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Abstract

We describe an explicit and simple subset of the discrete hypercube which cannot be exactly covered
by fewer than exponentially many hyperplanes. The proof exploits a connection to communication
complexity, and relies heavily on Razborov’s lower bound for disjointness.

1 Introduction

The relationship between hyperplanes in Euclidean space and the discrete hypercube is fundamental and
important. One basic problem entails understanding the number of hyperplanes which one must use to cover
various subsets of the cube. A hyperplane is specified by a perpendicular vector (a1, . . . , an) ∈ Rn and an
offset w ∈ R, defined specifically as the set H = {x ∈ Rn |

∑n
i=1 ai · xi = w}. A collection of hyperplanes

H1, H2, . . . ,HN exactly covers a set S ⊆ {0, 1}n if
⋃N
i=1Hi ∩ {0, 1}n = S. The exact cover number ec(S) of

a set S is the minimum cardinality N attained across all hyperplane configurations exactly covering S.
The exact cover number ec({0, 1}n) of the full cube is 2. Seminal work of Alon and Füredi [AF93]

shows that removing a single point makes exact covering much harder; the exact cover number of {0, 1}n \
{(0, . . . , 0)} is n. The study of exact covers of arbitrary sets appears in recent work of Aaronson, Groenland,
Grzesik, Johnston, and Kielak [AGG+21]. That work focuses on worst-case cardinalities of the form ec(n) :=
maxS⊆{0,1}n ec(S); it proves that ec(n) is between 2n

n2 and 2n−blognc < 2 · 2n

n . The work’s lower bound on
ec(n) is not explicit, as it relies on a generic counting argument.

In this work, we analyze ec(S) for concrete subsets S ⊆ {0, 1}n. Beyond this problem’s intrinsic appeal,
an additional strong source of motivation stems from forthcoming work by the first-listed author [Dia22],
which links exact hyperplane covers to secure two-party computation. That work shows that exact covers
yield protocols for secure computation by two malicious parties. The work’s protocols, moreover, are efficient
when the relevant exact cover numbers are small. It is of interest, therefore, to determine which set families
are and are not efficiently coverable.

Our main result exhibits a concrete set whose exact cover number is exponentially large.

Definition. We write Dn ⊆ {0, 1}n/2 × {0, 1}n/2 ∼= {0, 1}n for the set

Dn =
{

(x, y) ∈ {0, 1}n/2 × {0, 1}n/2
∣∣∣ (∨n/2

i=1 xi ∧ yi
)

= 0
}
.

In other words, Dn consists exactly of those pairs (x, y) for which x and y—interpreted as sets—are disjoint.

Theorem. ec(Dn) ≥ 2Ω(n).

Though we focus throughout this work on hyperplanes defined over the real numbers, our results in fact
carry through to any field, and even to “hyperplanes” defined over Z (i.e., to rank-n− 1 submodules of Zn).
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We briefly discuss a further interpretation of the theorem. Exact cover numbers can be understood as
furnishing a sort of complexity measure on boolean functions. In computational complexity, functions are
computed by devices, where each device has a cost ; the complexity of a function is the minimum cost of a
device computing it. In our setting, the “devices” are hyperplane covers, and the “cost” of a hyperplane
cover is its cardinality. Specifically, to each boolean function f : {0, 1}n → {0, 1}, we may associate, for
example, the complexity measure ec(f) := max

{
ec(f−1(0)), ec(f−1(1))

}
.

Exact cover complexity relates in surprising ways to other, more standard, complexity measures, including,
for example, that of constant-depth circuit complexity, a classically studied metric (see e.g. [Vol99, § 3.3]). We
demonstrate this through the following example. A function f is symmetric if it is invariant under arbitrary
permutations of its inputs (parity and majority are symmetric functions, for example). Symmetric functions
in general admit only superpolynomially sized constant-depth circuits (see e.g. Vollmer [Vol99, Cor. 3.32]).
On the other hand, if f is symmetric, then ec(f) is at most n + 1. This latter fact can be seen in the
following way. For each symmetric f , f−1(1) is a union of sets of the form Sj := {x ∈ {0, 1}n |

∑n
i=1 xi = j},

for constants j ∈ {0, . . . , n}. Each individual set Sj can be exactly covered by a single hyperplane, so that
f−1(1) can be exactly covered by n + 1 hyperplanes. A similar argument applies to f−1(0). We see that
symmetric functions have small exact cover complexity, despite their large constant-depth circuit complexity.
In the opposite direction, our theorem shows that the exact cover complexity of a polynomially-sized, depth-
two, monotone circuit can be exponential in n. This discrepancy demonstrates a strong separation between
exact cover complexity and constant-depth circuit complexity.

We prove our lower bound on the exact cover number of Dn by upper-bounding the sizes of certain sets
of the form H ∩Dn, where H ⊆ Rn is a hyperplane. No useful such upper bound, of course, can possibly
hold for all hyperplanes. Slightly abusing terminology, we say that a hyperplane H ⊆ Rn is contained in a
set S ⊆ {0, 1}n if H ∩ {0, 1}n ⊆ S. If a hyperplane H is contained in S, then, trivially, |H ∩ {0, 1}n| ≤ |S|
holds. The following lemma establishes an exponential improvement in the particular case of Dn:

Lemma. If a hyperplane H ⊆ Rn is contained in Dn, then |H ∩ {0, 1}n| ≤ 2−Ω(n) · |Dn|.

The lemma implies the theorem by means of a covering argument, which we presently sketch. Each
hyperplane H which participates in an exact cover of Dn must be contained in Dn. The lemma entails that
each particular such H may alone cover at most a proportion of 2−Ω(n) among Dn’s points. It follows that
at least 2Ω(n) hyperplanes must be used in any configuration exactly covering Dn.

The lemma may be interpreted as a strong—though restricted—anti-concentration result. Classical anti-
concentration results concern expressions of the form maxw∈R Pr [

∑n
i=1 ai ·Xi = w], where X is uniformly

distributed in {0, 1}n. The Littlewood–Offord problem entails establishing anti-concentration when all of
the coordinates of (a1, . . . , an) are assumed to be nonzero [LO43]; the problem’s original motivation arose
from the study of roots of random polynomials. Littlewood and Offord proved the preliminary upper bound
of O

(
logn√
n

)
. In a celebrated and sharp result, Erdős [Erd45] solved the Littlewood–Offord problem, proving

the upper bound 2−n ·
(

n
bn/2c

)
= Θ

(
1√
n

)
using Sperner’s theorem on the sizes of antichains. Kleitman [Kle65],

Frankl and Füredi [FF88], Griggs [Gri93], and others subsequently generalized the problem.
The lemma says that for each normal a ∈ Rn, we have maxw Pr [

∑n
i=1 ai ·Xi = w] ≤ 2−Ω(n) ·Pr[X ∈ Dn],

where the maximum is taken not over all constants w ∈ R, but rather over only those for which the hyperplane
{x ∈ Rn |

∑n
i=1 ai · xi = w} is contained in Dn. The lemma holds for all a, and guarantees exponentially

strong anti-concentration; on the other hand, the bound holds only for certain w. The fact that the bound
holds only for some among the values w makes it difficult to use known techniques to prove anti-concentration
(like extremal combinatorics, or Fourier analysis).

Our main high-level contribution is a bridge between this sort of restricted anti-concentration and two-
party communication complexity (see the textbook [RY20] and references within). Our proof follows the
ideas of Razborov’s [Raz92] famous lower bound for the distributional two-party communication complexity
of disjointness. This bridge is built by the means of a certain decomposition. For each hyperplane H ={

(x, y) ∈ {0, 1}n/2 × {0, 1}n/2
∣∣∣ ∑n/2

i=1 ai · xi +
∑n/2
i=1 bi · yi = w

}
, we have:

H ∩Dn =
⋃
k∈R

(Ak ×Bk) ∩Dn, (1)

where Ak :=
{
x ∈ {0, 1}n/2

∣∣∣ ∑n/2
i=1 ai · xi = k

}
and Bk :=

{
y ∈ {0, 1}n/2

∣∣∣ ∑n/2
i=1 bi · yi = w − k

}
.
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In the language of communication complexity, for each k, the set Ak×Bk is a rectangle (i.e., a product set
in {0, 1}n/2×{0, 1}n/2); the assumptionH ⊆ Dn entails precisely that each rectangle Ak×Bk is monochromatic
(i.e., it satisfies Ak×Bk ⊆ Dn). In a nutshell, we see that if ec(Dn) were small, then Dn would resemble the
on-set of a function with low communication complexity. The full picture is in fact subtler, as we explain
below.

The crux of Razborov’s lower bound asserts that, in the setting of disjointness, all 1-monochromatic
rectangles are small. To assess their sizes, Razborov carefully constructs a probability measure ρ on the
cube, and proves that each 1-monochromatic rectangle has exponentially small mass—say, 2−ε·n—under this
measure. In our language, Razborov proves that if a rectangle A× B is contained in Dn, then ρ(A× B) ≤
2−ε·n. We must surmount a few barriers in order to apply Razborov’s ideas in our context.

The first among these barriers concerns the possible number r of rectangles involved (i.e., the number
of distinct values k which appear in the union expression (1) above). In Razborov’s setting, the bound
of 2−ε·n on the mass of each individual rectangle—together with a union bound—implies that r ≥ 2ε·n.
This immediately implies the communication complexity lower bound. An exponential lower bound on r,
however, is useless in our setting; we must not lower-bound the total number of rectangles used, but rather
upper-bound the total probability mass they represent. The key observation which overcomes this barrier is
that our rectangles have a very specific structure; indeed, the sets {Ak}k∈R are themselves pairwise disjoint
in {0, 1}n/2, and likewise for the sets {Bk}k∈R. This observation, together with a more careful analysis,
allows us to overcome the first barrier. Interestingly, we exploit the structure of H as a hyperplane during
our proof only in our use of this simple property of the set families {Ak}k∈R and {Bk}k∈R.

A second barrier that we must overcome stems from the fact that the distribution on Dn we consider is
uniform; Razborov’s argument exploits the carefully constructed distribution ρ. This difference introduces
several technical difficulties. Roughly speaking, we use measure concentration to reduce our problem to a
setting closer to Razborov’s; we then analyze a “perturbed” variant of his distribution (see Claim 2.1 below).

Our main lemma above conceals an implicit small linear constant within its expression Ω(n), which is
moreover ineffective throughout our proof. We suspect that the following precise variant of our main result
holds:

Conjecture. If a hyperplane H ⊆ Rn is contained in Dn, then |H ∩ {0, 1}n| ≤ 2
n/2.

That is, we suspect the precise variant of our above lemma whereby |H ∩ {0, 1}n| ≤ 2(1−log2 3)·n/2 · |Dn|.
This conjecture is sharp, in that there exist hyperplanesH contained inDn for which |H ∩ {0, 1}n| = 2

n/2. For

example, we may take as H the hyperplane
{

(x, y) ∈ {0, 1}n/2 × {0, 1}n/2
∣∣∣ ∑n/2

i=1 xi = 0
}

. The intersection

of this H with {0, 1}n/2×{0, 1}n/2 is exactly the set {(0, . . . , 0)}×{0, 1}n/2 consisting of pairs (x, y) for which
x is empty. This set is obviously contained in Dn, and consists of exactly 2

n/2 points.

2 Proving the Lemma

We fix even n and a hyperplane

H =
{

(x, y) ∈ {0, 1}n/2 × {0, 1}n/2
∣∣∣ ∑n/2

i=1 ai · xi +
∑n/2
i=1 bi · yi = w

}
⊆ Rn,

which we moreover assume is contained in D := Dn. We write µ for the uniform distribution on D ⊆
{0, 1}n. Throughout, we frequently interpret elements x and y of {0, 1}n/2 as subsets of {1, . . . , n2 }, and
use corresponding notation. For example, we write |x| and |y| for the cardinalities—that is, the Hamming
weights—of x and y. We partition D along the sizes of its two constituent sets, in the following way. For
integers `x and `y in {0, . . . , n2 }, we set:

D`x,`y :=
{

(x, y) ∈ {0, 1}n/2 × {0, 1}n/2
∣∣∣ |x| = `x ∧ |y| = `y

}
.

We first argue that all but an exponentially vanishing proportion of the mass of µ is concentrated within
those D`x,`y for which both `x and `y are simultaneously near n

6 .

Claim 2.1. For each constant δ > 0, we have µ
(⋃

n·( 1
6−δ)≤`x,`y≤n·(

1
6 +δ)D`x,`y

)
> 1− 2−Ω(n).
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Proof. A pair (X,Y ) distributed according to µ may be sampled using n
2 i.i.d. pairs (X1, Y1), . . . , (Xn/2, Yn/2),

each uniform in {(0, 0), (0, 1), (1, 0)}. The expected values of
∑n/2
i=1Xi and of

∑n/2
i=1 Yi are exactly n

6 . The
union bound, together with a standard application of Chernoff’s bound, completes the proof.

We write µ`x,`y for the distribution µ conditioned on D`x,`y . In light of Claim 2.1, it suffices to prove

that µ`x,`y (H) ≤ 2−Ω(n) holds whenever `x and `y simultaneously reside in
[
n · ( 1

6 − δ), n · (
1
6 + δ)

]
, for some

appropriate fixed δ > 0. Throughout the remainder of the proof, we fix δ := 1
300 , as well as arbitrary integers

`x and `y in
[

49
300 · n,

51
300 · n

]
. To bound µ`x,`y (H), we use the decomposition (1). For fixed k ∈ R, we write:

Ak :=
{
x ∈ {0, 1}n/2

∣∣∣ ∑n/2
i=1 ai · xi = k

}
and Bk =

{
y ∈ {0, 1}n/2

∣∣∣ ∑n/2
i=1 bi · yi = w − k

}
.

A key step in our proof involves sampling from µ`x,`y in a more informative way.

Remark. We denote random variables by capital letters, and by lowercase letters the values they attain.
In what follows, we impose the further assumption whereby n

2 is odd, so that m := n−2
4 is an integer. This

restriction is not necessary, but simplifies notation below.

We write T := (Zx, Zy, {I}) for a uniformly random partition of {1, . . . , n2 } into subsets sized exactly m,
m, and 1, respectively. We write X for a uniformly random subset of Zx ∪ {I} of cardinality exactly `x and
Y for a uniformly random subset of Zy ∪ {I} of cardinality exactly `y (X and Y are chosen independently).
We moreover write X0 and Y0 for X and Y conditioned on I 6∈ X and I 6∈ Y , respectively. Finally, we write
X1 and Y1 for X and Y conditioned on I ∈ X and I ∈ Y , respectively.

We intuitively characterize the role which this sampling procedure plays in our proof. The core of our
argument shows that for each arbitrary rectangle A × B ⊆ {0, 1}n/2 × {0, 1}n/2 (including, crucially, the
rectangles Ak×Bk constructed above), the probability that (X0, Y0) ∈ A×B cannot significantly exceed the
probability that (X1, Y1) ∈ A×B. This implies in particular that H ∩Dn is small for any H ⊆ Rn contained
in Dn, since (X1, Y1) never falls within Dn, whereas (X0, Y0) always does. Intuitively, a rectangle of mass
at least 2−ε·n cannot dramatically affect the distribution of most of (X,Y )’s coordinates; meanwhile, the
variables (X0, Y0) and (X1, Y1) differ at just a single random coordinate. We provide full details in Subsection
2.1 below.

2.1 Good partitions

In this subsection, we introduce and analyze the notion of “good” partitions, and describe their basic
properties.

Definition 2.2. For each k ∈ R, we define sets of “good” partitions in the following way:

Gkx :=
{
t = (zx, zy, {i})

∣∣ Pr [X1 ∈ Ak | T = t] ≥ 1
70 · Pr [X0 ∈ Ak | T = t]− 2−ε·n

}
and

Gky :=
{
t = (zx, zy, {i})

∣∣ Pr [Y1 ∈ Bk | T = t] ≥ 1
70 · Pr [Y0 ∈ Bk | T = t]− 2−ε·n

}
,

where ε := 1
500 .

Roughly speaking, a partition t = (zx, zy, {i}) is “good” with respect to k ∈ R if, conditioned upon it,
the distributions (X0, Y0) and (X1, Y1) do not intersect the sets Ak and Bk excessively differently. The main
result of this subsection is the following proposition, which states that most partitions are “good”. We write
χkx(t) and χky(t) for the indicator functions of the events t ∈ Gkx and t ∈ Gky , respectively.

Proposition 2.3. For each k ∈ R,

ET
[
Pr[X0 ∈ Ak | T ] · Pr [Y0 ∈ Bk | T ] · χkx(T ) · χky(T )

]
≥ 1

10 · ET [Pr [X0 ∈ Ak | T ] · Pr [Y0 ∈ Bk | T ]] .

Before proving the proposition, we establish a few preliminary claims. The first records a fact pertaining
to the structure of this probability distribution upon conditioning.
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Claim 2.4. For each k ∈ R, as the partition t = (zx, zy, {i}) varies, the numbers Pr [X ∈ Ak | T = t] and
Pr [Y0 ∈ Bk | T = t] depend only on zy and the numbers Pr [Y ∈ Bk | T = t] and Pr [X0 ∈ Ak | T = t] depend
only on zx.

The following claim compares the probability that a random `x-element subset of zx ⊆ {1, . . . n2 } resides

in Ak ⊆ {0, 1}n/2 with the probability that a random `x-element subset of zx ∪ {i} does. It shows that the
former cannot exceed the latter by much more than threefold. It exploits the fact that the probability that
a random `x-element subset of zx ∪ {i} does not contain i is close to 1

3 .

Claim 2.5. For each fixed scalar k ∈ R and partition t = (zx, zy, {i}), we have

Pr [X0 ∈ Ak | T = t] ≤ 25
8 · Pr [X ∈ Ak | T = t]

and
Pr [Y0 ∈ Bk | T = t] ≤ 25

8 · Pr [Y ∈ Bk | T = t] .

Proof. We prove the first conclusion; the second is similar. By the definitions of the distributions X and X0,

Pr [X ∈ Ak | T = t] = Pr[i 6∈ X | T = t] · Pr [X0 ∈ Ak | T = t] + Pr[i ∈ X | T = t] · Pr [X1 ∈ Ak | T = t]

≥ Pr[i 6∈ X | T = t] · Pr [X0 ∈ Ak | T = t] .

The proportion of `x-element subsets of zx ∪ {i} which do not contain i is Pr[i 6∈ X | T = t] =
(m
`x

)
(m+1

`x
)

=

m+1−`x
m+1 ≥ 1− n

n+2 ·
17
25 ≥

8
25 .

The following claim shows that, for each fixed zy ⊆ {1, . . . , n2 }, as the index i ∈ {1, . . . , n2 } − zy varies,
most among the resulting partitions (zx, zy, {i}) are “good”; a symmetrical statement holds for each fixed
zx ⊆ {1, . . . , n2 } as the index i ∈ {1, . . . , n2 } − zx varies.

Claim 2.6. For each fixed scalar k ∈ R, and arbitrary fixed subsets zx and zy of {1, . . . , n2 }, we have:

Pr
[
T 6∈ Gkx | Zy = zy

]
< 1

7

and
Pr
[
T 6∈ Gky | Zx = zx

]
< 1

7 .

Proof. We prove only the first inequality, as the second is similar. We first handle the case in
which Pr [X ∈ Ak | Zy = zy] < 2−ε·n. In light of Claim 2.4, we note that Pr [X ∈ Ak | Zy = zy] =
Pr [X ∈ Ak | T = t] holds for each particular partition t drawn from the distribution (Zx, zy, {I}). Using
Claim 2.5, we see that if any particular such t moreover satisfied t 6∈ Gkx, then we would have:

Pr [X1 ∈ Ak | T = t] < 1
70 · Pr [X0 ∈ Ak | T = t]− 2−ε·n ≤ 1

20 · Pr [X ∈ Ak | T = t]− 2−ε·n < 0,

a contradiction, so that Pr
[
T 6∈ Gkx | Zy = zy

]
= 0, and the claim is proved.

We thus assume that Pr [X ∈ Ak | Zy = zy] ≥ 2−ε·n. We write zy for the complement of zy in {1, . . . , n2 },
and abbreviate Âk := Ak ∩

(
zy
`x

)
for the set of `x-element subsets of zy which reside in Ak. We note that:

Pr [X ∈ Ak | Zy = zy] =

∣∣Âk∣∣(
m+1
`x

) ,
so that

∣∣∣Âk∣∣∣ =
(
m+1
`x

)
· Pr [X ∈ Ak | Zy = zy] ≥

(
m+1
`x

)
· 2−ε·n. We moreover record the lower bound

log2

(
m+ 1

`x

)
≥ log2

(
m+ 1⌊
51
300 · n

⌋) ≥ log2

(
m+ 1⌊

17
25 · (m+ 1)

⌋) ≥ (0.9− o(1)) · (m+ 1);

the last inequality is a standard consequence of Stirling’s approximation, together with the binary entropy
inequality H

(
17
25

)
> 0.9. These facts together imply that log2

(∣∣Âk∣∣) ≥ (0.9− o(1)− 4 · ε) · (m+ 1).
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We write X̂ for a uniformly random element of Âk. We fix a partition t = (zx, zy, {i}), and abbreviate

Âk,1 for the set of elements of Âk which contain i; we now have that:

Pr [X ∈ Ak | T = t] · Pr
[
i ∈ X̂

]
=

∣∣Âk∣∣(
m+1
`x

) · ∣∣Âk,1∣∣∣∣Âk∣∣ =

∣∣Âk,1∣∣(
m

`x−1

) · ( m
`x−1

)(
m+1
`x

) = Pr [X1 ∈ Ak | T = t] · `x
m+ 1

,

so that Pr [X ∈ Ak | T = t] ·Pr
[
i ∈ X̂

]
≤ Pr [X1 ∈ Ak | T = t] · 17

25 . By this inequality and Claim 2.5, we see

that if moreover t 6∈ Gkx holds, then we have:

Pr [X ∈ Ak | T = t] · Pr[i ∈ X̂] < 1
100 · Pr [X0 ∈ Ak | T = t] ≤ 1

30 · Pr [X ∈ Ak | T = t] ,

so that Pr
[
i ∈ X̂

]
< 1

30 . Equivalently, if the partition t = (zx, zy, {i}) is not “good”, then the component of

the joint distribution X̂ corresponding to the element i ∈ zy has success probability less than 1
30 .

We write X̂j for the indicator function of the event ij ∈ X̂, where {i1, . . . , im+1} are the elements of zy,

so that X̂ = (X̂1, . . . , X̂m+1). We observe that if the claim were false—and, in particular, Pr[i ∈ X̂] < 1
30

held for a proportion consisting of at least 1
7 among the m+ 1 elements i ∈ zy—then the binary entropy of

X̂ would satisfy:

(0.9− o(1)− 4 · ε) · (m+ 1) ≤ H(X̂) (by H(X̂) = log2

(∣∣Âk∣∣) and the above)

≤
m+1∑
j=1

H(X̂j) (by the sub-additivity of entropy)

<
(

6
7 + 1

7 ·H( 1
30 )
)
· (m+ 1) (by the assumption that the claim is false)

≤ 0.89 · (m+ 1).

This contradiction completes the proof of the claim.

We are now ready to prove the main proposition.

Proof of Proposition 2.3. Because 1− χkx(t) · χky(t) ≤ 1− χkx(t) + 1− χky(t) holds for each t, and by linearity
of expectation and symmetry, it suffices to prove that

ET
[
Pr [X0 ∈ Ak | T ] · Pr [Y0 ∈ Bk | T ] ·

(
1− χkx(T )

)]
≤ 9

20 · ET [Pr [X0 ∈ Ak | T ] · Pr [Y0 ∈ Bk | T ]] .

To prove this, it in turn suffices to show that, for each fixed m-element subset zy ⊆ {1, . . . , n2 }, it holds that:

ET
[
Pr [X0 ∈ Ak | T ] · Pr [Y0 ∈ Bk | T ] ·

(
1− χkx(T )

)
| Zy = zy

]
≤ 9

20 · ET [Pr [X0 ∈ Ak | T ] · Pr [Y0 ∈ Bk | T ] | Zy = zy] .

We prove this latter claim in the following way:

ET
[
Pr [X0 ∈ Ak | T ] · Pr [Y0 ∈ Bk | T ] ·

(
1− χkx(T )

)
| Zy = zy

]
= Pr [Y0 ∈ Bk | Zy = zy] · ET

[
Pr [X0 ∈ Ak | T ] ·

(
1− χkx(T )

)
| Zy = zy

]
(by Claim 2.4)

≤ 25
8 · Pr [Y0 ∈ Bk | Zy = zy] · ET

[
Pr [X ∈ Ak | T ] ·

(
1− χkx(T )

)
| Zy = zy

]
(by Claim 2.5)

= 25
8 · Pr [Y0 ∈ Bk | Zy = zy] · Pr [X ∈ Ak | Zy = zy] · ET

[
1− χkx(T ) | Zy = zy

]
(by Claim 2.4)

≤ 25
8 ·

1
7 · Pr [Y0 ∈ Bk | Zy = zy] · Pr [X ∈ Ak | Zy = zy] (by Claim 2.6)

= 25
56 · Pr [Y0 ∈ Bk | Zy = zy] · ET [Pr[X0 ∈ Ak | T ] | Zy = zy] .

The final equality above amounts to the following calculation:

Pr [X ∈ Ak | Zy = zy] =

∣∣Ak ∩ (zy`x)∣∣(
m+1
`x

) =
1

m+ 1
·
∣∣Ak ∩ (zy`x)∣∣ · (m+ 1− `x)(

m
`x

) =
1

m+ 1
·
∑
i∈zy

∣∣Ak ∩ (zy−{i}`x

)∣∣(
m
`x

) ,

where the rightmost expression is precisely ET [Pr[X0 ∈ Ak | T ] | Zy = zy], by definition, and the final equal-

ity stems from a double-counting argument; indeed,
∑
i∈zy

∣∣Ak ∩ (zy−{i}`x

)∣∣ counts each distinct element of

Ak ∩
(
zy
`x

)
exactly m+ 1− `x times. An additional application of Claim 2.4 completes the proof.
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2.2 Completing the argument

We record the following claim:

Claim 2.7.
∑
k∈R ET [Pr [X0 ∈ Ak | T ]] ≤ 1 and

∑
k∈R ET [Pr [Y0 ∈ Bk | T ]] ≤ 1.

Proof. We prove the first inequality. Because the sets Ak—as k ranges throughout R—are pairwise disjoint,∑
k∈R

ET [Pr [X0 ∈ Ak | T ]] =
∑
k∈R

Pr [X0 ∈ Ak] ≤ Pr
[
X0 ∈

⋃
k∈R

Ak

]
≤ 1.

This completes the proof.

We are now in a position to prove the lemma. Invoking finally the hypothesis whereby H is contained in
Dn, we have that:

0 = Pr[(X1, Y1) ∈ Dn] ≥ Pr[(X1, Y1) ∈ H].

Applying now the decomposition (1), we have:

0 = Pr[(X1, Y1) ∈ H] ≥
∑
k∈R

ET
[
Pr [X1 ∈ Ak | T ] · Pr [Y1 ∈ Bk | T ] · χkx(T ) · χky(T )

]
.

Invoking Definition 2.2, we see further that:

0 ≥
∑
k∈R

ET
[(

1
70 · Pr [X0 ∈ Ak | T ]− 2−ε·n

)
·
(

1
70 · Pr [Y0 ∈ Bk | T ]− 2−ε·n

)
· χkx(T ) · χky(T )

]
.

Applying Claim 2.7, we have that:

0 ≥ 1
702 ·

∑
k∈R

ET
[
Pr [X0 ∈ Ak | T ] · Pr [Y0 ∈ Bk | T ] · χkx(T ) · χky(T )

]
− 2−Ω(n).

Using Proposition 2.3, we conclude that:

0 ≥ 1
10·702 ·

∑
k∈R

ET [Pr [X0 ∈ Ak | T ] · Pr [Y0 ∈ Bk | T ]]− 2−Ω(n)

= 1
10·702 · ET

[∑
k∈R

Pr [X0 ∈ Ak | T ] · Pr [Y0 ∈ Bk | T ]

]
− 2−Ω(n)

= 1
10·702 · µ`x,`y (H)− 2−Ω(n).

In light of Claim 2.1, this calculation completes the proof of the lemma.
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