
Sample-Based Proofs of Proximity

Guy Goldberg ∗

Weizmann Institute
Guy N. Rothblum †

Weizmann Institute

Abstract

Suppose we have random sampling access to a huge object, such as a graph or a database.
Namely, we can observe the values of random locations in the object, say random records in the
database or random edges in the graph. We cannot, however, query locations of our choice. Can
we verify complex properties of the object using only this restricted sampling access?

In this work, we initiate the study of sample-based proof systems, where the verifier is extremely
constrained; Given an input, the verifier can only obtain samples of uniformly random and i.i.d.
locations in the input string, together with the values at those locations. The goal is verifying
complex properties in sublinear time, using only this restricted access. Following the literature on
Property Testing and on Interactive Proofs of Proximity (IPPs), we seek proof systems where the
verifier accepts every input that has the property, and with high probability rejects every input
that is far from the property.

We study both interactive and non-interactive sample-based proof systems, showing:

• On the positive side, our main result is that rich families of properties / languages have sub-
linear sample-based interactive proofs of proximity (SIPPs). We show that every language in
NC has a SIPP, where the sample and communication complexities, as well as the verifier’s
running time, are Õ(

√
n), and with polylog(n) communication rounds. We also show that

every language that can be computed in polynomial-time and bounded-polynomial space has
a SIPP, where the sample and communication complexities of the protocol, as well as the
verifier’s running time are roughly

√
n, and with a constant number of rounds.

This is achieved by constructing a reduction protocol from SIPPs to IPPs. With the aid
of an untrusted prover, this reduction enables a restricted, sample-based verifier to simulate
an execution of a (query-based) IPP, even though it cannot query the input. Applying the
reduction to known query-based IPPs yields SIPPs for the families described above.

• We show that every language with an adequate (query-based) property tester has a 1-round
SIPP with constant sample complexity and logarithmic communication complexity. One such
language is equality testing, for which we give an explicit and simple SIPP.

• On the negative side, we show that interaction can be essential: we prove that there is no
non-interactive sample-based proof of proximity for equality testing.

• Finally, we prove that private coins can dramatically increase the power of SIPPs. We show a
strong separation between the power of public-coin SIPPs and private-coin SIPPs for Equality
Testing.

∗Email: guy.goldberg@weizmann.ac.il. This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 819702)
and from the Israel Science Foundation (grant number 5219/17).
†Email: rothblum@alum.mit.edu. This project has received funding from the European Research Council (ERC)

under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 819702), from the
Israel Science Foundation (grant number 5219/17), and from the Simons Foundation Collaboration on the Theory of
Algorithmic Fairness.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 146 (2021)

guy.goldberg@weizmann.ac.il
rothblum@alum.mit.edu

Table of Contents

1 Introduction 1
1.1 This Work . 2
1.2 Our Results . 3
1.3 Technical Overview . 5
1.4 Related Work . 8
1.5 Organization . 11

2 Definitions and Preliminaries 12
2.1 Entropy and Information Theory . 12
2.2 Property Testing, IPPs and SIPPs . 13
2.3 Error Correcting Codes . 16
2.4 The Equality Testing Problem . 17

3 1-round SIPPs 17
3.1 Equality Testing . 18
3.2 SIPP for any property with non-adaptive tester . 19
3.3 Public-Coins Protocol . 22

4 Lower Bounds 23
4.1 Non-Interactive Sample-Based Proofs of Proximity (SMAPs): 23
4.2 Public-Coin SIPPs . 28

5 A Reduction from SIPPs to IPPs 32
5.1 The Reduction . 33
5.2 Construction of the Transformation Function . 35
5.3 Proof of the Reduction Protocol . 48
5.4 Applications of the Reduction to Concrete Families . 54

Acknowledgments 55

1 Introduction

A fundamental question in the theory of computing is understanding the power of efficiently verifiable
proof systems. This question was studied in various computational models, and with various restric-
tions on the verifier. In this work we initiate a study of proof systems with an extremely restricted
sample-based verifier. Such a verifier can only obtain samples of uniformly random and i.i.d. locations
in the input string, together with the values at those locations. It cannot query locations of its choice.
The goal is verifying complex properties in sublinear time, using only this restricted access. We be-
gin this introduction with background on interactive proof systems and proof systems with sublinear
verifiers, before presenting more formally the model we study in this work.

An interactive proof system [GMR89, BM88] is an interactive protocol between a prover and a
weaker verifier, in which the prover tries to convince the verifier of the validity of some computational
statement. The computational statement is most commonly considered to be x ∈ L, where x is an
input (that is usually known to both the prover and the verifier), and L is some language. We require
that if x ∈ L, then there exists a prover strategy that makes the verifier accept (“completeness”). A
prover that follows this strategy is named an “honest” prover. The second requirement (“soundness”),
is that if x /∈ L, then no prover can make the verifier accept, except for a small probability of error.
The famous IP = PSPACE Theorem [LFKN92, Sha92] shows that interactive proof systems with
polynomial-time verifiers are remarkably powerful. Such proof systems can be used to prove any
statement computable in polynomial space.

There are various resources one can consider when restricting the verifier in a proof system. One
challenging frontier is sublinear-time verification [EKR04,RVW13]. In such a proof system, the verifier
cannot even read the input in its entirely. Following the literature on sublinear-time algorithms and
property testing [RS96, GGR98], soundness is relaxed. In an Interactive Proof of Proximity (IPP),
the verifier has to only make an approximate verification. Instead of rejecting any inputs x /∈ L, the
verifier is required to reject (with high probability) only inputs that are far from L, where we say that
x is ε-far from L if the (fractional) Hamming distance of x from every input in L is at least ε ∈ (0, 1).
The verifier should still accept any input that is in the language. IPPs are known for general families
of languages [RVW13,RRR16]. This stands in contrast to the study of property testing, where testers
rely on the specific structure (e.g combinatorial or algebraic) of the problem at hand.

In a standard IPP, the verifier has query access to the input. The input x ∈ {0, 1}n is treated as
an oracle. For each query, the verifier chooses an index i ∈ [n], and “reads” the i-th bit of the input
xi. The main goal of an efficient sublinear proof system is for the verifier to have sublinear running
time. In addition, we also consider the query complexity of the verifier, which is the number of queries
the verifier makes (the number of bits it reads from the input). Other measures of complexity are
communication complexity (total number of bits exchanged between the prover and the verifier), round
complexity (where in each round, each party sends a single message to the other party) and the running
time of the honest prover. We stress that the prover has full (explicit) access to the input. Whereas we
are interested in the running time of the honest prover, a cheating prover is unreliable and untrusted,
and is computationally unbounded.

We can also consider non-interactive proof systems, which is a more limited type of proofs. In
such a proof system, the prover is restricted to send a single message to the verifier (a proof); the
verifier cannot send any messages to the prover. In a non-interactive proof of proximity [GR18] the
verifier has query access to the input, and should have sublinear running time and query complexity.
Soundness is relaxed in a similar manner to IPPs, and the verifier needs to reject only inputs that
are far from the language. Such proofs are named Merlin-Arthur Proofs of Proximity, or MAPs. See
Section 2 for formal definitions of (query-based) IPPs and MAPs.

1

1.1 This Work

The queries of a sublinear verifier in a proof system can be restricted in various ways. In this work,
we take the restriction on the verifier input access to the extreme. We consider proof systems where
the verifier has only sample-based access to the input. In this model, the verifier is only provided
with uniformly distributed labeled samples from the input. Namely, it draws samples from the input
x ∈ {0, 1}n, each one of the form (i, xi). The index i of each sample is distributed uniformly and i.i.d
from the set of all possible indices [n], and xi ∈ {0, 1} is the value of the input x at index i. Our
work is inspired by the property-testing literature: the sample-based access model was introduced
by Goldreich, Goldwasser and Ron [GGR98]. A comprehensive systematic study of sample-based
property testers was initiated by Goldreich and Ron [GR16].

SIPPs: The main objects we study in this work are interactive proof systems of proximity, where
the verifier has only sample-based access to the input. We call such proof systems Sample-based
Interactive Proofs of Proximity, or SIPPs. Such proof systems are essentially IPPs, where the verifier
is restricted to be sample-based, as described above. We emphasize that while the verifier is restricted
in its access to the input, the prover still has full access to it. In such proof systems we replace the
term query complexity with sample complexity, as the verifier now draws samples, instead of making
queries. Other measures of complexity are similar to the measures of complexity of IPPs. For a formal
definition of SIPPs see Definition 2.11.

SMAPs: We are also interested in non-interactive proof systems of proximity, where again the
verifier is restricted to be sample-based. We call such proof systems Sample-based Merlin-Arthur
proofs of Proximity, or SMAPs. We emphasize that in SMAPs (as in MAPs) the verifier has full
access to the proof. Its access to the input x is the only additional restriction. As in SIPPs, we use the
term sample complexity to denote the number of samples the verifier draws from the input. The other
important measure of complexity of a SMAP is the proof length. For a formal definition of SMAPs
see Definition 2.12.

Research Question: We now present the main research question of this work

What are the power and the limitations of interactive and non-interactive proofs of
proximity when the verifier has only sample-based access to the input?

A Concrete Motivation: Delegation of Sample-based Computations We find the sample-
based access model to be very natural, and worthy of study in its own right. It captures access to
objects for which obtaining labeled samples is easy, whereas querying them in arbitrary locations
is infeasible. In addition, verification with a sample-based verifier is also motivated by real-world
applications. Consider the scenario in which a passive observer (a client) wants to study some complex
phenomena, even though it only sees a small random part of the world. For examples, consider a
statistician who wants to compute some statistical quantity over a large population (by performing a
survey on a small group), a website that tries to learn the preferences of its potential clients (and only
sees a random sample comprised of users that currently use it), or a weather forecaster who wishes
to understand weather patterns, based on data it receives from a few sensors deployed at random
locations. An untrusted company might claim to have already computed a model of the phenomena,
based on data that is not available to the observer. The company offers to sell the model to the client.
How could the client ascertain that the model indeed represent the reality, when it only sees a small
random part of the relevant data?

2

A solution we propose in this work is to have the company provide a proof for the quality (approxi-
mate correctness) of its output. Such a proof can be a “written” proof, in which the company explains
succinctly the validity of the claimed model. A second option is to have an interactive proof, in which
one asks the company questions regarding the model in order to be convinced of its validity. A written,
non-interactive proof is the easier option. Therefore, it is of interest to distinguish between tasks that
must have interaction for their verification, and tasks that can be verified by non-interactive proofs.
In both cases, the observer would need to consider the resource gap between learning and verifying,
where the main resources for verification are the “proof complexity” (length of written proof, or the
cost of communicating with the company in interactive proofs), along with the data it needs to gather
on its own (the samples). If verifying is easier than learning, it can purchase the model from the
company and cost-effectively verify the proof, instead of learning the model on its own.

We note that delegation of computation was considered in previous works, starting with [GKR08],
who studied how a a powerful server (but not unbounded) can run a computation for a weaker client,
and provide an interactive proof of the output’s correctness. It was extended to the case when the
verifier can only run in sublinear time in [RVW13], and to the area of machine learning in [GRSY21].
In this work we further extend this line of study, to delegation of computational problems where the
access of the client is sample-based.

1.2 Our Results

In this work we show that sample-based interactive proofs of proximity can be very powerful. In some
cases, sample-based IPPs are almost as powerful as query-based IPPs. This is perhaps surprising, as
sample-based testers are much more limited compared to query-based testers.

Our main result is that rich families of languages have sub-linear SIPPs. In addition, we show
that even a single round of communication increases the power of the verifier. On the other hand,
interaction is necessary to utilize the power of a prover. We show limits on the power of non-interactive
proofs of proximity. We next describe our results in more detail.

Interactive Sample-Based Verification for Rich Families: The first family we consider is
log-space uniform NC.

Theorem 1. (informal; see Theorem 5.4) Let L be a language in log-space uniform NC, and let
ε ∈ (0, 1) be a fixed constant. Then there is a SIPP with proximity parameter ε for L. The sample
and communication complexities of the SIPP, as well as the verifier’s running time, are Õ(

√
n). In

addition, the SIPP has poly(log n) rounds, and the (honest) prover runs in time poly(n).

The second family is languages that can be computed in polynomial-time and bounded-polynomial
space.

Theorem 2. (informal; see Theorem 5.5) Fix a constant σ ∈ (0, 1), and let L be a language that is
computable in poly(n)-time and O(nσ)-space. Let ε ∈ (0, 1) be a fixed constant. Then there is a SIPP
with proximity parameter ε for L. The sample and communication complexities of the SIPP, as well
as the verifier’s running time, are n1/2+O(σ). In addition, the SIPP has a constant number of rounds,
and the (honest) prover runs in time poly(n).

In order to prove these theorems, we construct a generic reduction from SIPPs to IPPs. This
reduction is the most technically-involved part of this work. We then apply the reduction to the IPPs
of [RVW13,RRR16,RR20], and prove Theorem 1 and Theorem 2.

We make several remarks on the SIPPs of Theorem 1 and Theorem 2. First, Kalai and Ruthblum
[KR15] showed that, under cryptographic assumptions, the sample and communication complexities
cannot both be o(

√
n), so both results are nearly optimal. Both SIPPs use private coins, and we

3

note that this is in contrast to known query-based IPPs for general computations, which use public
coins [RVW13, RRR16, RR20]. The power of SIPPs with public coins is an intriguing open question.
Finally, the communication and sample complexities can be traded off: For desired sample complexity
s ≤
√
n, we can obtain similar results with communication roughly n

s . Note, however, that we do not
know how to obtain communication complexity o(

√
n) (unlike the case of IPPs). See Section 1.4 for

further discussion on the above points.

1-round SIPPs: We show that even with a single round of communication, SIPPs are exponentially
more powerful than sample-based testers. Specifically, we consider the problem of Equality Testing.
In this problem, an algorithm gets as input two binary strings x, y, and needs to accept if x = y and
reject if x is far from y. Formally, we define EQU = {(x, x) | x ∈ {0, 1}n} ⊆ {0, 1}2n.

Theorem 3. (informal; see section 3.1) For any fixed ε > 0:

1. Any sample-based tester with proximity parameter ε for EQU has sample complexity s = Ω(
√
n).

2. There exists a 1-round, private coin, sample-based interactive proof of proximity for EQU, with
proximity parameter ε, communication complexity c = O(log n/ε) and sample complexity s =
O(1/ε).

That is, we prove an exponential separation between the power of sample-based testers and the
power of 1-round sample-based interactive proofs of proximity.1 The first item of Theorem 3 follows
from first principles, and for the second item we construct and analyze a simple SIPP. Note that the
lower bound in Theorem 3 is tight; for every ε > 0 there exists a sample-based tester for EQU with
proximity parameter ε and sample complexity O(

√
n/ε).

We then extend and generalize the SIPP for equality to every property that has a non-adaptive
and fair (query-based) tester.2

Theorem 4. (informal; see Theorem 3.1) Let ε > 0, and let L be a property with non-adaptive
(query-based) fair tester, with proximity parameter ε, and query complexity q = q(n, ε). Then L
has a 1-round SIPP, with proximity parameter ε, communication complexity O(q2 · log n) and sample
complexity s = O(q).

In particular, if the query complexity q of the query-based tester is constant (i.e., does not depend
on n), then the sample complexity of the resulted SIPP is also constant, and its communication com-
plexity is logarithmic. For languages that have POTs (proximity oblivious testers) we give SIPPs with
slightly better communication complexity. See Theorem 3.2 for the exact statement and parameters.

Lower Bounds: We showed that sample-based interactive proofs of proximity are very powerful,
when compared to sample-based testers. Our next result is on the limitation of sample-based non-
interactive proofs, which we call SMAPs. We show that for the Equality Testing Problem, such proofs
are very limited in their power. Namely, we prove the following result:

Theorem 5. (informal; see Theorem 4.4) Let ε > 0. If a SMAP for EQU with proximity parameter

ε has proof length p = o(n), then its sample complexity is s = Ω(
√
n

logn).

1We compare the sample complexity + communication complexity of the SIPP with the sample complexity of the
tester.

2A tester is said to be non-adaptive if it determines all its queries based on its internal coin tosses, independently of
the specific (implicit) input it gets. A testers is said to be fair if each of its queries to an input x ∈ {0, 1}n is uniformly
distributed in [n].

4

As observed by [RVW13], if we allow a linear proof length, a prover can simply send the entire
input as the proof. The verifier can read the proof, and verify it is equal to the real input by drawing
a constant number of samples from it. Hence, Equality Testing has a SMAP with linear proof length
and constant sample complexity (i.e., s = O(1/ε)). In addition, Equality Testing has a sample-based
tester with sample complexity of O(

√
n) (without a proof). Theorem 5 shows that equality testing

has no SMAP that is “non-trivial”. A SMAP for this problem must have linear proof length, or
sample complexity as large as the sample complexity of a tester that is not aided by a proof (up to a
logarithmic factor).

The proof of Theorem 5 is by a reduction to a communication complexity protocol. We show that
a SMAP for equality with short proof length and low sample complexity, implies a communication
protocol for equality with parameters that are impossible to achieve.

Finally, our last result is regarding the limitation of public-coins SIPPs. We consider again the
Equality Testing Problem, and show that public-coins SIPPs for this problem are very limited.

Theorem 6. (informal; see Theorem 4.7) If a public-coins SIPP for EQU with proximity parameter
ε = 0.1 has communication complexity c and sample complexity s = o(

√
n), then c · s = Ω(n).

We note that the lower bound of Theorem 6 is weaker than the one of Theorem 5, but it is tight
(up to a logarithmic factor). For every s ≤

√
n and ε > 0 there exists a 1-round public-coins SIPP

for equality testing with proximity parameter ε, sample complexity s and communication complexity
c = Õ(n

ε·s) (see Section 3.3). Also note that Theorem 6 implies an exponential separation between
the power of private-coins SIPPs and public-coins SIPPs. This result stands in contrast to the model
of query-based IPPs, in which [RVW13] showed that the expressive power of private-coin IPPS is
essentially equivalent to that of public-coin IPPs.

1.3 Technical Overview

Main Result: Our main technical contribution is the reduction from SIPPs to IPPs. We next give
a high-level sketch of this reduction, which we describe formally and prove in Section 5.

Consider a language L that has a sublinear IPP (i.e., an IPP with query complexity, communication
complexity and verifier running time that are all sublinear). Also assume the IPP uses only public
coins, and so w.l.o.g the verifier queries the input only after its interaction with the prover ends.3

Furthermore, assume the indices of the queries depend solely on the public coins. That is, they do
not depend on the messages sent from the prover, nor on the input itself. Note that this assumption
holds for many useful sublinear IPPs, see e.g. [RVW13,RRR16,RR20].

Our goal is to show that L has a sublinear sample-based IPP. Consider the following strategy: The
verifier of the SIPP privately tosses the coins that a verifier of the query-based IPP would have tossed
publicly. It then computes the indices Q ⊆ [n] it needs to query for these coin tosses, before it starts
the interaction with the prover. But now, the verifier faces an issue. These queries have structure;
they are dependent on each other. The SIPP verifier can draw a set of i.i.d samples from the input,
but it cannot query the indices Q.

The first key idea of the reduction is to execute a (query-based) IPP on a permuted version of the
input. That is, rearrange the bits of the input string x according some permutation, such that the
indices of the queries the IPP verifier needs to make to the permuted input are mapped to the indices
of samples the SIPP verifier drew. I.e, the SIPP verifier draws a set of samples, let S be their indices.
The verifier then chooses a permutation π mapping Q to S, sends π to the prover, and executes the

3In a public coins protocol the coin tosses are the only messages the verifier sends to the prover. Hence, the verifier’s
messages do not depend on its queries, and we can assume the verifier queries the input only after the interaction is over.

5

query-based IPP on the input y = π−1(x) with respect to the claim π(y) ∈ L4 where in the IPP
the verifier uses the coins chosen above (leading to queries Q). The completeness of this protocol is
immediate. But what about its soundness?

The issue is that sending the permutation to the prover might reveal Q. The prover can use the
knowledge on Q to deduce what coin tosses the verifier is going to use for the execution of the query-
based IPP. This is a big problem, as the soundness of an interactive proof relies heavily on the prover
not knowing the verifier’s coins in advance.

A possible solution is to use a random permutation. We show that, if the indices in S are distributed
uniformly and i.i.d, then a random permutation that maps Q to S does not leak information regarding
Q. One can show that this implies that the soundness of the IPP is maintained. An issue with this
solution is that the representation of a random permutation is large: it requires Θ(n log n) bits. As
the verifier needs to send the prover a representation of the permutation, this results in a protocol
with super-linear communication complexity.

Instead, use can use a family of k-wise independent permutations, where k is the query complexity
of the IPP (i.e., the size of Q). A permutation sampled from such a family is indistinguishable from
a permutation chosen at random from the set of all permutations, for any process that receives the
value of either of the permutations at any k points of its choice. The verifier can choose a (random)
permutation from the family, that maps Q to S. We show that sending this permutation to the prover
does not reveal Q, as long as it represented in a canonical way. In addition, such a permutation can
be represented by a small number of bits. Known construction of approximate k-wise independent
permutations can be represented by only Õ(k) bits, where again k is the query complexity of the
original IPPs, and hence sublinear.5

Say that we have such a family of permutations. How can we choose a random permutation from
it that maps the indices Q to the indices S? A possible process is for the verifier to draw permutations
again and again, until it is “lucky” and finds a suitable permutation. This process may take exponential
time, which results in a verifier with runtime that is very much not sublinear. Unfortunately, we do
not know of a family that allows for performing such a sampling process in significantly more efficient
manner.

Thus, rather than k-wise permutations, we use k-wise independent hash functions. This solves the
issue of efficiently sampling a function that maps the indices Q to the indices S.6 But what about the
other indices? In hash functions, unlike permutations, there are collisions. A function might map two
indices to the same one, or have an index in the range without a source. Hence, it might be impossible
to “recover” the original input from its transformed version.

Our solution to this uses two ideas. First, observe that a k-wise independent hash function indeed
can have collisions, but not too many. With high probability, at least a constant fraction of the indices
are mapped one-to-one, and hence the bits at these “good” locations can be recovered. For a single
function we can ignore all the other indices, and consider only the “good” ones.

Next, rather than a single one, we use many hash functions. We prove that using m = O(log n)
functions ensures that every bit can be recovered by at least a constant fraction of the functions, with
high probability. As its first message, the verifier sends to the prover all of the m hash functions. See
Figure 4 for the exact construction. The protocol is well-defined, and it is complete (since the honest
prover can recover the entire input).

4Note that in order to execute an SIPP for one language, we need to perform an IPP for another language. This is
why the actual reduction is on a family of languages, that should be closed under the appropriate operation.

5For our purposes it is enough to consider a relaxed notion of almost k-wise independence, where the advantage
of a distinguisher is limited by some δ. For efficient constructions of such families see the work of Kaplan, Naor and
Reingold [KNR06].

6Namely, we use polynomials of degree at most k− 1 as the hash functions. The verifier can find a suitable function
by performing polynomial interpolation, which can be done in sublinear time by using the Fast Fourier Transform.

6

We turn back to soundness. One concern (that was already discussed), is that the prover might
learn something about the coins that are going to be used for the IPP, from the functions sent by the
verifier. We prove in Claim 5.15 that this is not the case. From the prover’s perspective, the coins
used for the IPP are totally random, even conditioned on the hash functions it gets from the verifier.
Another concern is that during the transformation process we might damage the distance of the tested
input from the language. In Claim 5.16 we prove that this transformation is distance preserving, and
can only decrease the distance by a constant factor.

This concludes the high-level description of the reduction. For the full details (including how we
untangle some of the circular definitions that hide in the description above) see Section 5.

1-round SIPPs: In Theorem 3 we show an exponential separation between the power of sample-
based testers and the power of 1-round SIPPs. In Claim 3.4 we prove that every sample-based tester
for the Equality Testing problem requires Ω(

√
n) samples. The proof is based on the fact that with

high probability, a sample-based tester that draws o(
√
n) samples from an input z = (x, y) does not

see both xj and yj for any value of j (a “collision”). This implies the tester cannot distinguish between
accepting inputs, and uniformly random inputs (which it must reject with high probability).

In Claim 3.5 we present a 1-round SIPPs for verifying equality. At a high level, the protocol is as
follows. The verifier draws a sample (i, zi) from the input z = (x, y) ∈ {0, 1}2n. If i ≤ n it sends to
the prover j = i. Otherwise, i > n, and it sends j = i − n. The prover sends to the verifier a bit b,
and the verifier accepts iff zi = b.

In the completeness case, when x = y, the honest prover sends back to the verifier the value of
xj = yj and the verifier accepts. In the soundness case, when x is ε-far from y, with probability ε
xj 6= yj . In this case, the best a prover can do is to send a random bit as b, and the verifier rejects with
probability 1/2. The soundness of the protocol can be amplified to 2/3 by O(1/ε) parallel repetition
of this basic protocol.

More generally, we show that every property with a non-adaptive (query-based, fair) tester has a
1-round SIPP. See Section 3.2 for details.

Lower Bounds: In Theorem 5 we show a lower bound on the power of non-interactive proofs of
proximity (SMAPs) for Equality Testing. The proof is by a reduction to a communication complexity
problem in the consecutive messages (CM) model setting [NR05]. In such a protocol, Alice and Bob
get inputs x and y (respectively) from an adversary, and their shared goal is to make Carol compute
a function f of x and y, by sending her short messages. In addition, after Alice gets her input (and
before Bob gets his), she sends a public message that all parties can see (adversary included).

Naor and Rothblum [NR05] showed a lower bound on the length of the (private) messages required
in a CM protocol for Equality, when the public message length is sublinear. We show that a SMAP for
Equality with low sample complexity and sublinear proof length implies a CM protocol for Equality
with short private messages and sublinear public message (that are impossible to achieve, by the above
lower bound). The key observation for the reduction is that the samples of a verifier in a SMAP are
drawn i.i.d. Hence, Carol can “ask” Alice to sample the x part of the input, Bob to sample y, and
“simulate” the execution of the SMAP verifier by using these samples, and using the public message
as the proof string.

In Theorem 6 we show a lower bound on the power of public-coins SIPPs for Equailty Testing. We
prove this theorem by using tools from the area of Information Theory. At a high level, we show that
a verifier cannot distinguish between an input it should accept (sampled uniformly from the set of all
accepting inputs) and an input sampled uniformly from the set of all possible inputs (which it should
reject with high probability). We consider the view of the verifier in an execution of the protocol with
a (random) input it should accept. We show that if the communication complexity of the protocol is

7

low, then the input (conditioned on the transcript of the protocol) still has a lot of entropy. We then
use Shearer’s Lemma to show that since the samples of the verifier are distributed uniformly and i.i.d,
the entropy of its view (i.e., the part of the input the verifier sees in the samples) is also large. This
implies, by a corollary of Pinsker’s inequality, that the view of the verifier is close to uniform (even
with the help of the prover), and hence it cannot distinguish the accepting input from a uniformly
random input that it should reject.

1.4 Related Work

In the previous sections we discussed query-based and sample-based property testers, as well as query-
based interactive and non-interactive proofs of proximity. We elaborate on these models, as well as
the literature on testing and verifying properties of distributions, and the relationship to our work.

Query-access vs. Sample-based Access in Property Testing: In the standard definition of
property testers, the tester has the ability to make arbitrary queries to the input. This definition
was presented by Rubinfeld and Sudan [RS96], and it is the main definition studied by Goldreich,
Goldwasser and Ron [GGR98]. Sample-based testers were defined by Goldreich, Goldwasser and
Ron [GGR98], and a comprehensive systematic study of their power and their limitations was initiated
by Goldreich and Ron [GR16]. The sample-based access model is syntactically weaker than the query-
access model. A randomized algorithm with query access can simulate a sample-based algorithm by
simply choosing indices uniformly and i.i.d, query these indices, and “feed” the sample-based algorithm
with these queries.

Furthermore, sample-based testers are strictly weaker than query-based testers. One example is
Linearity Testing, where the input is a Boolean function f : {0, 1}n → {0, 1}, and one needs to
decide if f is a linear function or ε-far from any linear function. In their seminal work, Blum, Luby
and Rubinfeld [BLR90] showed that there exists a query-based tester for this problem, with query
complexity O(1/ε) (independent of the input length). On the other hand, [GR16] showed that any
sample-based tester for linearity requires s = Ω(1/ε+ n) samples (provided ε ≥ 1/2n).

A second example of such a separation is in testing Bipartiteness in the Dense Graph model (we
do not define formally the model or this property in this work). There exists a query based tester for
this property with query complexity of O(1/ε2) ([Gol17], section 8.3.1), whereas [GR16] showed that
any sample-based tester for it requires s = Ω(

√
n/ε) samples (provided ε > 1/

√
n).

Another example is of Monotonicity Testing. The input is again a Boolean function f : {0, 1}n →
{0, 1}. Golderich et al. [GGL+00] showed a query-based tester for this property with query complexity
O(n/ε). The authors also showed (Theorem 5 in [GGL+00]) that any sample-based tester for this
property requires Ω(

√
2n/ε) samples (provided ε = O(n−3/2)).

Note that all of the 3 properties above have query-based testers with low query complexity, and
those testers are fair and non-adaptive. Hence, we can directly apply Theorem 4 to deduce that each
one of this properties has a 1-round SIPP with low sample and communication complexities.7

Distribution Testing and Verification: In distribution testing, a tester is given samples of an
unknown distribution over a finite domain Σ = [N]. It is asked to determine whether the distribution
has some property or is far from any distribution that has this property (i.e., the variation distance is
large).8 The main complexity measure of interest is the tester’s sample complexity, as a function of
the size of the distribution’s domain. See Canonne [Can15] for a survey on this area.

7In fact, Linearity Testing and Monotonicity Testing have POTs, so we can apply Theorem 3.2 to get SIPPs for these
properties with better communication complexity.

8The variation distance between D and D′ is 1
2
·
∑
v |D(v)−D′(v)| where D(v) (resp., D′(v)) denotes the probability

that an element distributed according to D (resp., D′) equals v.

8

Chiesa and Gur [CG18] initiated the study of proofs of proximity for distribution testing, and
explored both interactive and non-interactive proof systems. Note that the prover in such a proof
system has full knowledge of the distribution, even if it cannot be represented in a finite manner.
They showed that such proof systems can be powerful. For example, every property of distributions
has a non-interactive proof system with sample complexity O(

√
N) and proof length O(N logN).

In the sample-based setting we can also consider a large input alphabet Σ. Such an input implicitly
defines a distribution over Σ, where the probability of every σ ∈ Σ is in proportion to the number
of its appearances in the input string. However, a sample-based tester gets more information than
just samples from this distribution; It gets the index of each sample. This allows for expressing
much richer properties in the sample-based settings than in distribution testing. Other properties,
that are invariant under permutations of the indices, are called symmetric properties.9 Goldreich and
Ron [GR16] showed that without a prover, testing such properties is equivalent to distribution testing.
That is, the advantage of seeing the indices of the samples does not increase the power of the tester
significantly.

This is not the case when the tester is aided by a prover. Namely, sample-based interactive proofs
(of symmetric properties) are stronger than interactive proofs for distributions. With the aid of a
prover, a verifier can take use of the indices it sees. For example, consider the problem where the
input is a string x ∈ Σn, and one needs to test if the distribution of xi, for a uniformly random
choice of i, is itself uniform over Σ. On the one hand, [CG18] proved that in the distribution testing
setting, when the verifier does not see the indices of the samples, any proof system for this problem
requires Ω(

√
N) samples. On the other hand, a result of [EKR04] implies a SIPP with constant sample

complexity (and logarithmic communication complexity) for verifying this property.10

We note that one result of [CG18] is similar in spirit to a result in this work. Theorem 1.4 in [CG18]
shows an exponential separation between the power of distribution testers and the power of 1-round
interactive proofs of proximity for distributions. In Theorem 3 in this work we show an exponential
separation between the power of sample-based testers and the power of 1-round SIPPs.

Also note that [CG18] showed a strong separation between the power of interactive proofs and the
power of public-coins interactive proofs for distributions. Namely, [CG18] shows that if a distributions
property has a public-coins interactive proof system with communication complexity c and sample
complexity s, then this property has a tester with sample complexity O(c · s).

In Theorem 6 we also show a separation between the power of private-coins protocols and the
power of public-coins protocols, in the model of sample-based IPPs. The lower bound in our result
is of different nature than the one of [CG18]. First, we give a lower bound for a specific problem
(equality testing), wheres [CG18] showed a general separation result. Second, equality testing has a
tester with sample complexity O(

√
n). We give a lower bound which is not of the form c · s = Ω(

√
n).

In Theorem 6 we prove that if a public-coins SIPPs for equality has sample complexity s = o(
√
n) and

communication complexity c, then c · s = Ω(n). We have that (assuming s = o(
√
n)), the product c · s

is (much) larger than the sample complexity of testing equality (without a prover). Also note that the
proof uses different tools than the ones used by [CG18].

Machine Learning: Goldwasser et al. [GRSY21] studied verification of machine learning. In this
setting, a verifier has sampling access to an unknown distribution over labeled examples, and wants to
verify that a given hypothesis, which has error ε, is the best one in some fixed hypothesis class. From
a property testing perspective, the prover wants to convince the verifier that the input distribution D
has the property “every hypothesis in the class has error larger than ε on D”. The verifier should reject

9Formally, a property L ⊆ Σn is said to be symmetric if for any permutation π : [n] → [n], if it holds that x ∈ L if
and only if π(x) ∈ L, where π(x) ∈ Σn is defined by [π(x)]i = xπ(i) for every i ∈ [n].

10The result of [EKR04] is stated for verifying that the input is a “permutation”, which is equivalent to the uniformity
testing problem defined above.

9

distributions that are far from this property. The work of [GRSY21] shows that for some hypothesis
classes, verification can be easier than learning, where the measure of complexity is sample complexity.

An important case studied in machine learning is when the distribution of the samples (without
the labels) is uniform. This scenario is similar to the one we study in this work, in the sense that the
view of the verifier is the same: In both cases, it receives labeled samples from a large “world”, where
the distribution over the domain set / indices is uniform. Even for the case of a uniform distribution,
one difference between [GRSY21] and this work, is that they focus on verification of specific types
of properties (namely, machine learning properties as above), with sample complexity smaller than
the VC dimension of the hypothesis class in question. We, on the other hand, study verification of
general properties, and in some of our results the sample complexity is as large as the square root of
the domain size (which is still sublinear).

Related Work on Interactive Proofs: The area of interactive proofs has a long and rich history.
Interactive proofs were introduced by Goldwasser, Micali and Rackoff [GMR89], and independently
by Babai and Moran [BM88]. The surprising expressive power of IP was determined in a sequence of
works by Lund, Fortnow, Karloff and Nissan [LFKN92] and Shamir [Sha92], who showed that every
language in PSPACE has an interactive proof.

The notion of interactive proofs was considered under various restrictions on the verifier. The
power of finite state verifiers was studied by Dwork and Stockmeyer [DS92a, DS92b]. Condon and
Ladner [CL88], Condon and Lipton [CL89], and Condon [Con91] studied space (and time) bounded
verifiers. Goldwasser et al. [GGH+07] considered the parallel running time of the verifier, and showed
results for NC0 verifiers. Goldwasser, Kalai and Rothblum [GKR08] explored the power of doubly-
efficient interactive proofs, where the honest prover runs in polynomial-time, and the verifier runs in
linear -time. A main result of [GKR08] is that every language in logspace-uniform NC has such a proof
system, where the protocol has poly(log n) rounds.

Interactive proofs of proximity were first considered by Ergun, Kumar and Rubinfeld [EKR04]
(where they were called approximate interactive proofs). Rothblum, Vadhan and Wigderson [RVW13]
conducted a systematic study of the power of such proofs, which they named Interactive Proofs
of Proximity (IPPs). Interactive and non-interactive proofs of proximity have drawn considerable
attention recently [FGL14, KR15, GGR15, RRR16, GR17, BRV18, CG18, GLR18, GR18, CG18, RR19,
RR20,GRSY21]. We next compare our work to some of these results.

Comparison With IPPs for NC languages: One of the main result of [RVW13] is that every
language in logspace-uniform NC has a (query-based) IPP with O(n1/2+o(1)) query and communication
complexities (and similar verifier running time), and polylog(n) communication rounds. This result
was later improved by Rothblum and Rothblum [RR20], which showed that these languages have IPPs
with Õ(

√
n) query complexity, communication complexity and verifier running time. The protocols in

both results use the GKR protocol [GKR08] as a sub-routine.
One of our results (Theorem 1) builds upon the result of [RVW13, RR20], and extends it to

the case where the verifier is extremely restricted - it only sees sampled labels from the input, and
cannot perform queries. That limitation on the verifier power comes with (almost) no degradation
in the protocol complexities, but it does have some costs. As discussed above, one of the down-
sides of our construction is that the protocol of Theorem 1 uses private-coins, whereas the protocol
of [RVW13, RR20] is a public-coin protocol. An open question is whether this limitation in inherent
to sample-based interactive protocols, or just an artifact of the specific construction of this work.
Note that for query-based IPPs [RVW13] showed that the power of public-coins protocols is almost
equivalent to the power of private-coins protocols.

A second difference between the protocols, is that the protocol of [RVW13, RR20] allows a “full”

10

trade-off between the query complexity and the communication complexity. It allows the protocol
to have any query complexity q and communication complexity c such that q · c = Θ̃(n). In our
construction there is a limited trade-off; the communication complexity must be at least as large as
the sample complexity.

Note that trade-off of the communication and query complexities in the result of [RR20] is op-
timal, up to poly-logarithmic factors. Kalai and Rothblum [KR15] showed that, under a reasonable
cryptographic assumption, there exists a language L in NC1 such that the product of the query and
communication complexities of any IPP for L cannot be sublinear. As SIPPs are a restriction of IPPs,
this lower bounds also holds also for the sample-based setting. Namely, the result of Theorem 1 is
tight, up to poly-logarithmic factors.

Comparison With IPPs for Languages Computable in Bounded Space: Reingold, Roth-
blum and Rothblum [RRR16] studied the power of interactive proof systems with constant number of
rounds. Their main result is that any language computable in bounded polynomial space and polyno-
mial time has a public-coin interactive proof system with constant number of rounds, low communica-
tion complexity and verifier running time, and efficient honest prover. By replacing the [GKR08] step
in [RVW13] with their result, they show that every such language has a public-coin, constant-round
IPP, with query and communication complexities, as well as verifier’s running time, roughly

√
n. In

addition, the running time of the honest prover in the IPP is poly(n) (Theorem 3 in [RRR16]. See
Theorem 5.27 for the exact formulation of the theorem). In this work, we apply our new SIPP to
IPP reduction on this result of [RRR16], to show that every such language has sample-based IPP with
similar parameters (Theorem 2). As above, one difference between our SIPP and the IPP of [RRR16]
is that the SIPP uses private coins whereas the IPP is public-coin. Again, it as an open question
whether this limitation in inherent to SIPPs or not.

Non-interactive Proofs of Proximity: Gur and Rothblum [GR18] initiated a study of non-
interactive proofs of proximity. Such proof systems can be viewed as the property testing analogue
of an NP proof system (whereas IPPs are the property testing analogue of IP). In contrast to
polynomial-time algorithms, sublinear-time algorithms inherently rely on randomization. Since an
NP proof system with a randomized verifier is known as a Merlin-Arthur (MA) proof system, [GR18]
named sublinear non-interactive proof systems Merlin-Arthur proofs of Proximity (MAPs). In this
work we study non-interactive proofs of proximity, with sample-based verifiers. Following the naming
of [GR18], we name such proof systems Sample-based Merlin-Arthur proofs of Proximity (SMAPs).

Gur and Rothblum [GR18] show that MAPs can be exponentially stronger than property testers,
but exponentially weaker than IPPs. In this work, the focus of the study of non-interactive proofs is
on lower bounds. Namely, we prove that SMAPs can be extremely limited in their power (see Theorem
5). We note that Theorem 5 of [GR18] implies a generic lower bound on the power of SMAPs. For
the problem of equality testing, Theorem 5 (of this work) gives an improved lower bound, in terms of
the possible trade-offs between sample complexity and proof length. See Section 4.1 for various results
from [GR18] that are relevant to the setting of this work.

Fischer, Goldhirsh and Lachish [FGL14] introduced the notion of partial testing, which is closely
related to MAPs. A property L is a said to be L′-partially testable, for L′ ⊆ L, if inputs in L′ can be
distinguished from inputs that are far from L by a tester that makes only few queries. This notion
can be naturally extended to the sample-based setting.

1.5 Organization

In Section 2 we cover some basic notations, and make formal definitions regarding property testers,
IPPs and SIPPs. We introduce in this section the new definitions of SIPPs (Definition 2.11) and

11

SMAPs (Definition 2.12). In Section 3 we examine the Equality Testing Problem, show an SIPP for
it, and prove that it demonstrates an exponential separation between the power of sample-based testers
and SIPPs. We then extend the SIPP for equality to every language that has a non-adaptive tester
with constant query complexity. In Section 4 we continue to consider the Equality Testing problem,
and show a lower bound for SMAPs for it. In Section 5 we show a reduction from SIPPs to IPPs.
We use this reduction to prove that every language in log-space uniform NC has a sub-linear SIPP,
and that every language computable in polynomial-time and bounded-polynomial space also has a
sub-linear SIPP.

2 Definitions and Preliminaries

We begin with some basic notations:

• Denote by [n] the set [n] = {1, 2, . . . , n}.
• Denote by [n]k the set of all k-tuples of elements of [n].

• Denote by [n]{k} the set of all k-tuples of distinct elements of [n].

• For a set Ω, denote by UΩ the uniform distribution on the elements of Ω.

• For a set A, denote by a ∼ A a random variable a that is chosen uniformly at random from the
set A.

• For a set A, denote by a1, a2, . . . , ak ∼ A k random variables a1, . . . , ak that are chosen uniformly
at random and i.i.d from the set A.

• For a set A ⊆ [n] and a function f : [n]→ [n], let f(A) = {f(x) | x ∈ A}.
• For B = (x1, . . . , xk) ∈ [n]k and a function f : [n]→ [n], let f(B) = (f(x1), . . . , f(xk)), and note

that if B ∈ [n]{k} and f |B is injective then f(B) ∈ [n]{k}.

• For a set A ⊆ [n] and a function f : [n]→ [n], let f−1(A) = {x | f(x) ∈ A}.
• For a function f : [n]→ [n] and i ∈ [n], let f−1(i) = f−1({i}).
A language L is a set of strings of arbitrary lengths, L ⊆ {0, 1}∗. A pair language L is a set of pairs

of strings, L ⊆ {0, 1}∗ × {0, 1}∗. Note that every pair language L can be interpreted as a standard
language. We identify a language L ⊆ {0, 1}∗ (which might be a pair language) with the boolean
function L : {0, 1}∗ → {0, 1} that outputs 1 iff the input is in the set L. For a string x ∈ {0, 1}n and
for i ∈ [n] we denote the i-th element of x by xi.

We define the relative distance between strings over some alphabet Σ as the fraction of locations
on which they differ. That is, for u, v ∈ Σ` we denote ∆(u, v) = |{i | ui 6= vi}|/l. We say that u is
δ-close to v (resp., δ-far from v) if ∆(u, v) ≤ δ (resp., ∆(u, v) > δ). The relative distance of a string
to a set of strings is defined in the natural manner; that is ∆(u, S) = minv∈S ∆(u, v).

2.1 Entropy and Information Theory

Definition 2.1. For a random variable X over finite support S, we use H(X) to denote the Shannon
Entropy of X. That is, H(X) = −

∑
x∈S Pr[X = x] · log(Pr[X = x]).

Definition 2.2. For a random variable X over finite support S, we use H∞(X) to denote the min-
entropy of X. That is, H∞(X) = − log(maxx∈S Pr[X = x]).

Definition 2.3. For random variables X,Y over finite support S, we use H(X | Y = y) to denote
the conditional entropy of X given Y = y. That is:

H(X | Y = y) = −
∑
x∈S

Pr[X = x | Y = y] · log(Pr[X = x | Y = y])

12

We use H(X | Y) to denote the conditional entropy of X given Y . That is:

H(X | Y) = −
∑
y∈S

Pr[Y = y] ·H(X | Y = y)

Definition 2.4. For random variables X,Y over finite support S, we use H̃∞(X | Y) to denote the
average min-entropy of X given Y . That is:

H̃∞(X | Y) = − log(Ey←Y [max
x∈S

Pr[X = x | Y = y]])

Definition 2.5. For probability distributions P and Q over finite support S, the Kullback-Leibler
divergence from P to Q is:

DKL(P ||Q) =
∑
x∈S

P (x) · log(
P (x)

Q(x)
)

2.2 Property Testing, IPPs and SIPPs

We say that an algorithm A has oracle access (or query access) to a string x ∈ {0, 1}n when A is an
oracle Turing Machine, where the oracle is for the function f : [n]→ {0, 1} that is defined by f(i) = xi
for every i ∈ [n]. We say that x is the implicit input of A. Each time A uses this oracle for some
i ∈ [n] we say that A queries the input x at index i.

The algorithm A might also have explicit input. We denote the output of A with oracle access to
x ∈ {0, 1}n and with explicit input z by Ax(z) ∈ {0, 1}. We shall associate the output 1 (resp., 0) with
the decision to accept (resp., reject) the input. When A is a probabilistic algorithm (as it usually is),
Ax(z) is a Boolean-valued random variable.

For a string x ∈ {0, 1}n, define the distribution Dx to be the uniform distribution over the set
{(i, xi)}ni=1. We say that an algorithm A has sample-based access to a string x ∈ {0, 1}n when A is a
Turing Machine that can draw samples from Dx. That is, A is an algorithm that can draw samples of
the form (i, xi), where for each sample i is distributed uniformly and i.i.d from the set of all possible
indices [n]. We denote the output of A with sample-based access to x ∈ {0, 1}n and explicit input z
by A∼x(z). A∼x(z) is a Boolean-valued random variable, and its probability is over both the coins of
A and over the samples from Dx.

We now give the definitions of proximity testers and of Proximity Oblivious Testers (POTs). We
also define a standard variation of testers, where the tester is limited to be sample-based. All of these
definitions are based on definitions from Goldreich’s book [Gol17]. In this work we focus on one-sided
error testers (that is, testers with full completeness). For the definition of two-sided error testers
(which is more standard) and other variations see [Gol17].

Definition 2.6. (Proximity Tester) Let L be a language. A (query-based) tester for L is a probabilistic
algorithm, denoted T , that, on (explicit) input parameters n and ε and oracle access to (implicit) input
x ∈ {0, 1}n, outputs a binary verdict that satisfies the following two conditions:

• Completeness: For every n ∈ N and ε > 0, and for every x ∈ L, it holds that:

Pr[T x(n, ε) = 1] ≥ 2/3.

• Soundness: For every n ∈ N and ε > 0, and for every x that is ε-far from L, it holds that:

Pr[T x(n, ε) = 1] ≤ 1/3.

where the probabilities are over the coins of T .

13

We say that the tester has query complexity q = q(n, ε) if, on input n, ε, and oracle access to
any x ∈ {0, 1}n, the tester makes at most q(n, ε) queries. We say that a tester is non-adaptive if it
determines all its queries based on its explicit input and internal coin tosses, independently of the
specific x to which it is given oracle access. In contrast, an adaptive tester may determine its (i+1)-th
query based on the answers it has received to the prior i queries. If the query complexity of a tester
does not depend on n, we say that the tester has constant query complexity. We say that a tester with
query complexity q is fair if, when given oracle access to an input x ∈ {0, 1}n, each of its (possibly
adaptive) q queries is uniformly distributed in [n].

If the completeness condition holds with probability 1 (i.e, T x(n, ε) = 1 for every x ∈ L) we say that
the tester has perfect completeness. In this work, we assume a tester always has perfect completeness,
unless stated otherwise.

Definition 2.7. (Proximity Oblivious Tester) Let L be a language, and let % : (0, 1] → (0, 1] be a
monotonically non-decreasing function. A Proximity Oblivious Tester (POT) T for L with detection
probability % is a tester as in Definition 2.6, with the following modifications:

• T does not get ε as an input

• The soundness requirement from Definition 2.6 is replaced with the following condition:
Soundness: For every n ∈ N, every ε > 0, and every x that is ε-far from L, it holds that:

Pr[T x(n) = 0] ≥ %(ε).

where the probabilities are over the coins of T .

We emphasize the difference between a “standard” tester and a POT for some language L. A
standard tester receives ε as input, and needs to reject every input x that is ε-far from L. A POT
does not receive ε as input, but the probability with which it accepts x /∈ L is lower bounded by some
function of the distance of x from L. The query complexity of a POT is defined similarly to the query
complexity of a standard tester. The definition of a fair POT is similar to the definition of a fair
tester.

Definition 2.8. (Sample-Based Proximity Tester) Let L be a language. A sample-based tester for L
is a probabilistic algorithm, denoted T , that, on input parameters n and ε and sample-based access to
x ∈ {0, 1}n, outputs a binary verdict that satisfies the following two conditions:

• Completeness: For every n ∈ N and ε > 0, and for every x ∈ L, it holds that:

Pr[T∼x(n, ε) = 1] ≥ 2/3.

• Soundness: For every n ∈ N and ε > 0, and for every x that is ε-far from L, it holds that:

Pr[T∼x(n, ε) = 1] ≤ 1/3.

where the probabilities are over the coins of T and the samples drawn by it.

We say that the tester has sample complexity s = s(n, ε) if, on input n, ε, and sample-based access
to any x ∈ {0, 1}n, the tester makes at most s(n, ε) queries. If the sample complexity of a tester does
not depend on n, we say that the tester has constant sample complexity. Perfect completeness of a
sample-based testers is defined as for query-based testers.

We stress that the difference between standard (query-based) testers and sample-based testers is
the type of access they have to their (implicit) input. A query-based tester can choose which indices it
queries in the input, whereas a sample-based tester cannot. In practice, the indices that a query-based
tester queries are often chosen at random, but they might depend on each other. That is, the index

14

of the (i+ 1)-th query of the tester might depend on the indices of the prior i queries. The indices of
the samples that a sample-based tester draws are always chosen independently at random. Note that
this distinction is different than the distinction between adaptive and nonadaptive testers. The index
of the (i+ 1)-th query of a (query-based) nonadaptive tester might depend on the indices of the prior
i queries, but it does not depend on the value of the input x at these indices.

We now present the definition of an interactive proof of proximity (IPP). This notion generalizes
the notion of a tester (which is now called a “verifier”), and allows it to interact with an all-powerful
untrusted prover who has full explicit access to the input x. Such proof-systems were first introduced
by Ergun, Kumar and Rubinfeld [EKR04] and were more recently further studied by Rothblum,
Vadhan and Wigderson [RVW13]. The verifier V has oracle access to x, but the prover P has explicit
(full) access to x, and both V,P have explicit access to z. We denote the output of V after interacting
with P by (the Boolean-valued random variable) (P(x),Vx)(z). Similarly, when V has sample-access
to x, P has explicit access to x, and both V,P have explicit access to z, we denote the output of the
V after interacting with P by (the Boolean-valued random variable) (P(x),V∼x)(z).

Definition 2.9. (Interactive Proof of Proximity (IPP) [EKR04, RVW13]) Let ε = ε(n) ∈ (0, 1). A
(query-based) Interactive Proof of Proximity (IPP) with proximity parameter ε for the pair language L
is an interactive protocol with two parties: a (more powerful) prover P and a (more restricted) verifier
V. The verifier gets oracle access to x ∈ {0, 1}n whereas the prover has full access to x. In addition,
both parties get as (explicit) input z ∈ {0, 1}m where m = m(n).

At the end of the interaction, the following two conditions are satisfied:

• Completeness: For every pair (z, x) ∈ L it holds that

Pr[(P(x),Vx)(z, |x|) = 1] ≥ 2/3.

• Soundness: For every z ∈ {0, 1}m and x that is ε-far from the set {x′ | (z, x′) ∈ L}, and for
every computationally unbounded (cheating) prover P∗ it holds that

Pr[(P∗(x),Vx)(z, |x|) = 1] ≤ 1/3.

where the probabilities are over the coins of V.

An IPP for L is said to have query complexity q = q(n, ε) if, for every (z, x) ∈ L, the verifier V
makes at most q(|x|, ε) queries to x when interacting with P. The IPP is said to have communication
complexity c = c(n, ε) if, for every pair (z, x) ∈ L, the communication between V and P consists of at
most c(|x|, ε) bits. We say that the verifier time complexity of an IPP is v = v(n, ε) if, for every pair
(z, x) ∈ L, the running time of V is bounded by v(|x|, ε). We say that the prover time complexity of
an IPP is t = t(n, ε) if, for every pair (z, x) ∈ L, the running time of the honest prover is bounded
by t(|x|, ε). The number of rounds of an IPP (which we also call round complexity) is the number of
rounds of communication in the protocol, where in each round each party sends a single message.

We say that an IPP is public coin if the messages of V are restricted to be random bits, and V does
not use any other random bits that are not contained in these messages. Perfect completeness of an
IPP is defined similarly to the definition of perfect completeness of testers. Namely, we require that
the honest prover can always convince the verifier to accept. In this work we assume that all IPPs
have perfect completeness, unless explicitly stated otherwise.

We also consider the definition of a non-interactive proof of proximity, a notion of proof which was
defined and first studied by Gur and Rothblum [GR16].

Definition 2.10. A Merlin-Arthur proof of Proximity (MAP) is an IPP where the interaction is
restricted to a single message from the prover to the verifier.

15

In this case we call the prover’s message a proof, and use the term proof length instead of commu-
nication complexity.

We next introduce a new definition, of sample-based interactive proofs of proximity. These proofs
are the main objects that we study in this work.

Definition 2.11. (Sample-Based Interactive Proof of Proximity) Let ε = ε(n) ∈ (0, 1). A Sample-
Based Interactive Proof of Proximity (SIPP) with proximity parameter ε for the pair language L is an
interactive protocol with two parties: a (more powerful) prover P and a (more restricted) verifier V.
The verifier gets sample-based access x ∈ {0, 1}n whereas the prover has full access to x. In addition,
both parties get as (explicit) input z ∈ {0, 1}m where m = m(n). At the end of the interaction, the
following two conditions are satisfied:

• Completeness: For every pair (z, x) ∈ L it holds that

Pr[(P(x),V∼x)(z, |x|) = 1]] ≥ 2/3.

• Soundness: For every z ∈ {0, 1}m and x that is ε-far from the set {x′ | (z, x′) ∈ L}, and for
every computationally unbounded (cheating) prover P∗ it holds that

Pr[(P∗(x),V∼x)(z, |x|) = 1] ≤ 1/3.

where the probabilities are over the coins of V and the samples drawn by it.

An SIPP for L is said to have sample complexity s = s(n, ε) if, for every (z, x) ∈ L, the verifier V
draws at most s(|x|, ε) samples from x when interacting with P.

The communication complexity, verifier time complexity, prover time complexity and round com-
plexity for an SIPP are defined similarly to the complexities for an IPP. We say that the total complex-
ity of an IPP is the sum of its communication and sample complexities s(n, ε) + c(n, ε). If the sample
complexity of an SIPP does not depend on n, we say that the SIPP has constant sample complexity.
Similarly to IPPs, we say that an SIPP is public coin if the messages of V are restricted to be random
bits, and V does not use any other random bits that are not contained in these messages. Perfect
completeness of an SIPP is defined as it is defined for IPPs.

We also introduce the following new definition, of non-interactive sample-based proofs of proximity.

Definition 2.12. A Sample-based Merlin-Arthur proof of Proximity (SMAP) is an SIPP where the
interaction is restricted to a single message from the prover to the verifier.

In this case, as in MAPs, we call the prover’s message a proof, and use the term proof length instead
of communication complexity.

2.3 Error Correcting Codes

Definition 2.13. An Error Correcting Code is a function ECC : {0, 1}k → {0, 1}n. The codewords
of ECC are the elements in the range of ECC. The distance of the code ECC is the minimal relative
distance between two codewords of ECC. The rate of the code ECC is k

n .

Definition 2.14. An asymptotically good code with rate t and (relative) distance ε is a family of
codes ECCn : {0, 1}k → {0, 1}n where each code ECCn has distance at least ε and rate at least t.

16

2.4 The Equality Testing Problem

We next present the classical Equality Testing problem. In this problem, the input is a binary string
of length 2n, z ∈ {0, 1}2n. This string is interpreted as z = (x1, x2, ..., xn, y1, ...yn), and the tester
needs to accept if x = y and reject if x is ε-far from y.

Formally, for n ∈ N we define the following property:

Definition 2.15. EQU = {(x, x) | x ∈ {0, 1}n} ⊆ {0, 1}2n.

3 1-round SIPPs

In this section we show an exponential separation between the power of sample-based testers and the
power of 1-round sample-based interactive proofs of proximity.11

In particular, we show that every property that has a non-adaptive query-based tester with constant
query complexity, has a 1-round SIPP with constant sample complexity and logarithmic communi-
cation complexity (even if the property does not have a sample-based tester with constant sample
complexity).

We begin by studying the “Equality Testing” problem, and show for it:

1. A query-based tester with query complexity q = O(1/ε).

2. A lower bound for sample-based testers, of s = Ω(
√
n).

3. A 1-round, private-coins, sample-based interactive proof of proximity, with communication com-
plexity c = O(log n/ε) and sample complexity s = O(1/ε).

Note that this already shows an exponential gap between the power of sample-based testers and the
power of SIPPs.

We then extend the equality SIPP to any property that has a non-adaptive and fair12 (query
based) tester.

Theorem 3.1. Let ε > 0, and let L ⊆ {0, 1}n be a language that has a non-adaptive query-based fair
tester with proximity parameter ε and query complexity q = q(n, ε). Then L has a 1-round SIPP, with
proximity parameter ε, communication complexity O(q2 · log n) and sample complexity s = O(q).

In the case when the query-based tester for L has constant query complexity, the resulted SIPP for L
has indeed constant sample complexity and logarithmic communication complexity. For properties that
have POTs (proximity oblivious testers) we give SIPPs with slightly better communication complexity:

Theorem 3.2. Let % : (0, 1] → (0, 1] be a monotonically non-increasing function, let ε > 0, and let
L ⊆ {0, 1}n be a language that has a non-adaptive query-based fair POT, with query complexity q
and detection probability %. Then L has a 1-round SIPP, with proximity parameter ε, communication

complexity c = O(q2

%(ε) · log n) and sample complexity s = O(q/%(ε)).

Note that for any ε > 0, any language with (one-sided error) POT with detection probability % and
query complexity q has a (standard) tester with proximity parameter ε and query complexity q/%(ε)
(which is achieved by simply executing the POT for 1/%(ε) times). Therefore, applying Theorem 3.1
on the (standard) tester that is induced by a POT yields a SIPP with communication complexity c =

O(q2

%(ε)2
· log n), whereas applying Theorem 3.2 yields an SIPP with better communication complexity,

c = O(q2

%(ε) · log n), and with the same sample complexity.

11For the separation we compare the sample complexity of the tester with the total complexity of the SIPP (commu-
nication complexity + sample complexity).

12Recall that a tester is fair if each of its queries is uniformly distributed in [n].

17

3.1 Equality Testing

We begin by presenting a simple and well-known query-based tester for equality, that uses O(1/ε)
queries:

Claim 3.3. Let EQU be as in Definition 2.15, and let ε > 0. There exists a (query-based) tester for
EQU with proximity parameter ε and query complexity of q = O(1/ε).

Proof. We present a POT for equality in Figure 1.

Figure 1 Query Based POT for Equality, T
Input: Implicit (query) access to z = (x1, x2, ..., xn, y1, ...yn) ∈ {0, 1}2n, explicit access to ε
Output: Accept / Reject

1. Choose i ∼ [n].

2. Accept iff xi = yi.

If x = y then T always accepts. It is also easy to see that if ∆(x, y) > ε, then T rejects with
probability ε (since in this case, Pri∼[n][xi 6= yi] > ε). To get a tester with constant soundness (say,
2/3), repeat the execution of the tester T for O(1/ε) times, with independent randomness in each
execution, and accept iff T accepted in all of the executions.

Lower Bound for Sample-Based tester: The tester T described in Figure 1 relies on its ability to
query the implicit input. It needs to query x and y at the same index i. This cannot be performed by a
sample-based tester, as the indices of the samples it draws are distributed uniformly and independently
over [2n]. In other words, the tester cannot “coordinate” the indices of the samples it draws from the
“x side” of the input, and the indices of the samples from the “y side”.

Indeed, any sample-based tester for equality must draw many more samples than the number of
queries the query-based tester makes.

Claim 3.4. Let EQU be as in Definition 2.15, and let ε > 0. Any sample-based tester for EQU with
proximity parameter ε must draw s = Ω(

√
n) samples.

Proof sketch. Consider the following two distributions over {0, 1}2n. DYES is the uniform distribution
over {(x, x) | x ∈ {0, 1}n} ⊆ {0, 1}2n, the inputs that tester for EQU must accept. DNO is defined to
be the uniform distribution over all of {0, 1}2n.

A tester for EQU must accept an input sampled from DYES. It must reject with high probability
an input sampled from DNO, since such an input is very far from EQU (with high probability). We
argue that a sample-based tester that draws o(

√
n) samples cannot distinguish between these two

distributions. Assume that the tester does not see any “collision” (i.e, it did not sample both xi and yi
for any value of i). Then its view of the input is the same for an input sampled from DYES as the view
it has of an input sampled from DNO. With high probability, no such collision occur for o(

√
n) i.i.d

samples, and therefore the tester cannot distinguish between these distributions. Hence, the tester
cannot satisfy both completeness and soundness.

SIPP for equality: We next present a sample-based interactive proof of proximity for equality.

Claim 3.5. Let EQU be as in Definition 2.15, and let ε > 0. There exists an 1-round SIPP for EQU
with proximity parameter ε, sample complexity s = O(1/ε) and communication complexity O(log n/ε).

Proof. We describe the SIPP for equality in Figure 2.

18

Figure 2 SIPP for Equality Between a verifier V and a prover P
Verifier Input: Sample access to z = (x1, x2, ..., xn, y1, ...yn) ∈ {0, 1}2n, explicit access to ε.
Prover Input: Full (explicit) access to z.
Output: Accept / Reject

1. V draws (i, zi), where i ∼ [2n].

2. If 1 ≤ i ≤ n: V sends j = i to P.

3. If n+ 1 ≤ i ≤ 2n: V sends j = i− n to P.

4. Honest prover P receives j ∈ [n] and sends b = xj = yj to V.

5. V receives b∗ from P and accepts iff b∗ = zi.

Correctness: It is immediate to check that if x = y then the honest prover who follows the protocol
will always make V accept.

We now claim that in the case ∆(x, y) > ε, any (malicious) prover P∗ can make V accept with
probability at most 1− ε

2 . Indeed, in this case Pr[xj 6= yj] = ε, where the probability is over the choice
of j. That is, with probability of at least ε, the verifier sampled (i, zi) such that xj 6= yj (where j = i
if i ≤ n and j = i− n otherwise).

The crucial point is that in this case, the prover, who receives only j ∈ [n] from V, does not know
if V sampled (j, xj) or (j + n, yj), as i is kept secret. Now, if P∗ sends b∗ = xj to V and V sampled
(i, zi) = (j + n, yj), V rejects, since b∗ = xj 6= yj = zj . Similarly, if P∗ sends b∗ = yj to V and V
sampled (j, xj), V also rejects. Recall that the verifier draws its samples uniformly at random, and
hence the probability of each of the events i = j, i = j + n conditioned on one of them happening is
1/2. Therefore, no matter what is the message b∗ ∈ {0, 1} that P∗ sends to V, with probability of 1/2
V “catches” the prover and rejects. Now, since Pr[xj 6= yj] ≥ ε, we get that in total the prover can
only make V accept with probability at most 1− ε

2 .
To get a protocol with constant soundness (say, 2/3), repeat the execution of the protocol described

in Figure 2 for O(1/ε) times, in parallel. See Goldreich’s book [Gol98] (Apdx. C.1) for a proof that the
soundness error in parallel repetition of interactive proofs decreases exponentially with the number of
repetitions.

Complexity Analysis: The SIPP has 1 round, and its sample complexity is s = O(1/ε). Its
communication complexity is c = O(log n/ε), since in each (parallel) execution the verifier sends a
single element of [n], the prover sends a single bit, and there are O(1/ε) iterations.

3.2 SIPP for any property with non-adaptive tester

In this section we prove Theorem 3.1 and Theorem 3.2. We prove these theorems in a single proof, as
the SIPPs in both cases are very similar.

Proof. (of Theorem 3.1 and Theorem 3.2) Let L be a property with a non-adaptive tester T , with
query complexity k = q(n, ε), or a non-adaptive POT T with query complexity k and detection
probability %. Assume that T tosses during its execution r(n) coins. Since the tester is non-adaptive,
for every 1 ≤ j ≤ k there exists a function qj : {0, 1}r(n) → [n] such that if the coin tosses of T were
ρ ∈ {0, 1}r(n), the j-th query of it is on index qj(ρ). We denote by T (y1, . . . , yk; ρ) the output of T
on implicit input x, when its coin tosses were ρ and for each j, the query on index qj(ρ) returned

19

the value yj ∈ {0, 1}. Under this terminology, the completeness requirement from T is that for any
ρ ∈ {0, 1}r(n) and any x ∈ L:

T (xq1(ρ), . . . , xqk(ρ); ρ) = 1

If T is a standard tester with proximity parameter ε, the soundness requirement from it is that for
any x that is ε-far from L:

Pr
ρ∼{0,1}r

[T (xq1(ρ), . . . , xqk(ρ); ρ) = 1] ≤ 1/3

If T is a POT with detection probability %, the soundness requirement from it is that for any ε > 0
and any x that is ε-far from L:

Pr
ρ∼{0,1}r

[T (xq1(ρ), . . . , xqk(ρ); ρ) = 0] ≥ %(ε)

Since the tester is fair, for every j ∈ [k] there exists a procedure that is the “inverse” of the
operation of the function qj . Namely, there exists a (possibly random) procedure Rj : [n]→ {0, 1}r(n)

such that qj(Rj(i)) = i (for every possible output of Rj(i)), and for every ρ ∈ {0, 1}r(n):

Pr
i∼[n]

[Rj(i) = ρ] =
1

2r(n)

where the probability is also over the coins of Rj .
We next describe the basic SIPP for the statement x ∈ L. The basic SIPP is used both in the case

where T is a standard tester, and in the case where T is a POT. The differences between the cases is
in the analysis, and in the number of times that the basic SIPP is repeated in order to achieve the
required soundness error.

The high level idea of the basic SIPP is to extend the SIPP from Claim 3.5, as we describe next.
The verifier starts by drawing a single sample from x. The verifier then asks the prover to “simulate”
some queries the tester T would have performed to x. In this list of queries, the verifier “hides” a
single query which it already knows the value of (the sample it drew). After the prover sends (alleged)
values for the queries, the verifier checks that T would have accept if it got these values from the
queries, and that the value the prover returned for the “planted” query is consistent with the sample
it drew. To get the desired soundness, the verifier and the prover use parallel repetition of this basic
SIPP.

We describe this protocol more formally in Figure 3.

Completeness: Let x ∈ L. Since the tester T is fair, for every i ∈ [n] and j ∈ [k] there exists
ρ ∈ {0, 1}r(n) such that qj(ρ) = i. That is, there exists a randomness that would have caused T
to make its j-th query to the index i (that the verifier sampled). Furthermore, ρ is appropriately
distributed. Hence, the verifier can indeed compute ρ in step 3, and send the prover q1(ρ), . . . , qk(ρ)
in step 4. Now, if the prover is honest, it sends back to the verifier xq1(ρ), . . . , xqk(ρ). In this case,
the first condition for the verifier to accept holds, since x∗qj(ρ) = xi. The second condition also hold,

since from the completeness of T , the value verifier computes in step 6 is T (x∗q1(ρ), . . . , x
∗
qk(ρ); ρ) =

(xq1(ρ), . . . , xqk(ρ); ρ) = 1.

Soundness: We first consider the case when T is a standard tester. Let ε > 0 and let x ∈ {0, 1}n
be ε-far from L. We claim that the verifier in Figure 3 rejects the statement x ∈ L with probability of
at least 2

3k .

20

Figure 3 SIPP for L with tester T , between a verifier V and a prover P
Verifier Input: Sample access to x ∈ {0, 1}n.
Prover Input: Full (explicit) access to x.
Output: Accept / Reject

1. V draws (i, xi), where i ∼ [n].

2. V chooses uniformly at random j ∼ [k].

3. V computes ρ = Rj(i) ∈ {0, 1}r(n) such that qj(ρ) = i.

4. V sends q1(ρ), . . . , qk(ρ) to P.

5. Honest prover P sends xq1(ρ), . . . , xqk(ρ) to V.

6. V receives x∗q1(ρ), . . . , x
∗
qk(ρ) and accepts iff x∗qj(ρ) = xi and T (x∗q1(ρ), . . . , x

∗
qk(ρ); ρ) = 1.

Since the tester T is fair, as in the completeness case, the coin tosses ρ computed by V at step 3
are properly distributed (i.e., uniform and i.i.d). Therefore, from the soundness of T , we have:

Pr[T (xq1(ρ), . . . , xqk(ρ); ρ) = 1] ≤ 1/3

where the probability is over the randomness of steps 1-3.
In the case that T (xq1(ρ), . . . , xqk(ρ); ρ) = 1, the (malicious) prover can send the correct xq1(ρ), . . . , xqk(ρ),

and the verifier would (incorrectly) accept. But this case happens only with a probability of at most
1/3.

In the case that T (xq1(ρ), . . . , xqk(ρ); ρ) = 0, the malicious prover has two options. The first option
is to send the correct xq1(ρ), . . . , xqk(ρ). In this option, the verifier will reject in step 6, as the second
condition does not hold.

The second option for the prover is to send “incorrect” values x∗q1(ρ), . . . , x
∗
qk(ρ) 6= xq1(ρ), . . . , xqk(ρ).

In this option, there exists (at least) one query j∗ on which the prover “cheats” on. That it, x∗qj∗ (ρ) 6=
xqj∗ (ρ). We now argue that the distribution of j conditioned on ρ is uniform over [k]. This is because

Pri∼[n][Rj(i) = ρ] = 1
2r(n)

for every fixed j. Therefore, with probability of 1
k we have j = j∗. In this

case, as qj(ρ) = i, the verifier also rejects in step 6, as the first condition x∗qj(ρ) = xi does not hold.

All in all, when x ∈ {0, 1}n is ε-far from L, the verifier in Figure 3 rejects with probability of at
least 2

3k . The soundness error of the protocol can be reduced to a constant (say, 1/3) by repeating the
basic protocol O(k) times, in parallel (see [Gol98], Apdx C.1).

We next claim that if T is a POT with detection probability %, and if x is ε-far from L, the verifier
in Figure 3 rejects with probability of at least %(ε)

k . The analysis is similar to the case when T is a
standard tester. Now, we have:

Pr[T (xq1(ρ), . . . , xqk(ρ); ρ) = 1] ≥ %(ε)

Again, when T (xq1(ρ), . . . , xqk(ρ); ρ) = 0, the prover has two options. If it sends the the correct

values, the verifier will always rejects. If it sends incorrect values, then with probability of at least 1
k

the verifier would catch it. In total, since T (xq1(ρ), . . . , xqk(ρ); ρ) = 0 with probability of at least %(ε),

the verifier rejects the statement x ∈ L with probability of at least %(ε)
k .

Reducing the soundness error to 1/3 can be done as before, by parallel repetition of the basic SIPP.
Here the required number of repetitions is O(k

%(ε)).

21

Complexity Analysis: The SIPP of Figure 3 has 1 round. Each repetition of the basic protocol
requires the verifier to draw a single sample. In addition, the communication complexity of each
repetition is O(k log n). The verifier sends a list of length k of indices (each requires log n bits to be
represented), and the prover sends a list of length k of bits.

Therefore, in the case T is a standard tester and the basic SIPP is repeated O(k) times, the
sample complexity is s = O(k) = O(q(ε)), and the communication complexity is c = O(k log n · k) =
O(q(ε)2 · log n).

In the case T is a POT, the basic SIPP is repeated O(k/%(ε)) times, and sample complexity is

s = O(k/%(ε)) = O(q/%(ε)), and the communication complexity is c = O(k log n· k
%(ε))) = O(q2

%(ε) ·log n).

Application to Equality Testing: Observe that now, Claim 3.5 can be realized as application
of Theorem 3.2 on the POT T described in Figure 1. But there is an issue with this POT - it is not
fair. Its first query is always on the first part of the input, and the second query is on the second part.
This can be resolved by “renaming” its queries as follows. Let i ∼ [2n], and take the indices of the

POT’s queries to be q1 = i, and q2 =

{
i− n if i > n

i+ n otherwise
. This way, both q1 and q2 are distributed

uniformly over [2n], and the POT T is fair.
The detection probability of T is %(ε) = ε (as was shown in Claim 3.3), and its query complexity

is 2. Therefore, for the SIPP achieved by applying Theorem 3.2 on this POT has sample complexity
s = O(1/ε) communication complexity c = O(log n/ε), which are the same as in the SIPP from Claim
3.5.

3.3 Public-Coins Protocol

The protocol described in Claim 3.5 relies on the verifier using private coins. Namely, it keeps the
index i ∈ [n] it chooses secret; the soundness of the protocol does not hold if the prover knows i. In
this section we consider a public-coins protocol for equality testing.

Theorem 3.6. Let EQU be as in Definition 2.15, let s : N → N be a non-decreasing function, and
let ε > 0. There exists an 1-round public-coins SIPP for EQU with proximity parameter ε, sample
complexity s and communication complexity c = Õ(n

ε·s).

Proof sketch. The protocol is as follows. Recall that the input is z = (x, y) ∈ {0, 1}2n, and that if
x = y the verifier should accept, and if x is ε-far from y it should reject with high probability. The
verifier sends c = Θ(log n · nε·s) random bits to the prover. In the case that x = y, the (honest) prover
interprets the bits as (c/ log n) indices, I ⊆ [n], and sends the value of x = y at the indices I. Note
that for each i ∈ I, the prover sends a single bit bi, but “commits” to the value of z at two indices, i
and i+ n. That is, the prover “claims” that zi = zi+n = bi for every i ∈ I.

Now, the verifier receives {bi}i∈I from the prover. Next, it draws s samples, at indices S ⊆ [2n],
denoted {zi}i∈S . The verifier accepts iff the values of the samples are consistence with the message
the prover sent. That is, it checks that for every i ∈ S such that i ≤ n and i ∈ I it holds that bi = zi,
and that for every i ∈ S such that i > n and i− n ∈ I it holds that bi−n = zi.

The completeness of the protocol is immediate. We next prove that the soundness of the protocol
holds.

If x is ε-far from y, then there exists a set of indices B ⊆ [n] of size at least ε · n such that xi 6= yi
for every i ∈ B. Let B′ = I ∩B. Since I is a set of Θ(n

ε·s) indices from [n] chosen uniformly at random
and i.i.d, with high probability |B′| = Ω(ns). Now, for every i ∈ B′ a cheating prover must send a
value bi, but xi 6= yi. Thus, the prover must ‘lie” in its message regarding the values at those indices.
That is, for every i ∈ B′, it must send bi 6= xi or bi 6= yi.

22

Let B′′ ⊆ [2n] be the set of indices in which the value of the input z = (x, y) does not match value
from the prover’s message. That is, i ∈ B′′ if i ≤ n and bi 6= zi, or if i > n and bi−n 6= zi. Note
that |B′′| = |B′|. But now, since the verifier draws s samples and |B′′| = |B′| = Ω(ns) (with high
probability), we get that with high probability S∩B′′ 6= ∅. That is, with high probability, the verifier
sampled some index i ∈ [2n] such that bi 6= zi (and i ≤ n) or bi−n 6= zi (and i > n). In both cases,
from the definition of the protocol, the verifier rejects. That is, we showed that if x is ε-far from y,
then with high probability the verifier rejects.

Note that for constant ε, this protocol is optimal, up to a log n factor. Moreover, a log n factor can
be shaved off using standard derandomization techniques (e.g. expander graph random walks). See
Theorem 4.7.

4 Lower Bounds

In the previous section we showed a sample-based interactive proof of proximity for equality, which
used private coins. In this section, we consider two variations of the model. Namely, we study
non-interactive sample-based proofs of proximity, and public coin sample-based interactive proofs of
proximity. In both of these settings we prove lower bounds for the Equality Testing Problem.

4.1 Non-Interactive Sample-Based Proofs of Proximity (SMAPs):

Formally, we define non-interactive sample-based proof of proximity to be a SIPP, where the communi-
cation is restricted to be a single message from the prover to the verifier. Namely, in a non-interactive
sample-based proof of proximity for a property L, the verifier is given sample-based access an input x
and explicit access to a proof string π. We require that for inputs x ∈ L there exists a proof π that
the verifier accepts, and for inputs that are ε-far from L, no proof will make the verifier accept, except
with some small probability of error. We are mainly interested in two measures of complexity for such
proof systems. The first is the sample complexity of the verifier (the number of samples it draws from
the input x), which we denote s = s(n, ε). The second measure of complexity is the length of the
proof, which we denote p = p(n, ε). This measure is the equivalent of the communication complexity
in the interactive setting.13 We are also interested in the time complexity of the verifier, and consider
it to be efficient if it is linear in s(n, ε) + c(n, ε).

We stress that the verifier has full (explicit) access to the proof string π. That is, it is not “charged”
for reading bits from the proof. The study of a “PCP-like” model, where the verifier might read only
(small) part of the proof, is left for future work.

The notion of non-interactive proofs of proximity where the verifier has query-access to the input
was first studied by Gur and Rothblum [GR18], which named them Merlin-Arthur proofs of proximity
(MAPs). Accordingly, we call the new type of non-interactive proofs studied here Sample-Based
Merlin-Arthur proofs of proximity (SMAPs).

Known Results: Though the notion of SMAPs is new and introduced in this work, a couple of
results from [GR18] apply to the SMAPs setting as well. We cite them here, interpreted as results
regarding SMAP, for context.

The first result is the observation that any property has a SMAP with linear proof length and
constant sample complexity. Namely, the proof π for the statement x ∈ L is simply x itself. The
verifier can check that π is in L without even looking at the input x, and it can check that π = x

13Indeed, when we consider a non-interactive sample-based proof of proximity as a SIPP restricted to a single message
from the prover, p(n, ε) = c(n, ε).

23

(w.h.p) by drawing a constant number of samples from x, and verifying that x and π agree on the
sampled indices.14

In particular, for the Equality Testing problem, we get the following result:

Claim 4.1. Let EQU be as in Definition 2.15, and let ε > 0. Then there exists a SMAP for L, with
proof length p(n) = O(n) and sample complexity s(n) = O(1/ε).

Another result which applies to the SMAP setting is that a SMAP can provide at most quadratic
improvement over a standard property tester (Theorem 4.2 in [GR18]).15

Claim 4.2. Let L be a language with SMAP with proximity parameter ε, proof length p and sample
complexity s. Then L has a sample-based property tester with proximity parameter ε and sample
complexity O(p · s).

Using the known lower bound for the sample complexity of sample-based testers for equality,
s = Ω(

√
n) (see Claim 3.4), we deduce from Claim 4.2 the following result:

Corollary 4.3. Let EQU be as in Definition 2.15, and fix ε = 0.1. If a SMAP for L with proximity
parameter ε has proof length p and sample complexity s, then p · s = Ω(

√
n).

We next prove the following result:

Theorem 4.4. Let EQU be as in Definition 2.15, and fix ε = 0.1. If a SMAP for EQU with proximity

parameter ε has proof length p = o(n), then its sample complexity is s = Ω(
√
n

logn).

Recall that there is a sample-based tester for equality with sample complexity s = O(
√
n). In

addition, from Proposition 4.1, there exists a SMAP with linear proof length and constant sample
complexity. One might wonder if the length of the proof might be shorter than linear, perhaps
by increasing the sample complexity of the verifier to be super-constant. Theorem 4.4 shows that
“nothing” non-trivial can be done. As soon as the proof length is sub-linear, the sample complexity
of the verifier must be as large as the sample complexity of a tester that is not aided by a proof (up
to a logarithmic factor).

We prove Theorem 4.4 by a reduction to a Communication Complexity problem. We next de-
scribe the model of Consecutive Messages Protocols, introduced by Naor and Rothblum [NR05], and
a Theorem in this model which is used to prove Theorem 4.4.

Consecutive Messages Protocols: A consecutive messages (CM) protocol for a function
f : X × Y → {0, 1} is a protocol between 3 players: Alice, Bob and Carol. We view a CM protocol
as a game between an adversary and the players, where the adversary selects Alice’s and Bob’s inputs
(x ∈ X and y ∈ Y respectively). The players’ goal is for Carol to output f(x, y) with high probability.
The adversary’s goal is to select x and y such that the probability that Carol will output f(x, y) is

14Another result is that any sparse property has a SMAP with short proof length and constant sample complexity.
Namely, a property L with t = |L| elements has a SMAP with p(n) = log2 t, where the proof π for x ∈ L is the
“index” of x in some agreed enumeration of the elements of L. By drawing a constant number of samples from x, the
verifier can distinguish between the case of π being the index of x, and x being far from the element in L which is
at index π. We note that the verifier might not be time-efficient in this SMAP construction, since computing what is
the element of L at index π might be computationally difficult. Also note that the Equality property is not sparse, as
log|EQU| = log(2n/2) = Θ(n).

15In [GR18] the authors study MAPs with proof oblivious queries. These are MAPs in which the verifer’s queries are
independent of the provided proof. It is easy to see that any SMAP can be interpreted as MAP with proof oblivious
queries, and therefore their results applies to SMAPs as well. In the statement of Theorem 4.2 in [GR18], the resulting
tester is query-based tester with O(p · s) query complexity. It is implicit in the proof that if one starts with sample-based
verifier, then the resulting tester is also sample-based.

24

not high. In this model all communication channels are reliable - the adversary cannot modify any of
the messages sent by the players. We make the distinction between private messages, observable only
by some of the players, and public messages observable by all the players and by the adversary. The
players can use private random coins (Bob and Carol share their coins).16 We describe the step-by-step
execution of a CM protocol:

1. The adversary gives Alice an input x ∈ X.

2. Alice computes a pair of messages (mA,mp), functions of x and her private random coins ρA.
Alice sends mA to Carol over their private channel and publishes the public message mp.

3. The adversary sees mp and then selects an input y ∈ Y for Bob.

4. Bob uses (y,mp, ρBC) to compute a message mB to Carol. ρBC are Bob and Carol’s shared
coins.

5. Carol computes her output bC ∈ {0, 1} as a function of (mA,mB,mp, ρBC)

The complexity measures of a CM protocol are Alice’s and Bob’s message sizes as well as the length
of the public message mp. The requirement for a CM protocol is that for any adversary that selects
an Alice’s input x ∈ X, then receives mp, and only then selects Bob’s input y ∈ Y , Carol’s output bC
equals f(x, y) with probability at least α for some constant α > 1

2 .

Lower Bound for CM protocol for Equality: We now consider the Equality Problem, where

X = Y = {0, 1}n, and for x, y ∈ {0, 1}n, f(x, y) =

{
1 if x = y

0 otherwise
.

[NR05] proved the following lower bound for a CM protocol for this problem:

Theorem 4.5. If there exists a CM protocol for equality testing where X = Y = {0, 1}n with success
probability 0.83 and public messages of length at most 0.01 · n, where Alice’s and Bob’s messages are
of lengths at most `A, `B, then `A · `B ≥ C · n, where C > 0 is some constant.

We note that the simultaneous messages (SM) communication model, where Alice and Bob get their
input simultaneously, and no public message is allowed, was well studied prior to the work of [NR05].
The model was introduced by Yao in his seminal paper on communication complexity [Yao79]. In
this model, a similar lower bound for equality was shown by Newman and Szegedy [NS96], and it was
generalized later by Babai and Kimmel [BK97]. The contribution of [NR05] was extending the lower
bound for the CM case, where a public message is allowed.

For Theorem 4.4, we view the public message as a (non-interactive) proof. This allows us to make
a reduction from SMAP for equality to CM protocol for equality, as we do next.

In the reduction we use an asymptotically good error correcting code:

Fact 4.6. (Existence of Good Codes) Let ε = 0.1. There exists a constant t and an asymptotically
good error correcting code with rate t and relative distance ε.

A construction of such a code can be obtained by the Gilbert-Varshamov Bound [Gil52,Var57].
In the proof of Theorem 4.4 we also use the following notations. Observe that from the definition

of SMAP with proof length p for equality testing, for every x ∈ {0, 1}n there exists a proof π ∈ {0, 1}p
such that a verifier with sample access to (x, x) ∈ {0, 1}2n and explicit access to π, always accepts.

16Note that in the original description of CM protocols, the players could also use public randomness. We omit this
element of the protocol since it is not required in this work, and since omitting it only makes the impossibility result
from [NR05] stronger (since the players in the protocol are only more restricted).

25

For every x ∈ {0, 1}n, we denote that “proof for x” by πx ∈ {0, 1}p.17 We also make the following
definition. Let V be a verifier of an equality SMAP with sample complexity s, and let S ∈ [2n]s be
indices of s samples. We denote by V(z

∣∣
S

;π) the output of V which receives z ∈ {0, 1}2n as implicit
input, π as explicit input (proof), and conditioned on the event that the samples V draws are exactly
at indices S.

Note that under this terminology, the completeness requirement for the SMAP can be phrased as:

∀x ∈ {0, 1}n∃π ∈ {0, 1}p s.t Pr
S∼S

[V((x ◦ x)
∣∣
S

;π) = 1] = 1

Where S is the uniform distribution on [2n]s (that is, s-tuples of elements from [2n]), and the proba-
bility is also over the internal coin tosses of V.

The soundness requirement is:

∀x, y ∈ {0, 1}n s.t ∆(x, y) > 0.1, ∀π∗ ∈ {0, 1}p Pr
S∼S

[V((x ◦ y)
∣∣
S

;π∗) = 0] ≥ 1− δ

where 1− δ for δ < 1
2 is the soundness error of the protocol.

We are now ready to prove Theorem 4.4.

Proof. Let t be the rate of the code from Fact 4.6, and let k = t ·n (for simplicity of notation, assume
that k is an integer).

Assume that there exists an SMAP for the Equality Testing Problem, for inputs of length 2n,
with proof length p(2n), sample complexity s(2n), proximity parameter ε = 0.1, and soundness error
δ. We construct a CM protocol for equality, for X = Y = {0, 1}k, with messages length `A = `B =
Θ(log k · s(k)), public message length Θ(p(k)) and success probability 1− δ.

The Reduction: The CM protocol for equality works as follows. First, Alice receives input
x ∈ {0, 1}k, and encodes it using ECC : {0, 1}k → {0, 1}n, the asymptotically good error correcting
code from Fact 4.6, to get ECC(x). She then draws uniformly at random and i.i.d s samples from
ECC(x), denote their indices by SA ∈ [n]s. Alice sends her samples {(i, xi) | i ∈ SA} to Carol
as her private message mA. Now, consider the SMAP for Equality Testing from the assumption,
for inputs of length 2n. From its completeness, there exists a proof π ∈ {0, 1}p(2n) such that the
verifier, on explicit input π and implicit input ECC(x) ◦ ECC(x) ∈ {0, 1}2n always accepts. That
is, PrS∼S[V((ECC(x) ◦ ECC(x))

∣∣
S

;π) = 1] = 1. Let πECC(x) = π be this proof. Now, as her public
message mp, Alice publishes πECC(x).

Next, Bob receives input y ∈ {0, 1}k. He encodes it by the same error correcting code Alice used, to
get ECC(y) ∈ {0, 1}n. Bob then draws uniformly a random and i.i.d s samples from ECC(y), denote
their indices by SB ∈ [n]s. Bob sends his samples {(i, yi) | i ∈ SB} to Carol as his private message
mB. Bob ignores the public message sent by Alice.

Now, Carol sees the samples drawn by Alice from ECC(x), the samples drawn by Bob from ECC(y),
and πECC(x) the public message sent by Alice. Carol computes her output bC ∈ {0, 1} by the following
procedure. First, she chooses uniformly at random and i.i.d s samples from the 2s samples she received
from Alice and Bob. Denote the indices of the samples she chooses from the samples sent by Alice
(resp., Bob) by S′A (resp., S′B). Denote SC = S′A ∪ (n + S′B) ∈ [2n]s. Next, Carol simulates the
execution of the verifier of the Equality SMAP for the statement ECC(x) = ECC(y), as if it received
samples at indices SC , and πECC(x) as the proof.

That is, she computes bC = V((ECC(x) ◦ ECC(y))
∣∣
SC
, πECC(x)), which is her final output.

17Note that every x is mapped by the SMAP into single proof πx, but it is possible that many inputs will be mapped
to the same proof.

26

Complexity Analysis: Alice and Bob send s(2n) samples each, where the samples are of the form
(i, zi) ∈ [n] × {0, 1}. Therefore, the length of their private messages is `A = `B = log n · s(2n) =
Θ(log k · s(k)).

The public message sent by Alice is πECC(x), which is of length p(2n) = Θ(p(k)).

Correctness: We now show that the success probability of the described CM protocol is 1 − δ
(where δ is the soundness error of the SMAP). First, observe that when SA and SB are s-tuples of
elements drawn uniformly at random and i.i.d from [n], then the distribution of the indices SC is as
they were drawn uniformly at random and i.i.d from [2n]. That is, the distribution of SC is S, the
uniform distribution on [2n]s. This observation simply follows from the procedure that Carol uses to
choose SC . Also observe that Carol receives from Alice and Bob the value of ECC(x) ◦ ECC(y) at
the s indices SC (along with values of s other bits, which she does not use). Therefore, Carol can
indeed simulate the verifier and compute the value V((ECC(x)◦ECC(y)

∣∣
SC

;πECC(x)). In addition, the

probability of Carol to accept equals to the probability of the verifier to accept when given (sample-
based) access to ECC(x) ◦ ECC(y) and πECC(x) as a proof. This is since the distribution of SC is S
and because, by definition, for any x, y and any purported proof π, it holds that:

Pr
V’s samples

[V∼(ECC(x)◦ECC(y))(π) = 1] = Pr
S∼S

[V(ECC(x) ◦ ECC(y)
∣∣
S

;π) = 1]

where the probabilities are also over the coins of V.
Now, consider some possible strategy for the adversary. We argue that the adversary cannot make

Carol reject while giving to Alice and Bob inputs x = y, and cannot make Carol accept while giving
to Alice and Bob inputs x 6= y (except for small probability). For the first case, assume the adversary
gave to Alice and Bob inputs x = y. In this case, the public message sent by Alice is πECC(x). Recall
that πECC(x) is the proof such that V, when given sample-based access to ECC(x) ◦ ECC(x) (which
equals ECC(x) ◦ECC(y), as x = y) and the proof πECC(x) would always accept. Since Carol simulates
the execution of V on implicit input ECC(x) ◦ ECC(y) = ECC(x) ◦ ECC(x) and proof πECC(x), we
conclude that Carol accepts. In other words, the completeness of the SMAP implies the completeness
of the CM protocol.

For the second case, assume the adversary gave to Alice and Bob inputs x 6= y. In this case,
the public message sent by Alice is also πECC(x) (and the adversary might choose y according to this
public message). Assume (towards contradiction) that the adversary makes Carol accept with high
probability (larger than δ). We show that such an adversary “breaks” the soundness of the SMAP
protocol. Indeed, in this case, as x 6= y and ECC is an error correcting code with distance 0.1, we have
∆(ECC(x),ECC(y)) ≥ 0.1. That is, ECC(y) is 0.1-far from ECC(x). In addition, Carol simulates
the execution of V on implicit input ECC(x) ◦ ECC(y) (and proof πECC(x)) and accepts with high
probability. We deduct that there exists an input (z = ECC(x) ◦ ECC(y)) that is 0.1-far from the
equality property, and a proof (π = πECC(x)), such that V, when given sample-based access to the
input z and the proof π, accepts with high probability (larger than δ). This is a contradiction to
the soundness of the SMAP. In other words, an adversary that “breaks” the soundness of the CM
implies an adversary that “breaks” the soundness of the SMAP. We conclude that the CM protocol is
complete and sound, and that its success probability is at least 1− δ.

Lower Bound: Assume towards contradiction that there exists an SMAP for Equality Testing,
with proximity parameter ε = 0.1, soundness error 1/3, proof length p = o(n) and sample complexity

s = o(
√
n

logn). The soundness error of the SMAP can be reduced to 1 − 0.83 by executing the verifier
twice, each time with the fresh samples, and with the same proof. This hurts the sample complexity
by only a constant factor. Now, from the reduction, there exists a CM protocol for equality of inputs

27

of size Θ(n), with messages length `A = `B = o(log n ·
√
n

logn) = o(
√
n) (and hence `A ·`B = o(n)), public

message length p = o(n) and success probability 0.83. This is a contradiction to Theorem 4.5.

4.2 Public-Coin SIPPs

We say that an interaction uses public-coins if the verifier reveals the outcome of its coins immediately
after tossing them. In such a protocol, the messages the verifier sends to the prover are simply the
results of its coin flips, and he is not allowed to send any other messages. We call other interactive
protocols private-coins protocols.

Note that the equality testing protocol of Claim 3.5, and the more general protocol of Theorem 3.1
are private-coins protocols.18 It is not clear if it is possible to convert them into public-coins protocols,
or how.

A classic result in the theory of standard interactive protocols is that the expressive power of
private-coin interactive proofs is essentially equivalent to that of public-coin interactive proofs [GS86].
This fact was extended to the IPP setting by [RVW13], when the verifier has query-access to the input.

In this section, we show that this fact does not extend to the case where the verifier has sample-
access to the input. We prove that public-coins SIPP are much weaker than private-coins SIPP.
Specifically, we show that Equality Testing does not have a public-coins SIPP with communication
and sample complexities that are as good as the private-coins SIPP showed in Claim 3.5.

Theorem 4.7. Let EQU be as in Definition 2.15. If a public-coins SIPP for EQU with proximity

parameter ε = 0.1 has communication complexity c and sample complexity s ≤
√
n

1000 , then c · s > n
10000 .

Note that this lower bound is tight, up to a logarithmic factor. There exists a sample-based tester
for equality testing (without a prover) with sample complexity O(

√
n). In addition, for any desired

sample complexity s ≤
√
n there is a (1-round) public-coins SIPP for equality testing, with sample

complexity s and communication complexity c = Õ(ns) (and thus c · s = Õ(n)). See Theorem 3.6.
The proof of Theorem 4.7 uses tools from information theory. In the proof of the Theorem we

use the following technical Lemma, which states that if a random variable has almost full Shannon
entropy, then its distribution is close to uniform.

Lemma 4.8. Let X be a random variable with a finite support S. Assume that H(X) ≥ log |S| − ε.
Then X is

√
ε/2-close to the uniform distribution over S.

Proof. The Lemma follows from Pinkser’s inequality, as we show next. Let P be the probability
distribution of X. That is, for every x ∈ S we have P (x) = Pr[X = x]. Let Q be the uniform
probability distribution on S. That is, for every x ∈ S,Q(x) = 1

|S| . From the definitions of Kullback-
Leibler divergence and Entropy, we have the following:

DKL(P ||Q) =
∑
x∈S

P (x) · log(
P (x)

Q(x)
) =

∑
x∈S

P (x) · log(P (x) · |S|) =
∑
x∈S

P (x) · (logP (x) + log |S|) =

=
∑
x∈S

P (x) · logP (x) +
∑
x∈S

P (x) · log |S| = −H(X) + log |S|

(1)
From the hypothesis H(X) ≥ log |S| − ε, and hence:

DKL(P ||Q) = −H(X) + log |S| ≤ − log |S|+ ε+ log |S| = ε

18Also note that the reduction protocol used for Theorem 5.2 in the next section is also a private-coins protocol.

28

Now, from Pinkser’s Inequality we get that:

∆(P,Q) ≤
√

1

2
DKL(P ||Q) ≤

√
ε

2

where ∆(P,Q) is the statistical distance between P and Q.

For the proof of Theorem 4.7 we also need the following Lemmas, which we cite without proof.

Lemma 4.9. (Shearer’s Lemma) Let X = X1, . . . , Xn be a random variable. If S is any distribution
on subsets of the coordinates [n], such for every i, PrS∼S[i ∈ S] ≥ µ, then ES∼S[H(XS)] ≥ µ ·H(X).

Note that the entropy H(XS) is with respect to a fixed S. That is, the “uncertainty” measured
in H(XS) holds after S is fixed. We use conditional entropy to reflect this fact, and write below
ES∼S[H(XS | S)] ≥ µ ·H(X) as the conclusion of Shearer’s Lemma.

Lemma 4.10. Let A,B be random variables, and let δ > 0. With probability at least 1−δ over b ∼ B,
the conditional entropy of A given B = b is at least H̃∞(A | B)− log(1/δ).

See Definition 2.4 for the definition of the average min-entropy H̃∞(A | B), and Definition 2.3 for
the definition of conditional entropy. For a proof of Lemma 4.10 see Lemma 2.2 (a) in the work of
Dodis et al. [DORS08].

Lemma 4.11. Let A,B be random variables, and assume B has at most 2λ possible values. Then
H̃∞(A | B) ≥ H∞(A)− λ.

For a proof of Lemma 4.11 see Lemma 2.2 (b) in [DORS08].
We are now ready to prove Theorem 4.7.

Proof. Consider a public-coin SIPP of equality between a verifier V and a prover P with communication

complexity c and sample complexity s ≤
√
n

1000 . Note that because the protocol is public-coin, we can
assume w.l.o.g that the verifier draws its samples after the interaction ends.

We argue that the verifier, even with the help of the prover, cannot distinguish between an input it
should accept (sampled uniformly from the set of all accepting inputs) and an input sampled uniformly
from the set of all possible inputs (which it should reject with high probability, as we prove below).
Namely, let DYES be the uniform distribution over {(x, x) |∈ {0, 1}n} ⊆ {0, 1}2n (the accepting inputs),
and let DNO be the uniform distribution over all of {0, 1}2n. We claim that:

1. The verifier must accept every input from the distribution DYES.

2. With high probability, the verifier rejects inputs sampled from the distribution DNO.

3. If c · s ≤ n
10000 then the (sample-based) verifier cannot distinguish between an input sampled

from DYES and input sampled from DNO, even with help from the prover.

From the definition of DYES, V must accept every input sampled from this distribution. In addition,
it must reject with probability at least 1/2 an input z sampled from DNO, where the probability is
over the choice of z, the public coins and the verifier’s samples. Observe that for every i ∈ [n] we have
Prz=(x,y)∼DNO

[xi = yi] = 1
2 . Hence, from Chernoff’s bound, Prz=(x,y)∼DNO

[∆(x, y) > 0.1] > 0.99 (for
sufficiently large n), and in this case z is 0.1-far from EQU. Therefore, since V must reject any input
that is 0.1-far from EQU with probability at least 2/3, it must reject z ∼ DNO with probability at
least 2/3− 0.01 > 1/2.

To show that the verifier cannot distinguish between inputs sampled from DYES and from DNO,
we consider the view of the verifier. For some distribution D, consider the execution of the protocol

29

for z ∼ D as the implicit input. Let d be the number of rounds in the protocol, and for j ∈ [d] denote
by αj the message the verifier sends at round j. Denote by βj the message that the prover sends at
round j. We say that (α1, . . . , αd, β1, . . . , βd) is the transcript of the execution of the protocol. Let
r(n) be the number of (public) coins the verifier tossed, and let ρ = α1 ◦ · · · ◦ αd ∈ {0, 1}r(n) be their
values. Let π = β1 ◦ · · · ◦ βd be all of the messages that the prover sent to the verifier. For a set of
indices S ⊆ [2n], denote by zS ∈ {0, 1}|S| the projection of z to the indices S.

Now, the view of the verifier is the random variable (ρ, π, S, zS), where ρ ∼ {0, 1}r(n), S ∼ S2n and
z ∼ D, where S2n is the uniform distribution of subsets of size s over [2n]. Note that at the end of
the protocol, all of the information available to the verifier is contained in its view. Thus, its verdict
on the claim x = y is a function of this view.

Consider the case when z ∼ DYES. That is, z = (x, x) for x ∈ {0, 1}n. There is some prover
strategy that makes the verifier accept. That is, for every ρ there exists π = π(x, ρ) such that for
every S ⊆ [2n] the verifier accepts when its view is (ρ, π(x, ρ), S, (x, x)S).19

We next consider the view of the verifier when z ∼ DNO. That is, z = (x, y) for x, y ∼ {0, 1}n.
Suppose that the (cheating) prover’s strategy is as follows. It draws w ∼ {0, 1}n, and then sends
its messages during the protocol as if the input was (w,w). For public coins ρ the concatenation of
the prover’s messages is π(w, ρ). In this case, the view of the verifier is (ρ, π(w, ρ), S, (x, y)S), where
ρ ∼ {0, 1}r(n), x, y, w ∼ {0, 1}n and S is a set of s indices sampled uniformly at random and i.i.d from
[2n]. Note that now π(w, ρ) is independent of (x, y)S (and of S). Since all of the bits of x and y are
independent of each other (and of everything else in the verifier’s view), the distribution of the input
part of the view (i.e. (x, y)S)) conditioned on the other parts of the view, is of s uniform and i.i.d
random bits. Recall that from the soundness of the SIPP, the verifier must reject with high probability
when this is its view.

We now claim that the verifier cannot distinguish between the view (ρ, π(x, ρ), S, (x, x)S) and the
view (ρ, π(w, ρ), S, (x, y)S), except with a small advantage. Since, as stated above, (x, y)S are simply
s random bits, distributed uniformly at random and i.i.d, this claim reduces to showing that the
distribution of (x, x)S , conditioned on π(x, ρ), ρ and S, is, with high probability, very close to uniform.

At a high level, the proof of this goes as follows. First, since x ∼ {0, 1}n, the random variable x
has full entropy (namely, H(x) = n). Since the communication complexity of the SIPP is low, π(x, ρ)
is short, and hence x still has almost full entropy even conditioned on π(x, ρ). Since x and ρ are
independent random variables, x still has almost full entropy conditioned on π(x, ρ), ρ. Next, since

|S| = s ≤
√
n

1000 , with high probability the verifier does not see any “collisions” in its samples. That
is, for the input z = (x, x) ∈ {0, 1}2n, it does not sample both zi and zn+i for any i ∈ [n]. Thus, its
samples can be considered as they are all in the “first part” of the input (i.e., S can be considered as a
random subset of [n], instead as of [2n]). Next, since S is a uniformly random subset, xS conditioned
on π(x, ρ), ρ, S still has almost full entropy (this argument follows from Shearer’s Lemma). Finally,
from the Lemma we proved above, since xS conditioned on π(x, ρ), ρ, S has almost full entropy, its
distribution is close to uniform.

We next prove these arguments in more detail. First, from the definition of x we have H∞(x) =
H(x) = n. Since x and ρ are independent, we have H∞(x | ρ) = H∞(x) = n.

Since the communication complexity of the SIPP is c, the length of π(x, ρ) is at most c. That is,
π(x, ρ) is a random variable that has at most 2c possible values. Hence, from Lemma 4.11 we have:

H̃∞(x | π(x, ρ), ρ) ≥ H∞(x | ρ)− c = n− c

From Lemma 4.10, we get that with probability of at least 0.99 over the choice of x and ρ,
H(x | π(x, ρ) = π, ρ) ≥ n − c − log 100 ≥ n − c − 7. Let B1 be the event (over x ∼ {0, 1}n and

19We assume w.l.o.g that the honest prover is deterministic.

30

ρ ∼ {0, 1}r(n)) that the inequality above does not hold. Then, if B1 does not happen, we have:

H(x | π(x, ρ), ρ) ≥ n− c− 7

That is, from the verifier’s perspective, after its interaction with the prover ends, the entropy of x
conditioned on the transcript of the protocol is larger than n− c− 7 (unless B1 happens).

We next show that the entropy of the part of x that the verifier “sees” is also large. Recall that
the full implicit input is z = (x, x) for x ∼ {0, 1}n. Let B2 be the event that the verifier sampled both

zi and zn+i for some i ∈ [n] (i.e., a “collision” happened). Since s ≤
√
n

1000 , the event B2 happens with
probability at most 0.01 (over the verifier’s samples).

Consider the view of the verifier (ρ, π(x, ρ), S, (x, x)S) when B2 does not happen. We argue that it
is equivalent to the view (ρ, π(x, ρ), S′, xS′) where S′ ⊆ [n], is constructed by the following procedure.
For every i ∈ S, if i ≤ n then i is added to S′, and if i > n then i−n is added to S′. That is, we identify
the sample (i, zi) with the sample (n + i, zn+i), where we have zi = zn+i = xi since z = (x, x). Since
B2 does not happen, the resulting S′ is indeed a set (i.e., it has no repetitions) and |S′| = |S| = s.
Moreover, in this case the views are indeed equivalent to each other, as (x, x)S = xS′ ∈ {0, 1}s for
every x ∈ {0, 1}n and S ⊆ [2n]. If the verifier accepts the view (ρ, π(x, ρ), S, (x, x)S), and the event
B2 does not happen, it must also accept the view (ρ, π(x, ρ), S′, xS′).

Letting Sn be the uniform distribution of subsets of size s over [n], the indices of the verifier’s
samples can now be considered as a random subset S′ ∼ Sn. For this distribution we have

Pr
S′∼Sn

[i ∈ S′] =
s

n

for every i ∈ [n]. Thus, we can apply Lemma 4.9 (Shearer’s Lemma) with µ = s
n to get:20

ES′∼Sn [H(xS′ | π(x, ρ), ρ, S′)] ≥ s

n
·H(x | π(x, ρ), ρ)

Assuming that B1 also does not happen, we have H(x | π(x, ρ), ρ) ≥ n− c− 7 and get:

ES′∼Sn [H(xS′ | π(x, ρ), ρ, S′)] ≥ s

n
· (n− c− 7) = s− s · (c+ 7)

n

By the contradiction assumption we have c · s ≤ n
10000 and s ≤

√
n

1000 , and get that (for sufficiently
large n):

ES′∼Sn [H(xS′ | π(x, ρ), ρ, S′)] ≥ s− s · c
n
− s · 7

n
≥ s− 1

10000
− 1

100
= s− 1

9900

That is, the expected entropy of the part of x that the verifier “sees” is almost full (conditioned on
the other parts of its view, and assuming B1 and B2 do not happen).

Since s ≥ H(xS′ | π(x, ρ), ρ, S′), by Markov’s inequality we get that, conditioned on B1, B2 not
happening, with probability at least 0.99 over S′ ∼ Sn:

H(xS′ | π(x, ρ), ρ, S′) ≥ s− 1

100

Let B3 be the event (over S′ ∼ Sn) that this inequality does not hold. Let B be the event that
either of B1, B2, B3 happens (i.e., B = B1 ∪B2 ∪B3), and let B̄ be the complement of the event B.

We get that conditioned on B̄, H(xS′ | π(x, ρ), ρ, S′) ≥ s− 1
100 . From Lemma 4.8 we get that, con-

ditioned on B̄, the (statistical) distance of the distribution of (x, x)S = xS′ conditioned on π(x, ρ), ρ, S′

20Note that Shearer’s Lemma can be applied to conditional random variables.

31

from the uniform distribution over {0, 1}s is
√

1/200 < 0.08. Since each of B1, B2, B3 happens with
probability of at most 0.01, from the union bound B happens with probability at most 0.03.

From the triangle inequality, since if B does not happen the distribution of xS is 0.08-close to uni-
form, andB happens with probability at most 0.03, we have that the distribution of (ρ, π(x, ρ), S, (x, x)S)
is 0.11-close to the distribution (ρ, π(w, ρ), S, (x, y)S).

To complete the proof, recall that if the verifier rejects every input that is 0.1 far from EQU
with probability at least 2/3 (where the probability is over the verifier’s randomness, i.e. its samples
and public coins), it must reject an input sampled from DNO with probability at least 1/2 (where
the probability is over the choice of the input and the verifier’s randomness). But now, since the
distribution of the view of the verifier in the DNO case is 0.11-close to its view in the DYES case,
it must reject an input sampled from DYES with probability at least 1/2 − 0.11 > 0.3, which is a
contradiction to the completeness of the SIPP.

5 A Reduction from SIPPs to IPPs

Consider a family of languages, and assume all of the languages in it have (query-based) IPPs with
sub-linear query and communication complexities. Do all of the languages in it also have sample-based
IPPs with sub-linear sample and communication complexity? In this section we answer the question
in the affirmative (under some assumptions on the family, and on the IPPs). Towards this end, we
construct a generic reduction from sample-based IPPs to query-based IPPs.

Before stating the main theorem of this section, we introduce the following definition.

Definition 5.1. A family L of languages is closed under composition with log-space uniform NC1

circuits, if the following condition holds: For every language L : {0, 1}∗ → {0, 1} in L (which might be
a pair language or not) and every function g : {0, 1}∗ → {0, 1}∗ that can be computed by an ensemble
of log-space uniform NC1 circuits, the composition L(g(·)) : {0, 1}∗ → {0, 1} is in L.

Note that, for example, the family of languages that can be computed by a log-space Turing
Machine, and log-space uniform NCi (for i ≥ 1) are families of languages that are closed under
composition with log-space uniform NC1 circuits.

We now state the main theorem of this section:

Theorem 5.2. Let L be a family of pair languages that is closed under composition with log-space
uniform NC1 circuits. Assume that there are functions q, c, v, d : N → N and a real value ε > 0 such
that every L ∈ L has a (query-based) IPP with proximity parameter ε, with the following properties:

1. The protocol uses only public-coins.

2. The query complexity of the protocol is O(q(n)), its communication complexity is O(c(n)), its
randomness complexity (the number of public coins the verifier tosses) is r = r(n), the verifier
running time is O(v(n)), and its round complexity is poly(d). Also assume (w.l.o.g) that the
verifier tosses exactly r(n) coins.

3. The indices of the queries depend only on the public coins of the verifier. That is, for each L ∈ L,
there is a deterministic function that maps the public coin tosses of the verifier to the indices it
queries in the input. Also assume (w.l.o.g) that the verifier queries the input only at the end of
the IPP, after the interaction with the prover ends.

4. The (honest) prover runs in time poly(n).

32

Then every L ∈ L has a sample-based IPP with proximity parameter 120ε. The sample complexity of
the protocol is Õ(q(n)), its communication complexity is Õ(c(n) + q(n)), the verifier running time is
Õ(v(n) + q(n)), its round complexity is poly(d),21, it is a private coin protocol, and it has imperfect
completeness. In addition, the (honest) prover runs in time poly(n).

Remark 5.3 (Imperfect completeness of the sample-based protocol). The sample-based IPP achieved
in Theorem 5.2 does not have perfect completeness, even if the query-based IPP we start with does
have prefect completeness. It is possible to slightly change the reduction in order to get a sample-based
IPP with perfect completeness. The main cost is increasing the round complexity. See Remark 5.25.

We use this reduction to prove that rich families of languages have SIPPs with sub-linear sample
and communication complexities. The first family we consider is log-space uniform NC. Rothblum,
Vadhan and Wigderson [RVW13] and Rothblum and Rothblum [RR20] showed that any language in
this family has a sub-linear (query-based) IPP. By applying the reduction of Theorem 5.2 on their
result we prove the following:

Theorem 5.4. Let L be a language in log-space uniform NC, and let ε ∈ (0, 1) be a fixed constant.
Then there is a SIPP with proximity parameter ε for L. The sample and communication complexities
of the SIPP, as well as the verifier’s running time, are Õ(

√
n). In addition, the SIPP has poly(log n)

rounds, and the (honest) prover runs in time poly(n).

Reingold, Rothblum and Rothblum [RRR16] proved that every language that can be computed in
polynomial-time and bounded-polynomial space has a sub-linear constant-round IPP. We apply our
reduction on their result, and show that every such language also has a sub-linear constant-round
sample-based IPP:

Theorem 5.5. Fix a constant σ ∈ (0, 1), and let L be a language that is computable in poly(n)-time
and O(nσ)-space. Let ε ∈ (0, 1) be a fixed constant. Then there is a SIPP with proximity parameter
ε for L. The sample and communication complexities of the SIPP, as well as the verifier’s running
time, are n1/2+O(σ). In addition, the SIPP has a constant number of rounds, and the (honest) prover
runs in time poly(n).

5.1 The Reduction

General Structure of the Reduction: Given some language L in L, the hypothesis of Theorem
5.2 ensures that there exists an interactive proof of proximity for testing if x is in L or ε-far from L.
One would want to use this IPP directly as a SIPP for testing the same property in the sample-based
access model, but there is a clear problem with this idea. At the end of the IPP, the verifier queries
x at some indices, which depend on the run of the IPP (namely, on the coins that the verifier tossed
during the execution of the protocol). But the verifier in a SIPP cannot query x at these indices, since
it has only sample-based access to the input. It can only sample x at some uniformly random (and
i.i.d) indices, which do not depend on the execution of the protocol.

To overcome this obstacle, one might suggest the following solution. First, the verifier draws sam-
ples from the input, at uniformly random and i.i.d indices S. The verifier then computes (“simulates”)
which coin tosses for the IPP would have caused it to query the input at exactly the indices S (note
that from the hypothesis, the indices queried by the verifier in the IPP depend solely on the verifier
public coins). The verifier then executes the protocol using the coin tosses it computed instead of
using fresh randomness. At the end of the protocol, when the verifier needs to query the input at

21We note that the reduction increases the number of rounds by 1. Namely, the number of rounds of the sample-based
IPP for some L ∈ L is d′ + 1, where d′ is the number of rounds of the query-based IPP of a language in L.

33

some indices, these indices are exactly S - and therefore the verifier already has the value of the input
at these indices.

This idea seems promising, but it has a major flaw. First, from the hypothesis, there is a mapping
between the verifier’s public coins to query indices, but this mapping might not be onto. There might
be a set of indices such that no coin tosses would have caused the verifier to query these indices. As
the indices in S are chosen uniformly at random and i.i.d, S might be such a set of indices, and the
verifier will not be able to “simulate” the required coin tosses, since none exist.

The issue is actually more acute; even if the mapping is onto, the distribution of the query indices
needed for the IPP might be different from the distribution of S. In particular, the query indices for
an IPP are typically not independent - they usually have some structure that is based on the IPP.22

Therefore, if the verifier uses that mapping to simulate coin tosses, the distribution of these coin tosses
will not be uniformly random. Using such coin tosses for an IPP might destroy its soundness.

To solve this obstacle we use the following key idea. Instead of running the IPP directly on the
given input x, the verifier executes an IPP on a transformed version of x, denoted by f(x) and with
respect to a “transformed language” f(L). The transformation function f is chosen in way that ensures
it has some important properties: f is distance preserving (in a way that will be formalized later),
and random samples on x are “mapped to” structured queries in f(x). We continue with more details
on the protocol and the transformation.

The Protocol: The transformation of the input is represented as a function f : {0, 1}n → {0, 1}m·n,
where m = O(log n). Denote by F the family of all the transformation functions that can be used
for the protocol. We index the functions in F by keys from a set KEYS (which will be defined
formally later). Each key is a short binary string that describes / encodes the function fkey ∈ F , and
F = {fkey}key∈KEYS . The key of a function has some additional properties that will be described later
in this section.

For a language23 L define the pair language L′ = {(key , fkey(x)) | key ∈ KEYS , x ∈ L}, where
key is the explicit part of the input, and fkey(x) is the implicit part of the input. KEYS and fkey are
chosen in a way that ensures that if L ∈ L then L′ ∈ L, and therefore there exists a (query access)
IPP for L′.

The protocol between a verifier and a prover for testing if x ∈ {0, 1}n is in L or 120ε-far from L is
described formally in Figure 5. We next give a high-level description of the protocol.

First, the verifier draws m · k = Õ(q(n)) samples from x, where k = log n · q(n).24 Denote their
indices by S ∈ [n]m·k. Next, it “simulates” privately the coin tosses that are required for the execution
of the query-based IPP to prove a claim of the form (key , fkey(x)) ∈ L′, for some key ∈ KEYS . Note
that key and the transformation function fkey were not chosen yet. However, by the hypothesis of
Theorem 5.2 (Property 2) the verifier knows in advance the number of coins r(n) that are needed for
the execution of the IPP for L′. Based on the coin tosses, the verifier computes the indices it will need
to query at the end of that IPP. Denote those indices by Q ∈ [m · n]{k}.25 Again, from the hypothesis
of the Theorem (Property 3), the indices Q depend only on the coin tosses (and independent of the
explicit and implicit inputs), and therefore they can be computed even though fkey has not been
chosen yet.

Next, (and only now), the verifier chooses the transformation function fkey ∈ F , based on S and

22In particular, in the IPPs from [RVW13, RR20] that are used to prove Theorem 5.4, the query indices are not
independent of each other.

23For the intuitive description of the protocol we assume that L is a standard (not a pair) language. In the actual
application of the protocol, L itself would be a pair language.

24Recall that q(n) is a function such that all languages in L have (query-based) IPP with query complexity O(q(n)).
25Note we can assume w.l.o.g that the query indices are distinct (that is, the protocol does not query the input on

the same index twice). We use tuples of distinct elements here instead of sets for technical reasons.

34

Q. The key of the chosen function has some important properties: First, having key allows efficient
computation of fkey(x) for any x ∈ {0, 1}n. In other words, the key of the function fkey describes the
operation of the function. Second, the key is computed as a function of Q and S, but (when S is
chosen i.i.d and uniformly at random) the key does not reveal any information about Q. Third, fkey
is constructed in a way that allows recovering the value of fkey(x) at the indices Q from the value of x
at the indices S. More specifically, each one of the bits of fkey(x) at the indices Q equals to some bit
of x at an index from the set S. The exact construction of fkey and the formulation of the properties
are explained below.

Now, as its first message, the verifier sends the key of the function fkey to the prover. Next,
the verifier and the prover interact and execute the IPP for the statement (key , fkey(x)) ∈ L′, where
key ∈ KEYS is an explicit input (both the verifier and the prover have direct access to it), and fkey(x)
is the implicit part of the input. While executing the protocol, instead of sending fresh public coins
to the prover, the verifier uses the same coins it tossed for the computation of Q.

After the interaction ends, the verifier has to query the transformed input fkey(x) at indices Q.
But now, from a property of fkey that was described above, the verifier can recover the value of fkey(x)
at the indices Q from the value of x at the indices S. As the verifier already has the value of x at the
indices S (from the samples it drew), it can use these values instead of querying fkey(x) directly. To
finish the protocol, the verifier now accepts or rejects x according to the instructions induced by the
IPP it executed for (key , fkey(x)) ∈ L′.

Note that, in contrast to the “flawed solution” described above, here the IPP is executed with i.i.d
random coins - the coins that the verifier tossed privately at the beginning of the protocol. In addition,
since the key sent to the prover does not reveal any information regarding Q, it also does not reveal
any information regarding these coin tosses. Therefore, from the prover’s perspective, these coins seem
like they were generated by fresh randomness, and the soundness of the protocol is maintained.

5.2 Construction of the Transformation Function

We encapsulate the requirements from the transformation function f in the following Lemma:

Lemma 5.6. For all integers k ≤ n and t, such that n is a power of 2, taking m = t · log n, there
exist:

1. A procedure K : [n]m·k × [m · n]{k} → KEYS, where KEYS = {0, 1}m·k·logn, that maps a pair
S,Q to a key K(S,Q). The runtime of K is k · poly(log k, log n, t).

2. A procedure F : KEYS × {0, 1}n → {0, 1}m·n that maps a key and an input x ∈ {0, 1}n to an
output in {0, 1}m·n. The procedure F can be computed in poly(n) time.

Let fkey : {0, 1}n → {0, 1}m·n be the function F (key , ·) (that is, the application of F with a fixed
key). Let F = {fkey}key∈KEYS .

3. A recovery procedure R : KEYS × [m · n]→ [n].

Let Rkey : [m · n]→ [n] be the function R(key , ·) (that is, the application of R with a fixed key).

with the following properties:

1. (Mapping x and f(x)) For every x ∈ {0, 1}n, index q ∈ [m · n] and key ∈ KEYS, the value of
[fkey(x)]q depends on a single bit of x. Moreover, Rkey(q) describes which bit of x it depends on.
Namely:

[fkey(x)]q = xRkey (q)

Note that Rkey is a function of the index q, and does not depend on the value of x.

35

2. (Simulating Queries) For every S ∈ [n]m·k, Q ∈ [m · n]{k}, and every q ∈ Q:

RK(S,Q)(q) ∈ S

(That is, the value of fK(S,Q)(x) at indices Q can be recovered from the value of x at indices S,
for every x ∈ {0, 1}n).

3. (Distance Preserving) For every Q ∈ [m · n]{k} and every ε > 0, if x is 60ε-far from L then: 26

Pr
S∼S,key←K(S,Q)

[fkey(x) is ε-far from {fkey(x′) | x′ ∈ L}] ≥ 1− n−Ω(t)

where S is the uniform distribution on (m · k)-tuples of elements from [n].

4. (Q-Hiding) The key K(S,Q) does not reveal Q. That is, for every Q,Q′ ∈ [m · n]{k} and every
key ∈ KEYS:

PrS∼S[K(S,Q) = key] = PrS∼S[K(S,Q′) = key]

(Where S is the uniform distribution on (m · k)-tuples of elements from [n], as in Property 3).

5. (Circuit Reversing F) With high probability over the choice of key, the function fkey is injective:

Pr
S∼S,key←K(S,Q)

[∃x, x′ ∈ {0, 1}n such that x 6= x′ and fkey(x) = fkey(x′)] ≤ n−Ω(t)

(Where S is the uniform distribution on (m · k)-tuples of elements from [n], as in Property 3).

Moreover, there exists a logspace-uniform NC1 circuit C that gets as input key ∈ KEYS and
y = F (key, x) ∈ {0, 1}m·n, and if fkey is injective, outputs x.

6. (Efficient Recovery) There exists a TM that gets as input key ∈ KEYS and q1, . . . , qk ∈ [m · n]
and outputs R(key , q1), . . . , R(key , qk) ∈ [n], and its runtime is k · poly(log k, log n, t).

We now describe the construction of the K,F and R functions described in Lemma 5.6. The
construction uses a family of k-wise independent hash functions.

k-wise Independent Hash Functions: We begin by defining the notion of k-wise independent
hash functions.

Definition 5.7. (k-wise independent hash functions) For n,m, k ∈ N such that k ≤ n, a family of
functions H = {h : [n] → [m]} is k-wise independent if for all distinct x1, x2, . . . , xk ∈ [n], and for
h ∼ H, the random variables h(x1), . . . , h(xk) are independent and uniformly distributed in [m].

Note that our construction only uses the case where m = n.
We now present a known construction for a family of functions with this property.

Theorem 5.8. (k-wise independent hash functions from polynomials) Let F be a finite field. For
a0, a1, . . . , ak−1 ∈ F define ha0,a1,...,ak−1

: F→ F by ha0,a1,...,ak−1
(x) = a0 + a1x+ a2x

2
+ · · ·+ ak−1x

k−1.
Let H = {ha0,a1,...,ak−1

| a0, a1, . . . , ak−1 ∈ F}. Then H, which is the set of all polynomial of degree
at most k − 1 over F, is a family of k-wise independent hash functions from F to F.

26Note that here x is assumed to be 60ε-far from L, though in Theorem 5.2 the proximity parameter is 120ε. The
reason is that here we assume n is a power of 2, whereas in the main Theorem the implicit input length n might not
be so. In order to apply the Lemma during the proof of the main Theorem we use padding, which might damage the
proximity by a factor of at most 2.

36

For Lemma 5.6 we assume that n is a power of 2. We take H to be the family of hash functions
from Theorem 5.8, where F is taken to be the finite field of size n. For this family of hash functions
we have the following Fact:

Fact 5.9. There is a Turing Machine that takes as input an encoding 〈h〉 ∈ {0, 1}k·logn of a hash
function h ∈ H and i ∈ [n], and outputs h(i). (Namely, for h = ha0,...,ak−1

the encoding 〈h〉 is the
concatenation of the canonical encodings of a0, . . . , ak−1 ∈ [n]).

The runtime of this TM is k ·poly(log n). Moreover, there is a logspace-uniform ensemble of circuits
of size nO(1) and depth O(log n) that takes as input 〈h〉 ∈ {0, 1}k·logn and i ∈ [n] and outputs h(i).

Proof. The TM that gets as inputs 〈h〉 = 〈a0〉, . . . , 〈ak−1〉 and i ∈ [n] and outputs h(i) simply evaluates
h(i) in a straight-forward manner. That it, it computes ij for any 0 ≤ j < k, and then computes
the sum

∑k−1
j=0 aj · ij , where all of the arithmetic operations are over the field F. These computations

requires O(k) arithmetic operations over a field of size n, and therefore the runtime of the TM is
k · poly(log n).

The circuit that gets the same inputs, and has the same output, works similarly to the TM. Namely,
its inputs are 〈h〉 = 〈a0〉, . . . , 〈ak−1〉 ∈ {0, 1}k·logn and i ∈ [n], and its output is h(i) ∈ [n]. The circuit
is constructed as follows.

It first computes in parallel ij for any 0 ≤ j < k, in k sub-circuits. This can be done by pre-
computing all of the values αj for every α ∈ [n] and 0 ≤ j < k, and keeping them in a lookup-table.
The circuits for the look-up are of depth log k · poly(log log n) and size k · poly(log n) = nO(1).

It then combines the outputs of the sub-circuits with the inputs 〈a0〉, . . . , 〈ak−1〉 to compute∑k−1
j=0 aj · ij . This computation can be done in a circuit of depth O(log n) and size nO(1). Multi-

plication of two log n bits number can be done in such a circuit in a straight-forward fashion (indeed,
it can be done in a circuit of depth O(log log n).) Summation of n numbers, each of log n bits, can also
be done in such a circuit. See Theorem 1.20 in the book of Vollmer on Circuit Complexity [Vol99].

In total, the depth of the circuit that computes h(i) is O(log n), and its size is nO(1).

In addition, we have the following facts regarding H.

Fact 5.10. Let F,H be as in Theorem 5.8 where F is taken to be the finite field of size n. Then for
any two k-tuples of elements from F, denoted A,B, such that the elements in A are distinct, there
exists a unique h ∈ H such that h(A) = B. Moreover, there exists TM that gets as input A,B and
outputs the (canonical) encoding of h, 〈h〉, such that h(A) = B in time k · poly(log k, log n), by using
the (inverse) Fast Fourier Transform (FFT).

Fact 5.11. Let F,H be as in Theorem 5.8 where F is taken to be the finite field of size n. There exists
a TM that gets as input a k-tuple A and an encoding of h ∈ H, 〈h〉, and outputs the k-tuple B = h(A)
in time k · poly(log k, log n), by using the Fast Fourier Transform (FFT).

For a detailed proof of facts 5.10 and 5.11, and efficient implementation of FFT see chapter 30 in
the classic book of Coremen, Leiserson, Rivest and Stein [CLRS09]. (In particular, see Theorem 30.1
for the existence proof, and sections 30.2 and 30.3 for discussion and implementation of the Discrete
Fourier Transform (DFT)).

The Construction: We now show the construction of K,F and R for Lemma 5.6.
For S ∈ [n]m·k, Q ∈ [m · n]{k}, we need to specify the key K(S,Q), the function f = fK(S,Q) ∈ F

and the function RK(S,Q) : [m · n]→ [n] that satisfy the list of properties in the Lemma statement. In
Figure 4 we give a formal description of the construction, and continue with more details and intuition.

37

Figure 4 Construction of K,F,R
Input: S ∈ [n]m·k (samples indices) and Q ∈ [m · n]{k} (query indices)
Output: A key K(S,Q) ∈ KEYS , a function fK(S,Q) ∈ F and a function RK(S,Q) : [m · n]→ [n].

1. Let S1, . . . , Sm ∈ [n]k be the k-tuples such that S = (S1, . . . , Sm) ∈ [n]m·k.

2. Let Q1, . . . , Qm ∈ [n]{k} be k-tuples of distinct elements from [n], such that for every 1 ≤ j ≤ m,
Qj contains all of the elements from Q that are in the range Ij = {(j − 1) · n + 1, . . . , j · n}
(adding dummy elements as needed).

3. For j in 1 . . .m:

(a) Choose hj to be the unique function in H such that hj(Qj) = Sj .

4. Let K(S,Q)← 〈h1〉 ◦ · · · ◦ 〈hm〉.

5. For j in 1 . . .m:

(a) Define fj : {0, 1}n → {0, 1}n by [fj(x)]i = xhj(i) for any i ∈ [n].

6. Let F (K(S,Q), x) = fK(S,Q)(x) = f1(x) ◦ f2(x) ◦ · · · ◦ fm(x).

7. For q ∈ [m · n], define RK(S,Q)(q) as follows:

(a) Let j ∈ [m] be the index such that q ∈ Ij .
(b) Let i = q − (j − 1) · n ∈ [n].

(c) Set RK(S,Q)(q) = hj(i).

38

Construction of K: The first steps are to create from the tuples S ∈ [n]m·k and Q ∈ [m · n]{k}

smaller tuples. From each of the two tuples S,Q, we create m smaller tuples, where each smaller
tuple is of length k, and contains only elements from [n]. First, S is a tuple of length m · k, and it is
divided into m tuples, S1, . . . , Sm, each of length k, in the natural way. That is, S1 is the tuple that
contains the first k elements of S (according to the order in S), S2 is the tuple that contains the k
next elements of S, etc. Formally, if S = (s1, s2, . . . , sk, sk+1, . . . , skm) then for each 1 ≤ j ≤ m let
Sj = (sk(j−1)+1, . . . , sk·j).

The process to create Q1, . . . , Qm ∈ [n]{k} from Q ∈ [m · n]{k} is different. Instead of separating
the elements of the tuple according to their location (as done with S), the separation is done according
to their values. Recall that Q is a tuple of length k of (distinct) elements from the set [m · n]. The
set [m · n] is considered as m disjoint ranges, each of length n, in the natural way. That is, let
Ij = {(j − 1) · n + 1, . . . , j · n}, and observe that indeed

⋃m
j=1 Ij = [m · n] and Ij , Ij′ are disjoint

for j 6= j′ (and |Ij | = n). Now, let Q′j be the restriction of Q to the range Ij . That is, Q′j is the
tuple which is created by taking Q and removing from it all of the elements that are not in Ij , while
respecting the order from Q. Note that the lengths of the tuples might be different from each other,
but because the length of Q is k, each tuple is of length at most k. To make all of the tuples have the
same length k, complete each Q′j by adding “dummy” elements to it. Namely, if the length of Q′j is
l < k, take the first k − l elements of Ij which are not in Q′j , and add them to Q′j . After adding the
dummy elements, every Q′j is a tuple of length k of distinct elements from the range Ij . The process
is still not done, as each small tuple should contain only elements from [n] (this is needed for the next
step of the construction). In order to do that, define Qj ∈ [n]{k} by [Qj]u = [Q′j]u − (j − 1) · n for

every 1 ≤ u ≤ k. That is, for j = 1 we have Q1 = Q′1 ∈ [n]{k} (as I1 = [n]), and for 2 ≤ j ≤ m we
decrease the value of each element of Q′j by the value of the last element of Ij−1. Note that since the
elements of Q are distinct, for every 1 ≤ j ≤ m the elements of Qj are distinct. Also note that it even
though the elements of Qj are from [n], it is “easy” to take an index q ∈ [m ·n] and compute to which
tuple Qj it would have gone, and what would be its “new value” there (i.e, this can be computed by
a logspace-uniform NC1 ensemble of circuits). We say that the smaller tuples Q1, . . . , Qm are induced
by Q, and note that the process to create Q1, . . . , Qm from Q is deterministic, and can be computed in
a straight-forward fashion in time k ·m · poly(log n) = k · poly(log n, t) (as it involves at most O(k ·m)
elementary operations on elements from [n]).

Next, for each 1 ≤ j ≤ m, choose hj to be the unique function in H such that hj(Qj) = Sj . Note
that such a function exists and it is unique from Fact 5.10.

Take the key K(S,Q) to be the concatenation 〈h1〉 ◦ · · · ◦ 〈hm〉 ∈ {0, 1}m·k·logn = KEYS , where
〈h〉 ∈ {0, 1}k·logn is the encoding of h from Fact 5.9. Note that from Fact 5.10, each encoding 〈hj〉
can be computed in time k · poly(log n) from Sj , Qj . Together with the run-time of computing all of
the tuples Sj , Qj from S,Q, we get that computing K(S,Q) can be done in time k · poly(log n, t). In
particular, the verifier can compute (privately) the key K(S,Q) in time that is sub-linear in n.

Construction of F and R: We next describe the construction of F and R from K(S,Q) =
〈h1〉 ◦ · · · ◦ 〈hm〉. Note that this process is “public”; it can be done based on information that is known
to both the verifier and the prover.27

First, construct m functions, f1, . . . , fm : {0, 1}n → {0, 1}n from h1, . . . , hm as follows.
For x ∈ {0, 1}n, i ∈ [n], 1 ≤ j ≤ m define fj(x) ∈ {0, 1}n by:

[fj(x)]i = xhj(i)

Finally, let key = K(S,Q) and take F (key , x) ∈ {0, 1}m·n to be F (key , x) = fkey(x) = f1(x) ◦
f2(x) ◦ · · · ◦ fm(x). The function R(key , ·) = Rkey is implied directly from the construction of f .

27In contrast, computing K(S,Q) is done privately by the verifier, as it keeps S and Q secret.

39

Namely, for q ∈ [m · n] let j ∈ [m] be the index such that q ∈ Ij . Let i = q − (j − 1) · n (that is, i is
the “relative index” of q in Ij). Note that i ∈ [n]. Now, observe that [fkey(x)]q = [fj(x)]i = xhj(i) and
define Rkey(q) = hj(i).

Proofs for Lemma 5.6: We now prove that K,F and R as described above indeed satisfy the
requirements of Lemma 5.6. We first observe that Property 1 of Lemma 5.6 holds directly from the
construction of R. Namely, for every key ∈ KEYS , the function Rkey was constructed in a way such
that for every q ∈ [m · n] and every x ∈ {0, 1}n:

[fkey(x)]q = xRkey (q)

We next observe that the value of F (key , x) can be computed efficiently.

Claim 5.12. There exists a TM that gets as input key ∈ KEYS , x ∈ {0, 1}n and outputs F (key , x),
and runs in time poly(n).

Proof. We show that every bit of F (key , x) can be computed in time poly(n). This is enough, since
F (key , x) has poly(n) bits.

For key ∈ KEYS , let key = 〈h1〉◦ · · · ◦ 〈hm〉, and for every 1 ≤ m let fj be the function constructed
at step 5 of Figure 4 from hj . For every i ∈ [n] and 1 ≤ j ≤ m, we have by definition [fj(x)]i = xhj(i).
From Fact 5.9, hj(i) can be computed in poly(n) time, and hence xhj(i) can be computed in poly(n)
time.

As F (key , x) = f1(x) ◦ f2(x) ◦ · · · ◦ fm(x), we are done.

We next show that Property 2 of Lemma 5.6 holds.

Claim 5.13. (Property 2 - Simulating Queries) For every S ∈ [n]m·k, Q ∈ [m ·n]{k}, and every q ∈ Q:

RK(S,Q)(q) ∈ S

(That is, the value of fK(S,Q)(x) at indices Q can be recovered from the value of x at indices S, for
every x ∈ {0, 1}n).

Proof. Let S ∈ [n]m·k, Q ∈ [m · n]{k}, and q ∈ Q. The proof follows from the construction of R and
from the construction of the tuples Qj from Q.

Namely, let S ∈ [n]m·k, Q ∈ [m · n]{k}, q ∈ Q and let key = K(S,Q). Let j ∈ [m] be such that
q ∈ Ij , and let i = q − (j − 1) · n. From the choice of Rkey we have Rkey(q) = hj(i). From the choice
of hj , we have hj(Qj) = Sj ⊆ S. From the construction of Qj and since q ∈ Q, we have i ∈ Qj .
Therefore, Rkey(q) = hj(i) ∈ S as required.

We now make a claim that describes the distributions of the hash functions h1, . . . , hm which are
chosen during the construction of K(Q,S). This claim will be used to prove a few of the properties
of Lemma 5.6

Claim 5.14. Fix Q ∈ [m · n]{k}, and let S ∼ S where S is the uniform distribution on (m · k)-tuples
of elements from [n]. Let h1, . . . , hm ∈ H be the hash functions that are chosen by the construction of
K(Q,S). Then for every 1 ≤ j ≤ m the distribution of hj is uniform over H. Moreover, h1, . . . , hm are
independent of each other. That is, the distribution of h1, . . . , hm is as if they were chosen uniformly
at random and i.i.d from H.

40

Proof. Let Q1, . . . , Qm ∈ [n]{k} be the smaller tuples induced by Q in the construction, and let
S1, . . . , Sm ∈ [n]k be the smaller tuples induced by S in the construction. Fix 1 ≤ j ≤ m.

To show that the distribution of hj is uniform over H we need to show that for every fixed h ∈ H:

Pr
S∼S

[hj = h] =
1

|H|
=

1

nk

We used the fact that |H| = nk, which is immediate from the choice of H.
Indeed, fix h ∈ H. Observe that since the k elements in Qj are distinct, and from Fact 5.10, hj = h

iff hj(Qj) = h(Qj). (One direction is trivial, and the second direction holds since two polynomials of
degree at most k − 1 that agree on k distinct points are equal to each other). But now, observe that
from the construction, hj(Qj) = Sj (this is how hj was chosen). Therefore:

PrS∼S[hj = h] = PrS∼S[hj(Qj) = h(Qj)] = PrS∼S[Sj = h(Qj)].

Now, observe that from the construction, when S ∼ S the induced Sj is distributed uniformly from
[n]k. (Namely, each of the k elements of Sj was sampled uniformly at random and independently from
[n]). That is, for any fixed k-tuple S′ ∈ [n]k, we have PrS∼S[Sj = S′] = 1

|[n]k| = 1
nk

. Note that h(Qj)

is some fixed tuple in [n]k, hence PrS∼S[Sj = hj(Qj)] = 1
nk

, and therefore also PrS∼S[hj = h] = 1
nk

as
required.

For the “moreover” part, observe that when S ∼ S the induced smaller tuples S1, . . . , Sm are
independent of each other (since each Sj contains different samples, and the samples were drawn
i.i.d), and therefore h1, . . . , hm are independent of each other.

We now show that Property 4 of Lemma 5.6 holds.

Claim 5.15. (Property 4 - Q-Hiding) The key K(S,Q) does not reveal Q.
That is, for every Q,Q′ ∈ [m · n]{k} and every key ∈ KEYS:

PrS∼S[K(S,Q) = key] = PrS∼S[K(S,Q′) = key]

where S is the uniform distribution on (m · k)-tuples from [n].

Proof. Let Q,Q′ ∈ [m · n]{k} and let key ∈ KEYS . Assume that key is a valid key. That is,

key = 〈h∗1〉 ◦ · · · ◦ 〈h∗m〉

for some h∗1, . . . , h
∗
m ∈ H. (otherwise, PrS∼S[K(S,Q) = key] = PrS∼S[K(S,Q′) = key] = 0 and we are

done).
For S ∼ S, denote by h1, . . . , hm ∈ H the hash functions such that:

K(S,Q) = 〈h1〉 ◦ · · · ◦ 〈hm〉

Similarly, for S ∼ S, denote by h′1, . . . , h
′
m ∈ H the hash functions such that:

K(S,Q′) = 〈h′1〉 ◦ · · · ◦ 〈h′m〉

Now, since the encoding h→ 〈h〉 is an injective function, K(S,Q) = key iff for every 1 ≤ j ≤ m it
holds that hj = h∗j . Similarly, K(S,Q′) = key iff for every 1 ≤ j ≤ m it holds that h′j = h∗j .

Therefore,

Pr[K(S,Q) = key] = Pr[h1 = h∗1] · . . . · Pr[h1 = h∗m]

and

Pr[K(S,Q′) = key] = Pr[h′1 = h∗1] · . . . · Pr[h′1 = h∗m]

41

where the probabilities are over S ∼ S.
But now, from Claim 5.14, for every 1 ≤ j ≤ m we have:

Pr
S∼S

[hj = h∗j] = Pr
S∼S

[h′j = h∗j] =
1

nk

since h∗j is some fixed element in H.
Therefore, Pr[K(S,Q) = key] = Pr[K(S,Q′) = key], which is what we needed to show.

We now show that Property 3 of Lemma 5.6 holds.

Claim 5.16. (Property 3 - Distance Preserving) For every Q ∈ [m · n]{k} and every ε > 0, if x is
60ε-far from L then:

Pr
S∼S,key←K(S,Q)

[fkey(x) is ε-far from {fkey(x′) | x′ ∈ L}] ≥ 1− n−Ω(t)

where S is the uniform distribution on (m · k)-tuples of elements from [n].

Proof. Intuitively, we want to show that fkey preserves distances, with high probability (over the
samples the verifier draws). Recall that fkey(x) ∈ {0, 1}m·n is a concatenation of f1(x) ◦ · · · ◦ fm(x),
and each fj is constructed from hj ∈ H.

For h ∈ H and i ∈ [n] we say that i is covered by h if i is in the range of h. That is, h covers i if
i ∈ h([n]), or, equivalently, if h−1(i) is not empty. Observe that from the construction of fj , when hj
covers i there is (at least) one bit of fj(x) which is equal to xi. Namely, the value of fj(x) at each of
the indices from the set h−1

j (i) (which contains at least one index when hj covers i) equals to xi.
We first claim that for a fixed i ∈ [n], when drawing h ∼ H, i is covered by h with high probability

(where the probability is over the choice of h).

Claim 5.17. Let H be as in Fact 5.10 and let i ∈ [n]. Then:

Pr
h∼H

[i ∈ h([n])] ≥ 1/30

We prove Claim 5.17 by proving two lemmas. We first show that for any family of k-wise inde-
pendent hash functions, the range of a hash function chosen uniformly at random from this family is
large, with high probability. We then show that the range of a random polynomial of degree at most
k− 1 has a “symmetry” property. Namely, when drawing a function h from the family of polynomials
of degree at most k − 1 (uniformly at random), and for i, i′ ∈ [n], the probability of i to be in the
range of h is the same as the probability of i′ to be in the range of h.

Lemma 5.18. (The range of a random hash function is large) For k ≥ 2 let H be a family of k-wise
independent hash functions from [n] to [n]. Then:

Pr
h∼H

[|h([n])| ≤ n

20
] ≤ 1/3

Proof. For a function h ∈ H, we say that the number of collisions in h is the number of (unordered)
pairs {i, j} such that h(i) = h(j), for i, j ∈ [n], i 6= j. We denote this number by c(h), and note that
for any h ∈ H, 0 ≤ c(h) ≤

(
n
2

)
.

We first show that |h([n])| ≤ n
20 =⇒ c(h) ≥ 6n. That is, if h has small range, it has many

collisions. Indeed, denote m = |h([n])| and assume m ≤ n
20 . Choose some arbitrary order for the

elements of the range of h, h([n]) = {a1, a2, . . . , am}. Denote by xi the size of the pre-image of ai.
That is, xi = |h−1(ai)|. From the definitions we get that

∑m
i=1 xi = n, since each “source” appears in

exactly one of the pre-images h−1(ai).

42

We now count the number of collisions in h, by counting the number of collisions at each ai (where
a collision between i, j is at k if h(i) = h(j) = k). Observe that i, j collide if and only if there exists
0 ≤ i ≤ m such that i, j ∈ h−1(ai). Hence, the number of collisions at ai is exactly

(
xi
2

)
, and each

collision in h is counted exactly once by this method. Therefore, the total number of collisions in h is
exactly c(h) =

∑m
i=1

(
xi
2

)
.

Consider the function ϕ : x→ x(x−1)
2 (and note that ϕ(x) =

(
x
2

)
for an integer x). Evidently, ϕ is

a convex function. Therefore, by Jensen’s inequality, we get:

c(h)

m
=

∑m
i=1

(
xi
2

)
m

=

∑m
i=1 ϕ(xi)

m
≥ ϕ

(∑m
i=1 xi
m

)
= ϕ

(n
m

)
=

1

2
· (
(n
m

)2
− n

m
)

We now use the assumption that m ≤ n
20 =⇒ n

m ≥ 20 to derive:

c(h) ≥ 1

2
·
(
n2

m
− n

)
=
n

2
·
(n
m
− 1
)
≥ n

2
· 19 ≥ 6n

which is what we wanted to show.
We now claim that Eh∼H[c(h)] ≤ n

2 . Indeed, for a fixed pair {i, j}, we have Prh∼H[h(i) = h(j)] = 1
n ,

since H is a family of k-wise independent hash functions for k ≥ 2. Therefore, by the linearity of the

expectation, Eh∼H[c(h)] =
(n2)
n ≤

n
2 as claimed.

Hence, from Markov’s inequality:

Pr
h∼H

[|c(h)| ≥ 6n] ≤ E[c(h)]

6n
≤ n/2

6n
= 1/3

We showed above that |r(h)| ≤ n
20 =⇒ c(h) ≥ 6n, and therefore:

Pr
h∼H

[|r(h)| ≤ n

20
] ≤ Pr

h∼H
[|c(h)| ≥ 6n]

and the Lemma follows.

We now state and prove the second Lemma which we need to prove Claim 5.17.

Lemma 5.19. (The probability of being in the range of a random polynomial) Let n ∈ N and k ≥ 2,
and let H be as in Fact 5.10. That is, H is the family of all polynomials of degree at most k − 1 over
the field of n elements. Let i, i′ ∈ [n]. Then:

Pr
h∼H

[i ∈ h([n])] = Pr
h∼H

[i′ ∈ h([n])]

Proof. Recall that H = {ha0,a1,...,ak | a0, a1, . . . , ak−1 ∈ F}, where ha0,a1,...,ak−1
: F → F is defined by

ha0,a1,...,ak−1
(x) = a0 + a1x+ a2x

2
+ · · ·+ ak−1x

k−1, and F is a field with n elements. Let i, i′ ∈ F. We
describe a bijection φ : H → H such that i is in the range of φ(h) iff i′ is in the range of h. The
existence of such a bijection yields the required result of the Lemma, as the probabilities in the Lemma
statement are over choosing h from H uniformly at random.

The bijection is defined by:

φ(ha0,a1,...,ak) = ha0−i′+i,a1,...,ak

It is immediate to check that φ is indeed a bijection (since F is a field). Now, i is in the range of
φ(h) iff there exists x ∈ F such that (a0 − i′ + i) + a1x + a2x

2
+ · · · + ak−1x

k−1 = i, which happens iff
a0 + a1x+ a2x

2
+ · · ·+ ak−1x

k−1 = i′, which happens iff i′ is in the range of h.

43

We are now ready to prove Claim 5.17.

Proof. Let i ∈ [n]. We need to show that:

Pr
h∼H

[i ∈ h([n])] ≥ 1/30

Where H is the family of all polynomials of degree at most k − 1 over the field of n elements, which
is a family of k-wise independent hash functions. From Lemma 5.19 there exists 0 ≤ p ≤ 1 such that
for every i ∈ [n], Prh∼H[i ∈ h([n])] = p. Therefore, and from the linearity of the expectation:

Eh∼H [h([n])] = n · p (?)

On the other hand, by Markov’s inequality, for any non-negative random variable X and a > 0:

Pr[X ≥ a] ≤ E[X]

a
=⇒ E[X] ≥ a · Pr[X ≥ a]

By applying this inequality on X = |h([n])| and a = n
20 we get:

E[|h([n])|] ≥ n

20
· Pr[|h([n])| ≥ n

20
]

But from Lemma 5.18 we have:

Pr
h∼H

[|h([n])| ≥ n

20
] ≥ 2/3

and hence:

E[|h([n])|] ≥ n

20
· Pr[|h([n])| ≥ n

20
] ≥ n

20
· 2

3
=

n

30

Together with (?) we get that:

n · p = Eh∼H [h([n])] ≥ n

30

and hence:
Pr
h∼H

[i ∈ h([n])] = p ≥ 1/30

We showed that for every fixed i ∈ [n], and h ∼ H, i is covered by h with high probability. We now
claim that when drawing m hash functions from H uniformly at random and i.i.d, h1, . . . , hm ∼ H
then for all i ∈ [n] (simultaneously), i is covered by many of the hash functions (where the probability
is over the choice of the hash functions). Recall that number of hash functions is m = t log n.

Claim 5.20. Let H be as in Fact 5.10. For h1, . . . , hm drawn uniformly at random and i.i.d from H,
and for every 1 ≤ j ≤ m and i ∈ [n] denote by Xj

i the indicator random variable that is defined by

Xj
i =

{
1 if i is covered by hj

0 otherwise

and for every i ∈ [n] let Xi =
∑m

j=1X
j
i be the number of values of j such that i is covered by hj. Then

Pr
h1,...,hm∼H

[∃i ∈ [n] such that Xi <
m

60
] ≤ n−Ω(t)

44

Proof. The proof of the above claim is by a standard application of Chernoff’s bound and the union
bound. First, fix i ∈ [n]. From Claim 5.17, for every 1 ≤ j ≤ m, Pr[Xj

i = 1] ≥ 1/30. Therefore,
letting µ = E[Xi] we have µ ≥ m/30, and from Chernoff’s bound we get:

Pr
h1,...,hm∼H

[Xi <
m

60
] = Pr[Xi <

1

2
· µ] ≤ e−

(12)2·µ
2 = e−

m
240 = e−

t logn
240 = n−t/240

Now, from the union bound:

Pr
h1,...,hm∼H

[∃i ∈ [n] such that Xi <
m

60
] ≤ n · n−t/240 = n−Ω(t)

Finally, we next use Claim 5.20 to prove Property 3 of Lemma 5.6. Take Q ∈ [m ·n]{k}, ε > 0, and
take x ∈ {0, 1}n such that x is 60ε-far from L. We need to show that

Pr
S∼S,key←K(S,Q)

[fkey(x) is ε-far from {fkey(x′) | x′ ∈ L}] ≥ 1− n−Ω(t)

For S ∼ S let key = K(S,Q), and let h1, . . . , hm ∈ H be the hash functions such that key =
〈h1〉 ◦ · · · ◦ 〈hm〉. Recall that from Claim 5.14, the distribution of h1, . . . , hm is as if each hj was drawn
uniformly at random and i.i.d from H.

For every 1 ≤ j ≤ m let fj : {0, 1}n → {0, 1}n be the function that is obtained by the construction
from hj . Since fkey = f1(x) ◦ · · · ◦ fm(x), (and since the distribution of h1, . . . , hm is uniform and i.i.d
over H when S ∼ S), we get that it is enough to show that:

Pr
h1,...,hj∼H

[f1(x) ◦ · · · ◦ fm(x) is ε-far from {f1(x′) ◦ · · · ◦ fm(x′) | x′ ∈ L}] ≥ 1− n−Ω(t)

Now, for every i ∈ [n] let Xi be as in Claim 5.20, and denote by B the “bad” event that:

∃i ∈ [n] such that Xi <
m
60

And note that by Claim 5.20 the probability of B happening is very small. Conditioned on B not
happening, we get that for every i ∈ [n] there are at least m

60 hash functions that cover i. We now
make the following key claim:

Claim 5.21. Let 0 ≤ α ≤ 1. Conditioned on B not happening, for every x, x′ ∈ {0, 1}n:

∆(x, x′) > α =⇒ ∆(fkey(x), fkey(x′)) > α/60

Proof. (of the claim) Assume that the event B does not happen, and let x, x′ be of distance at least α.
Then there is a set of indices I ⊆ [n] such that xi 6= x′i for every i ∈ I, and |I| > n ·α. Since the event
B does not happen, every i ∈ I is covered by at least m

60 hash functions. But for each hj that covers
i, the value of fj(x) at the indices h−1

j (i) equals xi, and the value of fj(x
′) at these indices is x′i 6= xi.

Therefore, we get that fj(x) and fj(x
′) disagree on all of the indices h−1

j (i), which is a non-empty set
when hj covers i.

Now, since for each i ∈ I there are at least m
60 hash functions that cover i, and thus i “contributes”

at least m
60 indices on which fkey(x) = f1(x) ◦ · · · ◦ fm(x) and fkey(x′) = f1(x′) ◦ · · · ◦ fm(x′) disagree.

This holds for all of the n · α indices in I, and therefore in total we get that fkey(x) and fkey(x′)
disagree on at least n ·α · m60 indices. Note that there is no “double counting”, since for each 1 ≤ j ≤ m
and i 6= i′ the sets h−1

j (i) and h−1
j (i′) are disjoint, and therefore each “disagreement” was counted at

most once.
Finally, the length of fkey(x) and fkey(x′) is n ·m, and they disagree on (at least) n ·α · m60 indices,

therefore ∆(fkey(x), fkey(x′)) > α/60.

45

Now, from the hypothesis, x is 60ε-far from every x′ ∈ L. That is, ∆(x, x′) > 60ε for every x′ ∈ L.
Conditioned on the event B not happening, Claim 5.21 holds, and ∆(fkey(x), fkey(x′)) > ε for every
x′ ∈ L simultaneously. Since from Claim 5.20 the event B happens with probability of at most n−Ω(t),
we are done.

Next, we show that Property 5 of Lemma 5.6 holds.

Claim 5.22. (Property 5 - Circuit Reversing F) With high probability over the choice of key, the
function fkey is injective:

Pr
S∼S,key←K(S,Q)

[∃x, x′ ∈ {0, 1}n such that x 6= x′ and fkey(x) = fkey(x′)] ≤ n−Ω(t)

Where S is the uniform distribution on (m · k)-tuples of elements from [n].
Moreover, there exists a logspace-uniform NC1 circuit C that gets as input key ∈ KEYS and

y = F (key, x) ∈ {0, 1}m·n, and if fkey is injective, outputs x.

Proof. We first show that with high probability fkey is injective. As proved in Claim 5.14, when S ∼ S
and key = 〈h1〉 ◦ · · · ◦ 〈hm〉 ← K(S,Q), the distribution of each hj is uniform, and h1, . . . , hm are
independent of each other.

For i ∈ n, let Xi be as in Claim 5.20. Fix key , and assume there are x, x′ ∈ {0, 1}n such that
x 6= x′ and fkey(x) = fkey(x′). Let i ∈ [n] be an index such that xi 6= x′i. Then i is an index that
is not covered by any hash function hj . That is, Xi = 0. But from Claim 5.20, the event that there
exists i such that Xi = 0 happens with probability at most n−Ω(t). Hence, the event that there exists
x, x′ ∈ {0, 1}n such that x 6= x′ and fkey(x) = fkey(x′) also happens with probability at most n−Ω(t).

Construction of C: We next describe the NC1 circuit C. The input of the circuit C is key =
〈h1〉 ◦ · · · ◦ 〈hm〉 and y = y1 ◦ · · · ◦ ym ∈ {0, 1}m·n. Its output is x ∈ {0, 1,⊥}n such that if fkey is
injective and there exists x′ ∈ {0, 1}n such that fkey(x) = y, then x = x′.

The high level idea of the construction is as follows. Recall that from the construction of F , if
fkey(x) = y then [yj]i = xhj(i) for every j. Accordingly, to compute the `-th bit of the output x, we
need to find an index i (of some yj) such that hj(i) = `. Towards this end, we first evaluate in parallel
hj(i) for every j and i. Next, for every j and output index ` we use these evaluations to search for an
index i such that hj(i) = `. From the assumption that fkey is injective, for every index ` there exists
some hj for which the search succeeds. Finally, as the l-th bit of the output of C we return the value
of yj at index i.

We next give the exact construction of the circuit. The circuit C is constructed in layers, from
sub-circuits of 4 types.

1. H-circuits (“hash function evaluation” circuits). Each such circuit gets as input a description of
a hash function 〈h〉 and an index i ∈ [n] (that matches an index of some yj), and outputs h(i).

2. R-circuits (“search” circuits). Each such circuit gets as input `∗, `1, . . . , `n ∈ [n], and outputs
i ∈ [n] such that `i = `∗ (if such i exists), or outputs ⊥ if no such index exists.

3. P-circuits (”projection” circuits). Each such circuit gets as input a ∈ {0, 1}n and i ∈ [n] ∪ {⊥},
and outputs ai ∈ {0, 1} if i 6= ⊥ and ⊥ if i = ⊥.

4. M-circuits (”combining” circuits). Each such circuit gets as input a1, . . . , am ∈ {0, 1,⊥}. If
a1, . . . , am = ⊥, the output of the circuit is ⊥. Otherwise, its output is aj for some aj 6= ⊥ (for
concreteness, it outputs such aj with the smallest value of j such that aj 6= ⊥)

46

We next describe how these sub-circuits are combined to construct C. The first layer of C evaluates
hj(i) for every 1 ≤ j ≤ m and i ∈ [n]. It contains n ·m H-circuits, H1,1,H1,2, . . . ,H1,n,H2,1, . . . ,Hn,m.
For 1 ≤ j ≤ m and i ∈ [n], the input of the circuit Hi,j is 〈hj〉 (which is an input of the full circuit C),
and i is an hard-wired input of it. The output of the circuit Hi,j is hj(i).

The second layer of C operates independently for each hj . For each index ` (of the output of C)
and each hash function hj , it “searches” some index i (of yj) such that hj(i) = `. That is, it finds an
element of h−1

j (`) (if such an element exists). The layer is constructed as follows. It contains n ·m
R-circuits, R1,1,R1,2, . . . ,R1,n,R2,1, . . . ,Rn,m. For 1 ≤ j ≤ m and l ∈ [n], the inputs of the circuit
Rl,j are the outputs of the circuits H1,j ,H2,j , . . . ,Hn,j , and ` is an hard-wired input of it. From the
definition of R, the output of R`,j is some index in h−1

j (`) if one exists, and ⊥ if h−1
j (`) is empty.

The third layer of C “projects” the input y = y1 ◦ · · · ◦ ym ∈ {0, 1}m·n on the indices computed at
the previous layer. It contains n ·m P-circuits, P1,1,P1,2, . . . ,P1,n,P2,1, . . . ,Pn,m. For 1 ≤ j ≤ m and
` ∈ [n], the inputs of P`,j are yj ∈ {0, 1}n and the output of R`,j . From the definition of R, the output
of P`,j is [yj]i for some index i such that hj(i) = ` (if h−1

j (`) is not empty) and ⊥ if h−1
j (`) is empty.

Note that from the construction, if y = F (key , x), then [yj]i has the same value for every i such that
hj(i) = `. Namely, its value is [yj]i = x`.

Lastly, the forth layer of C combines the outputs of the sub-circuits of the previous layer, to output
the final output of C. This layer contains nM-circuits,M1, . . . ,Mn one for each output bit of C. For
` ∈ [n], the inputs of M` are the outputs of the circuits P`,1, . . . ,P`,m. The output of M` is returned
as the `-th bit of the output of C.

Correctness: Fix key = 〈h1〉 ◦ · · · ◦ 〈hm〉, and assume that fkey is injective. Let x ∈ {0, 1}n, let
f1, . . . , fm be the functions defined in the construction of F (namely, [fj(x)]i = xhj(i) for every i ∈ [n]).
Let y = y1 ◦ · · · ◦ yj = f1(x) ◦ · · · ◦ fj(x) ∈ {0, 1}m·n.

We need to show that the output of C on the inputs key , y is x. Consider the `-th bit of x. From
the construction, the value C outputs for this bit is the output of M`. Again from the construction,
if h−1

j (`) is not empty for some 1 ≤ j ≤ m, the output of M` is the value [yj]i for some i and j such
that hj(i) = `. But now, from the hypothesis fj(x) = yj and from the definition of f , we get that C
correctly outputs the value [yj]i = [fj(x)]i = xhj(i) = x`.

We are left to show that there exists 1 ≤ j ≤ m such that h−1
j (`) is not empty (otherwise, the output

of C for the bit x` is ⊥). Assume towards contradiction that h−1
j (`) is empty for every 1 ≤ j ≤ m. Let

x′ ∈ {0, 1}n be the same as x, but with the `-th bit flipped. We have x′ 6= x, but since h−1
j (`) is empty,

and from the definition of F , we have fkey(x) = fkey(x′), which is a contradiction to the assumption
that fkey is injective.

Complexity: From Fact 5.9, the circuits H can be constructed with size nO(1) and depth O(log n).
The other types of sub-circuits can be constructed with nO(1) and depth O(log n) in a straight-forward
fashion. From the layered structure of C, we get that C itself has size nO(1) and depth O(log n).
Logspace uniformity follows by construction.

Next, we claim that a similar circuit can be used to check if an input fkey is injective or not.

Claim 5.23. (Circuit checking if fkey is injective) There exists a logspace-uniform NC1 circuit that
gets as input key ∈ KEYS and outputs “yes” if and only if fkey is injective.

Proof. The construction of the circuit is in layers, as follows. The first two layers are the same as
in the circuit from Claim 5.22. Namely, they contain n ·m H-circuits (for the first layer), and n ·m

47

R-circuits (for the second layer). For every l ∈ [n] and 1 ≤ j ≤ m, the output of R`,j is an index in
h−1
j (`) if one exists, and ⊥ if h−1

j (`) is empty.
The next layer of the circuit contains m combining circuits, which operate similarly to the M-

circuits. The difference is that now, the input of each such circuit is a1, . . . , an ∈ [n]∪ {⊥} (instead of
input in {0, 1,⊥}).

For ` ∈ [n], the inputs of M` are the outputs of R`,1, . . . ,R`,m. By this construction and by the
operation of M, we have that the output of M` is ⊥ if and only if the index ` is covered by hj for
some 1 ≤ j ≤ m.

The last layer of the circuit is a single sub-circuit, that gets as input the outputs of all of the M`

circuits, and output “yes” if and only if none of its inputs is ⊥.
We get that the output of the full circuit is “yes” if and only if each index ` ∈ [n] is covered by

some hash function hj . The correctness of the claim follows, since fkey is injective if and only if each
index ` ∈ [n] is covered by some hash function hj .

The complexity and uniformity analysis is similar to the one in Claim 5.22.

Lastly, we show that Property 6 of Lemma 5.6 holds.

Claim 5.24. (Property 6 - Efficient Recovery) There exists a TM that gets as input key ∈ KEYS and
q1, . . . , qk ∈ [m·n] and outputs R(key , q1), . . . , R(key , qk) ∈ [n], and its runtime is k ·poly(log k, log n, t).

Proof. For input key = 〈h1〉 ◦ · · · ◦ 〈hm〉 ∈ KEYS and q1, . . . , qk ∈ [m · n], the TM works as follows.
First, it executes the Sub-steps (a) and (b) of Step (7) in Figure 4 for all of q1, . . . , qk one by one. That
is, for every q ∈ {q1, . . . , qk} it computes jq such that q ∈ Ijq , and then computes iq = q − (j − 1) · n
(again, iq is the “relative” index of q in Ijq). These steps involve only basic arithmetic operations that
can be done in time poly(log n, log k, t). Therefore, executing them sequentially for all of q1, . . . , qk
takes k · poly(log n, log k, t) time.

Now, for Sub-step (c), evaluating hjq(iq) for every q ∈ {q1, . . . , qk} in a sequential fashion would
take k2 ·poly(log n, log k, t) time, which is too much. Instead, the TM uses the Fast Fourier Transform
in the following way. For every 1 ≤ j ≤ m = t · log n, it computes hj(iq) for all q ∈ {q1, . . . , qk}. Some
of the values computed this way are not needed. But by using FFT as a black-box the TM is able
to, for every fixed hj , evaluate all of the values hj(iq) simultaneously in time k · poly(log n, log k) (see
Fact 5.11). Accordingly, the TM performs m applications of FFT, one for each polynomial hj . In
each application it evaluates the value of hj(iq) for all of q ∈ {q1, . . . , qk}. Each application is done
in time k · poly(log n, log k), and there are m applications, hence the total run-time of this sub-step is
m · k · poly(log n, log k) = k · poly(log n, log k, t).

As part of its computations, the TM computed hjq(iq) for every q ∈ {q1, . . . , qk}, so it can output
it as the value for R(key , q). (It ignores the values it evaluated of the form hj(iq) for j 6= jq.) By the
definition of R in Figure 4, the TM returns the correct output. In addition, as we showed, its runtime
is k · poly(log n, log k, t).

5.3 Proof of the Reduction Protocol

In this section we describe the reduction protocol formally, use the properties proved in Lemma 5.6
to analyze it, and prove Theorem 5.2.

Proof. (of Theorem 5.2)
Let L be a family of pair languages that is closed under composition with log-space uniform NC1

circuits. Let ε > 0 be a real value and let q, c, v, d : N → N be functions such that every L ∈ L has a
(query-based) IPP with proximity parameter ε with the following properties:

1. The protocol uses only public-coins.

48

2. The query complexity of the protocol is O(q(n)), its communication complexity is O(c(n)), its
randomness complexity (the number of public coins the verifier tosses) is r = r(n), the verifier
running time is O(v(n)), and its round complexity is poly(d). Also assume (w.l.o.g) that the
verifier tosses exactly r(n) coins.

3. The indices of the queries depend only on the public coins of the verifier. That is, for each L ∈ L,
there is a deterministic function that maps the public coin tosses of the verifier to the indices it
queries in the input. Also assume (w.l.o.g) that the verifier queries the input only at the end of
the IPP, after the interaction with the prover ends.

4. The (honest) prover runs in time poly(n).

Let L ∈ L. We need to prove that L has a sample-based IPP with proximity parameter 120ε. In
addition, we need to prove that the sample complexity of this SIPP is Õ(q(n)), that its communication
complexity is Õ(c(n) + q(n)), that its round complexity is poly(d), that the verifier running time is
Õ(v(n) + q(n)), and that the honest prover runs in time poly(n).

First, the verifier has explicit access to n, the length of the implicit input. We can assume w.l.o.g
that n is a power of 2. If not, padding can be used in a way that damages the proximity of the implicit
input from the language by a factor of at most 2.28

Let k = log n · q(n), and t = 480 (and m = t log n), and take K,F,R to be as in Lemma 5.6.
That is, K : [n]m·k × [m · n]{k}, F : KEYS × {0, 1}n → {0, 1}m·n, R : KEYS × [m · n] → [n], where
KEYS = {0, 1}m·k·logn.

Now, we want to consider the pair language {(key , F (key , x)) | key ∈ KEYS , x ∈ L}, where key is
the explicit part of the input, and F (key , x) is the implicit part of the input. The issue is that this
language may not be in L. For a fixed key , to check if (key , y) is in this language, one needs to find
an x such that fkey(x) = y. This might take exponential time, and if fkey is not injective there might
be multiple valid values for such x. Therefore, we define a slightly different language, which is in L.

Let C be the NC1 circuit from property 5 of Lemma 5.6. That is, C is a circuit that gets as input
key and y, and if fkey is injective, outputs x such that fkey(x) = y. Consider the language L′ that is
constructed by composition of C and L.29 That is, L′ is a pair language, where key is the explicit part
of the input and y is the implicit part of the input. A pair (key , y) is in L′ iff for input (key , y), the
output of the circuit C is in L.

Since L is closed under composition with log-space uniform NC1 circuits, L′ ∈ L. Therefore, L′

has a (query-based) IPP with proximity parameter ε, with the properties described in the hypothesis.
Denote this IPP by IP ′, and denote its query complexity by k′ = O(q(n)). Observe that k′ is

(asymptotically) smaller than k. Let r(n) be the number of coins the verifier needs to toss in the
execution of IP ′.

Now, let L′′ = {(key , F (key , x)) | key ∈ KEYS , x ∈ L}, and note that L′ 6= L′′. But from Lemma
5.6, for every key such that fkey(x) is injective, (key , y) ∈ L′ if and only if (key , y) ∈ L′′. In addition,
with high probability over the choice of key , fkey(x) is injective. Hence, with high probability we also
have that (key , y) ∈ L′ if and only if (key , y) ∈ L′′.

The SIPP for L is as presented in Section 5.2, which we describe formally in Figure 5.
We next prove the correctness of this protocol.

28That it, let n′ be the smallest power of 2 larger than n. For x ∈ {0, 1}n define padded(x) = (x, 0, . . . , 0) ∈ {0, 1}n
′
,

where n′ − n zeros are used for the padding. Define Ln = L ∩ {0, 1}n and define L′n = {padded(x) | x ∈ Ln}. Replace
the statement x ∈ Ln (which is equivalent to x ∈ L, since the length of x is n) with the statement (x, 0, . . . , 0) ∈ L′n. It
is easy to see that x ∈ Ln ⇐⇒ padded(x) ∈ L′n, and that if ∆(x, Ln) > 2α then ∆(padded(x), L′n) > α (since n′ < 2n).

29We identify a circuit with the language it computes, and identify a language L ⊆ {0, 1}∗ with the boolean function
L : {0, 1}∗ → {0, 1} that outputs 1 iff the input is in the set L.

49

Figure 5 Reduction SIPP for L
Verifier Input: Sample access to x ∈ {0, 1}n, explicit access to ε.
Prover Input: Full (explicit) access to x.
Output: Accept / Reject

1. V draws m · k samples from x, denote their indices S ∈ [n]m·k.

2. V tosses r(n) coins (privately), denote the results by ρ ∈ {0, 1}r(n).

3. V computes Q′, the k′ indices a verifier should have queried the implicit input after executing
IP ′, assuming the ρ were the coins tosses during the execution of the protocol.

(a) V adds k − k′ arbitrary indices in [m · n] to Q′, to produce the tuple Q ∈ [m · n]{k}.

4. V computes key = K(S,Q).

5. V sends key to P.

6. V and P execute IP ′ on the statement (key , fkey(x)) ∈ L′, where key is the explicit input and
fkey(x) ∈ {0, 1}m·n is the implicit input, and with the following modifications:

(a) V uses ρ as its random coins (instead of fresh randomness).

(b) Each time V needs to query the implicit input fkey(x) at index q, it uses the value xRkey (q)

instead. Note that this happens only at the end of the execution of IP ′.

7. After the execution of IP ′, V accepts or rejects according to verdict of IP ′.

50

Correctness and Verifier Running Time: We first show that the protocol is well defined, and
can be performed by an efficient verifier. We show that each step of the protocol can be performed.
Step 1 can be performed since V has sample-access to x, and in time O(m · k) = Õ(q(n)). Step 2 can
be performed since by property 2 of the hypothesis, during the execution of IP ′ the verifier tosses
exactly r(n) coins. The running time of the verifier in this step is at most O(v(n)).

Step 3 can be performed since by property 3 of the hypothesis, the indices of the queries which
the verifier must perform at the end of IP ′ depend only on its public coin tosses. Since k′ ≤ k (for
large enough n), the size of Q′ is not larger than k, and therefore V can compute the tuple Q of size k,
which contains all of the indices a verifier should have queried after executing IP ′. For concreteness,
the addition of k′ − k indices in step 3 (a) can be done by adding to Q′ the first k − k′ that are not
already in Q′. The computation of the query indices from the coin tosses must be done by the verifier
of IP ′, and therefore the runtime of step 3 is at most O(v(n)).

Step 4 can be performed by the verifier, and at time k · poly(log k, log n) = Õ(q(n)), by the first
section of Lemma 5.6. In step 5, V sends to P a single message (the key), which is an element of
KEYS = {0, 1}m·k·logn. The running time of the verifier in this step is m · k · log n = Õ(q(n)).

In step 6, the modification of using ρ instead of tossing coins with fresh randomness can be done,
again, by the assumption that the verifier tosses exactly r(n) coins (we show later that using ρ instead
of fresh randomness does not hurt the soundness of IP ′).

Additionally in step 6, for every q ∈ Q, the verifier can use the value xRkey (q) instead of fkey(x)
at index q since from Lemma 5.6, property 1, we have [fkey(x)]q = xRkey (q) for every q ∈ [m · n].
In addition, for every q ∈ Q the verifier has the value of xRkey (q); from property 2 of Lemma 5.6,
Rkey(q) ∈ S, and the verifier has the value of xs for every s ∈ S from the samples it draws at step 1.
In other words, the verifier has the value of fkey(x) at all of the indices q ∈ Q. From step 3, Q indeed
contains all of the indices the verifier needs to query fkey(x) for the execution of IP ′.

The runtime of the verifier for simulating IP ′ is by definition at most O(v(n)). In addition, the
verifier can compute Rkey(q) for every q ∈ Q in time k · poly(log k, log n, t) = Õ(q(n)) by Lemma 5.6,
property 5 (Efficient Recovery).

In conclusion, we proved that the protocol described in Figure 5 can be performed, and the run
time of the verifier is Õ(v(n) + q(n)). We next prove the completeness and soundness of the protocol.

fkey is injective with high probability: We first observe that with probability of 0.99 over
the samples of the verifier, the function fkey is injective. Denote by S is the uniform distribution on
(m · k)-tuples of elements from [n]. Observe that in step 1 of the protocol, V draws (m · k) samples
uniformly at random from x, and therefore the distribution of their indices is S. From property 5 of
Lemma 5.6 (Circuit Reversing F) we have:

Pr
S∼S,key←K(S,Q)

[∃x, x′ ∈ {0, 1}n such that x 6= x′ and fkey(x) = fkey(x′)] ≤ n−Ω(t)

Hence, from the choice of t, and for large enough n, with probability of at least 0.99 over the
samples, fkey is injective.

Observe that in this case, (key , y) ∈ L′ if and only if (key , y) ∈ {(key , F (key , x)) | key ∈ KEYS , x ∈
L} (simultaneously for all y). Hence, ∆((key , fkey(x)), L′) = ∆(fkey(x), {fkey(x′) | x′ ∈ L}). Specifi-
cally, fkey(x) is ε-far from {fkey(x′) | x′ ∈ L} if and only if (key , fkey(x)) is ε-far from L′.30

Completeness: Let x ∈ L. We need to show that there exists a prover P that makes V ac-
cept. Since x ∈ L and with probability 0.99 (over the verifier’s samples) fkey is injective, we have
(key , fkey(x)) ∈ L′ with probability 0.99. In this case, from the (full) completeness of IP ′, there exists

30We denote the distance of a pair (a, b) from a pair language L by ∆((a, b), L) = minb′ ∆(b, b′), where a is the explicit
input of L, b is the implicit input, and the minimum is taken over all b′ such that (a, b′) ∈ L.

51

a prover strategy P ′ for IP ′ that makes the verifier accept (key , fkey(x)) when executing IP. The
prover P which makes V accept x is the prover that simply simulates P ′ during step 6 of the protocol.
Note that indeed P ′ can be simulated, since P gets key at step 5 of the protocol, and F (key , x) can
be computed by the prover.

We get that if x ∈ L, then with probability 0.99 the verifier accepts after the execution of the
protocol described in Figure 5.

Remark 5.25 (Obtaining perfect completeness). Our protocol as presented above obtains imperfect
completeness: there is a small probability that the function fkey is not injective, and in this case the
verifier might reject even if it is interacting with the honest prover. To get perfect completeness, the
verifier must check if fkey is injective. If it is not injective, then the verifier can halt the execution of
the protocol and accept (without executing IP ′). This hurts the soundness of the protocol, since now if
fkey is not injective and x is far from L, the verifier wrongly accepts. But since fkey is injective with
probability 0.99, this hurt is minor.

The issue is that checking if fkey is injective can be time-expensive for the verifier. A solution is
to use a doubly-efficient interactive proof (DEIP) for this claim (e.g., using the protocol of [GKR08]).
This can be done, since from Claim 5.23 there exists an NC1 circuit that gets key as input and outputs
if fkey is injective or not. Note that the input length of this protocol is the length of key, which is

Õ(q(n)). Hence, the verifier’s running time for executing this sub-protocol is at most Õ(q(n)), and so
is the contribution of this protocol to the communication complexity of the entire reduction protocol.

The main added cost for obtaining perfect completeness is in the added round complexity needed to
run the DEIP.

Soundness: Let x ∈ {0, 1}n and assume x is 120ε-far from L. We first claim that with high
probability over V’s choice of key, fkey(x) is ε-far from {fkey(x′) | x′ ∈ L}.

As above, the distribution of the verifier’s samples is S. Hence, as the padding hurts the proximity
by a factor of at most 2, and from property 3 of Lemma 5.6 (distance preserving), we have that for x
that is 60ε-far from L:

Pr
S∼S,key←K(S,Q)

[fkey(x) is ε-far from {fkey(x′) | x′ ∈ L}] ≥ 1− n−Ω(t)

Therefore, at step 6 of the protocol, from the choice of t, and for large enough n, with probability
of at least 0.99, fkey(x) is ε-far from {fkey(x′) | x′ ∈ L}. In addition, with probability of at least 0.99,
fkey is injective.

We now claim that if fkey(x) is ε-far from {fkey(x′) | x′ ∈ L} and fkey is injective, then by the
soundness of the IP ′ protocol V rejects the statement (key , fkey(x)) ∈ L′ at the simulation of IP ′ at
step 6. First, from the observation above, if fkey(x) is ε-far from {fkey(x′) | x′ ∈ L} then (key , fkey(x))
is ε-far from L′. Hence, the hypothesis condition for the soundness of the IP ′ protocol holds.

Next, we need to show that the soundness of IP ′ is maintained after the two modifications made
to it. The second modification (step 6 (b)) is that the verifier, for each query index q, uses the value
xRkey (q) (obtained by its samples) instead of querying fkey(x) at index q. This change does not hurt
the soundness of the protocol, as it is done privately by the verifier; we assume the samples the verifier
draws are reliable (cannot be altered by the prover) and private (cannot be seen by the prover).

The possible issue is with the first modification (step 6 (a)), of using ρ as the coin tosses for
executing IP ′. Recall that the soundness of a (public-coins) protocol is promised only when the
randomness of the random coin tosses is “fresh”. Here this is clearly not the case. ρ, the random coins
used during IP ′, are pre-computed by the verifier before the protocol IP ′ begins. If that was the only
modification, there was no issue - the prover has no way to know if the verifier tossed all of the coins
privately and then used them one-by-one, or tosses then “on the go”, when he needs to send them.

52

But here, the verifier computes a key K(S,Q) that depends on ρ, and sends it to the prover before
they execute the protocol IP ′. This key might leak “information” on ρ, and hence the prover might
have prior knowledge on the randomness used for IP ′. If this happens, the soundness of IP ′ hurts,
and the soundness of the reduction protocol might not hold.

We claim that this is not the case. That is, from the construction of K, the key K(S,Q) that is
sent to the prover does not leak any information on ρ.

Denote the key the prover receives by key∗. It is enough to show that for any ρ ∈ {0, 1}r(n),
and for any key ∈ KEYS , the probability (from the prover perspective) of the verifier’s coins to be
ρ (before seeing key∗) is the same as the probability of the verifier’s coins to be ρ conditioned on
key∗ = key . We prove something stronger. We claim that from the prover perspective, key∗ seems as
it was sampled from a universal distribution that does not depend on the verifier’s coins. Namely, for
any ρ, ρ′ ∈ {0, 1}r(n), we want to show that the distribution of key∗ when the verifier’s coins are ρ is
the same as the distribution of key∗ when the verifier’s coins are ρ′. This is a strong notion of “not
leaking information” regarding ρ, since from the prover perspective, all it sees at step 5 is a sample
from a distribution that does not depend on ρ.

Indeed, fix ρ, ρ′ ∈ {0, 1}r(n). Denote by Q(ρ) ∈ [m · n]k (resp., Q(ρ′)) the query indices computed
by the verifier at step 3 for random coins ρ (resp., ρ′). From Property 4 of Lemma 5.6 (Q-hiding), we
have that for any key ∈ KEYS :

Pr
S′∼S

[K(S′, Q(ρ)) = key] = Pr
S′∼S

[K(S′, Q(ρ′)) = key]

where S is again the uniform distribution on (m · k)-tuples of elements from [n].
Since the verifier keeps its samples secret, and the distribution of their indices is S, we get that

from the prover point of view:

Pr[key∗ = key | Verifier’s coins = ρ] = Pr[key∗ = key | Verifier’s coins = ρ′]

where the probability is over the samples of the verifier.
Hence, the distribution of key∗ when the verifier’s coins are ρ is indeed the same as the distribution

of key∗ when the verifier’s coins are ρ′. Therefore, K(S,Q) does not leak any information on the
verifier’s coins; from the prover perspective, for every ρ ∈ {0, 1}r(n) and key ∈ KEYS :

Pr[Verifier’s coins = ρ | key∗ = key] = Pr[Verifier’s coins = ρ]

where the probability is again over the samples of the verifier. Hence, the soundness of IP ′ is main-
tained, even though ρ is used instead of fresh randomness during its execution.

In conclusion, we showed that when x ∈ {0, 1}n is 120ε-far from L then with probability of at
least 0.99, fkey(x) is ε-far from {fkey(x′) | x′ ∈ L} (by the distance preserving property), and with
probability of at least 0.99, fkey(x) is injective. We also showed that in this case, the soundness of IP ′
is maintained (by the Q-hiding property). That is, there is no prover that can convince the verifier
in IP ′ to accept the claim (key , fkey(x)) ∈ L′ with probability larger than 1/3. Therefore there is
no prover for the reduction protocol that can convince the verifier to accept the claim x ∈ L with
probability larger than 1

0.99 ·
1

0.99 ·
1
3 . By repeating the the entire reduction protocol twice (which

only increases its communication and sample complexities by a factor of 2), we get a protocol with
soundness error of 1/3, as required.

Sample Complexity: The verifier draws samples only at step 1 of the protocol. At this step it
draws m · k samples, where m = 480 log n, and k = q(n) · log n. Therefore, the sample complexity of
the protocol is Õ(q(n)), as required.

53

Communication Complexity: The only communication between the verifier and the prover
happens at steps 5 and 6 of the protocol. At step 5, the verifier sends a message which is an element
of KEYS = {0, 1}m·k·logn, where m = 480 log n, and k = q(n) · log n. Therefore, the communication
complexity of this step is Õ(q(n)).

The communication complexity at step 6 is as the communication complexity of the protocol
IP ′. From the hypothesis, and since the length of the implicit input in IP ′ is m · n = Õ(n), the
communication complexity of IP ′ is Õ(c(n)).

Therefore, the total communication complexity of the protocol is Õ(c(n) + q(n)).

Rounds Complexity: Again, the communication between the verifier and the prover in the
protocol described in Figure 5 happens at steps 5 and 6. At step 5 a single message is sent. The
number of communication rounds at step 6 is as the number of rounds in IP ′. From the hypothesis,
the round complexity of IP ′ is poly(d). Therefore, in total, the round complexity of the protocol is
poly(d).

Honest Prover Running Time: The (honest) prover has full access to x, and it gets key from
the verifier at step 5 of the protocol. From Lemma 5.6, the prover can compute F (key , x) = fkey(x)
in poly(n) time.

After computing fkey(x), the prover can execute the protocol IP ′ in poly(n) time, from the hy-
pothesis. In total, we get that the honest prover running time is poly(n).

5.4 Applications of the Reduction to Concrete Families

We present next known families of languages, for which the hypothesis of Theorem 5.2 holds. By
applying Theorem 5.2 on these families, we deduce that each language in them has a sample-based
IPP with sub-linear query and communication complexities.

First, a main theorem from [RVW13, RR20] asserts that any language in NC has an IPP with
sub-linear query and communication complexities:

Theorem 5.26. Let L be a language in NC, then there is a (query-based) IPP for L. The query
and communication complexities, as well as the verifier’s running time, are Õ(

√
n). The IPP has

poly(log n) rounds, and the (honest) prover runs in time poly(n). Moreover, this protocol uses only
public-coins. The verifier needs to query the input only after the last round of the interaction, and the
indices of the queries depend only on the public coins of the verifier.

Note that it is not explicitly stated in [RVW13,RR20] that the queries the verifier makes depend
only on the public coins. One can see that this indeed holds by examining the protocols in [RVW13,
RR20], and [GKR08].

We can now finish the prove of Theorem 5.4:

Proof. From Theorem 5.26 we deduce that the conditions from Theorem 5.2 hold for L = NC, with
query complexity, communication complexity and verifier running time Õ(

√
n), and poly(log n) round

complexity (note that any language can be considered as a pair language, where the explicit part of
the input is empty). Hence, by a direct application of Theorem 5.2 on L = NC, we get the result.

The second family of languages we consider is of languages computable by polynomial-time and
bounded-polynomial space. For this family, [RRR16] proved the following result (Theorem 3 in
[RRR16]):

54

Theorem 5.27. Fix any sufficiently small constant σ ∈ (0, 1). Let L be a language that is computable
in poly(n)-time and O(nσ)-space. Then L has a constant-round IPP with proximity parameter ε for
ε = n−1/2 with perfect completeness and soundness 1/2. The query and communication complexities, as
well as the verifier’s running time, are n1/2+O(σ). The (honest) prover runs in time poly(n). Moreover,
this protocol uses only public-coins. The verifier needs to query the input only after the last round of
the interaction, and the indices of the queries depend only on the public coins of the verifier.

Note that again, it is not explicitly stated in [RRR16] that the queries the verifier makes depend
only on the public coins. This can be asserted by examining the protocol. Also observe that for a
fixed σ ∈ (0, 1), the family of languages computable in poly(n)-time and O(nσ)-space is closed under
composition with log-space uniform NC1 circuits.

We can now finish the prove of Theorem 5.5:

Proof. Fix σ ∈ (0, 1). From Theorem 5.27 we deduce that the conditions from Theorem 5.2 hold
for L, the family of languages computable in poly(n)-time and O(nσ)-space, with query complexity,
communication complexity and verifier running time n1/2+O(σ), and constant round complexity. Hence,
by a direct application of Theorem 5.2 on L, we get the result.

Acknowledgments

We would like to thank Irit Dinur, Oded Goldreich, Shafi Goldwasser and Ron Rothblum for helpful
and illuminating conversations and comments. We would also like to thank the anonymous ITCS ’22
reviewers for their helpful comments.

References

[BK97] László Babai and Peter G. Kimmel. Randomized simultaneous messages: Solution of a
problem of yao in communication complexity. In Proceedings of the Twelfth Annual IEEE
Conference on Computational Complexity, Ulm, Germany, June 24-27, 1997, pages 239–
246. IEEE Computer Society, 1997.

[BLR90] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with appli-
cations to numerical problems. In Harriet Ortiz, editor, Proceedings of the 22nd Annual
ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA,
pages 73–83. ACM, 1990.

[BM88] László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system, and
a hierarchy of complexity classes. J. Comput. Syst. Sci., 36(2):254–276, 1988.

[BRV18] Itay Berman, Ron D. Rothblum, and Vinod Vaikuntanathan. Zero-knowledge proofs of
proximity. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science
Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs,
pages 19:1–19:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[Can15] Clément L. Canonne. A survey on distribution testing: Your data is big. but is it blue?
Electron. Colloquium Comput. Complex., 22:63, 2015.

[CG18] Alessandro Chiesa and Tom Gur. Proofs of proximity for distribution testing. In Anna R.
Karlin, editor, 9th Innovations in Theoretical Computer Science Conference, ITCS 2018,
January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages 53:1–53:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

55

[CL88] Anne Condon and Richard E. Ladner. Probabilistic game automata. J. Comput. Syst.
Sci., 36(3):452–489, 1988.

[CL89] Anne Condon and Richard J. Lipton. On the complexity of space bounded interactive
proofs (extended abstract). In 30th Annual Symposium on Foundations of Computer Sci-
ence, Research Triangle Park, North Carolina, USA, 30 October - 1 November 1989, pages
462–467. IEEE Computer Society, 1989.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to Algorithms, 3rd Edition. MIT Press, 2009.

[Con91] Anne Condon. Space-bounded probabilistic game automata. J. ACM, 38(2):472–494, 1991.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM J. Comput.,
38(1):97–139, 2008.

[DS92a] Cynthia Dwork and Larry J. Stockmeyer. Finite state verifiers I: the power of interaction.
J. ACM, 39(4):800–828, 1992.

[DS92b] Cynthia Dwork and Larry J. Stockmeyer. Finite state verifiers II: zero knowledge. J. ACM,
39(4):829–858, 1992.

[EKR04] Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate probabilistically
checkable proofs. Inf. Comput., 189(2):135–159, 2004.

[FGL14] Eldar Fischer, Yonatan Goldhirsh, and Oded Lachish. Partial tests, universal tests and
decomposability. In Moni Naor, editor, Innovations in Theoretical Computer Science,
ITCS’14, Princeton, NJ, USA, January 12-14, 2014, pages 483–500. ACM, 2014.

[GGH+07] Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum.
Verifying and decoding in constant depth. In David S. Johnson and Uriel Feige, editors,
Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego,
California, USA, June 11-13, 2007, pages 440–449. ACM, 2007.

[GGL+00] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky.
Testing monotonicity. Comb., 20(3):301–337, 2000.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998.

[GGR15] Oded Goldreich, Tom Gur, and Ron D. Rothblum. Proofs of proximity for context-
free languages and read-once branching programs - (extended abstract). In Magnús M.
Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer
Science, pages 666–677. Springer, 2015.

[Gil52] E. Gilbert. A comparison of signalling alphabets. Bell System Technical Journal, 31:504–
522, 1952.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In Cynthia Dwork, editor, Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May
17-20, 2008, pages 113–122. ACM, 2008.

56

[GLR18] Tom Gur, Yang P. Liu, and Ron D. Rothblum. An exponential separation between MA and
AM proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx,
and Donald Sannella, editors, 45th International Colloquium on Automata, Languages,
and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of
LIPIcs, pages 73:1–73:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of inter-
active proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[Gol98] Oded Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness, vol-
ume 17 of Algorithms and Combinatorics. Springer, 1998.

[Gol17] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[GR16] Oded Goldreich and Dana Ron. On sample-based testers. ACM Trans. Comput. Theory,
8(2):7:1–7:54, 2016.

[GR17] Tom Gur and Ron D. Rothblum. A hierarchy theorem for interactive proofs of proximity.
In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer Science
Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs,
pages 39:1–39:43. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[GR18] Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. Comput. Complex.,
27(1):99–207, 2018.

[GRSY21] Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff. Interac-
tive proofs for verifying machine learning. In James R. Lee, editor, 12th Innovations in
Theoretical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Con-
ference, volume 185 of LIPIcs, pages 41:1–41:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof
systems. In Juris Hartmanis, editor, Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages 59–68. ACM,
1986.

[KNR06] Eyal Kaplan, Moni Naor, and Omer Reingold. Derandomized constructions of k-wise
(almost) independent permutations. Electron. Colloquium Comput. Complex., (002), 2006.

[KR15] Yael Tauman Kalai and Ron D. Rothblum. Arguments of proximity - [extended abstract].
In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part II, volume 9216 of Lecture Notes in Computer Science, pages 422–442.
Springer, 2015.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[NR05] Moni Naor and Guy N. Rothblum. The complexity of online memory checking. In 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25 Oc-
tober 2005, Pittsburgh, PA, USA, Proceedings, pages 573–584. IEEE Computer Society,
2005.

57

[NS96] Ilan Newman and Mario Szegedy. Public vs. private coin flips in one round communication
games (extended abstract). In Gary L. Miller, editor, Proceedings of the Twenty-Eighth
Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA,
May 22-24, 1996, pages 561–570. ACM, 1996.

[RR19] Noga Ron-Zewi and Ron Rothblum. Local proofs approaching the witness length. Electron.
Colloquium Comput. Complex., page 127, 2019.

[RR20] Guy N. Rothblum and Ron D. Rothblum. Batch verification and proofs of proximity with
polylog overhead. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography
- 18th International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020,
Proceedings, Part II, volume 12551 of Lecture Notes in Computer Science, pages 108–138.
Springer, 2020.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Daniel Wichs and Yishay Mansour, editors, Pro-
ceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 49–62. ACM, 2016.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with appli-
cations to program testing. SIAM J. Comput., 25(2):252–271, 1996.

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity:
delegating computation in sublinear time. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 793–802. ACM, 2013.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[Var57] R. R. Varshamov. Estimate of the number of signals in error correcting codes. Dokl. Akad.
Nauk SSSR, 117:739–741, 1957.

[Vol99] Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 1999.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (pre-
liminary report). In Michael J. Fischer, Richard A. DeMillo, Nancy A. Lynch, Walter A.
Burkhard, and Alfred V. Aho, editors, Proceedings of the 11h Annual ACM Symposium
on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages 209–213.
ACM, 1979.

58

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

