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Abstract

Let MKtP[s] be the set of strings x such that Kt(x) ≤ s(|x|), where Kt(x) denotes the t-bounded
Kolmogorov complexity of the truthtable described by x. Our main theorem shows that for an
appropriate notion of mild average-case hardness, for every ε > 0, polynomial t(n) ≥ (1 + ε)n,
and every “nice” class F of super-polynomial functions, the following are equivalent:

• the existence of some function T ∈ F such that T -hard one-way functions (OWF) exists
(with non-uniform security);

• the existence of some function T ∈ F such that MKtP[T−1] is mildly average-case hard with
respect to sublinear-time non-uniform algorithms (with running-time nδ for some 0 < δ < 1).

For instance, existence of subexponentially-hard (resp. quasi-polynomially-hard) OWFs is equiv-

alent to mild average-case hardness of MKtP[poly log n] (resp. MKtP[2O(
√
logn))]) w.r.t. sublinear-

time non-uniform algorithms.
We additionally note that if we want to deduce T -hard OWFs where security holds w.r.t. uni-

form T -time probabilistic attackers (i.e., uniformly-secure OWFs), it suffices to assume sublinear
time hardness of MKtP w.r.t. uniform probabilistic sublinear-time attackers. We complement this
result by proving lower bounds that come surprisingly close to what is required to uncondition-
ally deduce the existence of (uniformly-secure) OWFs: MKtP[poly log n] is worst-case hard w.r.t.
uniform probabilistic sublinear-time algorithms, and MKtP[n− log n] is mildly average-case hard
for all O(t(n)/n3)-time deterministic algorithms.
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1 Introduction

Given a truthtable x ∈ {0, 1}n of a Boolean function, what is the size of the smallest “program” that
computes x? This problem has fascinated researchers since the 1950 [Tra84, Yab59a, Yab59b], and
various variants of it have been considered depending on how the notion of a program is formalized.
For instance, when the notion of a program is taken to be circuits (e.g., with AND,OR,NOT gates),
then it corresponds to the Minimum Circuit Size problem (MCSP) [KC00, Tra84], and when the
notion of a program is taken to be a time-bounded Turing machine, then it corresponds to a Mini-
mum Time-Bounded Kolmogorov complexity problem (MKTP) [Kol68, Ko86, Sip83, Har83, All01,
ABK+06]. Our focus here is on the latter scenario. Given a string x describing a truthtable, let
Kt(x) denote the t-bounded Kolmogorov complexity of x—that is, the length of the shortest string
Π such that for every i ∈ [n], U(Π, i) = xi within time t(|Π|), where U is a fixed Universal Turing
machine.1 Given a threshold, s(·), and a polynomial time-bound, t(·), let MKtP[s] denote the set
of strings x such that Kt(x) ≤ s(|x|). MKtP[s] is clearly in NP, but it is unknown whether it is
NP-complete.

Average-case complexity of this problem also has a long history, starting in the 1960s [Tra84].
In [LP20], we recently showed that when the threshold s(·) is “large” (more precisely, when s(n) =
n − c log n, for some constant c), then average-case hardness of this language (w.r.t., the uniform
distribution of instances) is equivalent to the existence of one-way functions (OWF), providing the
first natural problem that characterizes OWFs.2 More precisely, it was shown that for any ε > 0,
any polynomial t(n) > (1 + ε)n, there exist some c, s(n) = n − c log n, such that the existence of
OWFs (secure against uniform PPT attackers) is equivalent to mild average-case hardness of MKtP[s],
where a language is said to be mildly hard-on-average (HoA) if there exists some polynomial p(·),
such that no PPT algorithm can decide the language with probability 1 − 1

p(n) over random n-bit

instances for infinitely many n. The result of [LP20] also directly extends to the non-uniform setting:
non-uniformly secure OWF (i.e., OWF secure against non-uniform polynomial-time algorithms) are
equivalent to average-case hardness of MKtP[s] w.r.t. non-uniform polynomial-time attackers.

In this work, we consider what happens when the threshold s(n) is smaller—for instance, when
s(n) = poly log n or s(n) = 2O(

√
logn). Does it make the problem harder or easier?

We here focus our attention mostly on the setting of non-uniform hardness (i.e., hardness against
non-uniform algorithms); unless when we explictly refer to uniform hardness, we refer to hardness
against T -time algorithms as hardness against T -time non-uniform algorithms (which is equivalent
to hardness against T -time non-uniform probabilistic algorithms).

Cryptography from Sublinear-time Avg-case Hardness of MKtP Roughly speaking, our
main theorem demonstrates that for an appropriate (more on this below) notion of mild average-case
hardness:

• mild average-case hardness of MKtP[poly log n] even with respect to just sublinear time algo-
rithms—running in time nδ for some δ < 1—is equivalent to the existence of subexponentially
hard OWFs.

1There are many ways to define time-bounded Kolmogorov complexity. We here consider the “local compression”
version—which corresponds to the above truthtable compression problem—and where the running-time bound is a
function of the length of the program. A different version of (time-bounded) Kolmogorov complexity instead considers
the size of the shortest program that outputs the whole string x. This other notion refers to a “global compression”
notion, but is less appealing from the point of view of truthtable compression, as the running-time of the program can
never be smaller than the length of the truthtable x.

2Strictly speaking, [LP20] considered the “global compression” version of Kolmogorov complexity, but when the
threshold is large, these notion are essentially equivalent, and the result from [LP20] directly applies also the “local
compression” notion of Kolmogorov complexity considered here.
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• mild average-case hardness of MKtP[2O(
√

logn)] with respect to just sublinear algorithms is
equivalent to quasi-polynomially hard OWFs.

That is, two curious phenomena happen: (1) proving the existence of (subexponential) OWFs is
equivalent to proving a sublinear average-case lower bound for a natural problem, and (2) the thresh-
old, s(n), for the MKtP[s] problem captures the quantitative hardness of OWFs. In fact, our result
is more general and shows a smooth translation between the thresholds s and the hardness of the
OWF: roughly speaking, we show that for “nice” classes F of super-polynomial time-bounds (that are
closed under polynomial composition), the existence of F-hard OWF is equivalent to mild average-
case hardness of MKtP[F−1] w.r.t. sublinear-time algorithms, where F−1 is the class of inverses to
functions in F .

A sliding-scale property for MKtP Along the way, we show that the MKtP[s] problem satisfies an
intriguing “sliding-scale” property: mild average-case hardness of MKtP[s] with respect to sublinear
algorithms, is equivalent to mild average-case hardness of MKtP[n/O(1)] with respect to algorithms
with “large” running-time, where the actual running-time bound grows inversely with the threshold
s. Thus, in a precise sense, when the threshold s is smaller, the problem becomes harder—in fact, it
becomes equivalent to the large threshold case but with respect to stronger attackers. Intriguingly,
our proof of this statement passes through the notion of a OWF (and relies on cryptographic tech-
niques), and we see no direct way of showing it without doing so. We believe this highlights how
our established connection between MKtP and OWF sheds new lights on time-bounded Kolmogorov
complexity.

Unconditional Lower Bounds We remark that one direction of equivalence holds also w.r.t.
uniform attackers: more specifically, to deduce T -hard OWFs where security holds w.r.t. uniform
T -time probabilistic attackers (i.e., uniformly-secure OWFs), it suffices to assume sublinear time
hardness of MKtP w.r.t. uniform sublinear-time attackers.

We complement this results by establishing lower bounds that come surprisingly close to what is
required to unconditionally deduce the existence of subexponentially-hard uniformly-secure OWFs
(and thus that NP /∈ BPTIME(2n

α
) for some α > 0): (a) MKtP[poly log n] is worst-case hard w.r.t.

sublinear-time uniform probabilistic algorithms—this falls short as we need average-case hardness,
and (b) MKtP[n − log n] is mildly average-case hard for all t(n)/(n3)-time uniform deterministic3

algorithms—this falls short as the threshold is too large.

1.1 Our Results in More Detail

We proceed to formalizing our result in more detail.

Two-sided Error Average-case Hardness for Sparse Languages Recall that we are inter-
ested in studying appropriate notions of average-case hardness of MKtP[s] when s(·) is “small”.
A problem with such languages is that they are sparse, so they are trivially easy-on-average: for
instance, when s(n) ≤ n/2, there are at most 2n/2 YES-instances in the languages, and thus the
trivial heuristic that always outputs NO succeeds with overwhelming probability. The notion of
an errorless µ-heuristic provides a meaningful way to capture a notion of average-case hardness for
sparse languages: we restrict our attention to algorithms A that output ⊥ only with probability µ,
but when the algorithm does not output ⊥, it is required to always provide a correct answer. Any

3Under standard derandomization assumptions, this lower bound also directly extends to probabilistic algorithms.
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such errorless heuristic yields a one-sided error heuristics that never errs on YES, and errs only on
a fraction µ(n) of NO instances (by simply outputting YES when A outputs ⊥).

We here introduce a natural notion of two-sided error heuristics for sparse languages L: we say
that A is a µ-heuristic∗ for L w.r.t. input length n, if A errs on at most a fraction µ(n∗) of either
YES or NO instances of length n, where n∗ is log |L ∩ {0, 1}n|; We say that L is mildly hard-on-
average∗ (HoA∗) if there exists some polynomial p(·) such that L does not have a 1

p(·) -heuristic∗ w.r.t.
infinitely many input lengths n.

In other words, the notion of a heuristic∗ relaxes the notion of an errorless heuristic by allowing
the heuristic to also make mistakes on YES instances, but strengthens the standard notion of a
two-sided error heuristic by requiring the heuristic to succeed not only with high probability over
random instances, but also conditioned on YES (and NO) instances. The reason we model the error
probability, µ, as a function of the logarithm of the number of YES-instances, n∗, as opposed to just
n (i.e., the logarithm of the number of instances) is to ensure that this notion meaningfully relaxes
the notion of a one-sided heuristic, also for very sparse languages.4

We emphasize that the notion of mild average-case∗ hardness lies in between mild average-case
hardness w.r.t. errorless heuristics and mild average-case hardness: Any language that is mildly HoA
is also mildly HoA∗; Any language that is mildly HoA∗ is also mildly HoA w.r.t. errorless heuristics.

The Main Theorem We are now ready to state our main theorem. We restrict our attention
to “nice” classes of running-times, where the class of functions F is said to be nice if (1) every
function T ∈ F is time-constructible and strictly monotonically increasing in the sense that there
exists some constant ν > 0 such that for every n > 1, T (n + 1) − T (n) ≥ ν, and (2) F is closed
under polynomial composition: t ∈ F implies that t(nε)ε

′ ∈ F for every 0 < ε, ε′ < 1. Exam-
ples of “nice” classes of super-polynomial functions include: (a) the class of subexponential func-
tions, Fsubexp = {2cnε}c>0,0<ε<1, (b) the class of quasi-polynomial functions Fqpoly = {nc logn}c>0,
or (c) various classes of just slightly super-polynomials functions such as {nc0+c1 log logn}c0,c1>0, or
{nc0+c1 log log log logn}c0,c1>0. (Note that the class of exponential functions is not “nice” as it is not
closed under polynomial composition.)

Given a class of functions F , let F−1 denote the class of inverse function: F−1 = {f s.t. f−1 ∈
F}. For instance, F−1

subexp = {c logβ n}c>0,β>1, and F−1
qpoly = {2c

√
logn}c>0. Our main theorem is as

follows:

Theorem 1.1. Let F be a “nice” class of super-polynomial functions, let ε > 0, and let t(n) be a
polynomial t(n) ≥ (1 + ε)n. The following are equivalent:

(a) There exists a function T ∈ F such that T -hard (non-uniformly secure) one-way functions
exist.

(b) There exists a function s ∈ F−1, a constant τ ≥ 0, and a constant 0 < δ < 1, such that
MKtP[s(n) + τ ] is mildly HoA∗ w.r.t., non-uniform algorithms with running-time bounded by
nδ.

(c) There exists a function T ∈ F such that for any constant γ > 1, MKtP[n/γ] is mildly HoA∗

w.r.t., non-uniform algorithms with running-time bounded by T .

Note that the equivalence between (a) and (b) demonstrates the above-mentioned quantitative
characterization of the hardness of OWFs through the threshold s of MKtP[s], and the equivalence
of (b) and (c) demonstrates the above-mentioned “sliding scale” property of MKtP[s].

4If we hadn’t, then a 1/n-heuristic∗ could not make any mistakes on YES instances when the languages contains
less than n YES-instances.
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Additionally, we highlight that the implications that (b) implies (c) implies (a) hold also in the
setting of uniform security (i.e., w.r.t., uniform algorithms). It is only in the implication that (a)
implies (b) where we require security w.r.t.. non-uniform algorithms.

The Lower Bounds Our first lower bound demonstrates worst-case hardness of MKtP[s] with
respect to uniform probabilistic sublinear-time algorithms, even for very small thresholds s(·).

Theorem 1.2. Consider any δ < 1, and any ω(1) < s(·) ≤ n−nδ−2. Then MKtP[s] 6∈ BPTIME(nδ).

The idea behind the proof of this theorem is simple: a sublinear-time algorithm can only read
a small part of the input, and thus can never hope to always distinguish between strings with high
Kolmogorov complexity and those with small.

Our second lower bound demonstrates that when the threshold s is large, s(n) = n − log n,
then MKtP[s] is mildly HoA (and thus also mildly HoA∗) with respect to not only sublinear uniform
algorithms, but even for algorithms that run in time t(n)/n3. In particular, we can get a lower-bound
w.r.t. all a-priori bounded polynomial-time algorithms, as long as we pick t to be sufficiently larger
than the bound:

Theorem 1.3. Consider any constant α > 0 and any t(n) > 0, s(n) = n− α log n and any T (n) ≤
t(n)/(nα+1 log3 n). Then MKtP[s] is mildly HoA w.r.t. deterministic T -time uniform algorithms.

This theorem extends a recent lower bound by Hirahara [Hir20] that establishes average-case
hardness of MKtP[n − 1] w.r.t. errorless deterministic heuristics where t = nω(1). As far as we
know, our result is the first lower bound demonstrating two-sided error average-case hardness for
time-bounded Kolmogorov complexity.

1.2 Related Work: Hardness Magnification

In the last few years, there has been an exciting thread of work on hardness magnification [OS18,
MMW19, CT19, OPS19, CMMW19, Oli19, CJW19, CHO+20] (see also [Sri03, AK10, LW13, MP20]
for related previous work), showing how weak lower bounds for certain sparse languages imply
breakthrough separations in complexity theory, such as NP 6⊆ P/poly or EXP 6⊆ NC1. In particular,
[CJW19] show such results for all sparse languages. On a high-level, these results are proven by
showing how to “compress” an instance in the sparse language (e.g., by sampling parts of the bits of
the instance) into another instance (in a different languages) that is much smaller, yet the process
preserves (either always, or with high probability) the validity of the statement—since the instance
now has become much smaller, we can afford to run a stronger attacker on it, while still making sure
the attacker is “weak” with respect to the original instance size.

Conceptually speaking, our results fall into this thread of work, and we also rely on the above-
mentioned subsampling technique. However, before our work, no types of hardness magnification
results were known for OWFs.

1.3 Related Work: Fine-grained Complexity

We mention a few recent elegant works developing cryptographic schemes assuming fine-grained
hardness of some computational problems (i.e., assuming hardness w.r.t. n1+α-time attackers for
some fixed constant α > 0) [BRSV17, BRSV18, GR18, LLW19, BABB19, DLW20]. In particular,
[BRSV17, GR18, BABB19, DLW20] shows worst-case to average-case reductions for certain natural
classes of problems in the fine-grained regimes; [BRSV18] shows the existence of so-called “proofs
of work” assuming fine-grained worst-case hardness of these problems; [LLW19, DLW20] constructs
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a “fine-grained” analog of one-way functions, assuming fine-grained average-case hardness of cetain
specific languages. What all these results have in common is that if we start off with a fine-grained
lowerbounds, then the resulting cryptographic primitive we get (e.g., a OWF), will also only be
secure w.r.t. weak (a-priori bounded polynomial-time) attackers.

In contrast, our results show how to get “real” (as opposed to “fine-grained”) OWFs, where the
gap between the time needed to evaluate and invert is super-polynomial (as opposed to some fixed
polynomial), from very weak fine-grained lower bounds. Additionally, our results demonstrate that
the average-case problems we consider are necessary for the existence of OWFs. Finally, we only
assume sublinear hardness (i.e., nδ-hardness for any δ > 0) as opposed to superlinear hardness (i.e.,
n1+α-hardness for α > 0).

1.4 Overview of the Proof of the Main Theorem

We proceed to provide a high-level overview of the proof of the main theorem. Consider some “nice”
class of functions F , and some polynomial t(n) ≥ (1 + ε)n. In Part 1, we show that (b) implies (c),
in Part 2, we show that (c) implies (a), and in Part 3, we show that (a) implies (b).

Part 1: Hardness Magnification for MKtP[s] Recall that (b) says that there exists a function
s ∈ F−1, such that MKtP[s(n)] is mildly HoA∗ w.r.t., sublinear-time attackers, whereas (c) says
that there exists some function T ∈ F such that for any constant γ > 1, MKtP[n/γ] is mildly HoA∗

w.r.t., T -time attackers. Thus, proving that (b) implies (c) is a hardness magnification result: an
average-case lower bound for MKtP[s(n)] (for a small threshold s) w.r.t. weak attackers, implies an
average-case lower bound for MKtP[n/γ] w.r.t. strong attackers. For concreteness, let us focus on
the case when F = Fsubexp in which case s(n) = poly log n, but the same proof outline works for
general “nice” classes of functions. To prove the hardness magnification result, we need to show
how to transform a subexponential-time heuristic H′ for MKtP[n/γ] into a sublinear-time heuristic
H for MKtP[s]. Given an instance x, our heuristic H for MKtP[s], simply truncates the instance
to just γs(n) bits5 (i.e., it keeps the first γs(n) bits) and runs the subexponential-time heuristic
H′ on the truncated (short) instance x′. Note that since x′ is so short, we can afford to run a
subexponential-time heuristic on it, and this just runs in sublinear time in the length of the original
instance x.

We now need to argue that H also succeeds with high probability, conditioned on both YES
and NO instances. Let us start with YES instances. First, note that if x is a YES-instance for
MKtP[s], then x′ will also be YES-instance for MKtP[n/γ]: the same program, of length ≤ s(n),
that computes x will also compute x′, thus Kt(x′) ≤ s(n); and since n′ = |x′| = γs(n), we have
that Kt(x′) ≤ n′/γ. But this is not enough to argue that H succeeds with high probability, as the
truncated x′ is not distributed as a random YES-instance of MKtP[n/γ], and we are only guaranteed
that H′ succeeds when sampling random YES-instances. However, we can show using a counting
argument that the relative distance between the distribution of truncations of YES-instances for
MKtP[s], and the distribution of YES-instances for MKtP[n/γ] is not too large. We can next use this
to argue that H will also succeed with high probability.

Next, consider a NO-instance x for MKtP[s]. By truncating x into x′, x′ could actually become a
YES-instance for MKtP[n/γ], so the reduction does not preserve worst-case hardness of the underlying
problem. But we do not have to: We only need to show that H succeeds well on average. To do
this, note that random NO-instances for MKtP[s] are statistically close to uniform, and thus the

5The actual heuristic H that we describe in the formal proofs needs to perform a more careful truncation argument
due to the fact that H′ may only succeed on infinitely many input lenghts. We refer the reader to the formal proof for
further details.
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distribution of x′ is also statistically close to uniform, which is statistically close to random NO-
instances for MKtP[n/γ]. Thus, if H′ succeeds with high probability over random NO-instances of
MKtP[n/γ], H will succeed with high probability over random NO-instances of MKtP[s]

Part 2: T -Hard OWFs from T -Average-case Hardness of MKtP[n/γ] To show that (c)
implies (a), we need to construct a T -hard OWF assuming MKtP[n/γ] is mildly HoA∗ for some γ > 1
w.r.t. T -time (non-uniform) algorithms. To do this, we leverage the construction from [LP20], which
shows a OWF assuming Kt is mildly HoA to compute. We observe that a similar proof can be used to
obtain a OWF assuming MKtP[n/γ] is mildly HoA∗—the key difference here is that we need to show
how to use a OWF inverter to not only compute Kt over random instances, but also conditioned on
YES/NO-instances. We additionally observe that the proof can be extended to yield T -hard OWF
assuming T hardness of the underlying problem (by revisiting the hardness amplification theorem of
[Yao82] and showing it applies in these more general parameter regimes).

We emphasize that Parts 1 and 2 hold both w.r.t.., uniform and non-uniform algorithms.

Part 3a: Sublinear-time Average-case Hardness of MKtP[s] from T -Hard cond EP-PRFs
We finally show that (a) implies (b); that is, that T -hard OWF for some T ∈ F implies that there
exists s ∈ F−1 such that MKtP[s] is mildly HoA∗ w.r.t. sublinear-time non-uniform algorithms. This
is the technically most involved step of the proof, and here we require the OWF to be secure wr.t.
non-uniform T -time attackers.

Recall that in [LP20], it was shown that OWFs imply that MKtP[n−O(log n)] is mildly HoA. We
here need to extend this results to apply for a much smaller threshold s ∈ F−1. It is instructive to
briefly recall the high-level approach in [LP20]: An object called an entropy-preserving pseudorandom
generator (EP-PRG) was introduced there. Roughly speaking, an EP-PRG is a pseudorandom
generator that expands n-bits to n + O(log n) bits, having the property that the output of the
PRG is not only pseudorandom, but also preserves the entropy of the input (i.e., the seed): The
Shannon-entropy of the output is n−O(log n). In fact, [LP20] did not manage to construct such an
EP-PRG from OWFs, but rather constructed a relaxed form of an EP-PRG, called a conditionally-
secure entropy-preserving PRG (cond-EP PRG), which relaxes both the pseudorandomness, and
entropy-preserving properties of the PRG, to hold only conditioned on some event E. [LP20] showed
how such a cond EP-PRG can be constructed from OWFs, and next showed that the existence of
cond EP-PRGs implies that MKtP[n−O(log n)] is mildly HoA. Roughly speaking, the idea is that a
MKtP[n−O(log n)] heuristic distinguishes outputs from the PRG and uniform, as uniform string with
high probability have high Kt-complexity, whereas outputs of the PRG has small Kt-complexity, and
the entropy-preserving property is needed to ensure that the heuristic still works on outputs of the
PRG.

Our high-level approach here is similar, but since we need to deal with a much smaller threshold,
we need to construct an appropriate conditionally-secure entropy-preserving analog of a pseudoran-
dom function [GGM84], a cond EP-PRF. The entropy-preserving property of such a cond EP-PRF
requires that the n-bit prefix of the truthtable of the PRF fs given a seed s ∈ {0, 1}n has Shannon
entropy at least n−O(log n).

We emphasize that proving that the entropy-preserving property of the PRF ensures that the
heuristic will work on outputs of the PRF is more subtle than the earlier proof in [LP20] using
an entropy-preserving PRG, as now, the entropy-preserving property does not guarantee that the
output of the PRF is dense among random string; however, we can still show that it is dense among
YES-instances for MKtP[s]. We also want to highlight that there is another important subtlely that
arises in this proof: The heuristic we are given only needs to work on infinitely many input lengths,
so to use this heuristic to break the PRF we need to know on what inputs lenghts to query the
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heuristic. We solve this problem by using non-uniformity and simply assume that the PRF breaker
can get these input lengths as non-uniform advice.6 We emphasize that this is the only step in
the proof where non-uniformity is used; all other steps work w.r.t. both uniform and non-uniform
algorithms.

Part 3b: T -Hard cond EP-PRFs from T -Hard OWFs So, it just remains to construct a
cond EP-PRF. A-priori, this seems easy: why not just use the GGM [GGM84] construction of a
PRF from a PRG? The problem is that this transformation does not work if the underlying PRG is
a cond EP-PRG: the PRG property only holds conditioned on some event E, which prevents using
repeated applications of the PRG. Nevertheless, we show that any standard PRF (which can be
constructed from OWFs [GGM84, HILL99] can be combined, in a rather straightforward way, with
a cond EP-PRG with sublinear stretch (i.e., it expands n bits to n+nε bits) to get a cond EP-PRF:
first use the cond EP-PRG to expand its seed s into s1, s2 where s1 has n bits and s2 has O(nε) bits;
next, use s1 as the description of a truthtable to determine the output of the cond EP-PRF of inputs
x ≤ n, and use s2 as a seed to the (standard) PRF to determine the outputs of the cond EP-PRF
on inputs x > n.7

Unfortunately, we are not aware of any constructions of cond EP-PRGs with sublinear stretch
from OWFs. The cond EP-PRG from OWF constructed in [LP20] only expands its seed by O(log n)
bits, and this is inherent in the construction.8 A central technical contribution of this paper is the
construction of a cond EP-PRG with sublinear stretch. The construction is actually very simple, but
proving it secure is significantly less so. Given any PRG G (which can be constructed from OWFs
[HILL99]), the construction tries to “massage” G to become entropy-preserving. If G were regular,
with regularity r, that would be easy: We simply apply pairwise-independent hash functions (that
act as strong extractors) h1 to the input (the seed) of the PRG (parametrized to match the regularity
r) to “squeeze” out randomness from the input. However, it is unlikely that G is regular. Instead,
we attempt to guess the “degeneracy”9 of the input x on which G is applied, and extract out the
remaining entropy in it, and rely on the fact that we only need a PRG that is secure conditioned on
some appropriate event. The construction proceeds as follows:

G′(i, x, h1, h2) = h1||h2||h2

(
G(x)||[h1(x)]i−O(logn)

)
We show that conditioned on the event E that i equals the degeneracy of x, G′ preserves the entropy
of its input (up to an additive term of O(log n)). More interestingly, we show that, conditioned on
E, the output of G′, is also pseudorandom. While this latter claim seems intuitive, it is significantly
harder to prove. Intuitively, conditioned on E, [h1(x)]i−O(logn) is statistically close to a uniform
string, and thus leaking it should not harm the pseudorandomness of G(x), so once we apply the
extractor h2 to the combined output, we should be able to extract many pseudorandom bits. This
argument is not quite true: even though [h1(x)]i−O(logn) is statistically close to a random string of
length i, the length i itself is already leaking something about the seed x, which makes it hard to
formalize this argument. To formally prove it, we need to show a reduction that uses a distinguisher
for G′ to distinguish the output of G from random; while this reduction can simulate [h1(x)]i−O(logn)

by outputting random bits, the reduction does not know the degeneracy of the seed x so it does

6This issue was not a problem in [LP20] as the PRG used there only expanded n bits to `(n) = n + O(logn) bits.
Since `(n+ 1)− `(n) ≤ O(1) one could argue that constant size advice (which can be incorporated into the description
of the TM) suffices to hit infinitely many inputs lenghts on which the heuristic works.

7In the actual construction, we also require an additional padding trick to get a cond EP-PRF with small running
time. We refer the reader to the techincal sections for further details.

8We note that the standard construction of a length-doubling PRG from a PRG with small expansion fails for cond
EP-PRGs, for the same reason as the GGM construction fails.

9That is, the logarithm of the number of pre-images of G(x).
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not know how many random bits to concatenate to G(x)! And, simply guessing a length i does not
work as the distinguisher could fare badly if the guess is incorrect. We present a method around this
problem and manage to formally prove the construction secure.

On a very high-level, the idea is as follows. Assume there exists a distinguisher D′ that distin-
guishes the output of G′, conditioned on E, from uniform for infinitely many input lengths n. We
may assume without loss of generality that for infinitely many n, D actually outputs 1 with higher
probability when given a pseudorandom sample than a uniform sample. We construct a distinguisher
D that distinguishes the output of G—without any conditioning—from uniform. Given a sample x,
D tries all lengths i ∈ [n], and for each such i, estimates the probability that D′(h1||h2||h2(x|Ui))
outputs 1 (by running D′ many times on new samples Ui and fresh hash functions h1, h2). It picks
the length i on which D′(h1||h2||h2(x|Ui)) outputs 1 with the highest probability, and finally outputs
D′(h1||h2||h2(x|Ui)) (for new freshly sampled h1, h2, Ui). Intuitively, the reason this distinguisher
works is that (1) given a pseudorandom sample x, D(x) will output 1 with (roughly) at least as high
probability that D′ outputs 1 given a pseudorandom sampled conditioned on E, yet (2) when x is
truly uniform, then no matter what length i that D′ selects, the probability that D′(h1||h2||h2(x|Ui))
outputs 1 is roughly the same, and in fact, close to the probability D′ outputs 1 given a uniform
sample; this follows from the fact the min-entropy of x||Ui is at least the min-entropy of x, which
is n, so the output of h2(x||Ui) will be close to uniform. So we conclude that for infinitely many
n, D distinguishes pseudorandom strings from random with roughly the same probability that D′

distinguishes the output of the cond EP-PRG, conditioned on E, from uniform.

2 Preliminaries

Given a string x, we let [x]j denote the first j bits of x. Let tt(f) denote the truth table of a function
f , ttm(f) = [tt(f)]m denote the m-bit prefix of the truth table. For a truth table z, let fn(z) denote
the function associated with it. We say that a function f is super-polynomial if for every c ∈ N,
there exists n0 ∈ N such that for all n > n0, f(n) ≥ nc. A function µ is said to be negligible if for
every polynomial p(·), there exists some n0 ∈ N such that for all n > n0, µ(n) ≤ 1

p(n) . We say that

a family of functions F is closed under (sublinear) polynomial compositions if for any f ∈ F , for all
0 < ε1, ε2 < 1, (f(nε1))ε2 ∈ F . We say that a function f is time-constructible if for all n ∈ N, f(n)
can be computed by a Turing machine in time poly(f(n)). For a strictly monotonic function f , let
f−1(n) denote the inverse of f ; that is, the unique function such that f−1(f(n)) = n. We assume
familiarity with basic concepts such as deterministic and probabilistic Turing machines. A uniform
T -time algorithm A is a probabilistic Turing machine that on inputs x of length n runs in time at
most T (n). A non-uniform T -time algorithm A is specificed by a pair (A′, {zn}n∈N) where A′ is a
probabilistic Turing machine such that given any input x of length n, A′(x, zn) terminates within
T (n) steps; given any input x of lenght n, we refer to the output of A(x) as the output of A′(x, zn).10

A probability ensemble is a sequence of random variables A = {An}n∈N. We let Un the uniform
distribution over {0, 1}n. For any integer n ∈ N, we let [n] denote the set {1, 2, . . . , n}.

2.1 Time-bounded Kolmogorov Complexity

We define the notion of t-time-bounded Kolmogorov complexity that we rely on. We consider some
universal Turing machines U that can emulate any Turing machine M with polynomial overhead.

10While in our context, hardness w.r.t. non-uniform probabilistic T -time algorithms is equivalent to hardness w.r.t.
non-uniform deterministic T -time algorithms (since we can always fix the best random coins of the attacker), we prefer
to explicitly model attackers a non-uniform probabilistic algorithms to clarify why many of our proofs extend to the
setting of uniform probabilistic algorithms.
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The universal Turing machine U receives as input a description/program Π ∈ {0, 1}∗ = (M,w) where
M is a Turing machine and w ∈ {0, 1}∗ is an input to M ; we let U(Π(i), 1t(|Π|)) denote the output
of M(w, i) when emulated on U for t(|Π|) steps.

Definition 2.1. Let U be a universal Turing machine and t(·) be a polynomial. Define

Kt(x) = min
Π∈{0,1}∗

{|Π| : ∀i ∈ [|x|], U(Π(i), 1t(|Π|)) = xi}.

We remark that the notion of time-bounded Kolmogorov complexity has been defined in a lot
of different ways [Kol68, Sip83, Tra84, Ko86, ABK+06]; the definition we consider here is the “local
compression” version (see e.g., [ABK+06]) where the program Π is required to efficiently output each
individual bit xi of the string x, given i as input. This notion captures the “truthtable” compression
problem discussed in the introduction, where we think of x as the truthtable of a function. (A
different version of time-bounded Kolmogorov complexity instead considers the size of the shortest
program that outputs the whole string x. This other notion refers to a “global compression” notion,
but is less appealing from the point of view of truthtable compression, as the running-time of the
program can never be smaller than the length of the truthtable x. We do not consider the global
compression notion in this paper.)

Let MKtP[s(n)] be a language consisting of strings x with Kt-complexity at most s(|x|). We
recall the following fact about (time-bounded) Kolmogorov complexity.

Fact 2.1. There exists a constant c such that for every polynomial t(n) ≥ (1 + ε)n, ε > 0, the
following holds:

(1) For every x ∈ {0, 1}∗, Kt(x) ≤ |x|+ c;

(2) For every integer n ∈ N, every function 0 < s(n) < n, 2bs(n)c−c ≤ |MKtP[s(n)] ∩ {0, 1}n| ≤
2bs(n)c+1.

Proof: Let M be a Turing machine such that M(w, i) outputs wi if i ≤ |w|, and otherwise outputs
0. The running time of M can be bounded by t(|w|), and M can be encoded in c bits (for some
universal constant c). Thus, (1) follows from the fact that any string x has a description Πx = (M,x),
which can be encoded in |x| + c bits (see [Sip96] for simple treatment). For (2), since the number
of descriptions with size at most s(n) is 2bs(n)c+1 and a single description could only produce a
singe string ∈ {0, 1}n, it follows that |MKtP[s(n)] ∩ {0, 1}n| ≤ 2bs(n)c+1. To get a lower bound on
|MKtP[s(n)]∩{0, 1}n|, note that every n-bit string of the form y||0n−bs(n)c−c where y ∈ {0, 1}bs(n)c−c

can be described by the program Πy = (M,y) of size bs(n)c and the number of such strings is
2bs(n)c−c. Thus, |MKtP[s(n)] ∩ {0, 1}n| ≥ 2bs(n)c−c.

2.2 Average-case Complexity

We recall the definitions of average-case hardness and average-case hardness w.r.t. errorless heuris-
tics. We focus our attention on average-case hardness w.r.t., non-uniform algorithms.

Definition 2.2 (Average-case Hardness). We say that a language L is α(·) hard-on-average (α-HoA)
for T (·)-time heuristics if for all probabilistic non-uniform T (·)-time heuristics H, for all sufficiently
large n ∈ N,

Pr[x← {0, 1}n : H(x) = L(x)] < 1− α(n).
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Definition 2.3 (Average-case Hardness w.r.t. Errorless Heuristics). We say that a language L is
α(·) hard-on-average (α-HoA) for T (·)-time errorless heuristics if for all probabilistic non-uniform
T (·)-time heuristics H, for all sufficiently large n ∈ N,

Pr[x← {0, 1}n : H(x) = {L(x),⊥}] 6= 1

or
Pr[x← {0, 1}n : H(x) = ⊥] > α(n)

In other words, there does not exist a T -time heuristic (resp errorless heuristic) that decides L
with probability 1−α(n) for infinitely many n, where an errorless heuristic never outputs ¬L(x) on
input x (but it can output ⊥ for “I don’t know”).

We will sometime also consider average-case hardness with respect to more restrictive classes of
heuristics (e.g., uniform heuristics, or uniform and deterministic heuristics), and then explicitly state
so.

In this work, we introduce a notion of average-case hardness w.r.t. two-sided error heuristics
which is meaningful also for sparse languages. Before describing the definition, let us first define the
density of a language: We say that a language L ⊂ {0, 1}∗ is D(·)-dense if for all n ∈ N, |Ln| = D(n),
where Ln = L ∩ {0, 1}n. Now we are ready to define the notion of average-case∗ hardness.

Definition 2.4 (Average-case∗ Hardness). We say that a D(·)-dense language L is α(·) hard-on-
average∗ (α-HoA∗) for T (n)-time heuristics if for all probabilistic non-uniform T (n)-time heuristics
H, for all sufficiently large n, there exist µ ∈ {0, 1} such that,

Pr[x← {0, 1}n : H(x) = µ | L(x) = µ] < 1− α(n∗),

where n∗ = logD(n).

In other words, there does not exist a T -time “heuristic∗” that decides L with probability 1−α(n∗)
conditioned on YES (and NO) instances. We say that a language L is α-HoA∗ for sublinear-time
heuristics if there exists 0 < δ < 1 such that L is α-HoA∗ for nδ-time heuristics. We say that a
language L is mildly HoA∗ (resp HoA, HoA w.r.t. errorless heuristics) for T (n)-time heuristics if
there exists a strictly increasing polynomial p(·) > 0 such that L is 1

p(·) -HoA∗ (resp HoA, HoA w.r.t.

errorless heuristics) for T (n)-time heuristics.
The following two lemmas show that mild average-case∗ hardness is a notion that lies between

mild average-case hardness w.r.t. errorless heuristics and mild average-case hardness.

Lemma 2.2. If a language L is mildly HoA for T (n)-time heuristics, then L is mildly HoA∗ for
T (n)-time heuristics.

Lemma 2.3. If a language L is mildly HoA∗ for T (n)-time heuristics, then L is mildly HoA w.r.t.
T (n)-time errorless heuristics.

We refer the reader to Appendix A for the (straight-forward) proofs of the above two lemmas.

2.3 One-way Functions

We recall the standard definitions of one-way functions (with security w.r.t. non-uniform efficient
attackers).

Definition 2.5. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to be
a (T, ε)-one-way function if for any probabilistic non-uniform algorithm A of running time T (n), for
all sufficiently large n ∈ N,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] < ε(n)
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We say that f is T (n)-one-way (or is a T -hard one-way function) if f is (T (n), 1/T (n))-one-way.
We say that f is ε(n)-weak T (n)-one-way if f is (T (n), 1− ε(n))-one-way. If ε(n) is a (monotonically
increasing) polynomial, we say f is weakly T (n)-one-way. We say that f is simply one-way if f is
T (n)-one-way for all polynomials T (n). When T (n) is a super-polynomial function, we refer to f as
being subexponentially-secure (resp quasi-polynomially-secure) if there exists a constant c > 0 such
that f is 2n

c
-one-way (resp nc logn-one-way).

We recall the hardness amplification lemma [Yao82] which was originally stated for (polynomially-
hard) OWFs; we here extend it to work for T -one-way functions. We defer the proof (which is a
simple generalization of Yao’s proof) to Appendix A.

Lemma 2.4 (Hardness Amplification [Yao82]). Assume that there exists a weakly T (n)-one-way
function for an arbitrary function T (·). Then, there exists a (T ′(n))-one-way function where T ′(n) =√

T (nΩ(1))

nO(1) − nO(1).

Finally, we note that when we assume that there exists a OWF f , we can assume without loss of
generality that f is length-preserving.

Lemma 2.5 (Length-preserving OWFs from OWFs [HHR06]). Assume that f : {0, 1}n → {0, 1}`(n)

is a (T (n), ε(n))-one-way function. Then there exists a length-preserving (T (nΩ(1))−nO(1), 2ε(nΩ(1)))-
one-way function.

2.4 Computational Indistinguishability

We recall the definition of (computational) indistinguishability [GM84].

Definition 2.6. Two ensembles {An}n∈N and {Bn}n∈N are said to be (T (·), ε(·))-indistinguishable,
if for every probabilistic non-uniform T (·)-time machine D (the “distinguisher”) whose running time
is T (·) in the length of its first input, there exists some n0 ∈ N so that for every n ≥ n0:

|Pr[D(1n, An) = 1]− Pr[D(1n, Bn) = 1]| < ε(n)

We say that are {An}n∈N and {Bn}n∈N simply indistinguishable if they are (T (·), 1
p(·))-indistinguishable

for all polynomials p(·), T (·).

2.5 Pseudorandom Generators and Pseudorandom Functions

We recall the standard definitions of pseuodrandom generators (PRGs) and pseudorandom functions
(PRFs).

Definition 2.7. Let g : {0, 1}n → {0, 1}m(n) be a polynomial-time computable function. g is said to
be a (T (·), ε(·))-pseudorandom generator if for any probabilistic non-uniform T (·)-time algorithm A
(whose running time is T (·) in the length of its first input), for all sufficiently large n,

|Pr[x← {0, 1}n : A(1n, g(x)) = 1]− Pr[y ← {0, 1}m(n) : A(1n, y) = 1]| ≤ ε(n).

Definition 2.8. Let f : {0, 1}n × {0, 1}k(n) → {0, 1} be a polynomial-time computable function.
f is said to be a (T (·), ε(·))-pseudorandom function if for any probabilistic non-uniform T (·)-time
algorithm A, for all sufficiently large n,

|Pr[x← {0, 1}n : Af(x,·)(1n) = 1]− Pr[f ′ ← F : Af ′(1n) = 1]| ≤ ε(n)

where F = {f ′ : {0, 1}k(n) → {0, 1}}.
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In addition, we recall the following classic results on constructing PRGs and PRFs from OWFs.

Theorem 2.9 (1-bit stretching PRGs from Length-preserving OWFs [HILL99, HRV10]). Let f :
{0, 1}n → {0, 1}n be a (T (n), ε(n))-one-way function where ε(n) ≤ 1/nc for some constant c such
that ε(n) is polynomial-time computable. There exists an efficient generator g from strings of length
d = d(n) = nO(1) to strings of length d + 1 such that for any polynomial-time computable function
ε′(n), G is a (T (n) · (ε′(n)/n)O(1), ε′(n) · nO(1))-PRG.

Lemma 2.6 (Length-doubling PRGs from 1-bit stretching PRGs [Gol01]). Assume that there exists
a (T (n), ε(n))-PRG g : {0, 1}n → {0, 1}n+1. Then there exists a (T (n), ε(n) · n)-PRG g′ : {0, 1}n →
{0, 1}2n.

Theorem 2.10 (PRFs from Length-doubling PRGs [GGM84]). Assume that there exists a length-
doubling (T (n), ε(n))-PRG g with running time rg(n). For any time-constructible function 0 <
T ′(n) < 2n, there exists a (T (n)−O(n), T ′(n)nε(n))-PRF f : {0, 1}n× [T ′(n)]→ {0, 1} with running
time rg(n) · log T ′(n).

2.6 Statistical Distance and Entropy

For any two random variables X and Y defined over some set V, we let SD(X,Y ) = maxT⊆U |Pr[X ∈
T ] − Pr[Y ∈ T ]| = 1

2

∑
v∈V |Pr[X = v] − Pr[Y = v]| denote the statistical distance between X and

Y . It will be helpful to note that the expression is maximixed when the “distinguisher” T = {ω :
Pr[X = ω] > Pr[Y = ω]}. For a random variable X, let H(X) = E[log 1

Pr[X=x] ] denote the (Shannon)

entropy of X, and let H∞(X) = minx∈Supp(X) log 1
Pr[X=x] denote the min-entropy of X.

We recall a simple lemma from [LP20] showing that any distribution that is statistically close to
random has very high Shannon entropy.

Lemma 2.7 ([LP20]). For every n ≥ 4, the following holds. Let X be a random variable over {0, 1}n
such that SD(X,Un) ≤ 1

n2 . Then H(Xn) ≥ n− 2.

2.7 Universal Hash Functions

We recall the notion of a universal hash function [CW79].

Definition 2.11. Let Hnm be a family of functions where m < n and each function h ∈ Hnm maps
{0, 1}n to {0, 1}m. We say that Hnm is a universal hash family if (i) the functions hσ ∈ Hnm can be
described by a string σ of nc bits where c is a universal constant that does not depend on n; (ii) for
all x 6= x′ ∈ {0, 1}n, and for all y, y′ ∈ {0, 1}m

Pr[hσ ← Hnm : hσ(x) = y and hσ(x′) = y′] = 2−2m

It is well-known that truncation preserves pairwise independence; see e.g., [LP20] for a proof.

Lemma 2.8. If Hnm is a universal hash family and ` ≤ n, then H′n` = {hσ ∈ Hnm : [hσ]`} is also a
universal hash family.

Carter and Wegman demonstrate the existence of efficiently computable universal hash function
families.

Lemma 2.9 ([CW79]). There exists a polynomial-time computable function H : {0, 1}n×{0, 1}nc →
{0, 1}n such that for every n, Hnn = {hσ : σ ∈ {0, 1}nc} is a universal hash family, where hσ :
{0, 1}n → {0, 1}n is defined as hσ(x) = H(x, σ).
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We finally recall the Leftover Hash Lemma.

Lemma 2.10 (Leftover Hash Lemma (LHL) [HILL99]). For any integers d < k ≤ n, let Hnk−d be a

universal hash family where each h ∈ Hnk−d maps {0, 1}n to {0, 1}k−d. Then, for any random variable
X over {0, 1}n such that H∞(X) ≥ k, it holds that

SD((Hn
k−d, H

n
k−d(X)), (Hn

k−d,Uk−d)) ≤ 2−
d
2 ,

where Hn
k−d denotes a random variable uniformly distributed over Hnk−d.

2.8 “Nice” Function Classes

We consider “nice” classes of function families, where the class of functions F is said to be “nice” if

• for every function T ∈ F , T is time-constructible and strictly increasing in the sense that there
exists a constant ν > 0 such that for all n > 1, T (n+ 1) ≥ T (n) + ν;

• F is closed under (sublinear) polynomial compositions: for any T ∈ F , for all 0 < ε1, ε2 < 1,
(T (nε1))ε2 ∈ F .

Given a class of functions, let F−1 denote the class of inverse function: F−1 = {f s.t. f−1 ∈ F}.
Several examples of “nice” classes of super-polynomial functions (and their inverse classes) are (a)
Fsubexp = {2cnε}c>0,0<ε<1 and F−1

subexp = {c logβ n}c>0,β>1, (b) Fqpoly = {nc logn}c>0 and F−1
qpoly =

{2c
√

logn}c>0.
The notion of “nice” function classes has the important property that “polynomial-time” reduc-

tions “preserve F-hardness”. Roughly speaking, almost all the reductions (considered in this work)
are of form “if A is T (n)-hard, B is (T (nΩ(1))Ω(1)/nO(1) − nO(1))-hard”. When A is a language, we
refer to A as being T (n)-hard if A is mildly HoA∗ for T (n)-time heuristics. When A is a crypto-
graphic primitive, we refer to A as being T (n)-hard if A is secure against all T (n)-time attackers.
The following fact shows that such reductions actually prove the following statement: “if there exists
T1 ∈ F such that A is T1(n)-hard, then there exists T2 ∈ F such that B is T2(n)-hard”.

Fact 2.11. Let F be a nice class of super-polynomial functions. For every T ∈ F , for all 0 <
ε1, ε2 < 1, c1, c2 > 1, there exists a function T ′ ∈ F such that for all sufficiently large n, T ′(n) ≤
T (nε1)ε2/nc1 − nc2.

Proof: Let T1(n) denote T (nε1)ε2 . Since F is closed under polynomial compositions, T1(n) ∈
F . Since T1 is a super-polynomial function, T1(n) ≥ n4(c1+c2). It follows that for all large n,

T1(n)/(2nc1) ≥ nc2 , so T1(n)/nc1 − nc2 ≥ T1(n)/(2nc1). Note that 2nc1 ≤ T1(n)
1
2 for sufficiently

large n, and thus T1(n)/(2nc1) ≥ T1(n)/(T1(n)
1
2 ) ≥ T1(n)

1
2 . Finally, notice that T1(n)

1
2 ∈ F since F

is closed under (sublinear) polynomial compositions, which concludes the proof.

3 Avg-case Hardness Magnification for MKtP[s]

We here show a hardness magnification theorem for MKtP[s]. Roughly speaking, it shows that if
MKtP[s] is mildly HoA∗ even just w.r.t. sublinear algorithms, then for every γ, MKtP[n/γ] is mildly
HoA∗ w.r.t. much stronger, T -time algorithms, where T grows as a function of the inverse of s. For
instance, if s(n) = poly log n, then T (n) becomes 2n

ε
for some ε > 0.
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Lemma 3.1 (Hardness Magnification for MKtP ). Let F be a nice class of super-polynomial functions.
Assume that there exist a function s ∈ F−1 and an integer constant τ ≥ 0 such that MKtP[s(m) + τ ]
is mildly HoA∗ for sublinear-time heuristics. Then, there exists a function T ∈ F such that for every
integer γ > 1, MKtP[n/γ] is mildly HoA∗ for T (n)-time heuristics.

Roughly speaking, we will consider a heuristic H that given a string z ∈ {0, 1}m, truncates z into a
string y of length, roughly, γs(m), and next runs H′(y). The problem, however, is that H′ may only
work for infinitely many input lengths, so we need to make sure that we truncate the the string z
into a length on which actually H′ succeeds. The formal proof deals with this issue. We proceed to
the formal proof.
Proof: [of Lemma 3.1] Consider some nice class of super-polynomial functions F , and some
function s ∈ F−1 such that MKtP[s(m) + τ ] is mildly HoA∗ for sublinear-time heuristics; that is,
there exists some δ > 0 and some monotonically increasing polynomial p′(·) such that MKtP[s(m)+τ ]
is 1

p′(·) -HoA∗ for mδ-time heuristics.
We will show that there exists a function T ∈ F such that for every integer γ > 1, there exists some

monotonically increasing polynomial q′(·) such that MKtP[n/γ] is 1
q′(·) -HoA∗ for T (n)-time heuristics.

Pick any function T ∈ F such that T (n) ≤ (s−1(n0.99))δ (guaranteed to exist by Fact 2.11), and
consider any γ > 1. Let m∗ = logD1(m) where D1(m) is the density of MKtP[s(m)+τ ]. By Fact 2.1,
bs(m)c+ τ − c ≤ m∗ ≤ bs(m)c+ τ + 1, so there exists an monotonically increasing polynomial p(·)
such that p(bs(m)c+τ) ≥ p′(m∗) (for all sufficiently large m and m∗). Let q(n) be a polynomial such
that q(n) = 2c+3np(n)2 for all n ∈ N. Let n∗ = logD2(n) where D2(n) is the density of MKtP[n/γ].
Let q′(·) be a polynomial guaranteed to exist (due to Fact 2.1) such that q′(n∗) ≥ q(bn/γc) (for all
sufficiently large n and n∗).

Assume for contradiction that there exists a T (n)-time heuristic H′ for MKtP[n/γ] with success
probability at least 1− 1

q′(n∗) ≥ 1− 1
q(bn/γc) conditioned on YES and NO instances on infinitely many

n. We will construct a mδ-time heuristic H for MKtP[s(m) + τ ] with success probability at least
1− 1

p(bs(m)c+τ) ≥ 1− 1
p′(m∗) on infinitely many m, which contradicts to the fact that MKtP[s(m) + τ ]

is 1
p′(·) -HoA∗ and concludes the proof.

Constructing the heuristic H: Consider a heuristic heuristic algorithm Ha,b (parametrized by
integer constants a, b) that on input z ∈ {0, 1}m, just returns H′(y) where y = [z]n is the n-bit prefix
of z where n = bs(m) + τ + ac × γ + b. First, note that for any choice of a, b, H′ runs in time
T (n) = s−1((bs(m) + τ + ac × γ + b)0.99)δ ≤ s−1(s(m))δ ≤ mδ, so Ha,b runs in time mδ.

Note that H′ only succeeds on infinitely many input lengths; we will carefully pick a, b such
that for infinitely many m, H′ succeeds on input lengths n = bs(m) + τ + ac × γ + b. In more
detail, let {n1, n2, n3, . . .} be an infinite sequence of input lengths on which H′ succeeds. For all
n ∈ N, n must be of the form n = bn/γc × γ + b for some integer 0 ≤ b < γ. It follows that
there exists an integer constant b ∈ [0, γ) such that there exists an infinite sequence {k1, k2, k3, . . .}
where for all i, there exists j ∈ N such that nj = (ki + τ) × γ + b. Let ν > 0 be the constant
such that for all n, s−1(n + 1) − s−1(n) ≥ ν guaranteed to exist since s−1 ∈ F . For any k ∈ N, we
claim that there exist an integer m′ and an integer 0 ≤ a ≤ b 1

ν c such that k = bs(m′)c + a. Note
that for all n, s(n + 1) − s(n) ≤ b 1

ν c. Let m′ be the largest integer such that bs(m′)c ≤ k. Since
k < s(m′ + 1), it follows that a = k − bs(m′)c ≤ b 1

ν c. Thus, there exists an integer 0 ≤ a ≤ b 1
ν c and

an infinite sequence {m1,m2, . . .} such that for all i ∈ N, there exists j such that kj = bs(mi)c+ a.
Fix such two constants a, b and consider the heuristic H = Ha,b. By construction, we have that
there exist infinitely many m (namely, {m1,m2, . . .}) such that H′ succeeds on the input lengths
n = (k + τ)× γ + b = bs(m) + τ + ac × γ + b (for some k ∈ {k1, k2, . . .}). We shall show that H will
succeed on all these input lengths m.
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Fix some sufficiently large such m such that H′ succeeds on the input lengths n = bs(m) + τ +
ac × γ + b, and let

` = bs(m)c+ τ = bn/γc − a.

We will show that for any such m, H is a (1 − 1
p(`))-heuristic for MKtP[s(m) + τ ] ∩ {0, 1}m. Since

1− 1
p(`) = 1− 1

p(bs(m)c+τ) ≥ 1− 1
p′(m∗) , we have thatH breaks the 1

p′(·) -HoA∗ property of MKtP[s(m)+τ ].

Analyzing the success probability of H on YES-instances: We start by showing that on
input a random m-bit YES instance z ∈ MKtP[s(m)+τ ], H decides MKtP[s(m)+τ ] with probability
at least 1 − 1

p(`) = 1 − 1
p(bs(m)c+τ) . Since H′ succeeds in deciding MKtP[n/γ] with probability at

least 1 − 1
q(bn/γc) = 1 − 1

q(`+a) ≥ 1 − 1
q(`) conditioned on YES instances, by an averaging argument,

except for a 1− 1
2p(`) fraction of random tapes r for H′, the deterministic machine H′r (i.e., machine

H′ with randomness fixed to r) fails to solve MKtP[n/γ] with probability at most 2p(`)
q(`) (conditioned

on YES instances). Fix some such “good” random tape r for which H′r decides MKtP[n/γ] with

probability at least 1− 2p(`)
q(`) conditioned on the input being an n-bit YES instance. Let Hr denote

the deterministic heuristic which uses r as the random tape when invoking H′.
Let S be the set of m-bit YES instances of MKtP[s(m) + τ ] on which Hr outputs 0. By Fact 2.1,

there are at least 2bs(m)c+τ−c = 2`−c m-bit YES instances in MKtP[s(m) + τ ]. Thus, Hr(z) outputs
0 with probability

failr ≤
|S|

2`−c

when z is a uniform random m-bit YES instance of MKtP[s(m) + τ ]. Consider any string z ∈ S
and let w = Kt(z). Since z ∈ MKtP[s(m) + τ ], it follows that w ≤ bs(m)c + τ = `, and there
exists a machine Π with description length w that produces each bit in the string z in t(w) steps.
Specifically, for all i ∈ [m], Π(i) outputs zi within t(w) steps. Thus, the same machine Π will
also produce the string y within t(w) steps where y = [z]n is the n-bit prefix of z. So, it follows
that Kt(y) ≤ w ≤ ` = bn/γc − a ≤ bn/γc and thus y belongs to MKtP[n/γ]. Since Hr fails on
z, H′r must also fail on y. Note that the number of n-bit YES instances of MKtP[n/γ] is at most
2bn/γc+1 = 2`+a+1 (by Fact 2.1), so the probability that H′r fails conditioned on the input being an
m-bit YES instance is at least

|S|
2`+a+1

≥ failr ·
1

2c+a+1

which by the assumption (that H′r is a good heuristic) is at most 2p(`)
q(`) . We thus conclude that

failr ≤
2c+a+2p(`)

q(`)
.

Then, by a union bound, we have that H (using a uniform random tape) outputs 0 with probability
at most

1

2p(`)
+

2c+a+2p(`)

q(`)
=

1

2p(`)
+

2c+a+2p(`)

2c+3`p(`)2
≤ 1

p(`)
=

1

p(bs(m)c)

conditioned on z being an m-bit YES instance of MKtP[s(m) + τ ] (since 2a ≤ ` when ` is sufficiently
large).

Analyzing the success probability of H on NO-instances: We turn to showing that on m-
bit random NO-instances, z /∈ MKtP[s(m) + τ ], H decides MKtP[s(m) + τ ] with probability at least
1− 1

p(bs(m)c+τ) . We proceed by a hybrid argument. Let
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• Z1 = {z ← {0, 1}m : z /∈ MKtP[s(m)+ τ ]} be the uniform distribution over m-bit NO instances
of MKtP[s(m) + τ ];

• Z2 = {z ← {0, 1}m} be the uniform distribution over m-bit strings;

• Z3 = {z ← {0, 1}n} be the uniform distribution over n-bit strings;

• Z4 = {z ← {0, 1}n : z /∈ MKtP[n/γ]} be the uniform distribution over n-bit NO instances of
MKtP[n/γ].

By Fact 2.1, there are at most 2bs(m)c+τ+1 m-bit strings that are YES-instances of MKtP[s(m) + τ ],
thus there are at most 2bs(m)c+τ+1 points that have higher probability mass in Z1 than in Z2, and
the difference in probability mass for each such point is exactly 2−m. By the observation noted after
the definition of statistical distance11, it follows that the statistical distance is upper bounded by

2−m+bs(m)c+τ+1 = 2−m+`+1.

By the same argument, we have that the statisical distance between Z3 and Z4 is upper bounded by

2−n+bn/γc+1 ≤ 2−(1−1/γ)n+1 ≤ 2−(1−1/γ)`+1.

(since, recall, ` = bn/γc − a ≤ n). On the other hand, if z is distributed uniformly over m-bit
strings, the distribution over y = [z]n is also the uniform over n-bit string. Thus, [Z2]n is identically
distributed to Z3. Note that since H′ is a good heuristic,

Pr
z←Z4

[H′(z) = 1] ≤ 1

q(bn/γc)
=

1

q(`+ a)
≤ 1

q(`)
.

Thus,

Pr
z←Z1

[H(z) = 1] = Pr
z←Z1

[H′([z]n) = 1] ≤ Pr
z←Z4

[H′(z) = 1] + SD(Z4, Z3) + SD([Z2]n, [Z1]n)

≤ Pr
z←Z4

[H′(z) = 1] + SD(Z4, Z3) + SD(Z2, Z1)

≤ 1

q(`)
+ 2−(1−1/γ)`+1 + 2−m+`+1

≤ 2

q(`)
≤ 1

p(`)

Remark 3.2 (A note on hardness w.r.t. uniform attackers). We note that although the lemma is
stated w.r.t. non-uniform attackers, the proof directly applies also w.r.t. uniform hardness. This
follows from the fact that nowhere in the reduction do we use any extra non-uniform advice—the
reduction is completely black box—and we explicitly deal with randomized attackers.

4 OWFs from Mild Avg-case Hardness of MKtP[n/γ]

We here show how to construct a OWF assuming mild average-case∗ hardness of MKtP[n/γ] for some
γ > 1. Our construction is essentially identical to the OWF construction in [LP20].

11That is, that the optimal distinguisher is T = {ω : Pr[Z1 = ω] > Pr[Z2 = ω]}.
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[LP20] bases the weak one-wayness of this construction on the assumption that Kt is mildly HoA
to compute. We observe that a similar proof can be used to show that the same construction is a
weak OWF assuming MKtP[s] is mildly HoA∗ for any threshold s—the key difference here is that we
need to show how to use a OWF inverter to not only compute Kt over random instances, but also
conditioned on YES/NO-instances.

Lemma 4.1 (OWFs from MKtP). Let F be a nice class of super-polynomial functions. Assume
that there exist functions T ∈ F , s(n) > 0, and polynomial t(n) > 0 such that MKtP[s(n)] is mildly
HoA∗ for T (n)-time heuristics. Then, there exists a weakly T ′(n)-one-way function for some function
T ′ ∈ F .

Proof: Consider the function f : {0, 1}n+dlog(n)e → {0, 1}∗, which given an input `||Π′ where
|`| = dlog(n)e and |Π′| = n, outputs

`||U(Π(1), 1t(`))||U(Π(2), 1t(`))|| . . . ||U(Π(n− 1), 1t(`))||U(Π(n), 1t(`))

where Π is the `-bit prefix of Π′. Note that U only has polynomial overhead, so f can be computed
in time d(n) (for some increasing polynomial d(·)). This function is only defined over some input
lengths, but by an easy padding trick, it can be transformed into a function f ′ defined over all input
lengths, such that if f is weakly T1-one-way (over the restricted input lengths, for some function
T1 ∈ F), then f ′ will be weakly T ′-one-way (over all input lengths, for some function T ′ ∈ F): f ′(x′)
simply truncates its input x′ (as little as possible) so that the (truncated) input x now becomes of
length n′ = n+ dlog(n)e for some n and outputs f(x). (We can pick any function T ′ ∈ F such that
T ′(|x′|) ≤ T1(|x|), guaranteed to exist by Fact 2.11.)

Since MKtP[s(n)] is mildly HoA∗, let p(n) be the (monotonically increasing) polynomial such that
MKtP[s(n)] is 1

p(·) -HoA∗. Let n′(n) = n+ dlog ne be the input length of f . Let q be a monotonically

increasing polynomial such that q(n′) = 2c+2n′p(n′)2, and let T1 ∈ F be a function such that
T1(n′) ≤ T (n′/2)/n′ − d(n′) (which is guaranteed to exist by Fact 2.11). We will show that f is
(T1(n′), 1− 1

q(n′))-one way (on input lengths where f is well defined).

Assume for contradiction that f is not (T1(n′), 1− 1
q(n′))-one-way. Then, there exists an attacker

A with running time bounded by T1(n′) that inverts f for infinitely many n and n′(n). We will
construct a T (n)-time heuristic for MKtP[s(n)] with success probability (conditioned on YES and
NO instances) at least 1 − 1

p(n) using A (which breaks the 1
p(·) -HoA∗ property of MKtP[s(n)] since

1 − 1
p(n) ≥ 1 − 1

p(n∗) where n∗ = logD(n) ≤ n and D(n) is the density of MKtP[s(n)]). Fix some

n such that A inverts f with probability at least 1 − 1
q(n′) . Our heuristic algorithm H(z), on input

z ∈ {0, 1}n, runs A(1n
′
, i||z) for every i ∈ [n] where i is represented as a log(n) bit string, and outputs

1 if and only if the length of the shortest description Π output by A, which produces each bit in the
string z within t(|Π|) steps, is at most s(n).

We first analyze the running time of H. H invokes A(1n
′
, ·) (of running time T1(n′)) for n

times, and invokes f (of running time d(n)) for n times to check whether the description output
by A indeed produces y, so it runs in time n(T1(n′) + d(n)) ≤ n(T (n′/2)/n′ − d(n′) + d(n)) ≤
n(T (n)/n− d(n) + d(n)) ≤ T (n) (since n′/2 ≤ n ≤ n′).

We then analyze the correctness of H. Our goal is to show that H(x) decides MKtP[s(n)] with
probability at least 1 − 1

p(n) conditioned on both x ∈ MKtP[s(n)] and x /∈ MKtP[s(n)]. If f is not
1

q(n′) -weak T1(n′)-one-way, then the inverter A will be able to invert f with probability at least

1 − 1
q(n′) ≥ 1 − 1

q(n) (since n′ ≥ n and q is monotonically increasing). By an averaging argument,

except for a fraction 1
2p(n) of random tapes r for A, the deterministic machine Ar (i.e., machine A

with randomness fixed to r) fails to invert f with probability at most 2p(n)
q(n) . Fix some such “good”
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randomness r for which Ar succeeds to invert f with probability 1 − 2p(n)
q(n) . When we invoke A in

our heuristic H, we always fix the randomness used in A to the same string, and let Hr denote the
heuristic when the randomness is r.

We first show that with probability at most 1
p(n) , Hr(z) outputs 0 when the input z ∈ {0, 1}n is

a random YES instance of MKtP[s(n)]. Let S be the set of YES instances in MKtP[s(n)] on which
Hr outputs 0. By Fact 2.1, there are at least 2bs(n)c−c YES instances in MKtP[s(n)] (restricted to
length n). Thus, Hr(z) outputs 0 with probability

failr ≤
|S|

2bs(n)c−c

conditioned on z being a YES-instance of MKtP[s(n)]. Consider any string z ∈ S and let w =
Kt(z) ≤ bs(n)c (as z is a YES-instance of MKtP[s(n)]). Since there exists a machine Π of length w
that produces each bit of z in t(w) steps, that is, for all i ∈ [n], Π(i) outputs zi within t(w) steps.
Thus, there must exist a pre-image of f , denoted by x, such that f(x) = (w||z). Since Hr(z) outputs
0, Ar must fail to invert (w||z). But, since w ≤ bs(n)c, the output (w||z) is sampled with probability

1

n
· 1

2|w|
≥ 1

n2bs(n)c

in the one-way function experiment, so Ar must fail with probability at least

|S| · 1

n2bs(n)c ≥ failr ·
1

2cn

which by assumption (that Ar is a good inverter) is at most that 2p(n)
q(n) . We thus conclude that

failr ≤
2c+1np(n)

q(n)

By a union bound, we have that H (using a uniform random tape r) outputs 0 with probability at
most

1

2p(n)
+

2c+1np(n)

q(n)
=

1

2p(n)
+

2c+1np(n)

2c+2np(n)2
=

1

p(n)

conditioned on z being a YES instance of MKtP[s(n)].
We then show that on input of a random NO instance of MKtP[s(n)], H will output 0 with

probability 1, which (combining with the fact that H also succeeds conditioned on YES instances)
shows that H is a heuristic for MKtP[s(n)] with success probability at least 1− 1

p(·) (conditioned on

both) and we reach a contradiction. Note that on a n-bit string z, if H outputs 1, there must exist
a machine Π with description length ≤ s(n) such that Π produces each bit of z within t(|Π|) steps,
so Kt(z) ≤ s(n). Thus, H never outputs 1 when the input z satisfies Kt(z) > s(n).

We prove the following simple corollary of the above lemma:

Corollary 4.1. Let F be a nice class of super-polynomial functions. Assume that there exist a
function T ∈ F , a polynomial t(n) > 0, and a constant γ > 1 such that MKtP[n/γ] is mildly HoA∗

for T (n)-time heuristics. Then, there exists a function T ′ ∈ F and a T ′-one-way function.

Proof: By Lemma 4.1, there exists a function T1 ∈ F and a weakly T1-one-way function. Then by
Lemma 2.4 and Fact 2.11, the corollary follows.

Remark 4.2 (A note on hardness w.r.t. uniform attackers). We note that although the theorem
and corollary are stated w.r.t. non-uniform attackers, the proof directly applies also w.r.t. uniform
hardness; as before, the reduction is completely black-box. In more detail, if we assme that MKtP[n/γ]
is average-case hard with respect to uniform T (n)-time attackers, we will get a OWF that is secure
w.r.t. uniform T ′-time attackers.
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5 Avg-case∗ Hardness of MKtP[s+O(1)] from OWFs

In this section, we establish the average-case∗ hardness of MKtP[s+O(1)] assuming the existence of
OWFs. We first introduce the notion of a (conditionally-secure) entropy-preserving pseudorandom
function (cond EP-PRF) and show that the existence of a cond EP-PRF implies the average-case∗

hardness of MKtP[s + O(1)]. We then construct a cond EP-PRF from a (conditionally-secure)
entropy-preserving pseudorandom generator (cond EP-PRG) and a standard PRF. Finally, we show
that standard PRGs imply cond EP-PRGs, which completes our proof (since standard PRFs and
standard PRGs exist assuming the existence of OWFs [HILL99, GGM84]).

5.1 Avg-case∗ Hardness of MKtP[s+O(1)] from Cond EP-PRF

We start by defining the notion of a conditionally-secure entropy-preserving pseudorandom function.

Definition 5.1. An efficiently computable function f : {0, 1}n × {0, 1}k(n) → {0, 1} is a (T (·), ε(·))-
conditionally-secure entropy-preserving pseudorandom function ((T, ε)-cond EP-PRF) if there exist
a sequence of events = {En}n∈N and a constant α (referred to as the entropy-loss constant) such
that the following conditions hold:

• (pseudorandomness): For every probabilistic non-uniform T (n)-time attacker A and suffi-
ciently large n ∈ N,

|Pr[s← {0, 1}n;Af(s,·)(1n) = 1 | En]− Pr[f ′ ← F ;Af ′(·)(1n) = 1]| < ε(n),

where F = {f ′ : {0, 1}k(n) → {0, 1}};

• (entropy-preserving): For all sufficiently large n ∈ N, H(ttn(f(Un | En, ·))) ≥ n− α log n.

In other word, a cond EP-PRF f is a PRF only when being conditioned on some event En, but
even if being conditioned, the first n-bit of the truth table still contains high entropy (where the
probability is taken over the random choice of the seed).

We say that f : {0, 1}n × {0, 1}k(n) → {0, 1} has rate-1 efficiency if for all n ∈ N, x ∈ {0, 1}n, i ∈
{0, 1}k(n), f(x, i) runs in n+O(nε) time for some constant ε < 1.

The following lemma shows that MKtP[s] is hard-on-average∗ assuming the existence of a suffi-
ciently hard (rate-1 efficient) cond EP-PRF.

Lemma 5.1. Let F be a nice class of super-polynomial functions, and δ > 1 be some constant. As-
sume that there exist functions T1, T2 ∈ F such that T1(n) ≥ T2(n)δ and a rate-1 efficient (T1(n), 1

n2 )-
cond-EP-PRF f : {0, 1}n× [T2(n)]→ {0, 1}. Then, there exists a constant τ ∈ N such that for every
constant ε > 0, 0 < δ′ < δ, every polynomial t(m) ≥ (1 + ε)m, MKtP[T−1

2 (m) + τ ] is HoA∗ for
mδ′-time heuristics.

Proof: Let τ ′ be a constant such that the function f can be implemented by a Turing machine
of description length τ ′. Let τ = τ ′ + 1. Let p(·) be a polynomial such that p(n) = 2τ+3(n + c)α+4

where α is the entropy-loss constant of f . Consider any ε > 0 and any polynomial t(n) ≥ (1 + ε)n.
We assume for contradiction that there exists a mδ′-time non-uniform heuristic algorithm H

for MKtP[T−1
2 (m) + τ ] with success probability at least 1 − 1

p′(m∗) on infinitely many m, for some

polynomial p′ (where m∗ = logD(m) and D(m) is the density of MKtP[T−1
2 (m) + τ ]). By Fact 2.1,

bT−1
2 (m)c + τ − c ≤ m∗ ≤ bT−1

2 (m)c + τ + 1, and it follows that there exists a polynomial p(·)
such that p′(m∗) ≤ p(dT−1

2 (m)e) (for all sufficiently large m). Thus, H solves MKtP[T−1
2 (m) + τ ]

with probability at least 1− 1
p′(m∗) ≥ 1− 1

p(dT−1
2 (m)e) on infinitely many m (conditioned on YES/NO

instances). We show that we can use H to break the pseudorandomness of f .
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Consider some sufficiently large m where H succeeds. Let

n = dT−1
2 (m)e

be the smallest integer such that T2(n) ≥ m.
Note that f is a function that given a seed of length n, maps an integer ∈ [T2(n)] to either ‘0’

or ‘1’. For any fixed seed x ∈ {0, 1}n, let ttm(f(x, ·)) denote the first m bits of the truth table of
f(x, ·). Note that for any x ∈ {0, 1}n, ttm(f(x, ·)) has low Kt-complexity (with probability 1):

Kt(ttm(f(x, ·))) ≤ n+ τ ′

since a Turing machine that contains the code of f (of length τ ′) and the seed x (of length n) can
output each bit i on the truth table in t(n) time (since f is rate-1 efficient). However, a random
string of length m has high Kt-complexity with high probability:

Pr
y∈{0,1}m

[Kt(y) > n+ τ ] ≥ 1− 1

2m−n−τ−1
,

since there are at most 2n+τ+1 Turing machines with description length smaller than n+ τ , and each
of them can produce at most a single truth table of length m.

With the above observations, we build an attacker A(1n) that distinguishes between f(x, ·) (for
a random seed x) and a random function. On input length n, let m(n) be an integer such that
T2(n− 1) < m(n) ≤ T2(n) and the heuristic H succeeds on input length m(n), and let the attacker
A(1n) receive m = m(n) as a non-uniform advice string. (If there’s no such m, the attacker A just
aborts. Since H succeeds on infinitely many m, there will be infinitely many n for which a “good” m
exists.) Note that whenever m(n) is defined, it holds that n = dT−1

2 (m(n))e (as T2, by assumption,
is monotonically increasing). Given black-box access to some function f : [T2(n)] → {0, 1}, our
distinguisher Af (1n) first queries f on every input i ∈ [m] and gets the first m bits of its truth table,
ttm(f). Then, the distinguisher feeds ttm(f) to H and outputs 0 if H(ttm(f)) returns 0. Note that
A needs to query each of the first m bits on the truth table of f (which takes O(m(n+ nε)) time),

so the running time of A is at most O(poly(n)T2(n)δ
′
+m(n+ nε) + (m)δ

′
) < T2(n)δ ≤ T1(n) (since

δ > 1 and δ > δ′ and the function T2(·) is super-polynomial). The following two claims will conclude
that A distinguish the cond EP-PRF and a random function with probability at least 1

n2 .

Claim 1. Afr(1n) will output 0 with probability at least 1− 1
2p(n) , where fr is uniformly sampled from

F = {fr : [T2(n)]→ {0, 1}}.

Proof: Recall that for a random fr, the probability that Kt(ttm(fr)) > n + τ is at least 1 −
1

2m−n−τ−1 . Conditioned on Kt(ttm(fr)) > n+ τ = dT−1
2 (m)e+ τ , ttm(fr) is a random NO instances

of MKtP[T−1
2 (m) + τ ] and H will output 0 with probability at least 1− 1

p(dT−1
2 (m)e) = 1− 1

p(n) .

Pr[fr ← F ;Afr(1n) = 0]

≥Pr[fr ← F ;Kt(ttm(fr)) > n+ τ ∧H(ttm(fr)) = 0]

= Pr[fr ← F ;Kt(ttm(fr)) > n+ τ ] · Pr[fr ← F ;H(ttm(fr)) = 0 | Kt(ttm(fr)) > n+ τ ]

≥(1− 1

2m−n−τ−1
)(1− 1

p(n)
)

≥1− 2

p(n)
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Claim 2. Af(Un|En,·)(1n) will output 0 with probability at most 1− 1
n + 2

n2 .

Proof: By the assumption that H solves MKtP[T−1
2 (m) + τ ] on average conditioned on YES

instances, given a random string z ∈ {0, 1}m such that Kt(z) ≤ bT−1
2 (m)c+τ (i.e., an YES instance),

H outputs 0 (i.e., fails on z) with probability at most 1
p(dT−1

2 (m)e) = 1
p(n) . By an averaging argument,

for at least a 1− 1
n2 fraction of random tapes r for H, the deterministic machine Hr outputs 0 with

probability at most n2

p(n) when the input is sampled uniformly among YES instances. Fix some good

random tape r such that Hr succeeds with probability at least 1 − n2

p(n) conditioning on input that

has Kt-complexity at most bT−1
2 (m)c+ τ .

We then analyze the probability that Af(Un|En,·),m
r outputs 0. (When we invoke H in Amr , we fix

the randomness used by H to be r. Recall that r is the good random tape we fixed.) Assume for
contradiction that Amr outputs 0 with probability at least

1− 1

n
+

2τ+3nα+2

p(n)

when the seed of f is sampled conditioning on En. Recall that (1) the entropy of ttm(f(Un | En, ·))
is at least ttn(f(Un | En, ·)) ≥ n − α log n and (2) the quantity − log Pr[ttm(f(Un | En, ·)) = z] is
upper bounded by n for all z ∈ ttm(f(Un | En, ·)). By an averaging argument, with probability at
least 1

n , a random z ∈ ttm(f(Un | En, ·)) will satisfy

− log Pr[ttm(f(Un | En, ·)) = z] ≥ (n− α log n)− 1.

We refer to a truth table z satisfying the above condition as being “good” and other z’s as being

“bad”. Let Z = {z ∈ ttm(f(Un | En, ·)) : Afn(z),m
r (1n) = 0 ∧ z is good}, and let Z ′ = {z ∈ ttm(f(Un |

En, ·)) : Afn(z),m
r (1n) = 0 ∧ z is bad}. Since

Pr[Af(Un|En,·),m(1n) = 0] = Pr[ttm(f(Un | En, ·)) ∈ Z] + Pr[ttm(f(Un | En, ·)) ∈ Z ′],

and Pr[ttm(f(Un | En, ·)) ∈ Z ′] is at most the probability that ttm(f(Un | En, ·)) is “bad” (which is
at most 1− 1

n by the above argument), we have that

Pr[ttm(f(Un | En, ·)) ∈ Z] ≥
(

1− 1

n
+

2τ+3nα+2

p(n)

)
−
(

1− 1

n

)
=

2τ+3nα+2

p(n)
.

Furthermore, since for every z ∈ Z, Pr[ttm(f(Un | En, ·)) = z] ≤ 2−n+α logn+1, we also have

Pr[ttm(f(Un | En, ·)) ∈ Z] ≤ |Z|2−n+α logn+1.

Thus,

|Z| ≥ 2τ+3nα+2 · 2n−α logn−1

p(n)
.

However, for any x ∈ {0, 1}n, Kt(ttm(f(x, ·))) ≤ n + τ ′ = dT−1
2 (m)e + τ ′ ≤ bT−1

2 (m)c + τ ′ + 1 =
bT−1

2 (m)c+ τ , so ttm(f(x, ·)) is also a YES instance of MKtP[T−1
2 (m) + τ ]. By Fact 2.1, there are at

most 2bT
−1
2 (m)c+τ+1 ≤ 2n+τ+1 strings that are YES instances of MKtP[T−1

2 (m) + τ ]. It follows that
Hr fails on random YES instances with probability at least

|Z|
2n+τ+1

≥ 2τ+3nα+2 · 2n−α logn−1

p(n) · 2n+τ+1
=

2n2

p(n)
,
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which contradicts to the fact that Hr is a good heuristic conditioned on YES instances.
We conclude that for every good randomness r, Amr outputs 0 with probability at most 1− 1

n +
2τ+3nα+2

p(n) . Finally, by a union bound (and since a random tape is bad with probability ≤ 1
n2 ), we

have that the probability that Af(Un|En,·),m(1n) (when using a uniform random tape) outputs 0 is at
most

1

n2
+

(
1− 1

n
+

2τ+3nα+2

p(n)

)
≤ 1− 1

n
+

2

n2

since p(n) = 2τ+3nα+4.

With the above two claims (and p(n) > n3), we conclude that Am(n) distinguishes f(Un | En, ·)
and a random function f ′ with probability at least(

1− 2

p(n)

)
−
(

1− 1

n
+

2

n2

)
>

1

n2

for infinitely many n.

5.2 Cond EP-PRF from Cond EP-PRG

In this section, we build a cond EP-PRF from a cond EP-PRG (and a standard PRF). We first recall
the notion of a conditionally-secure entropy-preserving PRG.

Definition 5.2. An efficiently computable function g : {0, 1}n → {0, 1}n+nξ where 0 < ξ < 1 is a
(T (n), ε(n))-conditionally-secure entropy-preserving pseudorandom generator ((T, ε)-cond EP-PRG)
if there exist a sequence of events = {En}n∈N and a constant α (referred to as the entropy-loss
constant) such that the following conditions hold:

• (pseudorandomness): {g(Un | En)}n∈N and {Un+nξ}n∈N are (T (n), ε(n))-indistinguishable;

• (entropy-preserving): For all sufficiently large n ∈ N, H([g(Un | En)]n) ≥ n− α log n.

We remark that the notion of a cond EP-PRG was proposed in [LP20]. However, the above
definition of a cond EP-PRG is stronger than the definition in [LP20]: they only require a cond EP-
PRG with logarithmic stretch but we require a cond EP-PRG with sublinear stretch, nξ. Note that
the recursive composition of a cond-EP-PRG g with logarithmic stretch (i.e., g′(·) = g(g(. . . g(·) . . .)))
is not necessarily a cond EP-PRG with sublinear stretch since g is only conditionally-secure, and the
probability that on every iteration, the good event E holds, may become tiny.

The following lemma shows that we can construct a rate-1 efficient cond-EP-PRF from a cond-
EP-PRG g : {0, 1}n → {0, 1}n+nξ and a standard PRF, by first applying g(·) and then applying the
standard PRF on the last nξ bits. We can next use a padding trick to make our construction rate-1
efficient.

Lemma 5.2. Consider some constant c1 ≥ 1, some negligible function µ and assume there exist a
(T1(n), 1

n6c1
)-cond-EP-PRG g : {0, 1}n → {0, 1}n+nξ and a (T1(n), µ)-PRF h : {0, 1}n × [T2(n)] →

{0, 1} such that g, h run in time O(nc1). Then, there exist a constant 0 < θ < 1 and a rate-1 efficient
(T1(nθ), 1

n2 )-cond-EP-PRF f : {0, 1}n × [T2(nθ)]→ {0, 1}.

Proof: Let g0(·), g1(·) denote the n-bit prefix and the nξ-bit suffix of g respectively, i.e., g(·) =
g0(·)||g1(·) and |g0(x)| = n, |g1(x)| = nξ for all x ∈ {0, 1}n. Let θ = ξ/(2c1). Roughly speaking, to
construct a cond-EP-PRF, we first apply a cond-EP-PRG on the seed x. Then we leave the first
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part (g0(x)) as it is to keep the entropy, and apply a (standard) PRF on the second part (g1(x)).
We will use a padding trick to make our construction rate-1 efficient. Now we proceed to a formal
construction. Let m = n2c1 . Consider the function f : {0, 1}m × [T2(nξ)] → {0, 1} defined as the
following:

f(x, i) =


g0([x]n)i, if i ≤ n
xi, if n < i ≤ m
h(g1([x]n), i), if i > m

where g0([x]n)i (resp xi) denotes the i-th bit on the string g0([x]n) (resp x). In other words, on
input a seed x of length m, f uses the first n = m1/(2c1) bits as the input of g(·). For the rest of
the bits in the input, f pastes them into the truth table directly. (This is where the padding trick
is.) Then f outputs the first n bits of g([x]n) directly to keep the entropy, and f applies a PRF h :

{0, 1}nξ × [T2(nξ)]→ {0, 1} on the rest nξ bits of g([x]n). Note that T2(nξ) = T2(mξ/(2c1)) = T2(mθ).
Thus, f indeed maps {0, 1}m × [T2(mθ)] to {0, 1}.

We first show that f is entropy-preserving. Let Em denote the event {x ∈ {0, 1}m : [x]n ∈ E′n}
where E′n is the event associated with g (over input length n). It is sufficient to show that the first
m bits (in the truth table of f) contain high enough entropy, which is indeed the case since the first
m bits are of the form g0(xpre)||xsuf where x = xpre||xsuf , and note that g0(·) = [g(·)]n is entropy
preserving. Formally,

H([tt(f(Um |Em, ·))]m) = H(g0(Un | E′n)) +m− n =

H([g(Un | E′n)]n) +m− n ≥ m− α log(n) ≥ m− α logm,

where α is the entropy-loss constant of g.
We then show that f is pseudorandom by a standard hybrid argument. For any T1(mθ) = T1(nξ)-

time adversaryA and all sufficiently largem, let Real denote the quantity Pr[x← {0, 1}m;Af(x,·)(1m) =
1 | Em], and let Ideal denote the quantity Pr[f ′ ← F ;Af ′(·)(1m) = 1] where F is the family of random
functions. Define

f ′′(x, y, i) =

{
xi, if i ≤ m
h(y, i), if i > m

where |x| = m, |y| = n. Let Hybrid denote the quantity Pr[x← {0, 1}m, y ← {0, 1}n;Af ′′(x,y,·)(1m) =
1]. The following two claims show that |Real − Ideal| < 1

m2 and thus f satisfies the pseudorandom
property.

Claim 3. |Real− Hybrid| < 1
m3 .

Proof: This claim follows from the fact that {g(Un | En)}n∈N and {Un+nξ}n∈N are (T1(n), 1
n6c1

)-

indistinguishable and note that by our choice of parameters, 1
n6c1

= 1
(n2c1 )3 = 1

m3 and A runs in time

T1(mθ) = T1(nξ) ≤ T1(n).

Claim 4. |Hybrid− Ideal| < 1
m3 .

Proof: This claim follows immediately from the fact that h is a (T1(`), µ)-pseudorandom function
(where ` is the input length of h) and note that by our choice of parameters, ` = nξ. So A runs in
time T1(mθ) = T1(nξ) ≤ T1(`), and µ(`) = µ(nξ) = µ(mθ) ≤ 1

m3 (since m is sufficiently large).

Finally, we show that f has running time m + O(logm) which (together with the above two
proofs) shows that f is a rate-1 efficient cond-EP-PRF. Recall that both g and h run in time O(nc1),
but the running time of f depends on i: If i ≤ n, f runs in time O(nc1) = O(

√
m). If n < i ≤ m, f
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will output the i-th in the seed, which takes time m+ O(logm). If i > m, the running time of f is
bounded by O(nc1) +O(nξc1) = O(

√
m). Thus, f runs in time m+O(logm).

The next corollary shows that we can construct a rate-1 efficient cond EP-PRF from a cond-EP-
PRG and a T -hard OWF.

Corollary 5.3. Let F be a nice class of super-polynomial functions and let c2 ≥ 1 be some constant.
Assume that for every β > 0, there exist a (T3,

1
nβ

)-cond-EP-PRG with running time O(nc2) (for some
function T3 ∈ F) and a T3-hard OWF. Then, for any constant δ > 1, there exist functions T1, T2 ∈ F
such that T1(n) ≥ T2(n)δ and a rate-1 efficient (T1(n), 1

n2 )-cond-EP-PRF f : {0, 1}n × [T2(n)] →
{0, 1}.

Proof: We first show that the existence of a T3-hard OWF will imply that there exist a negligible
function µ, a constant c3, functions T4, T5, T6, T7, T8 ∈ F such that T3 ≥ T4 ≥ T5 ≥ T6 ≥ T7 ≥ T8,
and a (T7(n), µ)-PRF h : {0, 1}n× [T8(n)]→ {0, 1} with running time O(nc3) by the following steps:

• There exists a length-preserving T4-one-way function (by Lemma 2.5 and Fact 2.11).

• There exists a (T5, 1/T5)-PRG (by Theorem 2.9 and Fact 2.11).

• There exists a length-doubling (T6, 1/T6)-PRG (by Lemma 2.6 and Fact 2.11) with running
time rg(n) (for some polynomial rg(·)).

• Let T7(n) = T6(n)1/2 and T8(n) = T6(n)1/(2δ). By Theorem 2.10, there exists a (T7(n), nT8(n)
T6(n) )-

PRF h : {0, 1}n× [T8(n)]→ {0, 1} with running time rg(n) · log T8(n) ≤ rg(n) ·n (since T8(n) ≤
2n). Let c3 be the constant such that O(nc3) ≥ rg(n) · n, and note that nT8(n)

T6(n) ≤
n

T6(n)1−1/(2δ)

which is a negligible function. Thus, there exists a negligible function µ such that h is a
(T7, µ)-PRF with running time bounded by O(nc3).

Let c1 = max{c2, c3}, and let β = 6c1. Since T3 ≥ T7, it follows that there exist a (T7,
1

n6c1
)-cond-

EP-PRG g and a (T7, µ)-PRF h : {0, 1}n × [T8(n)] → {0, 1} such that both g and h run in O(nc1)
time.

Thus, by Lemma 5.2, there exist a constant 0 < θ < 1 and a rate-1 efficient (T7(nθ), 1
n2 )-cond-

EP-PRF f : {0, 1}n × [T8(nθ)] → {0, 1}. Let T1(n) = T7(nθ) and T2(n) = T8(nθ). Note that
T8(n)δ = (T6(n)1/(2δ))δ = T6(n)1/2 = T7(n), so it holds that T2(n)δ ≤ T1(n).

5.3 Cond EP-PRG from OWFs

In this section, we show how to construct a cond EP-PRG with sublinear stretch from OWFs. We
refer the reader to the introduction for an overview of this construction, and here directly jump into
the formal proof.

Lemma 5.3. Let F be a nice class of super-polynomial functions, and T be a function ∈ F . For
any polynomial-time computable function g : {0, 1}n → {0, 1}2n, there exist a polynomial t0(·) and
constants c0, ξ such that for every β > 0, if g is a (T (n), 1

nβ·c0
)-PRG, then there exists a (T ′(m), 1

mβ
)-

cond EP-PRG gβ : {0, 1}m → {0, 1}m+mξ with running time t0(m) for some function T ′(m) ∈ F
satisfying T ′(m) ≤ T (m).

Proof: By Lemma 2.9 and Lemma 2.8, there exist a constant c and a polynomial-time computable
function H : {0, 1}n × {0, 1}nc → {0, 1}n such that for every n, k ≤ n, Hnk = {h′σ : σ ∈ {0, 1}nc}
is a universal hash family, where h′σ = [hσ]k and hσ(x) = H(x, σ). For all β > 0, let β′(β) =
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2c(β + 2), c0 = 2c. Consider the function gβ : {0, 1}logn+n+nc+(3n)c → {0, 1}nc+(3n)c+ 3n
2 defined as

the followings:

gβ(i, x, σ1, σ2) = σ1

∣∣∣∣∣∣σ2

∣∣∣∣∣∣ [hσ2

(
g(x)

∣∣∣∣∣∣[hσ1(x)]i−β′ logn

∣∣∣∣∣∣0n−i+β′ logn
)]

3n
2

where |i| = log n, |x| = n, |σ1| = nc, |σ2| = (3n)c, the input length of hσ1(·) is n, and the input length
of hσ2(·) is 3n. Let m = m(n) = log n+ n+ nc + (3n)c denote the input length of gβ. Note that gβ
expands m bits to 3n

2 +nc+ (3n)c = m+ (n2 − log n) = m+mξ bits for some constant ξ. Let {Em(n)}
be a sequence of events where

Em(n) = {i, x, σ1, σ2 : i = Dg(g(x)), x ∈ {0, 1}n, σ1 ∈ {0, 1}n
c
, σ2 ∈ {0, 1}(3n)c}

and the degeneracy of g on point g(x) is defined as Dg(g(x)) = blog |{x′ ∈ {0, 1}n : g(x′) = g(x)}|c.
We note that β′ is chosen such that 1

nβ′
≤ 1

mβ+2 and c0 is a constant such that 1
8mβ

> 1
nc0β

(for
sufficiently large n). The following two claims show that gβ satisfies both the entropy-preserving
property and the pseudorandomness property (if the function g is a sufficiently hard PRG).

Claim 5. H([gβ(Um | Em)]m) ≥ m− (2β′ + 1) log n− 2.

Proof: Let b = (2β′ + 1) log n. We claim that [gβ(Um | Em)]m−b is 3
nβ′
≤ 1

m2 -close to Um−b in
statistical distance. If this is true, by Lemma 2.7, H([gβ(Um | Em)]m−b) ≥ m− b− 2. Thus,

H([gβ(Um | Em)]m) ≥ H([gβ(Um | Em)]m−b) ≥ m− b− 2 ≥ m− (2β′ + 1) log n− 2.

We turn to proving that [gβ(Um | Em)]m−b is 3
nβ′

-close to Um−b by a standard hybrid argument. Let

X,R1, R2 be random variables uniformly distributed over {0, 1}n, {0, 1}nc , and {0, 1}(3n)c , respec-
tively, and I ′ = Dg(g(X))− β′ log n. Let

Real = R1

∣∣∣∣∣∣R2

∣∣∣∣∣∣ [hR2

(
g(X)

∣∣∣∣∣∣[hR1(X)]I′
∣∣∣∣∣∣0n−I′)]

n−2β′ logn

and
Hybrid = R1

∣∣∣∣∣∣R2

∣∣∣∣∣∣ [hR2

(
g(X)

∣∣∣∣∣∣UI′∣∣∣∣∣∣0n−I′)]
n−2β′ logn

Our proof proceeds as the following:

• Note that Real is identically distributed to [gβ(Dg(g(X)), X,R1, R2)]m−b (since |R1| + |R2| +
n− 2β′ log n = m− (2β′ + 1) log n = m− b).

• We first show that SD(Real,Hybrid) ≤ 1
nβ′

. We define a “post-processing” function:

gpost(σ1, σ2, z) = σ1||σ2|| [hσ2(z)]n−2β′ logn

Note that we can view the distribution Real and the distribution Hybrid as

Real = gpost(R1, R2, g(X)||[hR1(X)]I′ ||0n−I
′
)

and
Hybrid = gpost(R1, R2, g(X)||UI′ ||0n−I

′
)
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Since the statistical distance between any two distributions after applying the same (post-
processing) function is at most the distance between the two original distributions, it follows
that SD(Real,Hybrid) is at most

SD(gpost(R1, R2, g(X)||[hR1(X)]I′ ||0n−I
′
), gpost(R1, R2, g(X)||UI′ ||0n−I

′
)

≤SD(R1||R2||g(X)||[hR1(X)]I′ ||0n−I
′
, R1||R2||g(X)||UI′ ||0n−I

′
)

≤SD(R1||g(X)||[hR1(X)]I′ , R1||g(X)||UI′)
=Ey←g(Un)[SD(R1||y||[hR1(X | g(X) = y)]I′ , R1||y||UI′)]
=Ey←g(Un)[SD(R1||y||[hR1(X | g(X) = y)]Dg(y)−β′ logn, R1||y||UDg(y)−β′ logn)]

≤Ey←g(Un)

[
1

nβ′

]
=

1

nβ′

which follows from the Leftover Hash Lemma (i.e., Lemma 2.10) since H∞(X | g(X) = y) ≥
Dg(y).

• We then show that SD(Hybrid, R1||R2||Un−2β′ logn) ≤ 2
nβ′

also by the Leftover Hash Lemma.

Note that H∞(g(X)||UI′ ||0n−I
′
) = H∞(g(X)||UI′) and H∞(g(X)||UI′) is at least

min
y∈g(Un),z∈{0,1}I′

− log Pr[g(X) = y ∧ UI′ = z]

= min
y∈g(Un),z∈{0,1}Dg(y)−β′ logn

− log Pr[g(X) = y ∧ UDg(y)−β′ logn = z]

= min
y∈g(Un),z∈{0,1}Dg(y)−β′ logn

− log(Pr[g(X) = y]× Pr[UDg(y)−β′ logn = z])

= min
y∈g(Un)

− log Pr[g(X) = y] +Dg(y)− β′ log n

≥ min
y∈g(Un)

− log
2Dg(y)+1

2n
+Dg(y)− β′ log n

= min
y∈g(Un)

n−Dg(y)− 1 +Dg(y)− β′ log n

=n− 1− β′ log n.

Thus, H∞(g(X)||UI′ ||0n−I
′
) ≥ n − 1 − β′ log n. And again by the Leftover Hash Lemma, it

follows that Hybrid is 2
nβ′

-close to R1||R2||Un−2β′ logn.

• Finally, R1||R2||Un−2β′ logn is identically distributed to Um−b, which concludes the proof.

Claim 6. If g is a (T (n), 1
nβ·c0

)-PRG, then the ensembles {gβ(Um(n) | Em(n))}n∈N and {Um(n)+m(n)ξ}n∈N
are (T ′(m), 1

mβ
)-indistinguishable where T ′(m) = T (n)

16n2m2β .

Proof: For the sake of contradiction, we can assume without loss of generality that there exists a
T ′(m)-time distinguisher A such that

Pr[A(gβ(Um | Em)) = 1]− Pr[A(Um+mξ) = 1] ≥ 1

mβ

for infinitely many n. Fix some n,m where A succeeds. Consider the following experiments:
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1. P1 = Pr[A(σ1||σ2||[hσ2(g(x)||[hσ1(x)]i′ ||0n−i
′
)] 3n

2
) = 1] where x ← {0, 1}n, σ1 ← {0, 1}n

c
, σ2 ←

{0, 1}(3n)c , i′ = Dg(g(x))− β′ log n;

2. P2 = Pr[A(σ1||σ2||[hσ2(g(x)||r1||0n−i
′
)] 3n

2
) = 1] where x ← {0, 1}n, σ1 ← {0, 1}nc , σ2 ←

{0, 1}(3n)c , i′ = Dg(g(x))− β′ log n, r1 ← {0, 1}i
′
;

3. P3 = Pr[A(σ1||σ2||r2) = 1] where σ1 ← {0, 1}n
c
, σ2 ← {0, 1}(3n)c , r2 ← {0, 1}

3n
2 .

Observe that P1 = Pr[A(gβ(Um | Em)) = 1] and P3 = Pr[A(Um+mξ) = 1], so P1 − P3 ≥ 1
mβ

. Notice
that in experiment 1, for any y ∈ g(Un), the min-entropy of the distribution {x← {0, 1}n | g(x) = y}
is at least Dg(y) ≥ i′ + β′ log n. Thus, by the Leftover Hash Lemma, the distribution

{x← {0, 1}n | g(x) = y, σ1 ← {0, 1}n
c

: [hσ1(x)]i′ ||σ1}

is 1
nβ′

-close to the distribution

{r1 ← {0, 1}i
′
, σ1 ← {0, 1}n

c
: r1||σ1}.

It follows that P2 ≥ P1 − 1
nβ′
≥ P1 − 1

4mβ
≥ P3 + 3

4mβ
. Given this observation, we construct a

distinguisher A′ to break the PRG g.
On input z ∈ {0, 1}2n, A′ enumerates all possible j ∈ [n]. For each j ∈ [n], the following

procedure is repeated for 16nm2β times. In the k-th iteration, A′ samples r1 ∈ {0, 1}j , σ1 ∈ {0, 1}n
c
,

and σ2 ∈ {0, 1}(3n)c , and computes

pz,j,k = A(σ1||σ2||[hσ2(z||r1||0n−j)] 3n
2

).

Let pz,j denote the mean of pz,j,k’s; that is,

pz,j =
1

16nm2β

16nm2β∑
k=1

pz,j,k.

We can consider the value pz,j as an empirical estimation of

qz,j = Pr
r1,σ1,σ2

[A(σ1||σ2||[hσ2(z||r1||0n−j)] 3n
2

) = 1].

Let j∗ be the index j such that pz,j is maximized; that is, j∗ = arg maxj pz,j . Finally, A′ samples
r∗1 ∈ {0, 1}j

∗
, σ∗1 ∈ {0, 1}n

c
, σ∗2 ∈ {0, 1}(3n)c , and returns

A(σ∗1||σ∗2||[hσ∗2 (z||r∗1||0n−j
∗
)] 3n

2
).

Note that A′ runs in time n · 16nm2β · T ′(m) ≤ T (n).
We first claim that when the input z is a random string of length 2n, Prz[A′(z) = 1] is roughly

at most P3. Let Z be a random variable uniformly distributed over {0, 1}2n, J∗ be a random
variable describing A′(Z)’s choice of the index, and R∗1, Rσ∗1 , Rσ∗2 be three random variables uniformly

distributed over {0, 1}J∗ , {0, 1}nc , {0, 1}(3n)c , respectively. It follows that

Pr
z←{0,1}2n

[A′(z) = 1] = Pr[A(Rσ∗1 ||Rσ∗2 ||[hRσ∗2 (Z||R∗1||0n−J
∗
)] 3n

2
) = 1].

Notice that H∞(Z||R∗1||0n−J
∗
) ≥ H∞(Z) ≥ 2n. It follows by the Leftover Hash Lemma that the

distribution
Rσ∗1 ||Rσ∗2 ||[hRσ∗2 (Z||R∗1||0n−J

∗
)] 3n

2
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is 2−n/2-close to the distributionRσ∗1 ||Rσ∗2 ||U 3n
2

(which is distributed uniformly) in statistical distance.

Thus,

Pr
z←{0,1}2n

[A′(z) = 1] ≤ Pr[A(Rσ∗1 ||Rσ∗2 ||U 3n
2

) = 1] +
1

2n/2
≤ P3 +

1

2n/2
.

We then show that on input z ← g(Un), Pr[A′(z) = 1] is, roughly, at least P2. Recall that in
A′(z), pz,j is computed as an empirical estimation of qz,j . By the Chernoff bound,

Pr[|qz,j − pz,j | >
1

4mβ
] ≤ 2e

− 1

16m2β ·16nm2β

≤ 2e−n.

Let E′ be the event that for all j ∈ [n], |qz,j − pz,j | ≤ 1
4mβ

, which by a union bound happens with
probability at least 1− 2ne−n. Since j∗ is the index such that pz,j∗ is maximized, pz,j∗ ≥ pz,i′ where
i′ = Dg(z)− β′ log n is defined in experiment 2. Conditioned on the event E′, qz,j∗ ≥ pz,j∗ − 1

4mβ
≥

pz,i′ − 1
4mβ
≥ qz,i′ − 1

2mβ
. Finally, note that the probability that A′(z) outputs 1 is exactly qz,j∗ , and

thus

Pr[A′(g(Un)) = 1]

=Ez←g(Un)

[
Pr

j∗←J∗,r1←{0,1}j∗ ,σ1,σ2

[A(σ1||σ2||[hσ2(z||r1||0n−j
∗
)]) = 1]

]
=Ez←g(Un)

[
Pr[E′] · Ej∗←J∗ [qz,j∗ | E′] + Pr[¬E′] · Ej∗∈J∗ [qz,j∗ | ¬E′]

]
≥Ez←g(Un)

[
Pr[E′] · Ej∗←J∗ [qz,j∗ | E′]

]
≥Ez←g(Un)

[
Pr[E′] · (qz,i′ −

1

2mβ
)

]
≥Ez←g(Un)

[
qz,i′ −

1

2mβ
− 2ne−n

]
=Ez←g(Un)

[
Pr

r1∈{0,1}i′ ,σ1,σ2

[A(σ1||σ2||[hσ2(z||r1||0n−i
′
)]) = 1]

]
− 1

2mβ
− 2ne−n

=P2 −
1

2mβ
− 2ne−n.

Combining the above two proofs, we conclude that Pr[A′(g(Un)) = 1] − Pr[A′(U2n) = 1] ≥
P2 − 1

2mβ
− 2ne−n − P3 − 1

2n/2
≥ 1

8mβ
≥ 1

nc0·β
, which is a contradiction.

Note that in the above claim, if T ∈ F , then there exists a function T ′′ ∈ F such that T ′′(m) ≤
T ′(m) = T (n)

16n2m2β by Fact 2.11. Thus, the two distributions are (T ′′(m), 1
mβ

)-indistinguishable.
Although we have shown that gβ satisfies both the entropy-preserving property and pseudoran-

domness property, gβ is only defined over some input lengthsm = m(n). We then specify the behavior
of gβ over those undefined input lengths. On input a string x′ of an arbitrary length, denoted by m′,
gβ(x′) finds a prefix x of x′ as long as possible such that |x| is of form m(n) = log n+ n+ nc + (3n)c

for some n, rewrites x′ = x||y, and outputs gβ(x)||y. It follows that gβ still keeps the the entropy-
preserving property and pseudorandomness property, and there exists a constant ξ such that gβ
expands m bits to at least m+mξ bits for every m.

We finally show that there exists a polynomial t0(·) such that for every β > 0, gβ runs in time
t0(m) on inputs of length m. Note that the function g used in the construction can be assumed to
have some fixed polynomial running time. And the hash function hσ1 (resp hσ2) always take nc bits
(resp (3n)c bits) as input, so we can assume that both the hash functions run in a fixed polynomial
time. So for any β > 0, the running time of gβ will always be upper-bounded by some polynomial
t0(·).
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The following corollary shows that we can construct a cond EP-PRG from a T -hard one-way
function.

Corollary 5.4. Let F be a nice class of super-polynomial functions. Assume that there exists a
function T1 ∈ F such that T1-one-way functions exist. Then, there exist a polynomial t0(·) and
a constant ξ such that for every β > 0, there exists a (T2(n), 1

nβ
)-cond EP-PRG gβ : {0, 1}n →

{0, 1}n+nξ with running time t0(m) for some function T2(n) ∈ F satisfying T2(n) ≤ T1(n).

Proof: Since there exists a T1-one-way function for some function T1 ∈ F , the proof of Corollary 5.3
shows that there exists a function T3 ∈ F such that there exists a length-doubling (T3, 1/T3)-PRG g.
The corollary follows from Lemma 5.3 since for all constants β, c0 > 0, 1

T3(n) ≤
1

nβ·c0
for all sufficiently

large n, g satisfies the requirement in the statement of the lemma.

6 The Main Theorem

In this section, we recall the statement of our main theorem and formally prove it (relying on all the
earlier proved results).

Theorem 6.1 (restatement of Theorem 1.1). Let F be a nice class of super-polynomial functions,
and t(n) be a polynomial such that t(n) ≥ (1 + ε)n, ε > 0. The following are equivalent:

(a) There exists a function T ∈ F such that (non-uniformly secure) T (n)-one-way functions exist.

(b) There exist an integer constant τ ≥ 0 and a function T ∈ F such that MKtP[T−1(n) + τ ] is
mildly HoA∗ for sublinear-time non-uniform heuristics.

(c) There exists a function T ∈ F such that for any integer γ > 1, MKtP[n/γ] is mildly HoA∗ for
T (n)-time non-uniform heuristics.

At a high level, almost all earlier proved results are polynomial-time reductions (in the input
length and the running-times), and the above theorem follows from the fact that such reductions
“preserve” F-hardness (as stated in section 2.8).
Proof: [Proof of Theorem 6.1]

(b) ⇒ (c): This follows directly from Lemma 3.1.
(c) ⇒ (a): This follows directly from Corollary 4.1.
(a) ⇒ (b): This follows from Corollary 5.4, Corollary 5.3, and Lemma 5.1.

Remark 6.1 (A note on hardness w.r.t. uniform attackers). We note that although the theorem is
stated w.r.t. non-uniform attackers, the implications that (b) implies (c) implies (a) also hold w.r.t.
uniform attackers; see Remarks 3.2 and 4.2.

6.1 Corollaries

We here explicitly state some corollaries of Theorem 6.1 when considering specific function families
F .

Corollary 6.2 (Characterizing Subexponentiall-secure OWFs). Let ε > 0, and let t(n) be a polyno-
mial t(n) ≥ (1 + ε)n, the following are equivalent:

(a) Subexponentially-secure (non-uniformly) one-way functions exist.
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(b) There exist constants β > 1, τ ≥ 0 such that MKtP[logβ n+τ ] is mildly HoA∗ for sublinear-time
non-uniform heuristics.

(c) There exists a constant ε > 0 such that for any integer γ > 1, MKtP[n/γ] is mildly HoA∗ for
2n

ε
-time non-uniform heuristics.

Proof: Let Fsubexp = {2cnε}c>0,0<ε<1 be the class of subexponential functions. Note that (1)
for all c > 0, 0 < ε < 1, the function f(n) = 2cn

ε
is time-constructible and for all n > 1, f(n +

1) − f(n) = 2c((n+1)ε−nε) = Ω(1), (2) for all 0 < ε1, ε2 < 1, f(nε1)ε2 = 2cε2n
ε·ε1 ∈ F , and (3)

f(n) is super-polynomial. Thus, Fsubexp is a nice class of super-polynomial functions. Let F−1
subexp =

{c logβ n}c>0,β>1. Notice that for all c > 0, 0 < ε < 1, the inverse function of f(n) = 2cn
ε

is f−1(n) =

1

cε−1 logε
−1
n since f(f−1(n)) = 2

(c( 1

cε
−1 logε

−1
n)ε)

= 2(c( 1
c

logn)) = 2logn = n and f−1(n) ∈ F−1
subexp.

So, F−1
subexp is indeed the inverse class of Fsubexp. Finally, the corollary follows from Theorem 6.1

with F = Fsubexp (and the fact that for any c > 0, 0 < ε < 1, there exist constants 0 < ε1, ε2 < 1
such that 2n

ε1 ≤ 2cn
ε ≤ 2n

ε2 , and for any c > 0, β > 1, there exist constants β1, β2 > 0 such that
logβ1 n ≤ c logβ n ≤ logβ2 n).

Corollary 6.3 (Characterizing Quasi polynomially-secure OWFs). Let ε > 0, and let t(n) be a
polynomial t(n) ≥ (1 + ε)n, the following are equivalent:

(a) Quasi polynomially-secure (non-uniformly) one-way functions exist.

(b) There exists constants c > 0, τ ≥ 0 such that MKtP[2c
√

logn + τ ] is mildly HoA∗ for sublinear-
time non-uniform heuristics.

(c) There exists a constant c > 0 such that for any integer γ > 1, MKtP[n/γ] is mildly HoA∗ for
nc logn-time non-uniform heuristics.

Proof: Let Fqpoly = {nc logn}c>0 be the class of quasi-polynomial functions. Note that (1) for all c >
0, the function f(n) = 2c logn is time-constructible and for all n > 1, f(n+1)−f(n) = Ω(1), (2) for all
0 < ε1, ε2 < 1, f(nε1)ε2 = (nε1)cε2 log(nε1 ) = ncε

2
1ε2 logn ∈ F , and (3) f(n) is super-polynomial. Thus,

Fqpoly is a nice class of super-polynomial functions. Let F−1
qpoly = {2c

√
logn}c>0. Notice that for all c >

0, the inverse function of f(n) = nc logn is f−1(n) = 2
1√
c

√
logn

since f(f−1(n)) = (f−1(n))c log f−1(n) =

2c(log f−1(n))2
= 2

c( 1√
c

√
logn)2

= 2logn = n and f−1(n) ∈ F−1
qpoly. So F−1

qpoly is indeed the inverse class of
Fqpoly. Finally, the corollary follows from Theorem 6.1 with F = Fqpoly.

6.2 A Characterization of Polynomially-secure OWF

We finally note that our treatment can also be used to characterize “standard” polynomially-hard
OWFs using sublinear hardness of MKtP[s]. Although this formally does not follow as a corollary
to Theorem 6.1, the same proof directly applies as all reductions used to show Theorem 6.1 are
polynomial-time reductions (in the input length and in the running-times).

Theorem 6.4. Let ε > 0, and let t(n) be a polynomial t(n) ≥ (1 + ε)n, the following are equivalent:

(a) (Non-uniformly) OWFs exist.

(b) There exists a constant δ > 0 such that for all 0 < ε < 1, MKtP[nε] is mildly HoA∗ for nδ-time
non-uniform heuristics.
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(c) For any integer γ > 1, MKtP[n/γ] is mildly HoA∗ for all polynomial-time non-uniform heuris-
tics.

We note, in contrast to the characterizations in Section 6.1, this characterization is less appealing
in that we are not able to identify a single problem whose sublinear hardness characterizes OWFs;
rather, OWFs are characterized through the sublinear hardness of MKtP[nε] for every 0 < ε < 1.

7 Unconditional Lowerbounds for MKtP[s(n)]

As noted in Remark 6.1, to deduce T -hard OWFs where security holds w.r.t. uniform T -time
probabilistic attackers (i.e., uniformly-secure OWFs), it suffices to assume sublinear time hardness
of MKtP w.r.t. uniform sublinear-time attackers.

We now complement this result by establishing lower bounds that come surprisingly close to
what is required to unconditionally deduce the existence of subexponentially-hard (uniformly-secure)
OWFs (and thus that NP /∈ BPTIME(2n

α
) for some α > 0). Our first lower bound demonstrates

worst-case hardness of MKtP[s] with respect to sublinear uniform probabilistic algorithms, even for
very small thresholds s(·) (recall that for Theorem 6.1, we require mild average-case hardness for
the same problem).

Theorem 7.1. For any function t(n) ≥ n, for every 0 < δ < 1, ω(1) < s(n) < n − nδ − 2,
MKtP[s(n)] /∈ BPTIME(nδ).

Proof: Let L denote the language MKtP[s(n)]. Suppose for contradiction that there exists a
probabilistic nδ-time Turing machine H such that for every x ∈ {0, 1}n, Pr[H(x) = L(x)] ≥ 2

3 .
Consider some n-bit string y ∈ MKtP[s(n)], and it follows that Pr[H(y) = 1] ≥ 2

3 . Note that the
heuristic H is of running time nδ and it can only access to the first nδ bits of y. Let z be a string
∈ {0, 1}n whose first nδ bits are identical to the first nδ bits of y. It’s impossible for H to tell apart
z from y, so H(y) = H(z). The following claim shows that there exist a large number of such z’s
that have high enough Kt complexity.

Claim 7. There are 2n−n
δ−1 strings z ∈ {0, 1}n such that [z]nδ = [y]nδ and Kt(z) > s(n).

Proof: This claim follows from a counting argument. Let Z ′ = {z′ ∈ {0, 1}n : [z′]nδ = [y]nδ} be a

set of strings that have the same prefix with y. It follows that |Z ′| ≥ 2n−n
δ
. By Fact 2.1, we know

that there are at most 2s(n)+1 strings of length n that have Kt-complexity no more than s(n). Let

Z = Z ′/MKtP[s(n)], and it follows that |Z| ≥ 2n−n
δ − 2s(n)+1 ≥ 2n−n

δ−1.

Thus, for every string z ∈ Z, Pr[H(z) = 1] = Pr[H(y) = 1] ≥ 2
3 . However, z /∈ L, which is a

contradiction.

Our second lower bound demonstrates that when the threshold s is large, s(n) = n− log n, then
MKtP[s] is mildly HoA (and thus also mildly HoA∗) with respect to not only sublinear uniform
algorithms, but even for algorithms that run in time t(n)/n3. This theorem extends a recent lower
bound by Hirahara [Hir20] that establishes average-case hardness of MKtP[n − 1] w.r.t. errorless
deterministic heuristics where t = nω(1). As far as we know, our result is the first lower bound
demonstrating two-sided error average-case hardness for time-bounded Kolmogorov complexity.

Theorem 7.2. For any function t, any constant β > 2, 0 < α ≤ β−2, MKtP[n−α log n] is 1
nβ

-HoA∗

for deterministic uniform t(n)/(nα+1 log3 n)-time heuristics.
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Proof: Consider some function t and any constants β > 2, 0 < α ≤ β − 2. Let L denote the
language MKtP[n−α log n]. Let m(n) = (α+ 1) log n+ 3 log log n, and assume for contradiction that
there exists a

t(n)/2m(n) = t(n)/(nα+1 log3 n)

time deterministic heuristic H with success probability at least 1 − 1
nβ

for infinitely many n. Fix

some n where H succeeds (i.e., its failure probability is at most 1
nβ

).

We start by showing that the space of n-bit strings can be covered by “balls” of 2m(n) strings,
where each ball is specified by an n−m(n)-bit prefix y, such that there exists many balls on which
H perfectly decides the language. More precisely, given an n−m(n)-bit prefix y, let By denote the
set of n-bit strings that have y as a prefix. We refer to a ball By as being “good” if H(x) = L(x) for
all x ∈ By (note that the definition of By being good relies on H being deterministic). We now have
the following claim:

Claim 8. For at least a fraction 1/2 of n−m(n) bits strings y, we have By is good.

Proof: By an averaging argument, for at most a 1
2 fraction of (n − m(n))-bit strings y, the

probability that H(x) fails over random strings x ∈ By is at most 2
nβ

. Note, however that By

contains 2m(n) = nα+1 log3 n < nα+2/2 ≤ nβ/2 strings, so H cannot fail on any single one of them.

We will next show that there must exist some good ball that contains a string z that is not in
L (i.e., has high Kt complexity). Intuitively, this will yield a contradiction as we can compress this
string z by specifying the ball (through its (n−m(n))-bit prefix y), and next searching of the string
z by enumarating all string in By and using H to determine its Kt-complexity.

Claim 9. There exists some good ball By such that By contains a string x /∈ L.

Proof: By Fact 2.1, only a 1
nα < 1

2 fraction of n-bit strings are in MKtP[n − α log n]. Since by
Claim 8, there are at most a 1

2 fraction of strings contained in “bad” balls (as all balls are disjoint),
there must exist at least one string x /∈ L that is contained in a good ball.

Fix a string y guaranteed to exists by Claim 9, and let z ∈ {0, 1}n be the lexicographically smallest
string in By such that z /∈ L and thus, Kt(z) > n − α log n. We contradict this by presenting a
machine Ay with a short description that generates z. On input i ∈ [n], Ay(i) tries all a ∈ {0, 1}m(n),
runs H(y||a), and outputs the i-th bit of the lexicographically smallest string y||a such that H(y||a)
returns 0. Since by assumption y ∈ By, we have that H(y||a) = L(y||a) and thus Ay generates z as
desired.

Note that Ay can be described by n ∈ N, y ∈ {0, 1}n−m(n), and the code of H (which is constant);
thus, the length of the description of Ay is

(log n+ 2 log log n) + (n−m(n)) +O(1) ≤ n− α log n.

Furthemore, the running time of Ay is at most 2m(n) × t(n)

2m(n) = t(n), so we conclude that Kt(z) ≤
n− α log n, which contradicts the fact that z /∈ L.
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A Proofs for some Lemmas

In this section, we provide formal proofs for Lemma 2.2, 2.3 and 2.4.

Proof of Lemma 2.2 We first claim that L must be a D(n)-dense language where D(n) ≥ 2n−log2 n.
Suppose for contradiction that D(n) ≤ 2n

log2 n
. Then a heuristic that always outputs 0 will decide L

with probability at least 1− 1

2log2 n
, which is a contradiction.

We now show that L is mildly HoA∗ (for T (n)-time heuristics), which concludes the proof. Let
n∗ = logD(n); it follows that n∗ ≥ n − log2 n ≥ n/2. Assume for contradiction that there exist a
monotonically increasing polynomial p(·) and a heuristic H such that for infinitely many n, for all
µ ∈ {0, 1},

Pr[x← {0, 1}n : H(x) = µ | L(x) = µ] ≥ 1− 1

p(n∗)
.

It follows that

Pr[x← {0, 1}n : H(x) = L(x)]

= Pr[x ∈ L(x)] Pr[H(x) = 1 | L(x) = 1] + Pr[x /∈ L(x)] Pr[H(x) = 0 | L(x) = 0]

≥1− 1

p(n∗)

≥1− 1

p(n/2)
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which is a contradiction.

Proof of Lemma 2.3 Suppose for the sake of contradiction that there exist a T (n)-time errorless
heuristic H′ and a monotonically increasing polynomial p(·) such that for infinitely many n,

Pr[x← {0, 1}n : H′(x) = ⊥] ≤ 1

p(n)
,

and
Pr[x← {0, 1}n : H′(x) ∈ {L(x),⊥}] = 1.

There exists a bit µ ∈ {0, 1} such that for infinitely many n on which H′ succeeds, |{x ∈ {0, 1}n :
L(x) = µ}| ≥ 2n−1. Fix some such n. Our heuristic H, on input x ∈ {0, 1}n, outputs H′(x) if
H′(x) 6= ⊥ and otherwise outputs µ⊕ 1. It follows that

Pr[H(x) 6= µ | L(x) = µ] = Pr[H′(x) = ⊥ | L(x) = µ] ≤ Pr[H′(x) = ⊥]

Pr[L(x) = µ]
≤ 2

p(n)
≤ 2

p(n∗)

and

Pr[H(x) 6= µ⊕ 1 | L(x) = µ⊕ 1] = Pr[H′(x) = µ | L(x) = µ⊕ 1] = 0 ≤ 2

p(n∗)

where n∗ = logD(n) and D(n) is the density of L. Thus, H′ is a good “heuristic∗” for L that
succeeds with probability at least 1− 2

p(n∗) over infinitely many n, which is a contradiction.

Proof of Lemma 2.4 Let f be a (T (n), 1− 1
q(n))-one-way function. Consider the dot product function

f ′ defined as f ′(x1, . . . , xm) = (f(x1), . . . , f(xm)) where m = 2nq(n). Let us denote the input length

of f ′ by n′ where n′ = nm. We claim that f ′ is a (T ′(n′))-one-way where T ′(n′) =
√

T (n)
2nm2 − poly(n).

Assume for contradiction that there exists a (T ′(n′))-time algorithm A′ that inverts f ′ with
probability 1/T ′(n′). We construct an adversary A inverting f . On input (1n, y), A samples j ∈ [m]
and let yj ← y. For i 6= j, A samples yi ← f(Un). Then A runs A′ to invert f ′ on (y1, . . . , ym), and
returns the pre-image of y if A′ succeeds on the j-th component. To amplify the success probability,
A will repeat the above procedure for 2nm2T ′(n′) times. Note that A′ runs in T ′(n′) time, and
checking whether A′ succeeds on the j-th component takes time poly(n), so the running time of A
can be bounded by 2nm2T ′(n′) · (T ′(n′) + poly(n)) ≤ T (n).

To analyze the success probability of A, let w(y) denote the probability that A receives a correct
pre-image of y from A′ in a single attempt (of invoking A′). We refer to a string x as being “good”
if w(f(x)) ≥ 1

2m2T ′(n′) . It follows that on a good x, A fails to invert f(x) with probability at most

(
1− 1

2m2T ′(n′)

)2nm2T ′(n′)

≈ e−n.

We then claim the probability that x is good is at least 1 − 1
2q(n) when x is sampled uniformly. If

this is true, it follows that A will invert f with probability at least 1− 1
q(n) , which will conclude the

proof.
To reach a contradiction, assume x is good with probability < 1− 1

2q(n) . We show that A′ inverts

f ′ with probability < 1/T ′(n′) (which is a contradiction). It holds that the probability that all xi’s
sampled by A′ are good is at most (1 − 1

2q(n))2nq(n) ≈ e−n < 1
2T ′(n′) , so we only have to show that,

the probability that A′ inverts f ′ and some xi is bad is at most 1
2T ′(n′) . Supposed not. It follows

(by taking a union bound) that there exists an index j ∈ [m] such that conditioned on xj being bad,
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A′ inverts f ′ with probability at least 1
2mT ′(n′) . And by an averaging argument, there exists a bad

x such that A′ inverts f ′ with probability at least 1
2mT ′(n′) when xj = x. If so, on the bad string x,

with probability 1
m , A will assign f(x) to yj (in a single attempt of invoking A′), and thus A will

succeeds with probability at least 1
2m2T ′(n′) , which contradicts the fact that x is bad.
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