
Kolmogorov complexity and
nondeterminism versus determinism
for polynomial time computations

Juraj Hromkovic

Dept. of Computer Science, ETH Zurich
Universitätsstrasse 6, CAB, 8092 Zurich, Switzerland

juraj.hromkovic@inf.ethz.ch

February 2021

Abstract

We call any consistent and sufficiently powerful formal theory that enables
to algorithmically in polynomial time verify whether a text is a proof efficiently
verifiable mathematics (ev-mathematics). We study the question whether nonde-
terminism is more powerful than determinism for polynomial time computations
in the framework of ev-mathematics. Our main results are as follows.
“P (NP or for any deterministic, polynomial time compression algorithm A there
exists a nondeterministic, polynomial time compression machine M that reduces
infinitely many binary strings logarithmically stronger than A.”
“P (NP or f-time resource bounded Kolmogorov complexity of any binary string
x can be computed in deterministic polynomial time for each polynomial time
constructible function f .”

1 Introduction
In [HR20] one used the notion of algorithmically verifiable mathematics in order to
question the power of mathematics as a research instrument for proving lower bounds
on the computational complexity of concrete problems, and so to question whether
P vs NP is solvable inside of mathematics. The starting point in [HR20] was to use
the Kolmogorov complexity argument. In contrast to that, here we want to use Kol-
mogorov complexity in order to suggest trying to prove that nondeterminism is more
powerful than determinism for polynomial time computations in a general setting. An
algorithmically verifiable mathematics (av-mathematics) is any formal theory that is
consistent, sufficiently powerful to “speak” about algorithms and computational com-
plexity, and for which there exists an algorithm, that for any word over its alphabet
verifies whether that word is a correct proof of a claim. We consider problems like P

vs NP [Coo71, Lev73, Kar72] to be meta-problems and suggest to discuss them on a

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 49 (2021)

corresponding meta-level. This is the main reason to restrict av-mathematics to effi-
ciently verifiable mathematics (ev-mathematics) by adding the constraint that there
exists a polynomial time algorithm that can verify whether a given text t is a proof of a
mathematical statement or not. Here we consider polynomial time in the length |t| of
a text t and consider the size of the description of the formal system used as a constant
independent on t.

We know that NP = VP [Kar72], i.e. NP is a class of decision problems that have
“short” certificates that can be verified in polynomial time in the length of the input
instances. From the point of view of NP = VP the question whether nondeterminism is
more powerful than determinism for polynomial time computations is equivalent to the
question whether it is easier to verify given proof candidates than to “find” the proofs.
Hence, everything is about deriving and verifying proofs and so it is natural to discuss
P vs. NP in this framework. Since a proof can be viewed as a sequence of applications
of syntactic rules (axioms) , it is natural to consider the verification process to be ef-
ficient with respect to the proof length, and hope that this assumption can be helpful
in better understanding the problems about the relative power of nondeterminism and
determinism.

Another starting point here is to use Kolmogorov complexity [Cha69, Kol63, Kol65,
Kol68, Sol64a, Sol64b] as a powerful research instrument that has been approved to be
instrumental in offering proofs of several fundamental results. Thus, the idea here is to
investigate simultaneously P vs. NP and nondeterministic polynomial time compres-
sion machines versus deterministic polynomial time compression algorithms.

The main results are as follows:

(1) “P (NP or for every deterministic, polynomial time compression algorithm A
there exists a nondeterministic, polynomial time compression machine M that
compresses infinitely many binary words logarithmically stronger than A.”

(2) “P (NP or f-time bounded Kolmogorov complexity of binary strings can be
computed in deterministic polynomial time for any polynomial, time constructible
function f .”

This paper is organized as follows. Section 2 repeats some fundamental definitions
and concepts and introduces new ones as compression algorithms and nondeterministic
compression machines, and corresponding complexity classes. In Section 3 we use the
concepts introduced to prove our main results. In Section 4 we discuss the meaning
and consequences of our results.

2 Preliminaries
Let us consider an efficiently verifiable mathematics (ev-mathematics) for which there
exists a polynomial time algorithm Aver that for any input as a word over the alphabet
of the ev-mathematics verifies whether the input is a claim followed by a valid proof
of this claim. Let pver be a polynomial function that bounds the time complexity of
Aver. Let, for any Algorithm A, A(x) denote the output of A on an input x, and let
TimeA (x) denote the time complexity of algorithm A.

2

Definition 1. Let Σ be an alphabet. Let (Σ,L) be a recursive decision problem for
an L ⊆ Σ∗. We say that the decision problem (Σ,L) or shortly the language L has
short proofs, if there exists a polynomial p such that for any w ∈ L, there exists a proof
of “w ∈ L” that has the length at most p(|w|).

Note that if an algorithm A provably decides a decision problem, then the descrip-
tion of the algorithm as well as the proof of the correctness of the algorithm have
together a length d which is a constant with respect to the length of inputs. In this way
the proof of the correctness of the algorithm A plus the computation of A on x can
be viewed as a proof of “x ∈ L” (or “x /∈ L”). Therefore the length of the proofs
is bounded by d + TimeA (x) for every x ∈ Σ∗. Hence, if A is a polynomial time
algorithm, then L and LC have short proofs.

Moreover if A is a polynomial time nondeterministic machine accepting L, then we
can guarantee that L has short proofs. The following claim is a version of the famous
theorem of Karp that NP is a class of decision problems with “short” proof certificates.

Claim 1 [Kar72]. A language L has short proofs iff L ∈ NP

Proof. We already proved the direction “⇒”. If A has short proofs, then, for any
input x ∈ L, a string R as a proof of “x ∈ L” can be nondeterministically guessed in
polynomial time, and then verified in polynomial time in ev-mathematics whether the
guessed string R is a valid proof of x ∈ L.

Let K(x) for any x ∈ {0, 1}∗ denote the Kolmogorov complexity of x [Kol63,
Kol68, Cha69]. It does not matter which model of computation (Turing machine, pro-
gramming language, etc.) we consider. We denote by pcomp the time complexity of
the interpreter of this model, that, for any input string over {0, 1}, verifies whether the
string is a binary code of a machine (program) in the model. Note that w.l.o.g. one
assumes that pcomp is a polynomial function.

We consider also time-bounded Kolmogorov complexity [Ko86, Ko91, Sip83, Har83,
Lon86, BF97]. For any time-constructible function f we denote by time(f)-K(x) the
length of the shortest program generating the string {0, 1}∗ in time at most f(|x|). It is
well known that K(x) is not computable (there does not exist any algorithm that, for
a given x ∈ {0, 1}∗, computes K(x)), but that time(f)-K(x) is computable for any f
[Cha69]). Let us shortly remind the proof idea.

Claim 2. For each time-constructible function f , there exists an algorithm AK(f) that
computes time(f)-K(y) for any given y ∈ {0, 1}∗.

Proof. An algorithm AK(f) can work as follows:

• Input: y ∈ {0, 1}∗

• AK(f)
(a) Compute the value of f(|y|)
(b) Generate one after the other word z ∈ {0, 1}∗ in the canonical order. Verify

with Acomp whether z is a binary code of a program. If z is a code of a
program P (z), let P (z) run for f(|y|) steps in order to check whether P (z)
generates y in f(|y|) steps.

3

• Output: |z| of the canonically first z such that P (z) generates y in f(|y|) steps.

Note that TimeAK(f) (n) is exponential in n.

We consider also nondeterministic Kolmogorov complexity of binary strings. We
say that a nondeterministic machine (program) P generates an x ∈ {0, 1}∗ if
there exists at least one computation of P that halts and outputs x, all computations are
finite, and there does not exist any other computation of P generating a word z 6= x.
TimeP (x) denotes the length of the shortest computation of P generating x.

In what follows we consider a special version of resource bounded nondeterminis-
tic Kolmogorov complexity [All03]. The nondeterministic Kolmogorov complexity
of x, denoted nK(x) for any x ∈ {0, 1}∗, is the binary length of the shortest nondeter-
ministic machine generating x. We say that a nondeterministic machine P generates
x ∈ {0, 1}∗ in time m, if all computations of P have length at most m, and all accept-
ing computations output x. For any time-constructible function f , time(f)-nK(x) is
the length of the shortest nondeterministic program computing x in time at most f(|x|).
time(f)-nK(x) is called the time(f)-bounded nondeterministic Kolmogorov com-
plexity of x.

Claim 3. For any time-constructible function f, time(f)-nK(y) is computable for any
y ∈ {0, 1}∗.

Proof. The same as the proof for Claim 2, except one has to simulate all computations
of P (z) for every z in order to fix that P (z) generates only y and that all computations
are of length at most f(|y|). This works because we consider only nondeterministic
machines whose all computations are of the length at most f(|y|).

We introduce the following decision problems:

UpperK = {(x, n) | x ∈ {0, 1}∗, n ∈ N,K(x) ≤ n}
LowerK = {(y,m) | y ∈ {0, 1}∗,m ∈ N,K(y) > m}

Observe that LowerK = (UpperK)C .
For any time-constructible function f we introduce the languages

Upper(f)-K = {(x, n) | x ∈ {0, 1}∗, n ∈ N, time(f)-K(x) ≤ n}
Lower(f)-K = {(y,m) | y ∈ {0, 1}∗,m ∈ N, time(f)-K(y) > m}

Note again, that Lower(f)-K = (Upper(f)-K)C for any function f .

Claim 4. Upper(f)-K ∈ NP and Lower(f)-K ∈ coNP for any polynomial, time-
constructible function f .

4

Proof. A nondeterministic machine B accepting Upper(f)-K works for any given
pair (x, n) as follows. First, B computes deterministically the value f(|x|) in time
O(f(|x|)). Then, B generates nondeterministically a string z ∈ {0, 1}≤n and deter-
ministically verifies in time pcomp whether z is the binary code of a program P (z). If
yes, B simulates the work of P (z) for at most f(|x|) steps in order to find whether
P (z) generates x or not. If P (z) generates x in time f(|x|), then B accepts its input
(x, n), else B rejects.

TimeB ((x, n)) is bounded by O(pcomp(n) + f(|x|)) and both pcomp and f are
polynomial functions. B is a polynomial algorithm, because n ∈ |x|+ O(1).

Lemma 1. Lower(f)-K ∈ NP iff Lower(f)-K ∈ NP ∩ coNP iff there exists a proof of
polynomial length of “f -K(x) > n” for every (x, n) ∈ {0, 1}∗ × N.

Proof. The first part is obvious because (Lower(f)-K)C = Upper(f)-K ∈ NP. If there
exist a short proof of “f -K(x) > n”, then a nondeterministic machine D can guess it
and verify it in polynomial time in an ev-mathematics.

If Lower(f) ∈ NP, there exists a nondeterministic polynomial time machine D
accepting Lower(f). Hence, for each (x, n), there exists a proof of a length at most
O(TimeD ((x, n))).

Claim 5. Let f be any polynomial, time-constructible function. If there does not ex-
ist a polynomial function p such that the lengths of the shortest proofs of the claims
“f -K(x) > n” are bounded by p(|x|), then

Lower(f)-K ∈ EXPTIME− NP.

Proof. Lower(f)-K ∈ EXPTIME is obvious, because one can generate all (at most
2n − 1 many) binary codes of programs shorter than n and let them run f(|x|) many
steps.

Let, for any two strings x, y ∈ {0, 1}∗, x � y denote that x is “smaller” than y
with respect to the canonical order.

We will introduce the following decision problem for every time-constructible func-
tion f .

First(f)-K = {(x, n) | n ∈ N, x ∈ {0, 1}∗, time(f)-K(x) ≥ n and
time(f)-K(y) < n for all y � x}.

Obviously

(First(f)-K)C
= {(x, n) | n ∈ N, x ∈ {0, 1}∗, time(f)-K(x) < n or
∃y : y � x with time(f)-K(y) ≥ n}.

Claim 6. For any polynomial, time-constructible function f , if Lower(f)-K ∈ NP,
then (First(f)-K)C ∈ NP and First(f)-K ∈ coNP.

5

Proof. Let there exist a nondeterministic machine C for Lower(f)-K working in poly-
nomial time. A nondeterministic machine B for (First(f)-K)C works as follows.
For any input (x, n) ∈ {0, 1}∗ × N, B guesses

– either a z ∈ {0, 1}<n and verifies whether z is a binary code of a program P (z)
that generates x in time f(|x|)

– or a y ∈ {0, 1}≤n, y � x and uses the nondeterministic subroutine C to verify
whether (y, n− 1) ∈ Lower(f)-K

In the following sections we aim to use the Kolmogorov complexity concept as
a research instrument for the study of the relationship between nondeterminism and
determinism for polynomial time computations. The following result shows the power
of the Kolmogorov complexity argument. We can prove in a new setting that more
complexity resources increase the power of computations. Here we show that more
time improves the compressibility of strings.

Theorem 1. Let f be an arbitrary fast growing function that is time-constructible. Let
{xn}∞n=1, xn ∈ {0, 1}∗ for each n ∈ N, be a sequence of strings such that (xn, n) ∈
First(f)-K.

Then ∃c ∈ N such that

K(xn) ≤ log2 n + c = log2 (time(f)-K(xn)) + c

.

Proof. We present an algorithm A, that, for a given n ∈ N, generates xn. A generates
words y ∈ {0, 1}∗ in canonical order and estimates for each y its time(f)-K(y) (Claim
2). A halts for the first y with time(f)-K(y) = n and outputs y.

The existence of algorithm A guarantees the existence of the infinite sequence
{An}∞n=1 of programs such that Output(An) = xn. All An are the same except the pa-
rameter n that can be saved by dlog2 (n + 1)e bits. Hence, the upper bound on K(xn)
follows.

Note, that, for slowly growing f , the time complexity of A can be exponential
in f(n). But, for fast growing f such as 22

n

, the time complexity of A can be in
O(f(n) · log2 f(n)) or even smaller. Hence, for fast growing functions we can have
results such as time(f · log2 f)-K(x) ≤ log2 (time(f)-K(x)) + c for infinitely many
x ∈ {0, 1}∗.

Definition 2. Any algorithm A computing an injective function h : {0, 1}∗ → {0, 1}∗
is called a compression algorithm, if, for each x ∈ {0, 1}∗, A(x) = compA(x) is the
binary code of a program P (compA(x)) that generates the string x.

We define the following compression complexity class for any time-constructible
function f :

6

compTIME(f) = {fA : {0, 1}∗ → {0, 1}∗ | there exists a compression algorithm A

computing fA within TimeA(|x|) ≤ f(|x|) and P (compA(x))

generates x in time fA(|x|) for every x ∈ {0, 1}∗}

compP =
⋃
c∈N

compTIME(nc).

Definition 3. We say that a nondeterministic machine M computes an injective func-
tion h : {0, 1}∗ → {0, 1}∗ if all computations on any input x are either accepting
or rejecting, and all accepting computations finish with the same output M(x) =
compM (x) for each input x ∈ {0, 1}∗. M is called a nondeterministic compression
machine if, for each x ∈ {0, 1}∗, compM (x) is the binary code of a nondeterministic
machine M(compM (x)) that generates x.

We define the following compression complexity classes for any time-constructible
function f :

compNTIME(f) = {fM : {0, 1}∗ → {0, 1}∗ | ∃ nondeterministic compression machine
M computing fM within TimeM (|x|) ≤ f(|x|) and
M(compM (x)) generates x in time f(|x|) for every x ∈ {0, 1}∗}

compNP =
⋃
c∈N

compNTIME(nc).

We say that an infinite sequence {xn}∞n=1 of strings is hard for a compression class
A, if, for each compression function g ∈ A, |g(xn)| ∈ Ω(|xn|).

We say that {xn}∞n=1 is easy for A, if there exists h ∈ A and a constant c ∈ N,
such that |h(xn)| ≤ log2 |xn|+ c for all n ∈ N.

For two compression complexity classes A and B we say thatA is stronger than
B if

(i) B (A

(ii) there exists an infinite sequence of words that is easy for A but hard for B.

Let A and B be compression algorithms or nondeterministic compression ma-
chines. We say that A is essentially stronger than B, if

(i) |compA(x)| ≤ |compB(x)| for all x ∈ {0, 1}∗

(ii) ∃{xn}∞n=1, xi ∈ {0, 1}∗, xi � xi+1 for i ∈ N, and ∃c ∈ N, such that
|compA(xn)| ≤ log2 |compB(xn)|+ c for all n ∈ N.

Analogously, for any two injective functions g and h from {0, 1}∗ to {0, 1}∗ we
say that g compresses strings essentially stronger than h, if

7

(i) |g(x)| ≤ |h(x)| for all x ∈ {0, 1}∗, and

(ii) there exist a sequence {xn}∞n=1, xi ∈ {0, 1}∗, xi � xi+1 for all i ∈ N, and a
constant c ∈ N such that |g(xn)| ≤ log2 |h(xn)|+ c for all n ∈ N.

3 Main result
In this section we aim to compare nondeterministic polynomial time with deterministic
polynomial time simultaneously with respect to decision problems and compression.
Our main result is as follows.

Theorem 2. P (NP or for any deterministic, polynomial time compression algorithm
A there exists a nondeterministic, polynomial time compression machine M such that
M is essentially better than A.

Proof. We distinguish a few cases with respect to the existence of short proofs for some
of the Kolmogorov decision problems introduced in the previous section.

(i) Let there exist a polynomial, time-constructible function f such that Lower(f)-K
does not have short proofs, i.e. Lower(f)-K /∈ NP. Since (Lower(f)-K)C =
Upper(f)-K ∈ NP (Claim 4), NP is not closed under complement and hence
P (NP.

(ii) Let, for any polynomial, time-constructible function f , Lower(f)-K have short
proofs, i.e. Lower(f)-K ∈ NP. Following Claim 6, (First(f)-K)C ∈ NP for all
polynomial, time-contractible functions f . Now, we distinguish two cases:

(ii.1) Let First(f)-K does not have short proofs, i.e. First(f)-K /∈ NP, for a polyno-
mial, time constructible function f . Since following (ii) (First(f)-K)C ∈ NP,
NP is not closed under complement and hence P (NP.

(ii.2) There exist short proofs for Lower(f)-K as well for First(f)-K for any polyno-
mial, time constructible function f .
Note, that for any compression algorithm A with TimeA (z) ≤ f(|z|) for all
z ∈ {0, 1}∗, |compA(z)| ≥ time(f)-K(z). Let plower be a polynomial that
bounds the length of the short proofs for Lower(f)-K, and let pfirst be a polyno-
mial that bounds the length of the short proofs for First(f)-K.
Let us consider the infinite sequence {xn}∞n=1 of strings (for a fixed f) such that
(xn, n) ∈ First(f)-K.

Now we show that infinitely many words xn can be essentially stronger com-
pressed in nondeterministic polynomial time. Let {xn}∞n=1 be a sequence of
words such that (xn, n) ∈ First(f)-K. We construct an infinite sequence {Bn}∞n=1

of nondeterministic machines such that Bn generates xn.

Input n

Step 1 Bn computes f(n) in time O(f(n))

8

Step 2 Bn guesses two words x ∈ {0, 1}≤n and u ∈ {0, 1}≤plower(|x|).
Bn verifies whether u is a proof of “time(f)-K(x) ≥ n” in time
pver(plower(|x|)).
If “yes” Bn continues with Step 3 else Bn halts and rejects.

Step 3 Bn guesses a v ∈ {0, 1}n, verifies in time pcomp(n) whether v is a
code(M) of a program M , and then verifies whether M generates
x in time f(|x|).
If both verifications succeeded then Bn continues with Step 4 else
Bn halts and rejects.

Step 4 Bn guesses a w ∈ {0, 1}pfirst(|x|), and verifies in time pver(pfirst(|x|))
whether w is a proof of (x, n) ∈ First(f)-K.
If w is a proof of (x, n) ∈ First(f)-K then output(x) else Bn halts
and rejects.

Output x = xn

All the algorithms Bn generating xn are the same, they differ only in the input n.
Because of that the decriptional complexity of Bn is bounded by log2(n) + c, where
c is the size of the binary code of the common part of all Bn’s. Hence, there exists a
constant c ∈ N, such that for all n ∈ N

time(g)-nK(xn) ≤ log2 n + c

for a polynomial function g(n) ∈ O(f(n)+pver(plower(n))+pcomp(n)+pver(pfirst(n))).
Note that plower and pfirst are parameterized by f , and one is not allowed to say that
g(n) ∈ O(f(n)) for a sufficiently fast growing function f .

Now we construct a nondeterministic compression machine C that is essentially
better than any compression algorithm for a compression function in compTIME(f).

C:
Input w ∈ {0, 1}∗

Step 1 C constructs the value f(|w|) in O(f(|w|)) steps.

9

Step 2 C guesses whether “w = xn for some n ∈ N” or “w 6= xi for all i ∈ N”.

Step 2.1 If the guess of C is “w = xn for some n ∈ N”, then

• C guesses an n ∈ N and an v ∈ {0, 1}≤plower(|w|) and verifies
in time pver(plower(|w|)) whether v is a proof of “f -K(w) ≥
n”.
If “yes” then C continues with the next step else C halts and
rejects.

• C guesses a string u ∈ {0, 1}n and verifies in time pcomp(u)
whether u = Code(P) for a program P that deterministi-
cally generates w in time f(|w|).
If “yes” then C continues with the next step else C halts and
rejects.

• C guesses a string z ∈ {0, 1}≤pfirst(|w|) and verifies whether
z is a proof of “(w, n) ∈ First(f)-K”.
If “yes” then C outputs the binary code of Bn else C halts
and rejects.

Step 2.2 If C guessed “w 6= xi for all i ∈ N”, then

• C computes nondeterministically time(f)-K(w) by

(i) guessing a string v ∈ {0, 1}∗ and verifying whether v
codes a program P̃ that generates w in time f(|w|)

(ii) guessing a string u ∈ {0, 1}≤plower(|w|) and verifying
whether u is a proof of “time(f)-K(w) ≥ |v|”.

• C guesses a string y � w and a z ∈ {0, 1}≤plower(|w|) and
verifies whether z is a proof of time(f)-K(y) ≥ |v| =
time(f)-K(w).

If all verifications succeed then output(v = Code(P̃)) else C
halts and rejects.

We observe that |compc(w)| ≤ time(f)-K(w) for all w ∈ {0, 1}∗ and so |compc(w)| ≤
|compA(w)| for each compression algorithm A computing a function from compTIME(f),
since |compA(w)| ≥ f -K(w) for all w ∈ {0, 1}∗ for any A.

There exists a c ∈ N such that, for all n ∈ N,

|compc(xn)| = |code(Bn)| ≤ log2 n + c ≤ log2 (time(f)-K(xn)) + c

≤ log2 (|compA(xn)|) + c

for any compression algorithm working in time f(n).
C works in time

O(f(n) + pcomp + pver(pfirst(n)) + pver(plower(n)))

10

and so C is a polynomial time, nondeterministic compression machine.

Corollary 1. P (NP or, for any polynomial, time-constructible function f ,
time(f)-K(x) can be computed in deterministic polynomial time in |x|.

Proof. For cases (i) and (ii.1) we proved in Theorem 1 that P (NP.
If P = NP (i.e. P (NP does not hold) in case (ii.2), then all the languages

Upper(f)-K, Lower(f)-K, and First(f)-K are in P for any polynomial, time-constructible
function f . But then one can use the binary search to estimate time(f)-K(x) for
any x ∈ {0, 1}∗ because there exists a constant c such that K(x) ≤ |x| + c for all
x ∈ {0, 1}∗.

4 Discussion
It would be nice to get a stronger result than in Theorem 2. For instance:

(1) “P (NP” or “compP (compNP”

or even stronger:

(2) “P (NP” or “compNP is stronger than compP”.

Why are our proofs and thoughts not sufficient to calculate such a strong result?
Because we cannot exclude the possibility that, for each deterministic polynomial time
compression algorithm A, there exists another deterministic polynomial time algorithm
B such that B is essentially stronger than A. In other words, for each nondeterministic
polynomial time compression machine C from the proof of Theorem 1, there can exist
a deterministic polynomial time algorithm B that is at least as good as C. If (2) does
not hold, it means that each deterministic polynomial time algorithm can be essentially
improved inside of the class compP.

Definition 4. An algorithm (a machine) A is called almost optimal in a compression
classA if A satisfies the complexity restrictions ofA, and for any compression function
f ∈ A there exist constants c and d > 1 such that, for all x ∈ {0, 1}∗,

|A(x)| ≤ c + |f(x)|d,

i.e., no algorithm for A is essentially better than A.

Now, we can reformulate Theorem 2 as follows:

Theorem 3. “P (NP” or “compNP is stronger than compP” or “there does not exist
any almost optimal compression algorithm in compP”.

In this way Theorem 3 claims, that if “P = NP and compNP is not stronger than
compP”, then increasing polynomially the time complexity of polynomial time al-
gorithms one can compress infinitely many strings essentially (polylogarithmically)
stronger. One can formulate this result as follows:

11

Corollary 2. “P (NP” or “compNP is stronger than compP” or “for any c ∈ N there
exists a k ∈ N such that compTIME(nk) is stronger than compTIME(nc)”.

The exponential improvement of the quality of compressions by a polynomial in-
crease of complexity would be a surprising property. Similarly surprising as the result
of Corollary 1. To compute the Kolmogorov complexity K(x) for a given string is an
especially hard problem among the algorithmically unsolvable problems. There are at
most finitely many x ∈ {0, 1}∗ for which the claim “K(x) = m” for some m ∈ N
is provable in mathematics [Cha69]. From this point of view one would not expect
that time(f)-K(x) is computable in deterministic polynomial time for every polyno-
mial function f . In fact, we even do not expect that time(f)-K(x) is computable in
nondeterministic polynomial time for polynomial functions f .

Another interesting point to observe is the descriptional complexity of the machine
Bn from the proof of Theorem 2. If one parameterizes the descriptional complexity of
Bn with respect to the time complexity function f , then the descriptional complexity
of Bn is

“ log2 n + c + descriptional complexity of f”.

If one applies Theorem 2 infinitely many times (always again for a potential de-
terministic polynomial time algorithm reaching the quality of the nondeterministic ma-
chine C from the proof of Theorem 2), then there is no upper bound of the descriptional
complexity of this infinite sequence of functions f . If such upper bound would exist
(or a polynomial function growing faster than all of them), then we would get a con-
tradiction, and so the proof of “P (NP or compNP is stronger than compP”. This
is because the sets of words {xn}∞n=1 in two different applications of Theorem 2 in
a sequence of iterative applications gave always at most an intersection of finite size.
If c + descriptional complexity of f would be bounded by a constant, then, for a suf-
ficiently large n, all pairs of sets of words from different applications of Theorem 2
would be disjoint. Consequently, in each iteration one would reduce the descriptional
complexity of another word in {0, 1}n. Finally, all words in {0, 1}n would be com-
pressed, which is impossible.

References
[All03] Eric Allender. NL-printable sets and nondeterministic Kolmogorov complex-

ity. Electronic Notes in Theoretical Computer Science, 84:1–15, 2003.

[BF97] Harry Buhrman and Lance Fortnow. Resource-bounded Kolmogorov com-
plexity revisited. In Annual Symposium on Theoretical Aspects of Computer
Science, pages 105–116, 1997.

[Cha69] Gregory J Chaitin. On the simplicity and speed of programs for computing
infinite sets of natural numbers. Journal of the ACM, 16:407–422, 1969.

[Coo71] Stephen A Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing, pages
151–158, 1971.

12

[Har83] Juris Hartmanis. Generalized Kolmogorov complexity and the structure of
feasible computations. In 24th IEEE FOCS, pages 439–445, 1983.

[HR20] Juraj Hromkovič and Peter Rossmanith. What one has to know when at-
tacking P vs. NP. Journal of Computer and System Sciences, 107:142–155,
2020.

[Kar72] Richard M Karp. Reducibility among combinatorial problems. In Complexity
of computer computations, pages 85–103. 1972.

[Ko86] Ker-I Ko. On the notion of infinite pseudorandom sequences. Theoretical
Computer Science, 48(5):9–33, 1986.

[Ko91] Ker-I Ko. On the complexity of learning minimum time-bounded Turing
machines. SIAM Journal on Computing, 20(5):962–986, 1991.

[Kol63] Andrei N Kolmogorov. On tables of random numbers. Sankhyā: The Indian
Journal of Statistics, Series A, pages 369–375, 1963.

[Kol65] Andrei N Kolmogorov. Three approaches to the quantitative definition of
information. Problems of information transmission, 1(1):1–7, 1965.

[Kol68] Andrei Kolmogorov. Logical basis for information theory and probability
theory. IEEE Transactions on Information Theory, 14(5):662–664, 1968.

[Lev73] Leonid A Levin. Universal sorting problem. Problemy Predaci Informacii,
9:265–266, 1973.

[Lon86] Luc Longpré. Resource bounded Kolmogorov complexity, a link between
computational complexity and information theory. Cornell TR86, 776, 1986.

[Sip83] Michael Sipser. A complexity theoretic approach to randomness. In Proc.
15th ACM STOC, pages 330–335, 1983.

[Sol64a] Ray J Solomonoff. A formal theory of inductive inference. part i. Information
and control, 7(1):1–22, 1964.

[Sol64b] Ray J Solomonoff. A formal theory of inductive inference. part ii. Informa-
tion and control, 7(2):224–254, 1964.

13

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

