , P (k)}). Observe that it is
not necessarily the case that |SP | = k, since it may happen that P (i) = P (j) for some i, j such that i 6= j.
Finally, we consider the family SHR defined as

SHR := {SP : P ∈ Fn[x], P has degree at most c− 1 and |SP | > k/2} .

We thus define fHR as fHR := fSHR
.

We now explain the choice of SHR. First, the choice for valuations of polynomials with degree at most
c− 1 is explained by a fact observed in [2]. If a polynomial P ∈ Fn[x] with degree c− 1 is chosen uniformly
at random, they observed that the random variables P (1), . . . ,P (k) are c-wise independent, and are each
uniform in [n]. This allows us to define a distribution on the inputs (the positive test distribution) that
has high agreement with fHR and is easy to analyze. Observe further that, since |SHR| 6 nc, the monotone
complexity of fHR is at most 2c logn. Later we will chose c to be roughly n1/2, and prove that the monotone
complexity of fHR is 2Ω(c).

Finally, the restriction |SP | > k/2 is a truncation made to ensure that no minterm of fHR is very small.
Otherwise, if fHR had small minterms, it might have been a function that almost always outputs 1. Such
functions have very few maxterms and are therefore computed by a small CNF. Since we desire fHR to have
high complexity, this is an undesirable property. The fact that fHR doesn’t have small minterms is important
in the proof that fHR almost surely outputs 0 in the negative test distribution (Lemma 2).

We now define the positive and negative test distributions. Let Y ∈ {0, 1}n be the random variable which
chooses a polynomial P ∈ Fn[x] with degree at most c− 1 uniformly at random, and maps it into the binary
input xSP

∈ {0, 1}n. Let

p := n−4c/k and m := ⌊np⌋.

Let also N be the distribution which chooses an input from {0, 1}n=m uniformly at random. For a Boolean
function f and a probability distribution µ on the inputs on f , we write f(µ) to denote the random variable
which evaluates f on a random instance of µ. Harnik and Raz proved that fHR outputs 1 on Y with high
probability.

Lemma 1 (Claim 4.2 in [11]). We have P[fHR(Y) = 1] > 1− k/n.

We now claim that fHR also outputs 0 on N with high probability.

Lemma 2. We have P[fHR(N) = 0] > 1− n−c.

Proof. Let xA be an input sampled from N . Observe that fHR(xA) = 1 only if there exists a minterm x of
fHR such that x 6 xA. Since all minterms of fHR have Hamming weight at least k/2 and fHR has at most
nc minterms, we have

P[fHR(N) = 1] 6 nc ·
(
n−k/2
m−k/2

)
(
n
m

) 6 nc ·
(m
n

)k/2

6 n−c.

As a consequence of Lemmas 1 and 2, we obtain the following result.

Lemma 3. For large enough n, we have P[fHR(Y) = 1] + P[fHR(N) = 0] > 9/5.

4

2.3 A closure operator

In this section, we describe a closure operator in the lattice of monotone Boolean functions. We prove
that the closure of a monotone Boolean function f is a good approximation for f on the negative test
distribution (Lemma 4), and we give a bound on the size of the set of minterms of closed monotone functions.
This bound makes use of the robust sunflower lemma (Theorem 4), and is crucial to bounding errors of
approximation (Lemma 7). Throughout this section, we let

ε := n−3c.

Definition 2. We say that a monotone function f : {0, 1}n → {0, 1} is ε-closed if, for every A ∈
(
[n]
6c

)
, we

have

P[f(N ∨ xA) = 1] > 1− ε =⇒ f(xA) = 1.

This means that for, an ε-closed function, we always have P[f(N ∨ xA) = 1] /∈ [1− ε, 1) when |A| 6 c. Note
morever that if f, g are both ε-closed monotone Boolean functions, then so is f ∧ g. Therefore, there exists
a unique minimum closed function cl(f) satisfying f 6 cl(f). We call cl(f) the closure of f . We now give a
bound on the error of approximating f by cl(f) under the distribution N .

Lemma 4. For every monotone f : {0, 1}n → {0, 1}, we have

P [f(N) = 0 and cl(f)(N) = 1] 6 n−2c.

Proof. We first prove that there exists a positive integer t and sets A1, . . . , At and monotone functions
h0, h1, . . . , ht : {0, 1}n → {0, 1} such that

1. h0 = f ,
2. hi = hi−1 ∨ ⌈Ai⌉,
3. P[hi−1(N ∪ xAi

) = 1] > 1− ε,
4. ht = cl(f).

Indeed, if hi−1 is not closed, there exists Ai ∈
(
[n]
6c

)
such that P[hi−1(N∪xAi

) = 1] > 1−ε but hi−1(xAi
) = 0.

We let hi := hi−1 ∨ ⌈Ai⌉. Clearly, we have that ht is closed, and that the value of t is at most the number
of subsets of [n] of size at most c. Therefore, we get t 6

∑c
j=0

(
n
j

)
. Moreover, by induction we obtain that

hi 6 cl(f) for every i ∈ [t]. It follows that ht = cl(f). Now, observe that

P [f(N) = 0 and cl(f)(N) = 1] 6
t∑

i=1

P [hi−1(N) = 0 and hi(N) = 1]

=

t∑

i=1

P [hi−1(N) = 0 and xAi
⊆ N]

6

t∑

i=1

P [hi−1(N ∪ xAi
) = 0]

6 ε

c∑

j=0

(
n

j

)
6 n−2c.

We now bound the size of the set of ℓ-minterms of an ε-closed function. This bound is dependent on the
robust sunflower theorem (Theorem 4).

Lemma 5. Let B > 0 be as in Theorem 4. If a monotone function f : {0, 1}n → {0, 1} is ε-closed, then, for
all ℓ ∈ [c], we have

|Mℓ(f)| 6
(
B
log(ℓ/ε)

p
log

(
log(ℓ/ε)

p

))ℓ

.

5

Proof. Fix ℓ ∈ [c]. Suppose we have |Mℓ(f)| > (Clog(ℓ/ε)/p log (log(ℓ/ε)/p))
ℓ
. Consider also the family

F :=
{
A ∈

(
[n]
ℓ

)
: xA ∈ Mℓ(f)

}
. Observe that |F| = |Mℓ(f)|. By Theorem 4, there exists a (m, ε)-slice-

sunflower F ′ ⊆ F . Let Y :=
⋂F ′ and let W ∈

(
[n]
m

)
be chosen uniformly at random. We have

P[f(N ∨ xY) = 1] > P[∃x ∈ Mℓ(f) : x 6 N ∨ xY]

= P[∃F ∈ F : F ⊆ W ∪ Y]

> P[∃F ∈ F ′ : F ⊆ W ∪ Y]

> 1− ε.

Therefore, since f is ε-closed, we get that f(xY) = 1. However, since Y =
⋂F ′, there exists F ∈ F ′ such

that Y (F . This is a contradiction, because xF is a minterm of f .

2.4 Trimmed monotone functions

In this section, we define a trimming operation for Boolean functions. We will bound the probability that a
trimmed function gives the correct output on the distribution Y , and we will give a bound on the error of
approximating a Boolean function f by the trimming of f on that same distribution.

Definition 3. We say that a monotone function f ∈ {0, 1}n → {0, 1} is trimmed if all the minterms of f
have size at most c/2. We define the trimming operation trim(f) as follows:

trim(f) :=

c/2∨

ℓ=1

∨

A∈Mℓ(f)

⌈A⌉.

That is, the trim operation takes out from f all the minterms of size larger than c/2, yielding a trimmed
function. We will first prove the following claim.

Claim. For every monotone function f : {0, 1}n → {0, 1} and ℓ 6 c, we have P[∃x ∈ Mℓ(f) : x 6 Y] 6

(k/n)
ℓ |Mℓ(f)| .

Proof. Recall (Section 2.2) that the distribution Y takes a polynomial P ∈ Fn[x] with degree at most c− 1

uniformly at random and returns the binary vector x{P (1),P (2),...,P (k)} ∈ {0, 1}n. Let A ∈
(
[n]
ℓ

)
for ℓ 6 c.

Observe that xA 6 Y if and only if A ⊆ {P (1),P (2), . . . ,P (k)}. Therefore, if xA 6 Y , then there exists
indices {j1, . . . , jℓ} such that {P (j1),P (j2), . . . ,P (jℓ)} = A. Since ℓ 6 c, we get by the c-wise independence
of P (1), . . . ,P (k) that the random variables P (j1),P (j2), . . . ,P (jℓ) are independent. It follows that

P[{P (j1),P (j2), . . . ,P (jℓ)} = A] =
ℓ!

nℓ
.

Therefore, we have

P[xA 6 Y] = P[A ⊆ {P (1),P (2), . . . ,P (k)}] 6
(
k

ℓ

)
ℓ!

nℓ
6

(
k

n

)ℓ

.

The claim now follows by an union bound.

Lemma 6. If a monotone function f ∈ {0, 1}n → {0, 1} is trimmed and f 6= 1 (i.e., f is not identically 1),
then

P [f(Y) = 1] 6

c/2∑

ℓ=1

(
k

n

)ℓ

|Mℓ(f)| .

Proof. It suffices to see that, since f is trimmed, if f(Y) = 1 and f 6= 1 then there exists a minterm x of f
with Hamming weight between 1 and c/2 such that x 6 Y . The result follows by the claim above.

6

Lemma 7. Let f ∈ {0, 1}n → {0, 1} be a monotone function, all of whose minterms have Hamming weight
at most c. We have

P [f(Y) = 1 and trim(f)(Y) = 0] 6

c∑

ℓ=c/2

(
k

n

)ℓ

|Mℓ(f)| .

Proof. If we have f(Y) = 1 and trim(f)(Y) = 0, then there was a minterm x of f with Hamming weight
larger than c/2 that was removed by the trimming process. Therefore, since |x| 6 c by assumption, the result
follows by the claim.

2.5 The approximators

Let A := {trim(cl(f)) : f : {0, 1}n → {0, 1} is monotone}. Functions in A will be called approximators. We
define the approximating operations ⊔,⊓ : A×A → A as follows: for f, g ∈ A, let

f ⊔ g := trim(cl(f ∨ g)),

f ⊓ g := trim(cl(f ∧ g)).

Observe that every input function xi is an approximator. Therefore, we can replace each gate of a
monotone {∨,∧}-circuit C by its corresponding approximating gate, thus obtaining a {⊔,⊓}-circuit CA

computing an approximator.
The rationale for choosing this set of approximators is as follows. By letting approximators be the

trimming of a closed function, we are able to plug the bound on the set of ℓ-minterms given by the robust
sunflower lemma (Lemma 5) on Lemmas 6 and 7, since the trimming operation can only reduce the set of
minterms. Moreover, since trimmings can only help to get a negative answer on the negative test distribution,
we can safely apply Lemma 4 when bounding the errors of approximation.

2.6 The lower bound

In this section, we will prove that the function fHR requires monotone circuits of size 2Ω(c). By properly
choosing c and k, this will imply the promised exp(Ω(n1/2−o(1))) lower bound for the Harnik-Raz function.
First, we fix some parameters. Choose B as in Lemma 5. We also let

c :=
1

6Be1/B

(
n

(log n)3

)1/2

, k :=

(
n

log n

)1/2

.

For simplicity, we assume these values are integers. We clearly have c < k. Moreover, observe that, because
of this choice of parameters, we have p = Ω(1). Indeed, we have

p = n−4c/k = n−2/(3Be1/B logn) = e−2/(3Be1/B)
> e−1/B .

We will now show that, when f is an approximator, the bound of Lemma 6 can be replaced by 1/2, and also
that, when f is an ε-closed function, the bound of Lemma 7 can be replaced by 2−Ω(c). We will first need to
bound the sequence sℓ, defined as follows. For every 1 6 ℓ 6 c, let

sℓ :=

(
k

n

)ℓ

·
(
B
log(c/ε)

p
log

(
log(c/ε)

p

))ℓ

.

Note that, when f is a n-bit ε-closed monotone function, we get by Lemma 5 that
(
k
n

)ℓ |Mℓ(f)| 6 sℓ. In
other words, the summands of Lemma 6 and Lemma 7 can be replaced by sℓ in some applications. Observe
moreover that sℓ = (s1)

ℓ. Now we are going to show that, for n sufficiently large, we have s1 6 1/3, which
implies sℓ 6 3−ℓ. First, observe that

log(c/ε)/p = log(n3cc)/p 6 log(n4c)/p =
4c

p
log n.

7

Moreover, we have

log (log(c/ε)/p) = log

(
4c

p
log n

)
=

1

2
log n− 1

2
log log n+O(1) 6

1

2
log n,

for n sufficiently large. From the previous two inequalities, we obtain for n sufficiently large that

s1 = Bk log(c/ε) log(log(c/ε)/p)/(pn) 6 2Bck(log n)2/(pn) 6 1/3,

as desired.

Lemma 8 (Approximators make many errors). For every approximator f ∈ A, we have P[f(Y) =
1] + P[f(N) = 0] 6 3/2.

Proof. Let f ∈ A. By definition, there exists an ε-closed function h such that f = trim(h). Observe that
Mℓ(f) ⊆ Mℓ(h) for every ℓ ∈ [c]. Hence, applying Lemma 6 and the bounds for sℓ, we obtain that, if f 6= 1,
we have

P[f(Y) = 1] 6

c/2∑

ℓ=1

(
k

n

)ℓ

|Mℓ(h)| 6
c/2∑

ℓ=1

sℓ 6

c/2∑

ℓ=1

3−ℓ
6 1/2.

Therefore, for every f ∈ A we have P[f(Y) = 1] + P[f(N) = 0] 6 1 + 1/2 6 3/2.

Lemma 9 (C is well-approximated by CA). Let C be a monotone circuit. We have

P[C(Y) = 1 and CA(Y) = 0] + P[C(N) = 0 and CA(N) = 1] 6 size(C) · 2−Ω(c).

Proof. We begin by bounding the approximation errors under the distribution Y . We will show that, for
two approximators f, g ∈ A, if f ∨ g accepts an input from Y , then f ⊔ g rejects that input with probability
at most 2−Ω(c), and that the same holds for the approximation f ⊓ g.

First note that, if f, g ∈ A, then all the minterms of both f ∨g and f ∧g have Hamming weight at most c,
since f and g are trimmed. Let now h = cl(f ∨ g). We have (f ⊔ g)(x) < (f ∨ g)(x) only if trim(h)(x) < h(x).
Since h is closed, we obtain the following inequality by Lemma 7 and the bounds on sℓ:

P [(f ∨ g)(Y) = 1 and (f ⊔ g)(Y) = 0] 6

c∑

ℓ=c/2

(
k

n

)ℓ

|Mℓ(h)| 6
c∑

ℓ=c/2

sℓ = 2−Ω(c).

The same argument shows P [(f ∧ g)(Y) = 1 and (f ⊓ g)(Y) = 0] = 2−Ω(c). Since there are size(C) gates in
C, this implies that P[C(Y) = 1 and CA(Y) = 0] 6 size(C) · 2−Ω(c).

To bound the approximation errors under N , note that (f ∨ g)(x) = 0 and (f ⊔ g)(x) = 1 only if
cl(f ∨ g)(x) 6= (f ∨ g)(x), since trimming a Boolean function cannot decrease the probability that it rejects
an input. Therefore, by Lemma 4 we obtain

P [(f ∨ g)(N) = 0 and (f ⊔ g)(N) = 1] 6 n−2c
6 2−Ω(c).

Once again, doing this approximation for every gate in C implies P[C(N) = 0 and CA(N) = 1] 6 size(C) ·
2−Ω(c). This finishes the proof.

Theorem 5. Any monotone circuit computing fHR has size 2Ω(c) = 2Ω(n1/2/(logn)3).

Proof. Let C be a monotone circuit computing fHR. For large n, we have

9/5 6 P[fHR(Y) = 1] + P[fHR(N) = 0]

6 P[C(Y) = 1 and CA(Y) = 0] + P[CA(Y) = 1]

+ P[C(N) = 0 and CA(N) = 1] + P[CA(N) = 0]

= 3/2 + size(C)2−Ω(c).

This implies size(C) = 2Ω(c).

8

2.7 Discussion

In this application, we chose the values of c and k to be roughly
√
n. We expect that, if c were chosen to be

closer to n, the implied Harnik-Raz function would still have 2Ω(c) complexity, and thus one would be able
to improve our bound. However, we do not think that the present technique would work for any c >

√
n, as

it seems to require that ck 6 n. Therefore, in order to obtain a stronger bound to the Harnik-Raz function,
we think a different technique has to be considered.

3 Monotone arithmetic circuits

In this section, we give a short and simple proof of a truly exponential (exp(Ω(n))) lower bound for real
monotone algebraic circuits computing a multilinear n variate polynomial. As we shall see, the lower bound
argument holds for a general family of multilinear polynomials constructed in a very natural way from error
correcting codes, and the similarities to the hard function used by Harnik and Raz in the Boolean setting
is quite evident (see Section 2.2). In particular, our lower bound just depends on the rate and relative
distance of the underlying code. We note that exponential lower bounds for monotone algebraic circuits are
not new, and have been known since the 80’s with various quantitative bounds. More precisely, Jerrum and
Snir proved an exp(Ω(

√
n)) lower bound for an n variate polynomial in [13]. This bound was subsequently

improved to a lower bound of exp(Ω(n)) by Raz and Yehudayoff in [20], via an extremely clever argument,
which relied on deep and beautiful results on character sums over finite fields. A similar lower bound of
exp(Ω(n)) was shown by Srinivasan [23] using more elementary techniques building on a work of Yehudayoff
[26]. In a recent personal communication Igor Sergeev pointed out to us that truly exponential lower bounds
for monotone arithmetic circuits had also been proved in the 1980’s in the erstwhile Soviet Union by several
authors, including the works of Kasim-Zade, Kuznetsov and Gashkov. We refer the reader to [9] for a detailed
discussion on this line of work.

We show a similar lower bound of exp(Ω(n)) via a simple and short argument, which holds in a some-
what general setting. Our contribution is just the simplicity, the (lack of) length of the argument and the
observation that it holds for families of polynomials that can be constructed from any sufficiently good error
correcting codes.

Definition 4 (From sets of vectors to polynomials). Let C ⊆ Fn
q be an arbitrary subset of Fn

q . Then,
the polynomial PC is a multilinear homogeneous polynomial of degree n on qn variables {xi,j : i ∈ [q], j ∈ [n]}
and is defined as follows:

PC =
∑

c∈C

∏

j∈[n]

xj,c(j) .

Here, c(j) is the jth coordinate of c which is an element of Fq, which we bijectively identify with the set [q].

Here, we will be interested in the polynomial PC when the set C is a good code, i.e it has high rate and
high relative distance. The following observation summarizes the properties of PC and relations between the
properties of C and PC .

Observation 6 (Codes vs Polynomials) Let C be any subset of Fn
q and let PC be the polynomial as

defined in Definition 4. Then, the following statements are true:

• PC is a multilinear homogeneous polynomial of degree equal to n with every coefficient being either 0 or 1.
• The number of monomials with non-zero coefficients in PC is equal to the cardinality of C.
• If any two distinct vectors in C agree on at most k coordinates (i.e. C is a code of distance n− k), then

the intersection of the support of any two monomials with non-zero coefficients in PC has size at most k.

The observation immediately follows from Definition 4. We note that we will work with monotone algebraic
circuits here, and hence will interpret the polynomial PC as a polynomial over the field of real numbers.

We now prove the following theorem, which essentially shows that for every code C with sufficiently good
distance, any monotone algebraic circuit computing PC must essentially compute it by computing each of
its monomials separately, and taking their sum.

9

Theorem 7. If any two distinct vectors in C agree on at most n/3−1 locations, then any monotone algebraic
circuit for PC has size at least |C|.

The proof of this theorem crucially uses the following well known structural lemma about algebraic
circuits. This lemma also plays a crucial role in the other proofs of exponential lower bounds for monotone
algebraic circuits (e.g. [13,20,26,23]).

Lemma 10 (See Lemma 3.3 in [20]). Let Q be a homogeneous multilinear polynomial polynomial of
degree d computable by a homogeneous algebraic circuit of size s. Then, there are homogeneous polynomials
g0, g1, g2, . . . , gs, h0, h1, h2, . . . , hs of degree at least d/3 and at most 2d/3− 1 such that

Q =
s∑

i=0

gi · hi .

Moreover, if the circuit for Q is monotone, then each gi and hi is multilinear, variable disjoint and each one
their non-zero coefficients is a positive real number.

We now use this lemma to prove Theorem 7.

Proof of Theorem 7. Let B be a monotone algebraic circuit for PC of size s. We know from Observation 6
that PC is a multilinear homogeneous polynomial of degree equal to n. This along with the monotonicity
of B implies that B must be homogeneous and multilinear since there can be no cancellations in B. Thus,
from (the moreover part of) Lemma 10 we know that PC has a monotone decomposition of the form

PC =

s∑

i=0

gi · hi ,

where, each gi and hi is multilinear, homogeneous with degree between n/3 and 2n/3 − 1, gi and hi are
variable disjoint. We now make the following claim.

Claim. Each gi and hi has at most one non-zero monomial.

We first observe that the claim immediately implies theorem 7: since every gi and hi has at most one
non-zero monomial, their product gihi is just a monomial. Thus, the number of summands s needed in the
decomposition above must be equal to the number of monomials in PC , which is equal to |C| from the second
item in Observation 6.

We now prove the Claim.

Proof of Claim. The proof of the claim will be via contradiction. To this end, let us assume that there is an
i ∈ {0, 1, 2, . . . , s} such that gi has at least two distinct monomials with non-zero coefficients and let α and
β be two of these monomials. Let γ be a monomial with non-zero coefficient in hi . Since hi is homogeneous
with degree between n/3 and 2n/3 − 1, we know that the degree of γ is at least n/3. Since we are in the
monotone setting, we also know that each non-zero coefficient in any of the gj and hj is a positive real
number. Thus, the monomials α · γ and β · γ which have non-zero coefficients in the product gi · hi must
have non-zero coefficient in PC as well (since a monomial once computed cannot be cancelled out). But, the
supports of αγ and βγ overlap on γ which has degree at least n/3. This contradicts the fact that no two
distinct monomials with non-zero coefficients in PC share a sub-monomial of degree at least n/3 from the
distance of C and the third item in Observation 6.

Theorem 7 when instantiated with an appropriate choice of the code C, immediately implies an exponential
lower bound on the size of monotone algebraic circuits computing the polynomial PC . Observe that the
total number of variables in PC is N = qn and therefore, for the lower bound for PC to be of the form
exp(Ω(N)), we would require q, the underlying field size to be a constant. In other words, for any code of
relative distance at least 2/3 over a constant size alphabet which has exponentially many code words, we
have a truly exponential lower bound.

The following theorem of Garcia and Stichtenoth [8] implies an explicit construction of such codes. The
statement below is a restatement of their result by Cohen et al.[6].

10

Theorem 8 ([8] and [24]). Let p be a prime number and let m ∈ N be even. Then, for every 0 < ρ < 1

and a large enough integer n, there exists an explicit rate ρ linear error correcting block code C : Fn
pm → Fn/ρ

pm

with distance

δ > 1− ρ− 1

pm/2 − 1
.

The theorem has the following immediate corollary.

Corollary 1. For every large enough constant q which is an even power of a prime, and for all large
enough n, there exist explicit construction of codes C ⊆ Fn

q which have relative distance at least 2/3 and
|C| > exp(Ω(n)).

By an explicit construction here, we mean that given a vector v of length n over Fq, we can decide in
deterministic polynomial time if v ∈ C. In the algebraic complexity literature, a polynomial P is said to be
explicit, if given the exponent vector of a monomial, its coefficient in P can be computed in deterministic
polynomial time. Thus, if a code C is explicit, then the corresponding polynomial PC is also explicit in the
sense described above. Therefore, we have the following corollary of Corollary 1 and Theorem 7.

Corollary 2. There exists an explicit family {Pn} of homogeneous multilinear polynomials such that for
every large enough n, any monotone algebraic circuit computing the n variate polynomial Pn has size at least
exp(Ω(n)).

Acknowledgements

We are grateful to Stasys Junka for bringing the lower bound of Andreev [5] to our attention and to the
anonymous referees of LATIN 2020 for numerous helpful suggestions. We also thank Igor Sergeev for bringing
[9] and the references therein to our attention which show that truly exponential lower bounds for monotone
arithmetic circuits had already been proved in the 1980s.

Bruno Pasqualotto Cavalar was supported by São Paulo Research Foundation (FAPESP), grants #2018/22257-
7 and #2018/05557-7, and he acknowledges CAPES (PROEX) for partial support of this work. A part of
this work was done during a research internship of Bruno Pasqualotto Cavalar and a postdoctoral stay of
Mrinal Kumar at the University of Toronto. Benjamin Rossman was supported by NSERC, Ontario Early
Researcher Award and Sloan Research Fellowship.

References

1. Alon, N., Boppana, R.B.: The monotone circuit complexity of Boolean functions. Combinatorica 7(1), 1–22
(1987), https://doi.org/10.1007/BF02579196

2. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal inde-
pendent set problem. J. Algorithms 7(4), 567–583 (1986). https://doi.org/10.1016/0196-6774(86)90019-2,
https://doi.org/10.1016/0196-6774(86)90019-2

3. Alweiss, R., Lovett, S., Wu, K., Zhang, J.: Improved bounds for the sunflower lemma. arXiv:1908.08483 (2019),
https://arxiv.org/abs/1908.08483

4. Andreev, A.E.: A method for obtaining lower bounds on the complexity of individual monotone functions. Dokl.
Akad. Nauk SSSR 282(5), 1033–1037 (1985)

5. Andreev, A.: A method for obtaining efficient lower bounds for monotone complexity. Algebra and Logic 26(1),
1–18 (1987)

6. Cohen, G., Haeupler, B., Schulman, L.J.: Explicit binary tree codes with polylogarithmic size alphabet. In:
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing. pp. 535–544. STOC 2018,
ACM. https://doi.org/10.1145/3188745.3188928, http://doi.acm.org/10.1145/3188745.3188928

7. Erdős, P., Rado, R.: Intersection theorems for systems of sets. J. London Math. Soc. 35, 85–90 (1960),
https://doi.org/10.1112/jlms/s1-35.1.85

11

https://doi.org/10.1007/BF02579196
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1016/0196-6774(86)90019-2
https://arxiv.org/abs/1908.08483
https://doi.org/10.1145/3188745.3188928
http://doi.acm.org/10.1145/3188745.3188928
https://doi.org/10.1112/jlms/s1-35.1.85

8. Garcia, A., Stichtenoth, H.: A tower of artin-schreier extensions of function fields attaining the drinfeld-vladut
bound. Inventiones Mathematicae 121(1), 211–222 (1995)

9. Gashkov, S.B., Sergeev, I.: A method for deriving lower bounds for the complexity of monotone
arithmetic circuits computing real polynomials. Sbornik: Mathematics 203(10), A02 (Oct 2012).
https://doi.org/10.1070/SM2012v203n10ABEH004270

10. Gopalan, P., Meka, R., Reingold, O.: DNF sparsification and a faster deterministic counting algorithm. Compu-
tational Complexity 22(2), 275–310 (2013)

11. Harnik, D., Raz, R.: Higher lower bounds on monotone size. In: Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing. pp. 378–387. ACM, New York (2000).
https://doi.org/10.1145/335305.335349, https://doi.org/10.1145/335305.335349

12. Janson, S.: Poisson approximation for large deviations. Random Structures and Algorithms 1(2), 221–229 (1990)
13. Jerrum, M., Snir, M.: Some exact complexity results for straight-line computations over semirings. J. ACM 29(3),

874–897 (Jul 1982). https://doi.org/10.1145/322326.322341, http://doi.acm.org/10.1145/322326.322341
14. Jukna, S.: Combinatorics of monotone computations. Combinatorica 19(1), 65–85 (1999)
15. Li, X., Lovett, S., Zhang, J.: Sunflowers and quasi-sunflowers from randomness extractors. In: APPROX-

RANDOM. LIPIcs, vol. 116, pp. 51:1–13 (2018)
16. Lovett, S., Solomon, N., Zhang, J.: From dnf compression to sunflower theorems via regularity. arXiv preprint

arXiv:1903.00580 (2019)
17. Lovett, S., Zhang, J.: Dnf sparsification beyond sunflowers. In: Proceedings of the 51st Annual ACM SIGACT

Symposium on Theory of Computing. pp. 454–460. ACM (2019)
18. Pitassi, T., Robere, R.: Strongly exponential lower bounds for monotone computation. In: Proceedings of the

49th Annual ACM SIGACT Symposium on Theory of Computing. pp. 1246–1255. ACM (2017)
19. Rao, A.: Coding for sunflowers (2019), arXiv preprint arXiv:1909.04774
20. Raz, R., Yehudayoff, A.: Multilinear formulas, maximal-partition discrepancy and mixed-sources ex-

tractors. J. Comput. Syst. Sci. 77(1), 167–190 (2011). https://doi.org/10.1016/j.jcss.2010.06.013,
https://doi.org/10.1016/j.jcss.2010.06.013

21. Razborov, A.A.: Lower bounds on the monotone complexity of some Boolean functions. Dokl. Akad. Nauk SSSR
281(4), 798–801 (1985)

22. Rossman, B.: The monotone complexity of k-clique on random graphs. SIAM J. Comput. 43(1), 256–279 (2014),
https://doi.org/10.1137/110839059

23. Srinivasan, S.: Strongly exponential separation between monotone VP and monotone VNP. CoRR
abs/1903.01630 (2019), http://arxiv.org/abs/1903.01630

24. Stichtenoth, H.: Algebraic function fields and codes, vol. 254. Springer Science & Business Media (2009)
25. Tiekenheinrich, J.: A 4n-lower bound on the mononotone network complexity of a oneoutput boolean function.

Information Processing Letters 18, 201–201 (1984)
26. Yehudayoff, A.: Separating monotone VP and VNP. In: Proceedings of the 51st Annual ACM SIGACT Sym-

posium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019. pp. 425–429 (2019).
https://doi.org/10.1145/3313276.3316311, https://doi.org/10.1145/3313276.3316311

A Proof of Theorem 4

We include here most of the proof of Theorem 4, which is implicit in [19].

Proof. In what follows, we suppose B is a large enough universal constant.
The proof is by induction on ℓ. Suppose ℓ = 1. Then F is a family of singletons. Therefore, the probability

that W ∈
(
[n]
m

)
chosen uniformly at random does not contain any set of F is equal to

(
n−|F|

m

)
/
(
n
m

)
. We get

P
W

[∀F ∈ F : F 6⊆ W] =

(
n−|F|

m

)
(
n
m

) 6

(
n−m

n

)|F|
6 (1− p/2)

|F|
6 e−|F|p/2

6 ε.

Hence, the family F is itself a (m, ε)-slice-sunflower.
We now proceed by induction, supposing ℓ > 2 and that the claim holds for all k-uniform families such

that k < ℓ.
Let r := Bx log x. For any set T ⊆ [n], define

FT := {F \ T : F ∈ F such that T ⊆ F} .

12

https://doi.org/10.1070/SM2012v203n10ABEH004270
https://doi.org/10.1145/335305.335349
https://doi.org/10.1145/335305.335349
https://doi.org/10.1145/322326.322341
http://doi.acm.org/10.1145/322326.322341
https://doi.org/10.1016/j.jcss.2010.06.013
https://doi.org/10.1016/j.jcss.2010.06.013
https://doi.org/10.1137/110839059
http://arxiv.org/abs/1903.01630
https://doi.org/10.1145/3313276.3316311
https://doi.org/10.1145/3313276.3316311

We say that F is r-well-spread if |FT | 6 rℓ−|T | for every non-empty T ⊆ [n]. Observe that, if F is not r-
well-spread, then there exists a set T ⊆ [n] such that |FT | > rℓ−|T |. Therefore, by the induction hypothesis,
FT contains a (m, ε)-slice-sunflower F ′

T . Observe that the family {U ∪ T : U ∈ F ′
T } ⊆ F is a (m, ε)-slice-

sunflower. Therefore, it suffices to consider the case when F is r-well-spread.
For convenience, let S1, . . . , St be the sets of F . Define χ(Si,W) to be Sj \W , where j ∈ [ℓ] is chosen to

minimize |Sj \W | among all choices with Sj ⊆ Si ∪W . If there are many such choices, let j be the smallest
one. Note that, for any set S ∈ F , we have χ(S,W) = ∅ if and only if there exists F ∈ F such that F ⊆ W .

The following key lemma was proved in [19] with a clever coding argument, inspired by the work of
Alweiss, Lovett, Wu and Zhang [3].

Lemma 11 ([19]). For every non-negative integer s, the following holds. Let F ⊆
(
[n]
ℓ

)
be a r-well-spread

family for some r > 0. If S is a uniformly random set of the family, and X ⊆ [n] is a uniformly random set
of size s · 128 · ⌈n/r⌉ sampled independently, then

E
X,S

[|χ(S,X)|] 6 ℓ · (1− 1/ log r)s.

We now use Lemma 11 to finish the proof. Let s = ⌈log(ℓ/ε) · log r⌉. We have

s · 128 · ⌈n/r⌉ < 512 · log r · log(ℓ/ε) · n/r

= 512 · n · logB + log x+ log log x

Bx log x

= 512 · np · logB + log x+ log log x

B log(ℓ/ε) log x

6 512 · np · logB
B

< m,

for B large enough. Therefore, by Lemma 11, we get that

E
W ,S

[|χ(S,W)|] 6 E
X,S

[|χ(S,X)|]

6 ℓ · (1− 1/ log r)s

6 ℓ · (1− 1/ log r)log(ℓ/ε)·log r

6 ℓe− log(ℓ/ε) = ε.

We can conclude the proof by applying Markov’s inequality, as follows:

P
W

[∀F ∈ F : F 6⊆ W] = P
W ,S

[|χ(S,W)| > 0] 6 E
W ,S

[|χ(S,W)|] 6 ε.

B Lower Bound for Cliquek,n

Recall that the Boolean function Cliquek,n : {0, 1}(n2) → {0, 1} receives a graph on n vertices as an input and

outputs a 1 if this graph contains a clique on k vertices. In this section, we prove an nΩ(δk) lower bound on
the monotone circuit size of Cliquek,n for k = n(1/3)−δ.

As in Section 2, we will follow the approximation method. However, instead of using sunflowers as in
[21,1] or robust sunflowers as in [22], we introduce a notion of robust clique-sunflowers and employ it to
bound the errors of approximation.

B.1 Test distributions

We denote by Gn,p the Erdős-Rényi random graph, in which each edge appears independently with prob-
ability p. Furthermore, fix any 2 6 k = n1/3−δ where δ > 0 and let p := n−2/(k−1). We observe that the
probability that Gn,p has a k-clique is bounded away from 1.

13

Lemma 12. We have P[Gn,p contains a k-clique] 6 3/4.

Proof. There are
(
n
k

)
6 (en/k)k potential k-cliques, each present in Gn,p with probability p(

k
2) = n−k. By a

union bound, we have P[Gn,p contains a k-clique] 6 (e/k)k 6 (e/3)3 6 3/4.

We now define the positive and negative test distributions. For A ⊆ [n], let KA be the graph on n vertices
with a clique on A and no other edges. Let Y be the uniform random graph chosen from all possible KA.
We call Y the positive test distribution. Let also N := Gn,p. We call N the negative test distribution. From
Lemma 12, we easily obtain the following corollary.

Corollary 3. We have P[Cliquek,n(Y) = 1] + P[Cliquek,n(N) = 0] > 5/4.

B.2 Robust clique-sunflowers

Here we introduce the notion of robust clique-sunflowers, which is analogous to that of robust sunflowers for
“clique-shaped” set systems.

Definition 5. Let ε, p ∈ (0, 1). Let S be a family of subsets of [n] and let Y :=
⋂S. The family S is called

a (p, ε)-robust clique-sunflower if

P [∃A ∈ S : KA ⊆ Gn,p ∪KY] > 1− ε.

Equivalently, the family S is a robust clique-sunflower if the family {KA : A ∈ S} ⊆
(
[n]
2

)
is a (p, ε)-robust

sunflower, since KA ∩KB = KA∩B.

Though clique-sunflowers may seem similar to regular sunflowers, the importance of this definition is
that it allows us to explore the “clique-shaped” structure of the sets of the family, and thus obtain an
asymptotically better upper bound on the size of sets that do not contain a robust clique-sunflower.

Lemma 13. Let S be such that |S| > ℓ!(2 ln(1/ε))ℓ(1/p)(
ℓ
2). Then S contains a (p, ε)-robust clique-sunflower.

Observe that, whereas the bounds for “standard” robust sunflowers (Theorems 2, 3, 4) would give us an
exponent of

(
ℓ
2

)
on the log(1/ε) factor, Lemma 13 give us only an ℓ at the exponent. As we shall see, this is

asymptotically better for our choice of parameters.
We defer the proof of Lemma 13 to Appendix C. The proof is based on an application of Janson’s

inequality [12], as in the original robust sunflower lemma of [22] (Theorem 2). We expect that a proof along
the lines of the work of Alweiss et al [3] and Rao [19] should be able to give us an even better bound,
removing the ℓ! factor. This would extend our nΩ(k) lower bound to k 6 n1/2−o(1).

B.3 A closure operator

As in Section 2.3, we define here a closure operator in the lattice of monotone Boolean functions. We will
again prove that the closure of a function will be a good approximation for it on the negative test distribution.
However, unlike Section 2.3, instead of bounding the set of minterms, we will bound the set of “clique-shaped”
minterms, as we shall see. Throughout this section, we fix the error parameter

ε := n−k.

Definition 6. We say that f ∈ {0, 1}(
n
2) → {0, 1} is ε-closed if, for every A ∈

(
[n]
6k

)
, we have

P[f(N ∪KA) = 1] > 1− ε =⇒ f(KA) = 1.

As before, we can define the closure cl(f) of a monotone Boolean function f , and bound the error of
approximating f by cl(f) under N .

14

Lemma 14. For every monotone f : {0, 1}(
n
2) → {0, 1}, we have

P [f(N) = 0 and cl(f)(N) = 1] 6 ε

δk∑

j=0

(
n

j

)
6 εnδk

6 n−(2/3)k.

Proof. Same as the proof of Lemma 4.

Let f : {0, 1}(
n
2) → {0, 1} be monotone and suppose ℓ ∈ [k]. We define

Mℓ(f) := {A ∈
(
[n]
ℓ

)
: f(KA) = 1 and f(KA\{a}) = 0 for all a ∈ A}.

Elements of Mℓ(f) are called ℓ-clique-minterms of f . By employing the robust clique-sunflower lemma
(Lemma 13), we are able to bound the set of ℓ-clique-minterms of closed monotone functions.

Lemma 15. If a monotone function f : {0, 1}(
n
2) → {0, 1} is ε-closed, then, for all ℓ ∈ [k], we have

|Mℓ(f)| 6
(2ℓ log(1/ε))ℓ

p(
ℓ
2)

.

Proof. Same as the proof of Lemma 5.

B.4 Trimmed monotone functions

In this section, we define again a trimming operation for Boolean functions and prove analogous bounds to
that of Section 2.4.

Definition 7. We say that a function f : {0, 1}(
n
2) → {0, 1} is clique-shaped if, for every minterm x of f ,

there exists A ⊆ [n] such that x = KA (that is, every minterm of f is a clique). Moreover, we say that f is
trimmed if f is clique-shaped and all the clique-minterms of f have size at most δk/2.

For a set A ∈
(
[n]
6k

)
, let ⌈A⌉ : {0, 1}(

n
2) → {0, 1} denote the indicator function of containing KA, which

satisfies
⌈A⌉(G) = 1 ⇐⇒ KA ⊆ G.

Functions of the forms ⌈A⌉ are called clique-indicators. Moreover, if |A| 6 ℓ, we say that ⌈A⌉ is a clique-

indicator of size at most ℓ. Let f : {0, 1}(
n
2) → {0, 1} be clique-shaped. We define

trim(f) :=

δk/2∨

ℓ=2

∨

A∈Mℓ(f)

⌈A⌉.

That is, the trim operation takes out from f all the clique-indicators of size larger than δk, yielding a trimmed
function.

Note that the probability that a random KA sampled from Y contains one of the clique-minterms of size
ℓ of a function f is at most (

n−k
k−l

)
(
n
k

) |Mℓ(f)| 6
(
k

n

)ℓ

|Mℓ(f)| .

Imitating the proofs of Lemmas 6 and 7, we may now obtain the following lemmas.

Lemma 16. If a monotone function f : {0, 1}(
n
2) → {0, 1} is a trimmed clique-shaped function such that

f 6= 1, then

P [f(Y) = 1] 6

δk/2∑

ℓ=2

(
k

n

)ℓ

|Mℓ(f)| .

15

Lemma 17. Let f : {0, 1}(
n
2) → {0, 1} be a clique-shaped monotone function, all of whose clique-minterms

have size at most δk. We have

P [f(Y) = 1 and trim(f)(Y) = 0] 6

δk∑

ℓ=δk/2

(
k

n

)ℓ

|Mℓ(f)| .

B.5 Approximators

Similarly as in the previous lower bound, we will consider a set of approximators A. Let A := {trim(cl(f)) :

f ∈ {0, 1}(
n
2) → {0, 1} is monotone and clique-shaped}. We define operations ⊔,⊓ : A×A → A as follows:

for f, g ∈ A such that f =
∨t

i=1⌈Ai⌉ and g =
∨s

i=j⌈Bj⌉, let

f ⊔ g := trim(cl(f ∨ g)),

f ⊓ g := trim(cl(
∨

i,j

⌈Ai ∪Bj⌉)).

For convenience, we let
∧
(f, g) :=

∨
i,j⌈Ai∪Bj⌉. Observe that every edge-indicator ⌈{u, v}⌉ belongs to A. If

C is a monotone {∨,∧}-circuit, let CA be the corresponding {⊔,⊓}-circuit, which computes an approximator.

B.6 The lower bound

In this section we finally obtain the desired lower bound for the clique function. We will prove that, if
k 6 n1/3−δ for some constant δ > 0, then the monotone complexity of Cliquek,n is nΩ(k). Henceforth, we will
suppose that this is the case. We begin by defining, for every 2 6 ℓ 6 δk, the number

sℓ :=

(
k

n

)ℓ
(2ℓ log(1/ε))ℓ

p(
ℓ
2)

=
(2ℓk2 log n)ℓ

nℓp(
ℓ
2)

.

By Lemma 15, we get that, for every ε-closed monotone function f : {0, 1}(
n
2) → {0, 1}, we have

(
k

n

)ℓ

|Mℓ(f)| 6 sℓ.

As seen in Section 2.6, it will be important for us to upper bound the values of s2 and sℓ+1/sℓ for all
2 6 ℓ < δk, which we now do:

s2 =

(
k

n

)2
(12k log n)2

p
=

(
O(k2 log n)

n1−(1/(k−1))

)2

6

(
O(log n)

n(1/3)+2δ

)2

= o

(
1

n1/2

)
,

sℓ+1/sℓ =
6k2 log n

n
· (ℓ+ 1)ℓ+1

(ℓp)ℓ
6

O(k3 log n)

npℓ
6

O(log n)

n(1/3)+3δ−(2ℓ/(k−1))
6

O(log n)

n(1/3)+δ
6 o

(
1

n1/4

)
.

It follows that sℓ 6 O(n−ℓ/4) for all 2 6 ℓ 6 δk.
Repeating the same arguments of Lemmas 8 and 9, we obtain the following analogous lemmas.

Lemma 18 (Approximators make many errors). For every f ∈ A, we have

P[f(Y) = 1] + P[f(N) = 0] 6 1 + o(1).

Proof. Let f ∈ A. By definition, there exists an ε-closed function h such that f = trim(h). Observe that
Mℓ(f) ⊆ Mℓ(h) for every ℓ ∈ [c]. By Lemma 16, if f ∈ A such that f 6= 1, then

P[f(Y) = 1] 6

δk/2∑

ℓ=1

(
k

n

)ℓ

|Mℓ(h)| 6
δk/2∑

ℓ=1

sℓ 6

δk/2∑

ℓ=1

O(n−ℓ/4) 6 o(1).

Therefore, for every f ∈ A we have P[f(Y) = 1] + P[f(N) = 0] 6 1 + o(1).

16

Lemma 19 (C is well-approximated by CA). Let C be a monotone circuit. We have

P[C(Y) = 1 and CA(Y) = 0] + P[C(N) = 0 and CA(N) = 1] 6 size(C) ·O(n−δk/8).

Proof. To bound the approximation errors under the distribution Y , first note that, if f, g ∈ A, then all the
clique-minterms of both f ∨ g and f ∧ g have Hamming weight at most δk. Moreover, if (f ∨ g)(x) = 1 but
(f ⊔ g)(x) = 0, then trim(cl(f ∨ g)(x)) 6= cl(f ∨ g)(x). Therefore, we obtain by Lemma 17 that, for f, g ∈ A,
we have

P [(f ∨ g)(Y) = 1 and (f ⊔ g)(Y) = 0] 6

δk∑

ℓ=δk/2

(
k

n

)ℓ

|Mℓ(f ∨ g)| 6
δk∑

ℓ=δk/2

sℓ 6

δk∑

ℓ=δk/2

O(n−ℓ/4) = O(n−δk/8).

The same argument shows P [(f ∧ g)(Y) = 1 and (f ⊓ g)(Y) = 0] = O(n−δk/8), which implies

P[C(Y) = 1 and CA(Y) = 0] 6 size(C) ·O(n−δk/8).

Similarly, to bound the approximation errors under N , note that (f ∨ g)(x) = 0 and (f ⊔ g)(x) = 1 only
if cl(f ∨ g)(x) 6= (f ∨ g)(x). Therefore, we obtain by Lemma 14 that, for f, g ∈ A, we have

P [(f ∨ g)(N) = 0 and (f ⊔ g)(N) = 1] 6 n−(2/3)k.

By the same argument above, we obtain

P[C(N) = 0 and CA(N) = 1] 6 size(C) · n−(2/3)k
6 size(C).

This finishes the proof.

We can finally obtain the lower bound for the clique function.

Theorem 9. For all k = n1/3−δ where 0 < δ < 1/3, the monotone circuit complexity of Cliquek,n is

Ω(nδk/8).

Proof. Let C be a monotone circuit computing Cliquek,n. We have

5/4 6 P[Cliquek,n(Y)] + P[Cliquek,n(N)]

6 P[C(Y) = 1 and CA(Y) = 0] + P[CA(Y) = 1]

+ P[C(N) = 0 and CA(N) = 1] + P[CA(N) = 1]

6 1 + o(1) + size(C) ·O(n−δk/8).

This implies size(C) = Ω(nδk/8).

C Proof of Lemma 13 (Robust clique-sunflower)

Let Un,q ⊆ [n] be a q-random subset of [n] (independent of Gn,p). Let c1 := ln(1/ε) and for ℓ > 2, let

cℓ := 2 ln(1/ε)
∑ℓ−1

j=1

(
ℓ
j

)
cj . The following can be easily checked.

Lemma 20. cℓ 6 ℓ!(2 log(1/ε))ℓ.

It follows from the definition of robust clique-sunflowers that the robust clique-sunflower lemma (Lemma 13)
is implied by the following result.

Lemma 21. For all ℓ ∈ {1, . . . , n} and S ⊆
(
[n]
ℓ

)
, if |S| > cℓ(1/q)

ℓ(1/p)(
ℓ
2), then there exists B ∈

(
[n]
<ℓ

)
such

that

P[
∧

A∈S :B⊆A

(KA * Gn,p ∪KB or A * Un,q ∪B)] 6 ε.

17

Proof. By induction on ℓ. In the base case ℓ = 1, we have B = ∅ and (by independence)

P[
∧

A∈S

(KA * Gn,p or A * Un,q)] = P[
∧

A∈S

(A * Un,q)]

=
∏

A∈S

P[A * Un,q]

= (1− q)|S|
6 (1− q)ln(1/ε)/q 6 e− ln(1/ε) = ε.

Let ℓ > 2. First, consider the case that there exists j ∈ {1, . . . , ℓ− 1} and B ∈
(
[n]
j

)
such that

|{A ∈ S : B ⊆ A}| > cℓ−j(1/qp
j)ℓ−j(1/p)(

ℓ−j
2).

Let T = {A \ B : A ∈ S such that B ⊆ A} ⊆
(
[n]
ℓ−j

)
. By the induction hypothesis, there exists D ∈

(
[n]\B
<ℓ−j

)

such that

P[
∧

C∈T :D⊆C

(KC * Gn,p ∪KD or C * Un,qpj ∪D)] 6 ε.

We have

P[
∧

A∈S :B∪D⊆A

(KA * Gn,p ∪KB∪D or A * Un,q ∪B ∪D)]

= P[
∧

C∈T :D⊆C

(KB∪C * Gn,p ∪KB∪D or B ∪ C * Un,q ∪B ∪D)]

= P[
∧

C∈T :D⊆C

(KB∪C * Gn,p ∪KB∪D or C * Un,q ∪D)]

= P[
∧

C∈T :D⊆C

(KC * Gn,p ∪KD or C *
{
v ∈ Un,q : {v, w} ∈ E(Gn,p) for all w ∈ B

}
∪D]

6 P[
∧

C∈T :D⊆C

(KC * Gn,p ∪KD or C * Un,qpj ∪D]

6 ε.

Finally, assume that for all j ∈ {1, . . . , ℓ− 1} and B ∈
(
[n]
j

)
, we have

|{A ∈ S : B ⊆ A}| 6 cℓ−j(1/qp
j)ℓ−j(1/p)(

ℓ−j
2).

In this case, we show that the bound of the lemma holds with B = ∅. Let

µ := |S|qℓp(ℓ2),

∆ :=

ℓ−1∑

j=1

∑

(A,A′)∈S2 : |A∩A′|=j

q2ℓ−jp2(
ℓ
2)−(

j
2).

Janson’s Inequality [12] gives the following bound:

(1) P[
∧

A∈S

(KA * Gn,p or A * Un,q)] 6 exp

(
− µ2

µ+∆

)
.

18

We bound ∆ as follows:

∆ 6

ℓ−1∑

j=1

q2ℓ−jp2(
ℓ
2)−(

j
2)

∑

B∈([n]
j)

|{A ∈ S : B ⊆ A}|2

6

ℓ−1∑

j=1

q2ℓ−jp2(
ℓ
2)−(

j
2)

∑

B∈([n]
j)

|{A ∈ S : B ⊆ A}| · cℓ−j(1/q)
ℓ−j(1/p)(

ℓ−j
2)

= qℓp(
ℓ
2)

ℓ−1∑

j=1

cℓ−j

∑

B∈([n]
j)

|{A ∈ S : B ⊆ A}|

= qℓp(
ℓ
2)

ℓ−1∑

j=1

cℓ−j

∑

A∈S

∑

B∈(Aj)

1

= |S|qℓp(ℓ2)
ℓ−1∑

j=1

(
ℓ

j

)
cℓ−j

= µ
ℓ−1∑

j=1

(
ℓ

j

)
cj .

We next observe that µ > cℓ, since |S| > cℓ(1/q)
ℓ(1/p)(

ℓ
2). Therefore,

µ2

2∆
>

µ

2
∑ℓ−1

j=1

(
ℓ
j

)
cℓ−j

=
|S|qℓp(ℓ2)

2
∑ℓ−1

j=1

(
ℓ
j

)
cℓ−j

>
cℓ

2
∑ℓ−1

j=1

(
ℓ
j

)
cℓ−j

= ln(1/ε).

Finally, from (1) we get

P[
∧

A∈S

(KA * Gn,p or A * Un,q)] 6 exp

(
− µ2

2∆

)
6 ε.

19

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

