
Learning generalized depth three arithmetic circuits in the

non-degenerate case

Vishwas Bhargava∗

Rutgers University

vishwas1384@gmail.com

Ankit Garg
Microsoft Research India

garga@microsoft.com

Neeraj Kayal
Microsoft Research India

neeraka@microsoft.com

Chandan Saha
Indian Institute of Science

chandan@iisc.ac.in

July 16, 2022

Abstract

Consider a homogeneous degree d polynomial f = T1 + · · · + Ts, Ti = gi(`i,1, . . . , `i,m) where gi’s
are homogeneous m-variate degree d polynomials and `i,j ’s are linear polynomials in n variables. We
design a (randomized) learning algorithm that given black-box access to f , computes black-boxes for
the Ti’s. The running time of the algorithm is poly(n,m, d, s) and the algorithm works under some
non-degeneracy conditions on the linear forms and the gi’s, and some additional technical assumptions
n ≥ (md)2, s ≤ nd/4. The non-degeneracy conditions on `i,j ’s constitute non-membership in a variety, and
hence are satisfied when the coefficients of `i,j ’s are chosen uniformly and randomly from a large enough
set. The conditions on gi’s are satisfied for random polynomials and also for natural polynomials common
in the study of arithmetic complexity like determinant, permanent, elementary symmetric polynomial,
iterated matrix multiplication. A particularly appealing algorithmic corollary is the following: Given
black-box access to an f = Detr(L

(1)) + . . . + Detr(L
(s)), where L(k) = (`

(k)
i,j)i,j with `

(k)
i,j ’s being linear

forms in n variables chosen randomly, there is an algorithm which in time poly(n, r) outputs matrices
(M (k))k of linear forms s.t. there exists a permutation π : [s]→ [s] with Detr(M

(k)) = Detr(L
(π(k))).

Our work follows the works [KS19, GKS20] which use lower bound methods in arithmetic complexity
to design average case learning algorithms. It also vastly generalizes the result in [KS19] about learning
depth three circuits, which is a special case where each gi is just a monomial. At the core of our algorithm
is the partial derivative method which can be used to prove lower bounds for generalized depth three
circuits. To apply the general framework in [KS19, GKS20], we need to establish that the non-degeneracy
conditions arising out of applying the framework with the partial derivative method are satisfied in the
random case. We develop simple but general and powerful tools to establish this, which might be useful
in designing average case learning algorithms for other arithmetic circuit models.

∗Part of this work was done when the author was an intern at Microsoft Research India.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 155 (2021)

Contents

1 Introduction 1
1.1 The model and our results . 1
1.2 Techniques and proof overview . 2
1.3 Related work . 4
1.4 Roadmap of the paper . 5

2 The learning algorithm and its analysis 5
2.1 Non-degeneracy conditions . 5

3 Non-degeneracy of random circuits 7
3.1 Non-degeneracy of random circuits: Condition 1 . 8
3.2 Non-degeneracy of random circuits: Condition 2 . 9

3.2.1 Direct sum structure of (D⊥i)⊥B . 11
3.3 Non-degeneracy condition 3: Adjoint algebra is trivial . 12
3.4 Adjoint algebra for random gi’s . 13
3.5 From black-box access to learning generalized depth three circuits 15

4 Conclusion and open problems 15

A Adjoint algebra and vector space decomposition 18

B Linear algebra with black boxes 22

C Reducing the field size 22

1 Introduction

Arithmetic circuits are a natural model for computing polynomials using basic arithmetic operations like
addition and multiplication. The problem of learning arithmetic circuits a.k.a. reconstruction is an important
and well studied problem. It can be defined for various arithmetic circuit models. Unsurprisingly, there is
enough evidence to point out that the problem is likely to be hard in the worst case for most arithmetic
circuit models [H̊as90, FK09, KS09b, Shi16].1 Hence, it is imperative to explore algorithms for learning
arithmetic circuits that are efficient and work in the average case. One classic example of a stark contrast
between the worst case and average case complexities is the tensor decomposition problem. Let us focus on
n×n×n tensors for simplicity. In the language of arithmetic complexity, tensor decomposition corresponds
to learning depth three set-multilinear circuits. We have three sets of variables y = {y1, . . . , yn}, z =
{z1, . . . , zn}, w = {w1, . . . , wn}. Then the problem is to decompose a set-multilinear polynomial f(y, z,w) =∑
j,k,` Tj,k,`yjzkw` as

s∑
i=1

`i1(y) `i2(z) `i3(w)

for the smallest possible s (here `ij ’s are linear forms). This is NP-hard in the worst case [H̊as90]. However,
it is possible to design efficient algorithms for tensor decomposition which work well under some mild as-
sumptions. One such algorithm is due to Jennrich [Har70, LRA93] and states that given f(y, z,w) we can
find the above decomposition in polynomial time if s ≤ n and (`1a, . . . , `sa) are linearly independent for all
a ∈ [3]. Note that the algorithm works under a bound2 on s and also a mild assumption on the linear forms
(which is satisfied when the linear forms are chosen randomly). Our algorithms will also work under such
non-degeneracy conditions. Kayal and Saha [KS19] designed algorithms for learning depth three arithmetic
circuits in the non-degenerate case. That is, they design an algorithm for decomposing

f(x) =

s∑
i=1

d∏
j=1

`ij(x)

assuming a bound on s and certain non-degeneracy conditions on the `ij ’s. Note that the above model is
different from tensor decomposition or set-multilinear circuits since there is no partitioning of variables into
disjoint sets and the linear forms can depend on all the variables. We prove a far-reaching generalization of
the result of [KS19].

1.1 The model and our results

We study the model of generalized depth three circuits. A circuit in this class computing a degree d
polynomial f(x) is an expression of the following kind,

f(x) = g1(`11, . . . , `1m) + · · ·+ gs(`s1, . . . , `sm),

where gi’s are m-variate degree d homogeneous polynomials and `ij ’s are linear forms in the variables
x = (x1, . . . , xn). Our main result is an algorithm for learning decompositions of the above kind assuming
certain non-degeneracy conditions.

Theorem 1.1 (Learning generalized depth three circuits in the non-degenerate case). There is a random-
ized algorithm that given black-box access to an n-variate degree d polynomial f = T1 + · · · + Ts, where
Ti = gi(`i1, . . . , `im) for a homogeneous m-variate polynomial gi, outputs black-boxes for the individual sum-
mands Ti’s. The running time of the algorithm is poly(n,m, d, s). The algorithm works under certain non-
degeneracy conditions and also under some additional technical assumptions such as n ≥ (md)2, s ≤ nd/4,
|F| ≥ poly(nd, s) and char(F) = 0 or char(F) > d.

1Despite this, there has been much success in designing worst case reconstruction algorithms. This includes reconstruction
algorithms for the models of sparse polynomials [KS01], read-once algebraic branching programs (ROABPs) [BBB+00, KS06]
and for models with bounded top fan-in [KS09b, KS09a, GKL12, Sin16, BSV20, BSV21].

2This bound usually corresponds to the best known lower bounds we can prove for the corresponding model.

1

The non-degeneracy conditions are mentioned explicitly in Section 2.1. These non-degeneracy conditions
are satisfied when the coefficients of the linear forms are chosen uniformly and independently at random from
a large enough set and when the gi’s are either random or one of the well-known polynomials in arithmetic
complexity such as determinant, permanent, elementary symmetric polynomial etc. Let us mention one
such appealing corollary which follows from Theorem 1.1 and the algorithms for equivalence-testing of the
determinant [Kay12, GGKS19].

Corollary 1 (Learning sums of random projections of determinants). Suppose n, r,F, s be such that n ≥ r6,
s ≤ nr/4, |F| ≥ poly(nr, s) and char(F) = 0 or char(F) > r. There is a randomized poly(n, r) time algorithm

that given black-box access to an f = Detr(L
(1)) + . . . + Detr(L

(s)), where L(k) = (`
(k)
i,j)i,j with `

(k)
i,j ’s being

linear forms in n variables whose coefficients are chosen independently and uniformly at random from an
arbitrary set S ⊂ F of size |S| ≥ poly(nr, s), it outputs matrices of linear forms (M (k))k s.t. there exists a
permutation π : [s]→ [s] with Detr(M

(k)) = Detr(L
(π(k))).

Remarks.

1. Once we have the black-boxes for the Ti’s as in Theorem 1.1, it is not hard to output black-boxes

for g̃i’s and also ˜̀i1, . . . , ˜̀im s.t. Ti = g̃i

(˜̀
i1, . . . , ˜̀im). This is done by finding a invertible linear

transformation on gi that restrict it to its “essential variables”, see [Kay11, Thm 4.1]. Note that we
cannot hope to exactly recover the gi’s since there is some redundancy. One can always apply a linear
transformation to the input variables of gi’s to obtain different decompositions.

2. We get a similar result (as in Corollary 1) with gi’s being the elementary symmetric polynomial,
permanent, iterated matrix multiplication, monomials etc. Note that it could be a mixture of these.
It might seem strange that we are able to handle permanent, but note that we are only dealing with
black-boxes and hence the complexity of the permanent does not come into play. It is already known
how to do equivalence-testing of the permanent efficiently [Kay12] which is similar in spirit to the s = 1
case.

3. The field size and the size of the set S in Theorem 1.1 and Corollary 1 depends exponentially on the
degree. This does not affect the runtime since one can do arithmetic in exponentially large fields in
polynomial time. It is possible to get a polynomial dependence on the degree. We have not elaborated
on this to preserve simplicity of analysis but we provide a sketch of an argument to reduce the field
size in Appendix C.

1.2 Techniques and proof overview

We follow the meta framework of [KS19, GKS20] for designing learning algorithms for arithmetic circuits in
the non-degenerate case via lower bounds. We note that while the meta framework is quite general, still a
lot of technical work is needed to carry it out for a particular circuit class if one has lower bounds for that
class. The same holds for this paper. We will not go into the full generality of the framework and refer the
reader to the exposition in [GKS20]. Instead, we will explain the details for our special case.

Let us first see how one would prove a lower bound (on the number of summands s) for the model of
generalized depth three circuits. Consider the set of all partial differential operators of order k i.e. L = ∂ = k

x .
These are linear maps from F[x]d to F[x]d−k, where F[x]t denote the ring of homogeneous degree t polynomials
in F[x]. Note that

dim(〈L ◦ Ti〉) ≤
(
m+ k − 1

k

)
,

if Ti is of the form gi(`i1, . . . , `im). This is easy to verify if Ti were equal to gi(x1, . . . , xm). Then one
can use the fact that the dimension of the partial derivative space doesn’t change upon an invertible linear
transformation of the variables. Also note that

〈L ◦ f〉 ⊆ 〈L ◦ T1〉+ · · ·+ 〈L ◦ Ts〉 (1)

2

dim(〈L ◦ f〉) ≤
s∑
i=1

dim(〈L ◦ Ti〉) ≤ s
(
m+ k − 1

k

)
It is not too hard to design an f for which dim(〈L ◦ f〉) ≈

(
n+k−1

k

)
(when k ≤ bd/2c) and for such an f we

get a lower bound ≈ (n/m)k. We can choose k = bd/2c to get the highest lower bound.
It is natural to wonder what is the connection to learning, if there is any at all. Consider Equation 1.

One can hope that in the generic case, one would get

〈L ◦ f〉 = 〈L ◦ T1〉 ⊕ · · · ⊕ 〈L ◦ Ts〉 (2)

That is the inclusion becomes an equality and the sum becomes a direct sum. Furthermore, let us assume

that it holds for L′ = ∂
= (k+1)
x as well. That is,

〈L′ ◦ f〉 = 〈L′ ◦ T1〉 ⊕ · · · ⊕ 〈L′ ◦ Ts〉 (3)

So we have U := 〈L ◦ f〉, V := 〈L′ ◦ f〉 and the linear maps ∂=1
x from U to V . Let Ui := 〈L ◦ Ti〉 and

Vi := 〈L′ ◦ Ti〉. Note that the linear maps ∂=1
x map Ui into Vi. So one is naturally led towards the following

vector decomposition problem.

Problem 1.2 (Vector space decomposition). Given the triple (M, U, V) consisting of vector spaces U and
V and a set of linear maps M from U to V , decompose U and V as

U = U1 ⊕ · · · ⊕ Us V = V1 ⊕ · · · ⊕ Vs

s.t. 〈M ◦ Ui〉 ⊆ Vi for all i ∈ [s].

For our setting, one such decomposition is described in Equations (2) and (3). Once one has access to
Ui’s (black-box access to a basis), it is not hard to obtain black-boxes for the Ti’s. So the only thing remains
to prove is the uniqueness of vector space decomposition (in addition to (2) and (3) themselves). There
are many efficient algorithms to solve the vector space decomposition problem. Please refer to Appendix A
for specialized algorithms that work for our setting, and [GKS20] for a thorough discussion on the general
problem and related work. Let us now describe our approaches to prove Equations (2) and (3) and also the
uniqueness of decomposition.

For proving uniqueness of decomposition, we employ the use of the notion of an adjoint algebra, following
[GKS20]. The adjoint algebra essentially captures “homomorphisms” of the triple (M, U, V). That is,

Adj(M, U, V) = {(D,E) : D : U → U, E : V → V linear maps and LD = EL ∀ L ∈M}

Suppose the triple (M, U, V) admits a vector space decomposition U = U1⊕ · · · ⊕Us, V = V1⊕ · · · ⊕ Vs.
Then the projection maps (ΠUi

,ΠVi
) (which are identity on Ui, Vi respectively and map other vector spaces

in the direct sum to 0) lie in the adjoint. We say that the adjoint algebra is trivial if it is spanned by
these projectors. It is not hard to show that if the adjoint algebra is trivial, then the above vector space
decomposition is unique (Lemma 23). Note that one can always combine blocks in an arbitrary way, but the
decomposition is unique among all “finest” decompositions where one cannot decompose any block further.
So we are left with proving the uniqueness of the decomposition in Equations (2) and (3). We prove that
the adjoint algebra is trivial in this case (proof of Theorem 2.1) using a non-degeneracy condition on the gi’s
(Item 3 in Section 2.1; also see Section 3.3).

So now let us see how to prove Equations (2) and (3). Showing the direct sum U1+· · ·+Us = U1⊕· · ·⊕Us
(and the same for Vi’s) is done in a similar way to [KS19], Schwartz-Zippel lemma yields the direct sum
once one can show the existence of some set of linear forms satisfying the direct sum property. This is done
using a design construction based on Nisan-Wigderson designs. This construction is inspired from [KS19]
but more general. We differ significantly from previous works [KS19, GKS20] in our technique for showing
that U = U1 + · · ·+ Us. The previous works relied on intricate design constructions to exhibit linear forms
which satisfy this property (followed by a use of Schwartz-Zippel lemma). For our setting, one can get away

3

with the above design based approach, but this can become more cumbersome and challenging as the circuit
models become more complicated. Hence, we devise a general way of proving statements of the form

〈L ◦ f〉 = 〈L ◦ T1〉+ · · ·+ 〈L ◦ Ts〉

for f = T1 + · · · + Ts, which is conceptually more appealing. It is useful to have the linear maps L from a
subspace of the operators (so for our case think of L = 〈∂ = k

x 〉). Since

〈L ◦ f〉 ⊆ 〈L ◦ T1〉+ · · ·+ 〈L ◦ Ts〉,

it suffices to prove that 〈L ◦ Ti〉 ⊆ 〈L ◦ f〉 for all i. Let us consider the operators annihilating a particular
term Ti.

Lnull
i := {L ∈ L : L ◦ Ti = 0}

Now note that for any L ∈ ∩j 6=iLnull
j , L ◦ f = L ◦Ti. If the subspace of operators ∩j 6=iLnull

j was rich enough,
at least to the extent relevant to Ti, then we would be done. We are able to show this by moving to the duals
of the vector spaces Lnull

i (with respect to an appropriate bilinear form) and proving a direct sum property
there (the proof of which turns out to be almost identical to the proof we have for the direct sum of the
Ui’s!). For more details, see Section 2.

Comparison with previous works. Our work closely follows the papers [KS19, GKS20] on learning
arithmetic circuits in the non-degenerate case via lower bounds. However, there are substantial differences
as well. Firstly, as explained above, we devise a general technique for proving statements of the kind
〈L◦f〉 = 〈L◦T1〉+ · · ·+ 〈L◦Ts〉. Secondly, ours is the first paper that uses the full machinery of the learning
from lower bounds framework in [KS19, GKS20]. In [KS19], the framework was present in a rudimentary
form and that made the analysis more cumbersome. While the framework was fully laid out in [GKS20],
for their application of learning sums of powers of low degree polynomials, they eventually implement a
somewhat ad hoc approach. Without this learning framework, it seems rather challenging to get such a
general result as in Theorem 1.1.

1.3 Related work

[GKKS14] proved a lower bound for the more general model of generalized depth-four circuits (bounded
bottom-fanin). [KS09a] study the worst case learning algorithms for a model which is similar to our model
in many ways, but their parameters are different (they also call their model generalized depth three cir-
cuits). There has been a lot of work on worst case reconstruction algorithms which includes reconstruction
algorithms for the models of sparse polynomials [KS01], read-once algebraic branching programs (ROABPs)
[BBB+00, KS06] and for models with bounded top fan-in [KS09b, KS09a, GKL12, Sin16, BSV20, BSV21].

In [GKL11], a randomized polynomial-time proper learning algorithm was given for non-degenerate3

multilinear formulas having fan-in two. A randomized polynomial-time proper learning algorithm for non-
degenerate regular formulas having fan-in two was given in [GKQ14]. An efficient randomized reconstruction

for non-degenerate homogeneous ABPs of width at most
√
n
2 is presented in [KNS19]. [KS19] designed

algorithms for learning non-degenerate depth three circuits which is a special case of our model with the
gi’s being a monomial. [GKS20], following [KS19], developed a meta framework for learning non-degenerate
arithmetic circuits via lower bounds. They implemented it to learn sums of powers of low degree polynomials
in the non-degenerate case.

As already mentioned, the problem of tensor decomposition is a special case for our model. Tensor de-
composition is widely studied in the machine learning community as well (also known as CP decomposition),
e.g. see the surveys [KB09, DL09, JGK+19]. Another kind of tensor decomposition, Tucker decomposition
is also widely studied, see Section 4 in [KB09]. Tensor decomposition roughly corresponds to the m = 1 case

3The papers [GKL11, GKQ14] state the results for random formulas, but it is not difficult to state the non-degeneracy
conditions by taking a closer look at the algorithms.

4

in our model4 Tucker decomposition roughly corresponds to s = 1 in our model.5 Given the wide variety
of applications of these two problems in machine learning, we hope that (noise-resilient versions of) our
algorithms will handle much more challenging problems in machine learning.

1.4 Roadmap of the paper

In Section 2, we present our algorithm for learning non-degenerate generalized depth three circuits, the
corresponding non-degeneracy conditions and the analysis of the algorithm assuming the non-degeneracy
conditions. In Section 3, we prove that the non-degeneracy conditions are satisfied for random circuits.
Section 4 contains the summary of the work and some of the open problems that arise from this work.
Section A contains some basic facts about the vector space decomposition problem. Finally, Section B
contains some facts about how to perform linear algebra given black boxes.

2 The learning algorithm and its analysis

In this section, we describe our algorithm for learning non-degenerate generalized depth three circuits and
the analysis assuming the non-degeneracy conditions. Since we are aiming for poly(s) time-complexity, we
can assume that we know s. For a field F and d ∈ N, let F[x]d denote the ring of homogeneous degree
d polynomials in F[x]. Consider a homogeneous degree d polynomial f ∈ F[x]d which is computed by a
homogeneous generalized depth three circuit i.e., f = T1 + · · · + Ts, where Ti = gi(`i1, . . . , `im) for i ∈ [s].
Here `ij ’s are linear forms.

2.1 Non-degeneracy conditions

We impose the following non-degeneracy conditions on f (or more precisely the circuit computing it):

1. For each i ∈ [s], the linear forms (`i1, . . . , `im) are linearly independent. Also the vector spaces

W
(d−k)
1 := F[`11, . . . , `1m]d−k, . . . ,W

(d−k)
s := F[`s1, . . . , `sm]d−k form a direct sum i.e.

W
(d−k)
1 + · · ·+W (d−k)

s = W
(d−k)
1 ⊕ · · · ⊕W (d−k)

s .

The same assumption for the vector spaces W
(d−k−1)
i ’s.

2. We will use ∂ = k to denote the set of order-k partial differential operators in the variables x. Consider
the vector spaces U := 〈∂ = kf〉, V := 〈∂ = (k+1)f〉, Ui := 〈∂ = kTi〉, Vi = 〈∂ = (k+1)Ti〉. We will assume
that

U = U1 ⊕ · · · ⊕ Us
and

V = V1 ⊕ · · · ⊕ Vs.

3. For the polynomials gi ∈ F[z]d, z = (z1, . . . , zm), the triple
(
∂ = 1
z , 〈∂ = k

z gi〉, 〈∂ = (k+1)
z gi〉

)
has a trivial

adjoint algebra for all i ∈ [s] (see Definitions A.1 and A.3). That is, if D : 〈∂ = k
z gi〉 → 〈∂ = k

z gi〉
and E : 〈∂ = (k+1)

z gi〉 → 〈∂ = (k+1)
z gi〉 are linear maps s.t. ∂zjD(p) = E(∂zjp) for all j ∈ [m] and all

p ∈ 〈∂ = k
z gi〉 , then D,E are both identity maps (up to a scalar multiplication). Note that Corollary

27 implies that this condition is preserved if we apply an invertible linear transformation to the z
variables.

The algorithm is stated in Algorithm 1. We will need the following lemma in the proof of the main
theorem.

4Strictly speaking m = 1 would be symmetric tensor decomposition and exactly modeling general tensor decomposition
would require higher m but in spirit tensor decomposition is closer to the m = 1 case than higher m.

5Again, ignoring some symmetry considerations here.

5

Lemma 2. Let h ∈ F[x]d be a homogeneous degree d polynomial and `1, . . . , `m ∈ F[x]1 be linearly inde-
pendent linear forms. Then h ∈ F[`1, . . . , `m]d iff

∑n
j=1 αj∂xj

h(x) = 0 for all α ∈ Fn s.t. `i(α) = 0 for all
i ∈ [m].

Proof. Let `i =
∑n
j=1 `ijxj . In one direction, suppose h ∈ F[`1, . . . , `m]d so that h = g(`1, . . . , `m) for

g ∈ F[z], z = (z1, . . . , zm). Then

n∑
j=1

αj∂xj
h(x) =

n∑
j=1

αj

m∑
i=1

`ij∂zig(z)|z=(`1,...,`m)

=

m∑
i=1

`i(α)∂zig(z)|z=(`1,...,`m)

= 0

for all α ∈ Fn s.t. `i(α) = 0 for all i ∈ [m]. In the other direction, suppose
∑n
j=1 αj∂xjh(x) = 0 for all

α ∈ Fn s.t. `i(α) = 0 for all i ∈ [m]. Extend `1, . . . , `m to a full basis of F[x]1, `1, . . . , `n (in an arbitrary
way). We can write h as g(`1, . . . , `n) for some g ∈ F[w], w = (w1, . . . , wn). Our goal now is to prove that
∂wi

g(w) = 0 for all i ∈ {m+ 1, . . . , n}. Now

n∑
j=1

αj∂xj
h(x) =

n∑
j=1

αj

n∑
i=1

`ij∂wi
g(w)|w=(`1,...,`n)

=

n∑
i=1

`i(α)∂wi
g(w)|w=(`1,...,`n)

For i ∈ {m + 1, . . . , n}, we can choose an α s.t. `j(α) = 0 for all j 6= i and `i(α) 6= 0. Then from the
assumption and the above calculation we get that ∂wi

g(w)|w=(`1,...,`n) = 0. Since `1, . . . , `n are linearly
independent, we get that ∂wi

g(w) = 0 for all i ∈ {m+ 1, . . . , n}.

Algorithm 1 Learning generalized depth three circuits

Input: black-box access to an f ∈ F[x]d that is computed by a non-degenerate homogeneous generalized
depth three circuit i.e., f = T1 + · · ·+ Ts, where Ti = gi(`i1, . . . , `im) for i ∈ [s].
Output: s black-boxes B1, . . . ,Bs such that there exists a permutation π : [s] → [s] s.t. Bi provides
black-box access to Tπ(i).
Subroutines:

1. Computing black-boxes for partial derivatives from the black-box for a polynomial. (Fact 22)

2. Vector space decomposition (Algorithm 2 and Corollary 29).

Parameters: The order of partial derivatives: k.

1: Compute black-boxes for a basis of the vector spaces U := 〈∂ = kf〉 and V := 〈∂ = (k+1)f〉 using
Subroutine 1.

2: Using Subroutine 2, obtain a vector space decomposition U = U ′1 ⊕ · · · ⊕ U ′s′ and V = V ′1 ⊕ · · · ⊕ V ′s′ for
the triple

(
∂ = 1, U, V

)
. If s′ 6= s, then abort. Otherwise continue.

3: For each α s.t.
∑n
i=1 αi = k, write the corresponding differential operator acting on f , ∂αf , as u′α1 +

· · · + u′αs with u′αi ∈ U ′i (note that there is a unique such representation). We only obtain black-boxes
for the polynomials u′αi’s. This step can be carried out using Corollary 29.

4: The black-box Bi on input x will output (d−k)!
d!

∑
α

(
k

α1,...,αn

)
xα u′αi(x).

The next theorem states the correctness of Algorithm 1 assuming the non-degeneracy conditions.

6

Theorem 2.1. Suppose the non-degeneracy conditions stated above are satisfied. Then Algorithm 1 never
aborts. Suppose B1, . . . ,Bs be the black-boxes output by the algorithm. Then there exists a permutation
π : [s]→ [s] s.t. Bi is a black-box for Tπ(i).

Proof. It suffices to prove uniqueness of decomposition for the triple
(
∂ = 1, U, V

)
(see Definition A.4). As-

suming uniqueness of decomposition, s′ = s and there exists a permutation π : [s] → [s] s.t. U ′i = Uπ(i)
and V ′i = Vπ(i). Since the U ′i ’s form a direct sum, there is a unique way of writing each element u ∈ U as
u = u′1 + · · · + u′s with u′i ∈ U ′i . For u = ∂αf , u = ∂αTπ(1) + · · · + ∂αTπ(s) is one such decomposition and
hence the only one. Thus u′αi = ∂αTπ(i) in which case Bi computes the black-box for Tπ(i) by Lagrange’s
formula,

h(x) =
(d− k)!

d!

∑
α

(
k

α1, . . . , αn

)
xα ∂αh(x)

for a homogeneous degree d polynomial h.
To prove uniqueness of decomposition, it suffices to prove that the adjoint algebra for the triple

(
∂ = 1, U, V

)
is trivial because of Lemma 23. Consider linear maps D : U → U and E : V → V s.t. ∂xjD(u) = E(∂xju)
for all u ∈ U . Then we need to prove that D(Ui) ⊆ Ui, E(Vi) ⊆ Vi for all i ∈ [s] and that (D,E) are
scalar multiples of identity when restricted to (Ui, Vi) respectively. The latter follows from Item 3 in the
non-degeneracy conditions, so we only need to prove the former. To prove the former, consider (D,E) in
the adjoint algebra. Note that Ui ⊆ F[`i1, . . . , `im]d−k and Vi ⊆ F[`i1, . . . , `im]d−k−1. Hence if u ∈ Ui, then

n∑
j=1

αj∂xj
u(x) = 0

for all α s.t. `i1(α) = · · · = `im(α) = 0, by Lemma 2. Because of the relation ∂xj
D(u) = E(∂xj

u), we get
that

n∑
j=1

αj∂xjD(u)(x) = 0

for all α s.t. `i1(α) = · · · = `im(α) = 0. Hence by Lemma 2, we get that D(u) ∈ F[`i1, . . . , `im]d−k. Hence
D(u) ∈ U∩F[`i1, . . . , `im]d−k = Ui (because of the direct sum structure of the vector spaces F[`i1, . . . , `im]d−k
in Item 1). This completes the proof that D(Ui) ⊆ Ui. Now the space Vi has a basis which consists of a
subset of polynomials from ∂βTi as β varies over monomials of degree k + 1. We can write ∂βTi as ∂xj

∂αTi
for some j ∈ [n] and some α of degree k. Then

E(∂βTi) = E(∂xj∂αTi) = ∂xjD(∂αTi)

Since D(∂αTi) ∈ Ui, we get that E(∂βTi) ∈ Vi. This completes the proof that E(Vi) ⊆ Vi.

We will now proceed to proving theorem 1.1.

Proof of theorem 1.1. We will run algorithm 1 on the given black-box with the parameter k being set to
d 2 log s

logn e. Notice that, by fact 22, the time complexity of subroutine 1 is poly(dk, n) = poly(s, n). See remark
3.1. Since theorem 2.1 guarantees the correctness of our output, we just have to verify its running time.
Note that the time complexity of remaining steps is poly(nk, s) = poly(n, s), which concludes the proof.

3 Non-degeneracy of random circuits

In this section we will show that if n > (md)2, s ≤ nd/4 and k = d 2 log s
logn e, then a random (n, d, s, {gi}i∈[s])

homogeneous generalized depth three circuit is non-degenerate with high probability. For better understand-
ing about the regime of parameters, we record a few relations among the parameters n, d, s and k in the
following easy to verify remark.

7

Remark 3.1. If s ≤ nd/4, md ≤
√
n and k = d 2 log s

logn e then k ≤ d/2 and
(
m+k−1

k

)
≤ ns.

We will proceed by showing that each of our non-degeneracy conditions is satisfied for random circuits,
and then the result will hold directly by the union bound. We also show that (n, d, s, {gi}i∈[s]) homogeneous
generalized depth three circuits are non-degenerate if the gi’s belong to special polynomial families like
Detd,Permd, IMMr,d,Symr,d and only `i,j ’s are chosen randomly. This is because non-degeneracy condition
1 and 2 just depend6 on `i,j ’s and non-degeneracy condition 3 depends on the gi’s, and we can show that
aforementioned polynomial families satisfy these mild technical conditions required to show non-degeneracy
condition 3.

3.1 Non-degeneracy of random circuits: Condition 1

Let’s begin by restating our first non-degeneracy condition for a generalized depth three circuit
s∑
i=1

gi(`i,1, `i,2, . . . , `i,m).

The vector spaces W
(d−k)
1 := F[`11, . . . , `1m]d−k, . . . ,W

(d−k)
s := F[`s1, . . . , `sm]d−k form a direct sum i.e.

W
(d−k)
1 + · · ·+W (d−k)

s = W
(d−k)
1 ⊕ · · · ⊕W (d−k)

s

The same assumption for the vector spaces W
(d−k−1)
i ’s.

We will show that if m ≤
√
n
t and s ≤ nt/2 then a random choice of {`i,j}(i,j)∈([s],[m]) satisfies the equality∑s

i=1W
(t)
i = ⊕W (t)

i . To show this we will need the notion of combinatorial designs.

Definition 3.2 (Nisan-Wigderson designs [NW94]). A family of sets A = {A1, . . . , As} is said to be an
(n,m, d) design if Ai ⊆ [n] with |Ai| = m for all i ∈ [s]. And, for i 6= j, |Ai ∩Aj | < d.

We will be using a standard construction of such designs based on the Reed-Solomon codes.

Lemma 3 (Explicit Design). Let m ≤
√
n. There exists an (n,m, d)-design {A1, . . . , As} for s ≤ md.

Lemma 4. Let S ⊆ F be a finite set. If m ≤
√
n
t and s ≤ nt/2 then for a random choice of {`i,j}(i,j)∈([s],[m])

linear forms over S,
s∑
i=1

W
(t)
i = ⊕i∈[s]W

(t)
i

with probability at least 1− s·(m+t−1
t)·t
|S| .

Proof. Consider the following matrix M , with rows indexed by monomials in W
(t)
i for all i ∈ [s], and columns

indexed by degree-t monomials in F[x1, . . . , xn]. The entry in M corresponding to a monomial mi in W
(t)
u

and a monomial in m̃j ∈ F[x1, . . . , xn] be coeffm̃j

(
mi(`u1, . . . , `um)

)
. We will argue that M will have full

row-rank for random {`i,j}(i,j)∈([s],[m]). That is, there exist a minor of size s ·
(
m+t−1

t

)
has determinant

non-zero. Note that the direct sum structure follows directly from showing that M has full row-rank. Say,
`i,j =

∑
r∈[n] ai,j,rxr. Then the aforementioned determinant is a polynomial in ai,j,r variables. Thus, if there

exist a choice of `i,j ’s s.t. the aforementioned determinant is non-zero then, by the Schwartz-Zippel lemma,

a random choice from S will work with probability 1− s·(m+t−1
t)·t
|S| .

The rest of the proof is devoted to coming up with a particular setting of `i,j ’s. We will construct this
using the Nisan-Wigderson design family. By Lemma 3, we have (n,

√
n, t)-design with s ≤ nt/2. In other

6Strictly speaking, non-degeneracy condition 2 does depend on gi’s, but we show that it holds if we just pick `i,j ’s randomly.
See Lemma 12

8

words, we have sets A1, A2, . . . As with Ai ⊂ [n], |Ai| =
√
n, |Ai ∩ Aj | ≤ t− 1 and s ≤ nt/2. Set `i,1 to sum

of first 7
√
n
m variables in Ai. Similarly, `i,2 to sum of next

√
n
m variables of Ai, and so on. Suppose, on the

contrary, that M doesn’t have full row-rank. This gives that there exist m-variate polynomials g1, g2, . . . , gs,

not all zero (say gi 6= 0), such that
∑s
i=1 gi(`i,1, `i,2, . . . , `i,m) = 0. Note that, since

√
n
m > t, gi(`i,1, . . . , `i,m)

will have a multilinear monomial in (saymo) of degree t. Now, in order to cancelmo, another gj(`j,1, . . . , `j,m)
must compute the same monomial. But the variables in gj(`j,1, . . . , `j,m) are supported on variables in Aj
and |Ai ∩Aj | ≤ t− 1. Thus, mo can never get cancelled implying

∑s
i=1 gi(`i,1, `i,2, . . . , `i,m) 6= 0.

As a direct consequence of Lemma 4 for t = d − k − 1 and t = d − k we get that the non-degeneracy
condition 1 holds with high probability.

Corollary 5. If (md)2 ≤ n, k = d2 log s
logne, s ≤ nd/4 and |S| ≥ poly(nd) then for a random choice of

{`i,j}(i,j)∈([s],[m]) linear forms over a set S,
∑s
i=1W

(d−k)
i = ⊕i∈[s]W

(d−k)
i and

∑s
i=1W

(d−k−1)
i = ⊕i∈[s]W

(d−k−1)
i

with probability 1− o(1).

3.2 Non-degeneracy of random circuits: Condition 2

Our next non-degeneracy condition for f(x) =
∑s
i=1 gi(`i,1, `i,2, . . . , `i,m) requires that the vector spaces

U := 〈∂ = kf〉 and V := 〈∂ = (k+1)f〉 have a direct sum structure. That is,

U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs, (4)

where Ui := 〈∂ = kTi〉 and Vi := 〈∂ = (k+1)Ti〉 where Ti := gi(`i,1, `i,2, . . . , `i,m). Note that as Ui ⊆ W
(d−k)
i ,

the direct sum structure of W
(d−k)
i directly gives U1 + U2 + . . . + Us = U1 ⊕ U2 ⊕ . . . ⊕ Us. Indeed for

the regime of parameters we are interested in, W
(d−k)
i do have a direct sum structure for random `i,j ’s by

Lemma 4. Thus in order to show non-degeneracy condition 2 for random circuits, it suffices to show

U = U1 + U2 + . . .+ Us. (5)

Clearly, U ⊆ U1 + U2 + . . . + Us. To show the other direction, it suffices to show that U ⊇ Ui for all
i ∈ [s]. We show this via a novel technique of studying the space of partial derivative operators (i.e. 〈∂ = k〉)
themselves, as opposed to the space when they are applied to a polynomial (i.e. 〈∂ = kf〉). Interestingly, our
proof is very general and works for action of any general linear operators on a space! Thus, we state and
prove it in full generality and later instantiate the setting needed for our work.

We start by elaborating on our abstract setting. Let f = T1 + T2 + . . . + Ts where Ti ∈ Ci and L is a
vector space of linear operators from F[x] to W . Here, Ci is a circuit class consisting of polynomials in F[x].
Also, let B : L × L → F be a non-degenerate bilinear form, that is for any non-zero u ∈ L there exists a
v ∈ L s.t. B(u, v) 6= 0. Furthermore, let L⊥i := {L ∈ L | Lh = 0, ∀h ∈ Ci}. Using the bilinear product B and
any subspace U of L, we define U⊥B as the linear operators (in L) s.t. for all u ∈ U the bilinear product is
0. Formally, U⊥B := {L ∈ L | ∀u ∈ U, B(L, u) = 0}.

Our next lemma shows that under a direct sum structure of
∑
i∈[s]

(L⊥i)⊥B , L(f) =
∑
i∈[s]
L(Ti).

Lemma 6. Let L,B, f(x), and Ti’s be as defined above. If
∑
i∈[s]

(L⊥i)⊥B = ⊕i∈[s](L⊥i)⊥B then L(f) =∑
i L(Ti).

Proof. Note that, it suffices to show that L(f) ⊃ L(Ti) for each i. We will show this for i = 1 and the rest
follows analogously. We will need the following claim:

7Pick any ordering of variables, for instance, the index of the variables.

9

Claim 7. Let U, V ⊂ L be two subspaces and B : L × L → F be a non-degenerate bilinear form s.t.
U⊥B + V ⊥B = U⊥B ⊕ V ⊥B then U + V = L.

Proof. Suppose U + V 6= L then ∃w 6= 0 s.t. B(w,w′) = 0 for all w′ ∈ U + V . This implies that w ∈
(U + V)⊥B = U⊥B ∩ V ⊥B which contradicts the assumption that U⊥B and V ⊥B form a direct sum.

Let’s apply this claim to U := ∩si=2L⊥i and V := L⊥1 . Observe that U⊥B and V ⊥B form a direct sum
because of our assumption that (L⊥i)⊥B has direct sum structure. Thus, we get that ∩si=2L⊥i + L⊥1 = L.
Note that,

L(f) ⊃ ∩si=2L⊥i (f) = ∩si=2L⊥i (T1) + ∩si=2L⊥i (T2 + . . .+ Ts) = ∩si=2L⊥i (T1).

Also, note that,
L(T1) = ∩si=2L⊥i (T1) + L⊥1 (T1) = ∩si=2L⊥i (T1).

Thus, L(f) ⊃ L(T1).

For our application of showing U ⊃ Ui, we set L = 〈∂ = k〉, Ci is the class of polynomials gi(`i,1, `i,2, . . . , `i,m)
where gi is an m-variate degree d polynomial and `i,1, `i,2, . . . , `i,m are random n-variate linear forms. Also,

L⊥i = D⊥i := {D ∈ 〈∂ = k〉|Dh = 0, ∀h ∈ W (d)
i }. Note that in order to apply Lemma 6 in our setting, we

have to come up with a non-degenerate bilinear map B, s.t.
∑
i(D⊥i)⊥B = ⊕i(D⊥i)⊥B . Let’s first note that if

(D⊥i)⊥B does satisfy the direct sum property then we are done! Indeed, on setting, L = 〈∂ = k〉 and L⊥i = D⊥i
to L(f) =

∑
i L(Ti) gives 〈∂ = k(f)〉 =

∑
i〈∂ = k〉(Ti), thus implying (5).

In the rest of the section, we will focus on coming up with a bilinear form and showing that it is indeed
non-degenerate. And later, via another application of Lemma 4, show the direct sum structure of (D⊥i)⊥B .
For two polynomials f and g, define

B(f, g) := f(
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn
) · g.

This inner product among two polynomials is known as apolar inner product, and is a fundamental notion
with a lot of applications, see [Pra19] and the references therein. It is easy to see that B(`1, `2) = v`1 · v`2 ;
where `1(x), `2(x) are two linear forms, v`1 , v`2 are canonical vectors associated with them and v`1 · v`2 is
the standard dot product among vectors. The non-degenerate bilinear map needed for our purpose acts on
L × L instead of polynomials as defined above. But in our case L = 〈∂=k〉 is nothing but polynomials of
degree k with ∂

∂xi
as variables, thus the definition of B extends naturally.

In order to show that our bilinear map is non-degenerate, it will be convenient to work with an orthogonal
basis of `i,j ’s. We will therefore need the following lemma.

Lemma 8. When char(F) 6= 2, there exists an orthogonal basis of any finite dimensional vector space over
F with respect to any non-degenerate bilinear (dot) product.

Proof. Let V be a vector space over F s.t. char(F) 6= 2. We will show, by induction, that we can find an
orthogonal basis for V . Start by finding v ∈ V such that 〈v, v〉 6= 0. Let W be the orthogonal complement
of span(v): the set of all w ∈ V such that 〈v, w〉 = 0. Observe that, V = span{v} ⊕W . By induction, we
can get an orthogonal basis for W , and then add on v to get an orthogonal basis of V .
All that we have to show now is that for any linear space V ′, if ∃u′, v′ ∈ V ′ s.t. 〈v′, u′〉 6= 0 then ∃x ∈ V ′
s.t. 〈x, x〉 6= 0. Note that for the premise of the above statement, V has u′, v′ pair s.t. 〈v′, u′〉 6= 0 because
〈·, ·〉 is non-degenerate for V . Also, W (and similarly other such vector space made in induction steps) has
such pair otherwise no such pair will exist in V as W consists of orthogonal complement of span(v). Now
let u′, v′ ∈ V ′ s.t. 〈v′, u′〉 6= 0 then

〈u′ + v′, u′ + v′〉 = 〈u′, u′〉+ 〈v′, v′〉+ 2 · 〈v′, u′〉.

Thus not all of 〈u′ + v′, u′ + v′〉, 〈u′, u′〉 and 〈v′, v′〉 can be zero, which concludes the proof.

10

Let V be the space of some linear forms in F[x], then by the above lemma one can assume that there
exist an orthogonal basis of V as long as char(F) 6= 2. Now, we will state an observation on what is B(f, ·)
when f and g are expressed as polynomials in an orthogonal basis.

Observation 9. If `1(x), . . . , `n(x) is an orthogonal basis of F[x]1 then if g =
∑

α cα `
α and f =

∑
α dα `

α

are degree d polynomials. Then

B(f, g) =
∑
α

cα · dαα!

here α! =
∏
i∈[n]

αi! and α as an index varies over exponent vector of n-variate monomials of degree exactly

d.

The above observation follows directly by observing it when g is a monomial and extending by linearity.
Now, if char(F) > d or 0, then using this observation we directly get that B(f, g) is non-degenerate.

Lemma 10. The bi-linear map B(f, g) over F[x]d is non-degenerate if char(F) > d or 0. That is for all
non-zero g ∈ F[x]d there exist f ∈ F[x]d s.t. B(f, g) 6= 0.

Proof. Let `1(x), . . . , `n(x) be an orthogonal basis of F[x]1. Now, for any g =
∑

α cα`
α 6= 0, let αo be an

exponent vector s.t. cαo 6= 0. On choosing f = `αo we get B(f, g) = cαoαo! 6= 0 if char(F) > d or 0.

3.2.1 Direct sum structure of (D⊥i)⊥B

The only thing left to show non-degeneracy condition 2 is a direct sum structure on derivative operators
(D⊥i)⊥B . We will first study the space D⊥i , as it will help us show the required direct sum structure. Let’s
assume (WLOG) that `i,1, . . . `i,m, qi,1, . . . qi,n−m is an orthogonal basis of Fn w.r.t. B. That is, for i 6= j
〈`1,i, `1,j〉 = 0, 〈`1,i, q1,j〉 = 0 and 〈`1,i, `1,i〉 6= 0. Notice that,

D⊥i ⊇ qi,1 · 〈∂ = (k−1)〉+ qi,2 · 〈∂ = (k−1)〉+ . . .+ qi,n−m · 〈∂ = (k−1)〉. (6)

Claim 11. Let char(F) > d or char(F) = 0, then W
(k)
i := F[`i,1, `i,2, . . . `i,m]k ⊇ (D⊥i)⊥B .

Proof. For brevity we will denote the space (qi,1 · 〈∂ = (k−1)〉+ qi,2 · 〈∂ = (k−1)〉+ . . .+ qi,n−m · 〈∂ = (k−1)〉) by

Q. We have that D⊥i ⊇ Q, thus (D⊥i)⊥B ⊆ Q⊥B . The proof concludes by showing that Q⊥B = W
(k)
i . Clearly,

Q⊥B ⊇ W
(k)
i . For the other direction, let p ∈ Q⊥B s.t. p /∈ W (k)

i . We can write, p = w + q where w ∈ W (k)
i

and q ∈ Q s.t. q 6= 0. Now, since p ∈ Q⊥B , B(p, q′) = 0 ∀q′ ∈ Q. Notice that for any q′ ∈ Q, B(w, q′) = 0.
Thus, B(p, q′) = B(q + w, q′) = B(q, q′). Now, just like in the proof of Lemma 10 we can choose q′ ∈ Q s.t.
B(q, q′) 6= 0. That is, pick q′ to be any monomial in F[`i,1, `i,2, . . . `i,m, qi,1, . . . qi,m]d with non-zero coefficient
in q and by observation 9 we get that B(q, q′) 6= 0. This implies p ∈ Q and B(p, q′) 6= 0 p(∂̄) · p(x̄) 6= 0, thus
contradicting p ∈ Q⊥B .

Lemma 12. For homogeneous degree d polynomials {gi}i∈[s], let f =
∑s
i=1 gi(`i,1, `i,2, . . . , `i,m) ∈ F[x]d and

U := 〈∂ = kf〉, V := 〈∂ = (k+1)f〉, Ui := 〈∂ = kTi〉, Vi = 〈∂ = (k+1)Ti〉. If char(F) > d or char(F) = 0, (md)2 ≤
n, k = d2 log s

logne and s ≤ nd/4 then for a random choice of {`i,j}(i,j)∈([s],[m]) linear forms over a set S ⊂ F
such that |S| ≥ poly(nd) , U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs with probability at least 1− o(1).

Proof. By Lemma 4 we get that for a finite set S ⊆ F, if m ≤
√
n
d and s ≤ nd/4 then for a random choice

of {`i,j}(i,j)∈([s],[m]) linear forms over S,
∑s
i=1W

(k)
i = ⊕W (k)

i with probability at least 1− o(1). Now, since

W
(k)
i has a direct sum structure, the same will hold for their respective subspaces. Thus,

∑
i∈[s](D⊥i)⊥B =

⊕i∈[s](D⊥i)⊥B . Now, using Lemma 6 with L = 〈∂ = k〉 and L⊥i = D⊥i := {D ∈ 〈∂ = k〉|Dh = 0, ∀h ∈ W (d)
i }

implies U = U1 + U2 + . . . + Us. And, as Ui ⊆ W
(d−k)
i , the direct sum structure of W

(d−k)
i directly gives

U1 + U2 + . . . + Us = U1 ⊕ U2 ⊕ . . . ⊕ Us. Notice that, W
(d−k)
i have direct sum structure by corollary 5 as

m ≤
√
n
d and s ≤ nd/4. The proof for V = V1 ⊕ · · · ⊕ Vs is identical.

11

3.3 Non-degeneracy condition 3: Adjoint algebra is trivial

We will start by restating non-degeneracy condition 3.

For a generalized depth 3 circuit f =
∑s
i=1 gi(`i,1, `i,2, . . . , `i,m) where gi ∈ F[z]d, z = (z1, . . . , zm), the

triple
(
∂ = 1
z , 〈∂ = k

z gi〉, 〈∂ = (k+1)
z gi〉

)
has a trivial adjoint algebra for all i ∈ [s]. That is, if D : 〈∂ = k

z gi〉 →

〈∂ = k
z gi〉 and E : 〈∂ = (k+1)

z gi〉 → 〈∂ = (k+1)
z gi〉 are linear maps s.t. ∂zjD(p) = E(∂zjp) for all p ∈ 〈∂ = k

z gi〉,
then D,E are both identity maps (up to a scalar multiple).

We will show this for random gi’s as well as various interesting polynomial families like monomials,
determinant, permanent, elementary symmetric polynomial and iterated matrix multiplication. This is done

by observing that under mild technical conditions on g, the triple
(
∂ = 1
z , 〈∂ = k

z g〉, 〈∂ = (k+1)
z g〉

)
has a trivial

adjoint algebra. Define {∂ = k
z g} := {∂ = k

m g | ∀m degree k monomials in F[z]}. And, let var(f) denote the
set of variables f depends on. We start by stating our technical condition:

Technical condition 13. Let g ∈ F[z]d, we need var(p) 6= var(p′) for any non-zero (and distinct) p, p′ ∈
{∂ = k

z g}. And all non-zero elements of {∂ = k+1
z g} to be F-linearly independent.

Lemma 14. Let g ∈ F[z]d that satisfies condition 13 and D : 〈∂ = k
z g〉 → 〈∂ = k

z g〉 and E : 〈∂ = (k+1)
z g〉 →

〈∂ = (k+1)
z g〉 be two linear maps. If ∀j ∈ [m] and all p ∈ 〈∂ = k

z g〉, ∂zjD(p) = E(∂zjp) , then D(p) = cp · p for
all p ∈ {∂ = k

z g} , where cp ∈ F which could depend on p.

Proof. Denote the non-zero polynomials in the set {∂ = k
z g} by p1, p2, . . . , pt. Say, D(pi) =

∑
r∈[t] ci,rpr with

ci,r ∈ F. Pick z ∈ var(g) \ var(pi), existence of such a variable follows directly from condition 13. On
differentiating D(pi) w.r.t z we get,

∂zD(pi) =
∑

ci,r∂zpr

= E∂zpi = 0 ∵ adjoint condition: ∂zjD(p) = E(∂zjp)

This gives,
∑
r∈[t] ci,r∂zpr = 0. Since, all non-zero elements of {∂ = (k+1)

z g} are F linearly independent,

we get ci,r = 0 for all pr s.t. z ∈ var(pr). Now by the assumption that when i 6= j var(pi) 6= var(pj), and
repeating the above argument for all such z in var(g) \ var(pi), we get D(pi) = cpipi.

Note that, the above lemma doesn’t imply that the adjoint algebra is trivial, as cpi could possibly depend
on gi. To show that the adjoint algebra is trivial, we need to prove that cpi is the same constant for all pi’s.
In order to do that we will need the following notion of graph associated with a polynomial.

Definition 3.3. For a polynomial g ∈ F[z]d, let Gkg be the graph whose vertices are degree k multilinear

monomials m s.t. ∂=km g 6= 0 and the edge set consist of pairs of monomials (m1,m2) with ∆(m1,m2) = 2
and ∂=k+1

lcm(m1,m2)
g 6= 0. Here ∆(m1,m2) is the hamming distance among the exponent vectors of m1 and m2.

Lemma 15. Let g ∈ F[z]d be a polynomial s.t. it satisfies condition 13. Additionally, if Gkg is connected,

then the triple
(
∂ = 1
z , 〈∂ = k

z g〉, 〈∂ = (k+1)
z g〉

)
has a trivial adjoint algebra.

Proof. As g satisfies condition 13, Lemma 14 implies that for all non-zero elements p1, p2, . . . pt ∈ {∂ = kg},
D(pi) = cpi · pi. All that is left to show now is that cpi is the same constant for all i ∈ [t]. Let p = ∂ = k

m1
g

and p′ = ∂ = k
m2

g, where m1 and m2 are two different degree k monomials in F[z]. Suppose, ∆(m1,m2) = 2,
and ∂ = k+1

m g 6= 0 where m = lcm(m1,m2). Also, define z and z′ by m = z ·m1 and m = z′ ·m2.

12

Note that,

cp∂
= k
m g = cp∂z′p = ∂z′D(p)

= E(∂z′p) ∵ Adjoint Condition

= E(∂zp
′) ∂z′p = ∂zp

′

= ∂zD(p′) = cp′∂zp
′ = cp′∂

= k
m g.

Thus, cp′ = cp and as Gkg is connected, it gives cp = cp′ for any non-zero p, p′ ∈ {∂ = kg}.

It is an easy exercise to see that for a random multilinear g condition 13 is satisfied and Gkf is connected.
We will now show the same holds for various polynomial families which includes monomials, determinant,
permanent, elementary symmetric polynomial and iterated matrix multiplication. The argument for showing
connectivity of Gkg stems from this simple observation.

Observation 16. If m1 and m2 are degree k monomials with ∆(m1,m2) = δ and let m1 = m(0),m(1), . . . ,m(δ) =
m2 be a path made of distance two monomials (i.e. ∆(m(i−1),m(i)) = 2 for i ∈ [δ]) from m1 to m2 s.t.
∂m̃(i)g 6= 0 (m̃(i) := lcm(m(i),m(i+1))) then m1 and m2 are connected.

Lemma 17. If g is one of the following polynomials Detd, Permd (with 3k ≤ d); Symr,d, monomial (with

k + 1 < d) or IMMr,d (with 3k ≤ d) then Gkg is connected and condition 13 is satisfied.

Proof. g = Detd or Permd: Since, k-th order partial derivatives of determinant(permanent) is spanned by
determinant(permanent) of (n− k)× (n− k) minors, it is easy to see that they satisfy condition 13. Let m1

and m2 be two degree k multilinear monomials s.t. ∂m1
g 6= 0 and ∂m2

g 6= 0. We have to show that there is
a path from m1 to m2. Note that, by relabelling of variables, we can assume that m1 = x11x22 · · ·xkk. Say,
m2 = xi1,j1xi2,j2 · · ·xik,jk s.t. i1 6= i2 6= · · · 6= ik and j1 6= j2 6= · · · 6= jk.
Define I := {i1, i2 . . . , ik} and J := {j1, j2 . . . , jk}. Let I ′ be a subset of [d] \ {[k]∪ I} of size k and similarly
J ′ be a subset of [d] \ {[k] ∪ J} of size k. Note that, I ′, J ′ exist because of our assumption that 3k ≤ d.
Now, consider the monomial m̃ =

∏
i∈I′,j∈J′ xij . Clearly, ∂m̃g 6= 0. Also, note that any ∆ = 2 path be-

tween m1 and m̃ is connected. Similarly, any path between m2 and m̃ is connected, which concludes the proof.

g = Symr,d: It is easy to see that condition 13 is satisfied. Note that, the vertex set in this case consists of
all degree k multilinear monomials in r variables. Let’s denote these monomials by the underlying monomial
support set. That is, for a set S ⊆ [r] of size k, mS be the multilinear monomial associated with S. Now,
we have to show that for two sets S1, S2 of size k, mS1

and mS2
are connected. Note that, for any mS1

,mS2

s.t. ∆(mS1
,mS2

) = 2 then ∂m(Symr,d) 6= 0 where m = lcm(mS1
,mS2

), as k < d − 1. Thus, as a direct

consequence of observation 16, we get Gkg is connected for g = Symr,d.

g = IMMr,d: It is easy to see that condition 13 is satisfied. For connectivity of Gkg , note that a derivative
with respect to any variable simply results in the sum of all source-sink paths that pass through that edge.
The rest of the proof is analogous to the case of Detd. Here, instead of working with disjoint minors, we will
work with disjoint “paths” which exists if 3k ≤ d.

3.4 Adjoint algebra for random gi’s

We will now show that the adjoint algebra is trivial for random gi’s. This is done by showing that the adjoint
algebra is trivial if the space spanned by k-th order partial derivatives applied to g have full dimension.
Followed by observing that random gi’s have this property.

Lemma 18. Let g ∈ F[z]d be a polynomial such that dim
(
〈∂=k g〉

)
=
(
k+m−1

k

)
. Also, let Ug = 〈∂ = kg〉,

Vg = 〈∂ = k+1g〉 and D : Ug → Ug and E : Vg → Vg be any linear maps. If for all j ∈ [m] and p ∈
Ug, ∂zjD(p) = E(∂zjp), then D and E are identity maps up to a scalar multiple. That is, the triple(
∂ = 1, 〈∂ = kg〉, 〈∂ = (k+1)g〉

)
has a trivial adjoint algebra.

13

Proof. For a multi-set Z, let ∂Z :=
∏
i∈Z ∂zi . We know that, ∂zjD(f) = E(∂zjf) for all f ∈ Ug and j ∈ [m].

Thus, for any j, j′ ∈ [m], and Z,Z ′ multisets from [m] s.t. j ∪ Z = j′ ∪ Z ′ we get,

∂zj ·D(∂Zg) = ∂zj′ ·D(∂Z′g) = E(∂Z∪jg).

Suppose, D(∂Zg) = pZ(∂) ·g and D(∂Z′g) = pZ′(∂) ·g, for some m-variate homogeneous degree-k polynomial
in ∂ variables. This along with the assumption that the k-th order partial is full dimensional implies

zjpZ(z) = zj′pi,Z′(z) (7)

for all zj , z
′
j , Z, Z

′ s.t. j ∪ Z = j′ ∪ Z ′. Note the above is a formal equality of polynomials. Consider
Z = {1, 2, . . . , k}. The above equations imply that zj divides pi,Z for all j ∈ [k]. Since pi,Z is a homogeneous
polynomial of degree k, this implies that pz = cz1z2 · · · zr for some c ∈ F. Similarly, via a simple connect-
edness argument using the equations above (Eq. 7) we get pZ = c

∏
i∈Z zi for all Z. This concludes that D

(and thus E) is an identity map up to a scalar multiple.

We can instantiate the above lemma for random gi’s. Indeed, the condition dim
(
∂ = (k) g

)
=
(
k+m−1

k

)
boils down to showing that the determinant of a matrix with dimension

(
k+m−1

k

)
is non-zero. And, there exist

standard constructions of explicit polynomials with this property (see [GL19]). Thus, via the Schwartz-Zippel
lemma, we get the following corollary.

Corollary 19. For a random choice of degree d homogeneous polynomials {gi}i∈[s] over a set S, the

triple
(
∂ = 1
z , 〈∂ = k

z gi〉, 〈∂ = (k+1)
z gi〉

)
has a trivial adjoint algebra for all i ∈ [s], with probability at least

1− sd·(m+k−1
k)

|S| .

Now, we can combine corollary 5, 19 and Lemma 17, 12 to show that a random generalized depth 3
circuit is non-degenerate with high probability.

Lemma 20 (Random generalized depth 3 circuits are non-degenerate). Let C ≡
s∑
i=1

gi(`i,1, `i,2, . . . , `i,m)

be a homogeneous generalized depth 3 circuit, where {gi}i∈[s] are homogeneous degree d polynomials, and
n ≥ (md)2. Suppose the coefficients of `i,j’s are chosen uniformly and independently at random from a set
S ⊂ F of size |S| ≥ poly(nd, s). Additionally, suppose one of the following cases is true:

1. gi’s belong to one of the polynomial families: Detd,Permd, IMMr,d,Symr,d,monomials with s ≤ nd/6.

2. Coefficients of all gi’s are chosen uniformly and independently at random from S and s ≤ nd/4.

Then, with probability 1− o(1), C is non-degenerate.

The proof is immediate using union bound along with remark 3.1 and hence omitted. As a direct
consequence of Lemma 20 and Theorem 2.1, we get the following theorem about learning random generalized
depth circuits.

Theorem 3.4 (Learning random generalized depth 3 circuits). Let C ≡
s∑
i=1

gi(`i,1, `i,2, . . . , `i,m) be a homo-

geneous generalized depth 3 circuit, where {gi}i∈[s] are homogeneous degree d polynomials, and n ≥ (md)2.
Suppose the coefficients of `i,j’s are chosen uniformly and independently at random from a set S ⊂ F of size
|S| ≥ poly(nd, s) and char(F) > d or char(F) = 0. Additionally, suppose one of the following cases is true:

1. gi’s belong to one of the polynomial families: Detd,Permd, IMMr,d,Symr,d,monomials with s ≤ nd/6.

2. Coefficients of all gi’s are chosen uniformly and independently at random from S and s ≤ nd/4.

Then, given black-box access to C we can reconstruct it in randomized poly(n,m, d, s) time.

Note that, the m subsumes the dependence on r in the above theorem. Also, the reconstruction algorithm
of theorem 3.4 is proper, i.e. it outputs a homogeneous generalized depth 3 circuit.

14

3.5 From black-box access to learning generalized depth three circuits

Theorem 2.1 gives a black-box for each gi’s under the technical conditions discussed. It is natural to ask
if we can find `i,j ’s and a generalized depth 3 representation as well. This is related to the well studied
equivalence-testing problem, specifically to the search version of it. The equivalence-testing question is the
following: given polynomials f and g, find an invertible linear transformation A on variables such that
f = g(Ax), if such A exists. Observe that if gi belongs to a family for which we can solve the equivalence-
testing problem, then we can find `i,j ’s as well. This follows directly by seeing each blackbox as an instance of
equivalence-testing (search version). Note that in our non-degenerate setting, `i,j ’s are linearly independent
for each i ∈ [s] thus satisfies the requirement that the linear transformation has to be invertible. As a direct
consequence of this we get the following corollary.

Corollary 21. Suppose we are given black-box access to f , an n-variate, homogeneous degree d polyno-
mial computable by a generalized depth 3 circuit of size s, s.t. the non-degeneracy condition 1, 2 and 3
hold. Additionally, if each gi belongs to a family of polynomials for which there exist a poly(n,m, d) time
equivalence-testing algorithm. Then there exist a poly(s, n, d,m) time algorithm that learns a generalized
depth 3 representation of f .

Note that if gi is just a monomial (the special case for depth 3 circuits) then equivalence-testing follows
directly from black-box factoring [KT90]. Hence, when gi’s are monomials the previous corollary along with
Lemma 17 (monomials satisfy non-degeneracy condition 3) gives an algorithm for learning non-degenerate
homogenous depth three circuits! Thus, our result is truly a generalization of the result by [KS19].

In general, equivalence-testing is considered to be a very hard problem (see [Kay12, Kay11]) but it has
been solved in several interesting cases, we list some of them below. For ease of representation, let us define
some notation representing the complexity of the search version of the polynomial equivalence problem over
a particular field. Given m, d, r ∈ N and black-box access to an m-variate polynomial g of degree d, let
EqvF(r, d,m, f) denote the randomized time complexity of finding an invertible linear transformation A s.t.
g(x) = f(Ax) if it exists, otherwise output “no-solution”.

Theorem 3.5. Following results are known for equivalence-testing of special families of polynomials:

1. EqvF(r, d,m,Symr,d) = poly(r, d,m), if char(F) > dor 0. See [Kay12].

2. EqvF(r, d,m,Permr) = poly(r, d,m). See [Kay12].

3. EqvF(r, d,m,Detr) = poly(r, d,m) if char(F) - r(r − 1) or F = C . See [Kay12, GGKS19].

4. EqvF(r, d,m, IMMr,d) = poly(r, d,m) if char(F) = 0 or greater than dc (c some fixed constant). See
[KNST17].

Thus, corollary 21 along with theorem 3.5 and 3.4 gives a randomized poly(n, d,m, s)-time algorithm
that outputs a generalized depth three representation, assuming `i,j ’s are chosen randomly, gi’s belong to
one of the polynomial families: Detd,Permd, IMMr,d,Symr,d,monomials and the corresponding assumptions
on F holds.

4 Conclusion and open problems

We design an algorithm for learning generalized depth three circuits in the non-degenerate case. We follow
the learning from lower bounds framework of [KS19, GKS20] and design new tools for proving that non-
degeneracy conditions hold for random circuits, which could be useful for other such problems. Our model
captures widely applicable problems such as tensor decomposition and Tucker decomposition as special cases.
We are hopeful that our algorithms will find powerful applications in machine learning. We list some of the
most interesting open problems next.

15

1. Going beyond tensor decomposition. Can we capture more general and powerful problems in
machine learning via the model of generalized depth three circuits?

2. Making the algorithms noise-resilient. Can we make our algorithms robust to noise? That is,
if one is given (explicitly or black box access) f(x) =

∑s
i=1 gi(`i1, . . . , `im) + E(x), for some error

term E(x), can we approximately recover the summands? Such a noise-resilient version is relevant for
machine learning applications. While our algorithm may seem too algebraic to be made robust, it is
in fact linear algebraic and there is a good chance it can be made noise-resilient using standard tools
such as SVD etc.

3. Learning other arithmetic circuit models. Can we learn other arithmetic circuit models in the
non-degenerate case, for which we already have lower bounds? Perhaps the most appealing model to
go for next is that of constant depth set-multilinear circuits. There are even new lower bounds for this
model now [LST22].

References

[BBB+00] Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz, and Stefano Varric-
chio. Learning functions represented as multiplicity automata. J. ACM, 47(3):506–530, 2000.
Conference version appeared in the proceedings of FOCS 1996.

[BSV20] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction of depth-4 multilinear
circuits. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2144–2160. SIAM, 2020.

[BSV21] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction algorithms for low-
rank tensors and depth-3 multilinear circuits. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 809–822, 2021.

[DL09] Lieven De Lathauwer. A survey of tensor methods. In 2009 IEEE International Symposium on
Circuits and Systems, pages 2773–2776. IEEE, 2009.

[FK09] Lance Fortnow and Adam R. Klivans. Efficient learning algorithms yield circuit lower bounds. J.
Comput. Syst. Sci., 75(1):27–36, 2009. Conference version appeared in the proceedings of COLT
2006.

[GGKS19] Ankit Garg, Nikhil Gupta, Neeraj Kayal, and Chandan Saha. Determinant equivalence test
over finite fields and over q. In 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[GKKS14] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching the
Chasm at Depth Four. J. ACM, 61(6):33:1–33:16, 2014. Conference version appeared in the
proceedings of CCC 2013.

[GKL11] Ankit Gupta, Neeraj Kayal, and Satyanarayana V. Lokam. Efficient Reconstruction of Random
Multilinear Formulas. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 778–787, 2011.

[GKL12] Ankit Gupta, Neeraj Kayal, and Satyanarayana V. Lokam. Reconstruction of depth-4 multilin-
ear circuits with top fan-in 2. In Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 625–642, 2012.

[GKQ14] Ankit Gupta, Neeraj Kayal, and Youming Qiao. Random arithmetic formulas can be recon-
structed efficiently. Computational Complexity, 23(2):207–303, 2014. Conference version appeared
in the proceedings of CCC 2013.

16

[GKS20] Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning sums of powers of low-degree polynomials
in the non-degenerate case. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 889–899. IEEE, 2020.

[GL19] Fulvio Gesmundo and Joseph M. Landsberg. Explicit polynomial sequences with maximal spaces
of partial derivatives and a question of k. mulmuley. Theory of Computing, 15(3):1–24, 2019.

[Har70] R Harshman. Foundations of the parafac procedure: Model and conditions for an explanatory fac-
tor analysis. Technical Report UCLA Working Papers in Phonetics 16, University of California,
Los Angeles, Los Angeles, CA, 1970.

[H̊as90] Johan H̊astad. Tensor Rank is NP-Complete. J. Algorithms, 11(4):644–654, 1990. Conference
version appeared in the proceedings of ICALP 1989.

[JGK+19] Majid Janzamin, Rong Ge, Jean Kossaifi, Anima Anandkumar, et al. Spectral learning on
matrices and tensors. Foundations and Trends R© in Machine Learning, 12(5-6):393–536, 2019.

[Kay11] Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equivalence problem.
In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 1409–1421, 2011.

[Kay12] Neeraj Kayal. Affine projections of polynomials: extended abstract. In Proceedings of the 44th
Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 -
22, 2012, pages 643–662, 2012.

[KB09] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455–500, 2009.

[KNS19] Neeraj Kayal, Vineet Nair, and Chandan Saha. Average-case linear matrix factorization and
reconstruction of low width algebraic branching programs. Computational Complexity, 28(4):749–
828, 2019.

[KNST17] Neeraj Kayal, Vineet Nair, Chandan Saha, and Sébastien Tavenas. Reconstruction of Full Rank
Algebraic Branching Programs. In 32nd Computational Complexity Conference, CCC 2017, July
6-9, 2017, Riga, Latvia, pages 21:1–21:61, 2017.

[KS01] Adam R. Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July
6-8, 2001, Heraklion, Crete, Greece, pages 216–223, 2001.

[KS06] Adam R. Klivans and Amir Shpilka. Learning restricted models of arithmetic circuits. Theory of
Computing, 2(10):185–206, 2006. Conference version appeared in the proceedings of COLT 2003.

[KS09a] Zohar Shay Karnin and Amir Shpilka. Reconstruction of generalized depth-3 arithmetic circuits
with bounded top fan-in. In Proceedings of the 24th Annual IEEE Conference on Computational
Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 274–285, 2009.

[KS09b] Adam R. Klivans and Alexander A. Sherstov. Cryptographic hardness for learning intersections
of halfspaces. J. Comput. Syst. Sci., 75(1):2–12, 2009. Conference version appeared in the
proceedings of FOCS 2006.

[KS19] Neeraj Kayal and Chandan Saha. Reconstruction of non-degenerate homogeneous depth three
circuits. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, June 23-26, 2019., pages 413–424, 2019.

[KT90] Erich Kaltofen and Barry M. Trager. Computing with Polynomials Given By Black Boxes for
Their Evaluations: Greatest Common Divisors, Factorization, Separation of Numerators and
Denominators. J. Symb. Comput., 9(3):301–320, 1990.

17

[LRA93] Sue E Leurgans, Robert T Ross, and Rebecca B Abel. A decomposition for three-way arrays.
SIAM Journal on Matrix Analysis and Applications, 14(4):1064–1083, 1993.

[LST22] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds
against low-depth algebraic circuits. In FOCS 2021, 2022.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994.

[Pra19] K. Pratt. Waring rank, parameterized and exact algorithms. In 2019 IEEE 60th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 806–823, 2019.

[Shi16] Yaroslav Shitov. How hard is the tensor rank? arXiv, abs/1611.01559, 2016.

[Sin16] Gaurav Sinha. Reconstruction of real depth-3 circuits with top fan-in 2. In 31st Conference on
Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 31:1–31:53,
2016.

A Adjoint algebra and vector space decomposition

In this section, we prove some basic facts about the adjoint algebra and vector space decomposition, for
completeness. We will start by stating that we can compute black-box access to partial derivatives of f from
black-box access to f .

Fact 22. Given black-box access to a (n, d) polynomial f and a monomial xα, a black-box access to ∂=kα f
can be computed in deterministic poly(n, dk) time.

This follows from the fact that black-box access to a first-order derivative of f can be computed in
deterministic polynomial time from black-box access to f .

Next, we define the adjoint algebra.

Definition A.1 (Adjoint algebra). Consider a collection of linear maps L from vector space U to vector
space V (over a field F). The adjoint algebra for this collection of linear maps is defined as follows:

Adj(L, U, V) = {(D,E) | D : U → U, E : V → V are linear maps s.t. LD = EL for all L ∈ L}

Next we define the notion of a vector space decomposition.

Definition A.2 (Vector space decomposition). Consider a collection of linear maps L from vector space
U to vector space V . We say that U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs is a vector space decomposition
for the triple (L, U, V) if L(Ui) ⊆ Vi for all i ∈ [s] (and at least one of Ui, Vi is a non-trivial subspace). We
say that the decomposition is further indecomposable if the triples (L, Ui, Vi) are indecomposable for all i.

The next definition is about when the adjoint algebra is trivial.

Definition A.3 (Trivial Adjoint algebra). Consider a collection of linear maps L from vector space U
to vector space V . Also consider a decomposition, U = U1 ⊕ · · · ⊕ Us, V = V1 ⊕ · · · ⊕ Vs that is further
indecomposable. We say that the adjoint algebra is trivial if

Adj(L, U, V) = {(D,E) : ∃ scalars λ1, . . . , λs s.t. D|Ui
= λi1Ui

, E|Vi
= λi1Vi

for all i ∈ [s]}

Next we define what we mean by uniqueness of decomposition.

Definition A.4 (Uniqueness of decomposition). Consider a collection of linear maps L from vector
space U to vector space V . Also consider a decomposition, U = U1 ⊕ · · · ⊕ Us, V = V1 ⊕ · · · ⊕ Vs that is
further indecomposable. We say that the decomposition is unique if for any other further indecomposable
decomposition, U = U ′1⊕· · ·⊕U ′s′ , V = V ′1 ⊕· · ·⊕V ′s′ , it turns out that s = s′ and there exists a permutation
π : [s]→ [s] s.t. U ′i = Uπ(i) and V ′i = Vπ(i) for all i ∈ [s].

18

The next lemma states the uniqueness of decomposition in the case when the adjoint algebra is trivial.
The uniqueness of decomposition holds in a much more general setting by a reduction to the Krull-Schmidt
theorem (see [GKS20]) but here we only focus on a special case that is relevant to us.

Lemma 23. Consider a collection of linear maps L from vector space U to vector space V . Also consider
a decomposition, U = U1 ⊕ · · · ⊕ Us, V = V1 ⊕ · · · ⊕ Vs that is further indecomposable. Suppose the adjoint
algebra is trivial. Then the above is the unique decomposition that is further indecomposable.

Proof. Suppose, for contradiction, there is another further indecomposable decomposition U = U ′1⊕· · ·⊕U ′s′ ,
V = V ′1 ⊕ · · · ⊕ V ′s′ . Consider the linear map ΠU ′i

: U → U which projects onto U ′i (i.e. is identity on U ′i
maps vectors in U ′j , j 6= i, to 0, extending to the rest of U linearly). Similarly, we can define ΠV ′i

: V → V .

Since L(U ′i) ⊆ V ′i for all i ∈ [s′], it is easy to verify that
(
ΠU ′i

,ΠV ′i

)
∈ Adj(L, U, V) for all i ∈ [s′]. Because

the adjoint algebra is trivial, for each i ∈ [s′], there exist (λ1, . . . , λs) (suppressing the dependence on i for
notational convenience) s.t.

ΠU ′i
|Uj

= λj1Uj
,ΠV ′i

|Vj
= λj1Vj

for all j ∈ [s]. If λj 6= 0, then for all u ∈ Uj , ΠU ′i
u = λju which implies that u ∈ U ′i . Thus ⊕j:λj 6=0Uj ⊆ U ′i

and similarly ⊕j:λj 6=0Vj ⊆ V ′i . If λj = 0, then for all u ∈ ⊕j:λj=0Uj , ΠU ′i
u = 0 which implies that(

⊕j:λj=0Uj
)
∩ U ′i = {0}. Along with

U = ⊕j:λj 6=0Uj ⊕⊕j:λj=0Uj

and
⊕j:λj 6=0Uj ⊆ U ′i

we get that ⊕j:λj 6=0Uj = U ′i . Similarly, ⊕j:λj 6=0Vj = V ′i Since the triple (L, U ′i , V ′i) is indecomposable, we
get that there exists a j s.t. (U ′i , V

′
i) = (Uj , Vj). Since this is true for every i ∈ [s′], it completes the proof of

uniqueness of decomposition.

Next we state an algorithm for vector space decomposition. While an algorithm in a much more general
setting follows from known algorithms for module decomposition (see [GKS20]), the algorithm we state here
has the advantage that it is simpler and works for large enough fields (as opposed to algebraically closed
fields). This algorithm is also present in [GKS20] but not in a very explicit form, so we restate it here for
completeness as well.

Algorithm 2 Vector space decomposition when adjoint algebra is trivial

Input: Set of linear maps L between vector spaces U and V s.t. the triple (L, U, V) admits a further
indecomposable decomposition U = U1 ⊕ · · · ⊕ Us, V = V1 ⊕ · · · ⊕ Vs. Also the adjoint algebra is trivial.
Output: s vector spaces U ′1, . . . , U

′
s s.t. there exists a permutation π : [s]→ [s] s.t. U ′i = Uπ(i).

Subroutine: Diagonalizing a diagonalizable linear map D : U → U .
Parameters: Randomness parameter `.

1: Compute a basis (D1, E1), . . . , (Ds, Es) of the adjoint algebra Adj(L, U, V) (this is a system of linear
equations). (If dimension is not s, then abort).

2: Pick µ1, . . . , µs uniformly at random from a set of size `. Set D′ = µ1D1 + · · ·µsDs.
3: Compute the eigenvalues of D′. If it has s distinct eigenvalues, call them λ1, . . . , λs. If not (or it is not

diagonalizable), abort.
4: Set U ′i to be the eigenspace of D′ corresponding to λi.

Lemma 24. Algorithm 2 with parameter ` computes the correct decomposition when the adjoint algebra is
trivial, with probability at least 1−

(
s
2

)
/`.

19

Proof. Since the adjoint algebra is trivial,

Adj(L, U, V) = {(D,E) : ∃ λ1, . . . , λs s.t. D|Ui
= λi1Ui

, E|Vi
= λi1Vi

for all i ∈ [s]}

Let (λ
(j)
1 , . . . , λ

(j)
s) be the tuple corresponding to (Dj , Ej). Then

D′|Ui
=

 s∑
j=1

µjλ
(j)
i

1Ui

We know that the vectors (λ
(j)
1 , . . . , λ

(j)
s), for j ∈ [s], are linearly independent. Hence the vectors (λ

(1)
i , . . . , λ

(s)
i),

for i ∈ [s], are also linearly independent. Hence for i 6= i′, the linear polynomial (in the µj ’s)
∑s
j=1 µj(λ

(j)
i −

λ
(j)
i′) is non-zero and hence if the µj ’s are chosen at random from a set of size `, then with probability at

least 1− 1/`,
s∑
j=1

µj(λ
(j)
i − λ

(j)
i′) 6= 0

By a union bound, with probability at least 1−
(
s
2

)
/`, for any i 6= i′,

s∑
j=1

µj(λ
(j)
i − λ

(j)
i′) 6= 0

Thus there are s distinct eigenvalues of D′, one each corresponding to the eigenspace Ui. This completes the
proof.

We next define the concept of isomorphism between tuples (L, U, V) and (L′, U ′, V ′), and relate the
adjoint algebras for isomorphic tuples.

Definition A.5 (Isomorphic tuples). We say that (L, U, V) and (L′, U ′, V ′) are isomorphic if there is
an invertible linear transformation φ : 〈L〉 → 〈L′〉 and invertible linear maps T : U → U ′, S : V → V ′ s.t.
φ(L)T = SL for all L ∈ L.

Proposition 25 (Adjoint algebras under isomorphism). Let (L, U, V) and (L′, U ′, V ′) be isomorphic
tuples. Then (D,E) ∈ Adj(L, U, V) iff (TDT−1, SES−1) ∈ Adj(L′, U ′, V ′).

Proof. It suffices to prove one direction because of symmetry. Suppose (D,E) ∈ Adj(L, U, V) i.e. LD = EL
for all L ∈ L.Then

φ(L)TDT−1 = SLDT−1 = SELT−1 = SES−1φ(L)

for all L ∈ L. Since {φ(L)}L∈L span 〈L′〉, we get that L′TDT−1 = SES−1L′ for all L′ ∈ L′. That is
(TDT−1, SES−1) ∈ Adj(L′, U ′, V ′).

This yields the following corollary:

Corollary 26. Let (L, U, V) and (L′, U ′, V ′) be isomorphic tuples. Then Adj(L, U, V) is trivial iff
Adj(L′, U ′, V ′) is trivial.

Next we state an instantiation of the above corollary which we need for our analysis.

Corollary 27. Let g ∈ F[z]d, z = (z1, . . . , zm). Also h = g(`1, . . . , `m), where `′is linearly independent linear

forms in the z variables. Then Adj
(
∂ = 1
z , 〈∂ = k

z g〉, 〈∂ = (k+1)
z g〉

)
is trivial iff Adj

(
∂ = 1
z , 〈∂ = k

z h〉, 〈∂ = (k+1)
z h〉

)
is trivial.

20

Proof. Because of Corollary 26, it suffices to prove that
(
∂ = 1
z , 〈∂ = k

z g〉, 〈∂ = (k+1)
z g〉

)
and(

∂ = 1
z , 〈∂ = k

z h〉, 〈∂ = (k+1)
z h〉

)
are isomorphic. Consider the linear map Tk : 〈∂ = k

z g〉 → F[z]d−k given by

Tk(p) := p(`1, . . . , `m). Note that Tk is one-to-one for all k. We claim that im(Tk) = 〈∂ = k
z h〉 for all k. We

will prove this by induction on k. Clearly this is true for k = 0. Suppose this is true up to k and we shall
now prove it for k + 1. Consider the identity

∂i(p(`1, . . . , `m)) =

m∑
j=1

(∂jp)(`1, . . . , `m)
∂`j
∂zi

Notice the subtle change in notation. ∂i(p(`1, . . . , `m)) denotes the polynomial where we first substitute the
zk’s for `k’s and then take the partial derivative w.r.t. zi. (∂jp)(`1, . . . , `m) denotes the polynomial where
we first take the partial derivative w.r.t. zj and then substitute the zk’s for `k’s. Since `1, . . . , `m are linearly
independent linear forms, we get that

〈{∂i(p(`1, . . . , `m))}i∈[m]〉 = 〈{(∂ip)(`1, . . . , `m)}i∈[m]〉 (8)

Consider ∂αg ∈ 〈∂ = (k+1)
z g〉 where α is a multiset comprising elements from [m] of size k + 1. Now take an

i ∈ α and let α̃ = α\{i}. Also let p := ∂α̃g. Then

Tk+1(∂αg) = (∂αg)(`1, . . . , `m) = (∂ip)(`1, . . . , `m) (9)

By the induction hypothesis, p(`1, . . . , `m) ∈ 〈∂ = k
z h〉. Hence

〈{∂i(p(`1, . . . , `m))}i∈[m]〉 ⊆ 〈∂ = (k+1)
z h〉

By Equations 8 and 9, this implies that Tk+1(∂αg) ∈ 〈∂ = (k+1)
z h〉. Since α was arbitrary, we get that

im(Tk+1) ⊆ 〈∂ = (k+1)
z h〉. In the other direction, consider ∂αh ∈ 〈∂ = (k+1)

z h〉 where α is again a multiset
comprising elements from [m] of size k + 1. Again take an i ∈ α and let α̃ = α\{i}, q := ∂α̃h. By the
induction hypothesis, we have that q ∈ im(Tk) i.e. q = p(`1, . . . , `m) for some p ∈ 〈∂ = k

z g〉. Now

∂αh = ∂iq = ∂i(p(`1, . . . , `m))

By Equation 8, we get that
∂αh ⊆ 〈{(∂ip)(`1, . . . , `m)}i∈[m]〉

Since p ∈ 〈∂ = k
z g〉, ∂ip ∈ 〈∂ = (k+1)

z g〉 and hence we get that ∂αh ∈ im(Tk+1). This completes the inductive

step and proves that im(Tk+1) = 〈∂ = (k+1)
z h〉.

Thus Tk : 〈∂ = k
z g〉 → 〈∂ = k

z h〉 and Tk+1 : 〈∂ = (k+1)
z g〉 → 〈∂ = (k+1)

z h〉 are invertible linear transformations.
Consider

∂iTk(p) = ∂i(p(`1, . . . , `m))

=

m∑
j=1

(∂jp)(`1, . . . , `m)
∂`j
∂zi

=

 m∑
j=1

∂`j
∂zi

∂jp

 (`1, . . . , `m)

= Tk+1

 m∑
j=1

∂`j
∂zi

∂jp

= Tk+1(φ(∂i)p)

21

where φ : 〈{∂i}i∈[m]〉 → 〈{∂i}i∈[m]〉 is given by

φ(∂i) =

m∑
j=1

∂`j
∂zi

∂j

Since `1, . . . , `m are linearly independent linear forms, φ is an invertible linear transformation. This completes

the proof of the isomorphism between
(
∂ = 1
z , 〈∂ = k

z g〉, 〈∂ = (k+1)
z g〉

)
and

(
∂ = 1
z , 〈∂ = k

z h〉, 〈∂ = (k+1)
z h〉

)
.

B Linear algebra with black boxes

In Algorithm 1, we need to perform linear algebra given black boxes for polynomials. We give references for
how to do this here. We will need the following lemma from [Kay11].

Lemma 28 (Section A.1 in [Kay11]). Given black boxes for the polynomials f1, . . . , f` ∈ F[x]d, there is a
randomized poly(n, `, d) time algorithm that computes a basis for the following vector space

(f1, . . . , f`)
⊥ := {(α1, . . . , α`) :

∑̀
i=1

αifi = 0}.

In particular, we get the following corollary.

Corollary 29. Given black boxes for the polynomials f1, . . . , f` ∈ F[x]d which are linearly independent and
for a p ∈ F[x]d which linearly depends on f1, . . . , f`, there is a randomized poly(n, `, d) time algorithm that
computes β1, . . . , β` s.t.

p =
∑̀
i=1

βifi

Using Corollary 29, one can compute the matrices corresponding to the linear maps L in Algorithm 2 if
one is given only black boxes for bases of U and V . One can also carry out the Step 3 in Algorithm 1 using
Corollary 29.

C Reducing the field size

In this section, we provide a sketch of how to reduce the field size in Theorem 1.1. For this, we will have
to change the non-degeneracy conditions slightly. We state the new non-degeneracy conditions next for the
circuit f =

∑s
i=1 gi(`i1, . . . , `im).

1. For each i ∈ [s], the linear forms (`i1, . . . , `im) are linearly independent. Let us denote by di,k :=
dim

(
∂ = k
z gi(z)

)
. Consider the vector spaces U := 〈∂ = kf〉, V := 〈∂ = (k+1)f〉 (here the partials are

w.r.t. the x variables). We impose dim(U) =
∑s
i=1 di,k and dim(V) =

∑s
i=1 di,k+1.

2. We impose that Adj(∂ = 1, U, V) is trivial i.e. dim
(
Adj(∂ = 1, U, V)

)
= s.

3. This is the same as the Item 3 in Section 2.1.

Let us first compare these conditions with the conditions in Section 2.1. It can be verified that Item 1
is the same as U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs i.e. Item 2 in Section 2.1. Item 2 here is new and
assuming this implies uniqueness of decomposition and this can be used directly in the proof of Theorem 2.1
(instead of Item 1 in Section 2.1).

We now sketch the argument on why random `i,j ’s would satisfy these conditions. In Sections 3.1 and
3.2, we provide a particular setting of `i,j ’s s.t. Items 1 and 2 in Section 2.1) are satisfied. These imply
that Items 1 and 2 stated here are satisfied (for Item 2, one would need to combine the proof of Theorem

22

2.1 and Item 3). So we just need the Schwartz-Zippel argument. First consider Item 1. The condition
about U , for example, is about the rank of a matrix whose dimensions are

(
n+k−1

k

)
×
(
n+d−k−1

d−k
)

and entries
are homogeneous polynomials of degree k in the coefficients of `i,j ’s. We know that the rank is always
atmost D :=

∑s
i=1 di,k and also that the rank is equal to D for a particular setting of `i,j ’s. This implies

the existence of a D × D minor which has full rank for a particular setting of `i,j ’s. Hence by Schwartz-
Zippel lemma, we get that this minor is full rank for a random choice of `i,j ’s if the field size is atleast

poly(D, k) = poly(s
(
m+k−1

k

)
, k) which is poly(n, d, s) since we choose Θ(log(s)/ log(n)).

Regarding the condition on the adjoint, note that adjoint is the solution to a linear system of equations.
Hence dim

(
Adj(∂ = 1, U, V)

)
= s is equivalent to the corank of a matrix being atmost s (it is atleast s by

definition). The dimensions of the matrix are (dim(U)2 + dim(V)2)× (n · dim(U) · dim(V)) and the entries
are homogeneous polynomials of degree O(k) in the coefficients of `i,j ’s. Again here the Schwartz-Zippel
argument can be carried out over a field of size poly(dim(U),dim(V), n, k) which is poly(n, d, s) because of
the choice of k.

23

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

