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Abstract

Motivated by the goal of showing stronger structural results about the complexity of learning,
we study the learnability of strong concept classes beyond P/poly, such as PSPACE/poly and
EXP/poly. We show the following:

1. (Unconditional Lower Bounds for Learning) Building on [KKO13], we prove uncondition-
ally that BPE/poly cannot be weakly learned in polynomial time over the uniform distri-
bution, even with membership and equivalence queries.

2. (Robustness of Learning) For the concept classes EXP/poly and PSPACE/poly, we un-
conditionally show that worst-case and average-case learning are equivalent, that PAC-
learnability and learnability over the uniform distribution are equivalent, and that mem-
bership queries do not help in either case.

3. (Reducing Succinct Search to Decision for Learning) For the decision problems RKt and RKS

capturing the complexity of learning EXP/poly and PSPACE/poly respectively, we show a
succinct search to decision reduction: for each of these problems, the problem is in BPP iff
there is a probabilistic polynomial-time algorithm computing circuits encoding proofs for
positive instances of the problem. This is shown via a more general result giving succinct
search to decision results for PSPACE,EXP and NEXP, which might be of independent
interest.

4. (Implausibility of Oblivious Strongly Black-Box Reductions showing NP-hardness of learn-
ing NP/poly) We define a natural notion of hardness of learning with respect to oblivious
strongly black-box reductions. We show that learning PSPACE/poly is PSPACE-hard with
respect to oblivious strongly black-box reductions. On the other hand, if learning NP/poly
is NP-hard with respect to oblivious strongly black-box reductions, the Polynomial Hier-
archy collapses.

1 Introduction

What is the complexity of learning polynomial-size circuits? Despite extensive research on
this question, our knowledge is still fairly sparse. For weak concept classes such as decision trees
[LMN93, KM93], DNFs [LMN93, Jac97] or even constant-depth circuits with parity gates [CIKK16],
reasonably efficient learning algorithms under the uniform distribution are known for various models
of learning. For stronger concept classes, learning is believed to be hard, but the evidence for this
is not as strong as one might hope. Cryptographic assumptions such as the existence of one-
way functions are known to imply that learning polynomial-size circuits is hard [KV94a, GGM84].
However, we still seem far from showing that PAC-learning polynomial-size circuits is NP-hard -
indeed [ABX08] give negative results for certain kinds of black-box reductions to learning.
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In this paper, we adopt a fresh perspective of approaching the learnability question from above,
i.e. via circuit classes which are more powerful than P/poly. We consider commonly held beliefs
about the complexity of learning, and establish these beliefs unconditionally for strong concept
classes such as PSPACE/poly and EXP/poly. Of course the very learnability of these concept classes
has some unlikely implications, eg., that these classes are approximable by efficient Boolean circuits.
The point is that this is still consistent with our complexity-theoretic understanding, and we would
like to know what current techniques are capable of proving unconditionally about learning. Partly
this is to understand the limitations of current techniques, and partly this is to understand what
structural properties of the stronger concept classes enable us to show unconditional results about
them.

We begin by outlining our main results and comparing them with previous work.

1.1 Unconditional Results for Hardness of Learning

Our first set of results deals with unconditional hardness of learning circuit classes. Most
complexity theorists believe that learning polynomial-size circuits is unconditionally hard, but of
course proving this is at least as hard as the P vs NP problem. We ask: what is the smallest
concept class C/poly1 for which we can prove learning to be hard? Clearly, if we can prove that
C/poly cannot be approximated by efficient circuits, i.e., there does not even exist a good hypothesis
for all concepts in the class, then hardness of learning follows. This observation implies for example
that learning MAEXP is hard, by using known circuit lower bounds for this class [BFT98].

But can we show hardness of learning unconditionally for some concept class where it is consis-
tent with our current understanding of complexity theory that a good hypothesis exists for every
concept in the class? We give an affirmative answer by ruling out PAC-learning with membership
and equivalence queries unconditionally for the class BPE/poly.

The notion of PAC-learning C/poly, for a uniform class C above P such as EXP or BPE, can have
different interpretations. Standard definitions for PAC-learning (cf. [KV94b]) consider the task of
learning to be efficient if it is polynomial in the size of the target concept over n inputs (assume
that the accuracy ε and confidence δ are both 1/poly(n)) and the hypothesis class is P/poly.2 The
standard definition of PAC-learning in poly(n) time using P/poly as its hypothesis class naturally
extends to the concept class C/poly as the size of the target concept is still polynomial in the input
size n. For the classes C we consider, PAC-learnability of C/poly in poly(n) time using polynomial-
sized hypothesis circuits is still consistent with our current understanding of complexity theory (as
we do not have any unconditional average-case lower bounds for C against P/poly), and therefore
worth studying.

We say that a class C is (ε, δ)-learnable using membership queries over distribution D in poly-
nomial time, if there exists a probabilistic polynomial time learning algorithm which given oracle
access to any f ∈ C, with probability at least 1− δ, outputs a polynomial-sized hypothesis circuit
that approximates f up to an error ε over the target distribution D. This definition also extends

1For any uniform complexity class C, define the class C/poly as the set of languages L for which there is a
language C-machine M and a family of strings {an}, where an ∈ {0, 1}poly(n), such that for every x ∈ {0, 1}n,
x ∈ L ⇐⇒ M accepts (x, an)

2In general, the definition requires the hypothesis class H to be polynomially evaluatable, which means that there
exists an algorithm that on input any instance x ∈ {0, 1}n and an encoding of the hypothesis h ∈ Hn, outputs
the value h(x) in time polynomial in n and the size of the hypothesis encoding. It is well known that P/poly is
polynomially evaluatable.
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to the case of (ε, δ)-learning using random examples.
BPE/poly can equivalently be defined as the class of languages computable by polynomial-sized

circuit families with oracle gates to some function in BPE, with the oracle query size restricted to
O(n). We prove the unconditional hardness of learning BPE/poly in polynomial time using mem-
bership queries even over the uniform distribution using P/poly as the hypothesis class. Hardness
of exactly learning BPE/poly with membership and equivalence queries, even using randomized
algorithms follows directly from this via [Ang88].

Theorem 1.1. For every constant k ∈ N, BPE/poly cannot be (1/2 − 1/nk, 1/n)-learnt over the
uniform distribution using membership queries by randomized learning algorithms running in poly-
nomial time.

To prove this, we adapt techniques used by [KKO13, OS17] to show that randomized PAC-
learning algorithms imply circuit lower bounds. [TV07] show the existence of a PSPACE-Complete
function f∗ which is in DSPACE[n], such that f∗ is downward self-reducible and self-correctible (see
Section 2 for definitions). Using the techniques of [KKO13], along with the fact that f∗ belongs
to BPE, we see that PSPACE collapses to BPP. Using a padding argument and diagonalizing
DSPACE[2O(n)] against functions which can be approximated by polynomial-sized circuits, we obtain
a contradiction to the fact that for every function in BPE/poly, the learner gives a hypothesis circuit
which approximates it well.

1.2 Robustness for Hardness of Learning

We believe that polynomial-size circuits are hard to learn in a robust sense, i.e., that the precise
details of the learning model do not matter. Hardness should hold irrespective of whether we
consider PAC-learning or learning over the uniform distribution, worst-case learning or average-
case learning over some samplable distribution on concepts, and whether or not the learning model
is allowed to use membership queries. We do not know how to show that this robustness holds for
P/poly, but we are able to show it unconditionally for EXP/poly and PSPACE/poly.

We now consider the class EXP/poly, which can be equivalently defined as the circuit class
PEXP/poly i.e. the class of languages that can be computed by a polynomial sized circuit family
with EXP oracle gates.

Showing non-trivial derandomization of BPP, i.e. EXP 6= BPP, is one of the most fundamental
questions in complexity theory.3 We prove that the problem of non-trivial derandomization of BPP
is equivalent to the hardness of learning EXP/poly efficiently in most standard models of PAC-
learning. In addition, these results extend to not just showing that EXP/poly is hard to learn
in the worst-case, but also on average with respect to polynomially samplable distributions over
EXP/poly.4 This also gives us an intriguing situation, where hardness of learning EXP/poly using
random examples also implies the hardness of learning EXP/poly using membership queries.

The following results are stated for hardness of strong learning. However, they also hold for the
setting of weak learnability, by standard equivalences between weak learning and strong learning
for PAC-learners [FS97].

3It is worth mentioning that [IW01] show that EXP 6= BPP is equivalent to the fact that BPP can be derandomized
on average in deterministic sub-exponential time (over infinitely many input lengths).

4In particular, the results hold for polynomially samplable distribution families over EXP/poly, where for each n,
there exists a distribution in the family over circuit encodings of n-variate functions in EXP/poly, implicitly defining
a distribution on n-variate functions in EXP/poly (see Remark 2.3 for more details.)
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Theorem 1.2 (Equivalences for hardness of learning EXP/poly). The following statements
are equivalent.

(a) Non-trivial derandomization of BPP: EXP 6= BPP.

(b) Hardness of PAC-learning EXP/poly in the worst-case using random examples:
There exists c ≥ 0, such that EXP/poly is not (1/nc, 1/20n)-PAC-learnable in polynomial
time using random examples.

(c) Hardness of PAC-learning EXP/poly in the worst-case using membership queries:
There exists c ≥ 0, such that EXP/poly is not (1/nc, 1/20n)-PAC-learnable in polynomial time
using membership queries.

(d) Hardness of PAC-learning EXP/poly on average using random examples: There
exists c ≥ 0, such that EXP/poly is not (1/nc, 1/20n)-PAC-learnable in polynomial time on
average using random examples, with respect to polynomially samplable distributions over
EXP/poly.

(e) Hardness of PAC-learning EXP/poly on average using membership queries: There
exists c ≥ 0, such that EXP/poly is not (1/nc, 1/20n)-PAC-learnable in polynomial time on
average using membership queries, with respect to polynomially samplable distributions over
EXP/poly.

A contrasting result to this is the equivalence between the existence of one-way functions
(OWFs) and the hardness of learning P/poly in polynomial time on average with respect to polyno-
mially samplable distributions over P/poly using random examples [IL90, BFKL93]. Theorem 1.2
not only lends an analogous equivalence between a complexity theoretic assumption that BPP has
a non-trivial derandomization and the hardness of learning EXP/poly in polynomial time on av-
erage using random examples, but also extends this equivalence to hardness of learning EXP/poly
efficiently in the worst-case. Note that showing such an equivalence between the existence of OWFs
and hardness of learning P/poly efficiently in the worst-case has been open for decades.5

Furthermore, our proof techniques also let us extend all these equivalences to the case where
C = PSPACE.

Corollary 1.3. The following statements are equivalent.

1. PSPACE 6= BPP.

2. There exists c ≥ 0, such that PSPACE/poly is not (1/nc, 1/20n)-PAC-learnable in polynomial
time using random examples (also using membership queries).

3. There exists c ≥ 0, such that PSPACE/poly is not (1/nc, 1/20n)-PAC-learnable in polyno-
mial time on average using random examples (also using membership queries) with respect to
polynomially samplable distributions over PSPACE/poly.

Essentially, the proof of showing conditional hardness of PAC-learning EXP/poly uses the fact
that strongly learning EXP/poly using random examples over the uniform distribution implies that

5In particular, we do not know if hardness of learning P/poly efficiently using random examples in the worst-case
implies OWFs.
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EXP = BPP. This also means that the hardest distribution to learn EXP/poly is over the uniform
distribution. The same ideas hold for PAC-learning EXP/poly using membership queries too.

Our techniques used to show these equivalences are inspired from results on uniform derandom-
ization by [IW01, TV07], which were further used by [FK09, KKO13] to show circuit lower bounds
based on the existence of learning algorithms. We use special properties of functions in EXP and
PSPACE like downward self-reducibility and self-correctibility to show that learning these functions
would imply a collapse for EXP and PSPACE to BPP.

1.3 Reducing Succinct Search to Decision for Learning

Recently, [CIKK16] established an important connection between natural proofs and learning.
They showed that natural proofs of strong lower bounds against a circuit class C/poly imply efficient
learning algorithms for C/poly over the uniform distribution with membership queries, as long as
the class C/poly satisfies some mild closure properties. One way to interpret their result is as an
approximate search to decision reduction for learning. The decision version of learning polynomial-
size circuits is the language MCSP consisting of truth tables of functions that have small circuits,
i.e., for which a good hypothesis exists. The search version is to find a small circuit for a positive
instance of MCSP. [CIKK16] show that if MCSP is polynomial-time decidable (which is implied
by the existence of natural proofs against P/poly), then the search version of MCSP can be solved
approximately, in the sense that we can efficiently compute a polynomially larger sized circuit that
approximates the truth table well.

The language RKt (resp. RKS) of strings with high Kt complexity (resp. high KS complexity)
plays an analogous role to MCSP in the theory of learning EXP/poly (resp. PSPACE/poly). We
ask if search to decision reductions can be established for these languages as well. However, it is
unclear a priori what it would mean to solve search efficiently for a problem that does not have
polynomial-size proofs or witnesses. We introduce the notion of succinct search. To efficiently
solve a search problem succinctly is to efficiently compute for any YES instance of the problem a
circuit that encodes a possibly exponential-size proof for the instance. We use the PCP theorem for
NEXP [BFL91] and the Easy Witness Lemma [IKW02] to show that for the classes PSPACE,EXP
and NEXP, efficient decidability of the class is equivalent to efficiently solving succinct search for
every language in the class. We then use results from [ABK+06] to argue that for RKt and RKS,
efficient solvability is equivalent to solving succinct search efficiently. Note that this connection
is for succinctly solving the search problem exactly rather than just for approximate search as in
[CIKK16].

Theorem 1.4 (Equivalence of Succinct Search and Decision for Learning EXP/poly and
PSPACE/poly). Let L be RKt or RKS. L ∈ BPP iff for each polynomial-time verifier V for L,
succinct search is efficiently solvable for L with respect to V .

1.4 Barriers for Establishing NP-Hardness of Learning

We next look at questions pertaining to hardness of learning classes of the form C/poly, where
C ⊆ PH. We only focus on the hardness of PAC-learning C/poly with random examples. In
this section, we consider the limitations of proving the NP-hardness of PAC-learning NP/poly, i.e.
the class of polynomial size non-deterministic circuits, using random examples, via a black-box
reduction from deciding SAT.
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Informally, a black-box reduction from problem A to B, solves A given access to any oracle solv-
ing B. Black-box reductions have been ubiquitously used in complexity theory to prove conditional
lower bounds. However, for many fundamental questions in complexity theory, there have been
results showing why such reductions are limited in power. Various results have conditionally ruled
out special-cases of black-box reductions for showing average-case hardness of NP [FF93, BT06],
existence of one-way functions [AGGM06, ABX08, BB15] and the existence of hitting set generators
[HW19], from hardness of SAT.

For the case of showing hardness of learnability, a B-adaptive black-box reduction R from some
language L to PAC-learning a class C using random examples is defined by two phases

• The first phase consists of B adaptive rounds of probabilistic polynomial time algorithms,
each of which generates queries to the learner oracle. In more detail, each round uses the
input z to the reduction, fresh randomness and the hypotheses returned by the C-learner
oracle in the previous rounds, and constructs joint distributions (that serve as example oracles
for the learner). It then samples a set of independent labeled examples from each of these
distributions as queries to the learner oracle.

• In the second phase, a probabilistic polynomial time algorithm takes all the hypotheses from
the first phase and decides whether z ∈ L, with high probability.

[ABX08] study the question of the existence of black-box Turing reductions from any language in
NP to PAC-learning P/poly using random examples. They consider a strongly black-box reduction,
where a reduction is strongly black-box if it runs correctly given any oracle for the learner, as well
as the hypotheses output by the learner. For a special case of such a reduction, where the access to
the learner and the hypothesis oracles is additionally non-adaptive, they show that such a reduction
from SAT to PAC-learning P/poly using random examples collapses NP to CoAM (which implies
a collapse of PH to the second level). Additionally, they show that if any language L reduces
to PAC-learning P/poly using random examples via an O(1)-adaptive black-box reduction, then
the hardness of L implies the existence of an auxiliary-input one-way function (which is a major
breakthrough in cryptography).6

We define a natural special-case of such a reduction, called an oblivious strongly black-box
reduction, where the obliviousness of a reduction implies that the queries made to the learner do
not depend on the input z to the reduction, and try to understand its limitations for showing NP-
hardness of PAC-learning NP/poly. At a first glance, ruling out oblivious reductions may seem very
restrictive, since ideally, one would like to allow reductions whose queries to the learner can depend
on the input to the reduction. However, we observe the proof of Corollary 1.3 which shows hardness
of PAC-learning PSPACE/poly assuming PSPACE 6= BPP and reformulate it as an oblivious black-
box reduction of the form defined above. In particular, for f∗ being the PSPACE-Complete function
given by [TV07] which is downward self-reducible and self-correctible, we observe that

Lemma 1.5. There exists an oblivious, n-adaptive, strongly black-box reduction from deciding f∗

to PAC-learning PSPACE/poly using random examples over the uniform distribution.

On the other hand, for the case of learning NP/poly using random examples, we show that
oblivious strongly black-box reductions from SAT imply a collapse of the polynomial hierarchy.
Our main result for the section is

6They also show the impossibility of Karp reductions from SAT to PAC-learning P/poly using random examples,
unless NP collapses to SZKA.
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Theorem 1.6 (Informal). If there exists an oblivious, poly(n)-adaptive, strongly black-box reduc-
tion from deciding SAT to learning NP/poly using random examples over polynomially samplable
distributions, then PH collapses to the third level.7

Theorem 1.6 implies that standard techniques used for worst-case to average-case reductions,
pseudo-random generator constructions from uniform hardness assumptions and in particular, hard-
ness of efficiently PAC-learning classes like PSPACE/poly, cannot be used to show the NP-hardness
of PAC-learning NP/poly using random examples.

Theorem 1.6 compares to some previous results in the following way:

• It shows a conditional impossibility result by ruling out a restricted version of adaptive,
strongly black-box reductions to learning P/poly using random examples, in contrast to
[ABX08], who only rule out fully non-adaptive, strongly black-box reductions, from a slightly
weaker assumption (NP 6⊆ CoAM).

• Furthermore, the result by [HW19] which conditionally rules out a non-adaptive black box
reduction from deciding SAT to breaking a Hitting Set Generator (HSG), in turn rules out fully
non-adaptive, strongly black-box reductions from SAT to learning NP/poly using membership
queries over the uniform distribution (by suitably changing the definition of the reduction to
the learner).

Indeed, the ideas of [IW01] can be used to show that hardness of learning NP/poly using mem-
bership queries over the uniform distribution, implies the existence of a hitting set generator
which hits sufficiently dense circuits. We strengthen this observation by not only extending
the reduction to a restricted version of the adaptive case, but also by ruling out a weaker
reduction to learning NP/poly with random examples.

• In a similar way, [GV08] conditionally rule out the existence of mildly adaptive (each query
length up to n, where n is the length of the input instance, appears in very few levels of adap-
tivity), strongly black-box reductions from an EXP-Complete problem to learning NP/poly
using membership queries (and in fact, learning EXP/poly).

Our result rules out the restricted cases of mildly adaptive, strongly black-box reductions
which show the NP-hardness of learning NP/poly using random examples and hence, is a con-
ceptual strengthening of [GV08], as we rule out a hardness result from a stronger assumption.

• Schapire [Sch90] showed that NP/poly 6= P/poly implies the hardness of PAC-learning NP/poly
in polynomial time using random examples. Combining this with Yap’s [Yap83] variation on
the Karp-Lipton theorem, it follows that if PH does not collapse to the third level, then the
same result holds.8 In other words, assuming a statement stronger than NP 6= BPP already
implies the hardness of efficiently PAC-learning NP/poly using random examples.

However, it is unclear if these techniques can be extended to prove hardness of learning
NP/poly, assuming NP 6= BPP. Indeed, [Sch90] proved that there exists a 2O(n)-time algorithm
A, that given oracle access to any f ∈ NP/poly over n inputs (or even random example oracle

7We actually show a stronger result that the existence of such a reduction implies that NP ⊆ CoAMpoly, where
CoAMpoly is the class of languages recognized by constant-round CoAM protocols with advice, where we require proper
acceptance/rejection probabilities only when the advice is correct.

8If NP/poly ⊆ P/poly, then NP/poly = CoNP/poly. [Yap83] proved that the latter implies that Σp3 = Πp
3.
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access with respect to some distribution Dn), as well as a learner for NP/poly using random
examples, outputs a hypothesis of size poly(n) which is consistent with the entire truth table
of f . As such, his result does not prove hardness using a reduction in our sense, but rather
only uses the fact that for any f ∈ NP/poly over n inputs, we get a polynomial-sized circuit
that computes it, even though the algorithm A that generates this circuit runs in exponential
time and moreover, requires oracle access to f .9

It is worth noting that our result has no implications for showing the impossibility of adaptive,
black-box NP-hardness reductions which imply the average-case hardness for NP [FF93, BT06],
existence of one-way functions [AGGM06, ABX08] or the existence of HSGs [GV08, HW19].

Overview of the techniques: The proof of Theorem 1.6 builds on the Feigenbaum-Fortnow
[FF93] protocol, which simulates a type of non-adaptive randomized reduction A from SAT to an NP
problem Q, by an AM protocol with polynomial-sized advice, and shows that coNP ⊆ NP/poly.10

Suppose that on input x, A makes q non-adaptive queries to Q, sampled independently from
certain distribution X. Very briefly, their AM protocol does the following. For K large enough, the
verifier first generates K tuples of q non-adaptive queries by running A(x) independently K times.
The verifier asks the prover to send a witness to each query which is a YES instance (which it can
verify easily). This ensures that the prover cannot cheat if the query is a NO instance and the only
way it can cheat is by claiming a YES instance to be a NO instance. Now, if the verifier has the
proportion p of YES instances of Q over the distribution X, then with high probability it knows
that the number of YES instances among the Kq queries is concentrated around q · (pK±O(

√
K)).

The verifier answers with a reject if the number of YES instances is much lesser than pqK.
The honest prover answers each query correctly (with correct witnesses if necessary) and with

high probability, the number of YES instances are close to the expectation. Hence, the verifier
can pick any of K runs of A(x) using the prover’s answers to its queries and the output will be
correct with high probability. On the other hand, the cheating prover cannot cheat on more than
O(q
√
K) YES instances, with high probability. If we choose K � O(q

√
K), then on most of the

K independent runs of A, all its queries are answered correctly and the reduction gives the correct
answer. Thus, if we pick one of the runs at random and get A(x) by using the prover’s answers to
its queries, the verifier answers wrongly with low probability.

Consider an oblivious, B-adaptive, strongly black-box reduction R from L to an oracle which
learns NP/poly. Suppose we are able to fix S1, . . . , St, which are sets of labeled examples drawn in-
dependently from the joint distributions (X1, f1(X1)), . . . , (Xt, ft(Xt)) where f1, . . . , ft ∈ NP/poly,
as the queries made to the learner. Furthermore, let h1, . . . , ht be a set of fixed hypotheses circuits,
some of which are used to generate S1, . . . , St, such that each hi (1− ε0)-approximates fi over Xi,
for some ε0 > 0. Because R is strongly black-box, each hypothesis is also accessed as an oracle and
we see that L is decided by the algorithm M in the second phase, which has access to h1, . . . , ht.
Now, the t oracles to M can be replaced by a single oracle O which takes as input i ∈ [t] and

9In more detail, [Sch90] showed that given a polynomial time learner for NP/poly using random examples, there
exists an algorithm B(m) that takes any m labeled samples of a target f ∈ NP/poly over n inputs, runs in time
poly(m,n), and with high probability, outputs a hypothesis of size poly(n) (independent of m) which is consistent
with the m labeled samples. Now, the algorithm A constructs the entire truth table of f , of size 2n, using oracle
access to f , and runs B(2n) to output a poly(n)-sized hypothesis circuit that is consistent with f on its entire truth
table, thus contradicting the assumption NP/poly 6= P/poly.

10Their motivation (and [BT06]) was to rule out certain kinds of non-adaptive, worst-case to average-case black-box
reductions for NP.
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y ∈ {0, 1}n, and outputs hi(y) (O can be thought of as a table with t rows and 2n columns). We
then adapt the techniques of [FF93] to design an AM protocol for L with polynomial sized advice,
where the verifier expects that the prover answers according to O.

The obliviousness of the reduction helps us in fixing the queries made by R, and implicitly, the
corresponding hypotheses output by the oracle. In other words, this helps us fix the proportions
of YES instances for each fi non-uniformly, as the queries generated to the learner do not depend
on the input to the reduction. We do this by inductively fixing the queries made by the reduction
starting from the first round of adaptivity. Fixing a “good” polynomial-sized random string r∗ used
by the first phase non-uniformly (using Adleman’s trick), we first get the queries to the learner
made in the first round.

For any other round b ≥ 2, assume that the queries to the learner up to round (b− 1) and the
functionality of the hypothesis oracles used to generate them up to round (b− 2) are fixed. Using
the fact that r∗ is also fixed, we consider the set of all tuples of joint distributions that can be
generated in the bth round depending on the answers to the oracle queries of the hypotheses seen
so far, and arbitrarily choose one of them. Note that, this implicitly fixes the functionality of the
hypothesis oracles for the queries generated in round b − 1. We continue this process and fix all
the queries made to the learner by all the rounds from the first phase.

1.5 Further Discussion

Connections to Karp-Lipton Style Theorems: There is an analogy between our results
on implications of learnability and Karp-Lipton style theorems. A Karp-Lipton style theorem for a
uniform class C gives an unlikely uniform implication of the assumption that C has polynomial-size
circuits. The original theorem of Karp and Lipton [KL80] shows such an implication for C = NP:
if NP ⊆ P/poly, then Σ2 = Π2. Karp-Lipton style theorems are now known for many other classes,
including C = P#P [LFKN90], C = PSPACE [BFL91] and C = EXP [BFL91]. In each of these
cases, C ⊆ P/poly implies C = MA, applying techniques from the theory of interactive proofs
[LFKN90, BFL91].

Similarly, in some of our results (i.e., Theorem 1.1, Theorem 1.2 and Corollary 1.3), we study
implications of learnability for classes C/poly, where C = BPE,EXP or PSPACE. Since the learner
is required to output a polynomial-size Boolean circuit, the learnability assumption already implies
that C is approximated by polynomial-size circuits, where the approximation is over the distribution
on the examples. We are interested in establishing strong uniform implications of these assumptions,
showing that the assumption is actually false in the case C = BPE, and that the assumption implies
a simulation of C in BPP in the other cases. What enables us to show stronger implications
than in corresponding Karp-Lipton style theorems is that the learner uniformly produces a good
hypothesis by our assumption. However, the learner is assumed to have access to random examples
or membership queries which cannot be efficiently simulated - this makes our simulation task more
challenging, and we therefore exploit various structural properties of complete languages. We also
need to deal with the issue of approximation, while standard Karp-Lipton style theorems have as
their antecedent an exact simulation by efficient circuits.

Open Questions: One question which stems from our work is to explore the possibility of
showing the hardness of PAC-learning NP/poly efficiently using random examples assuming that
NP 6= BPP. A potential direction is to consider non black-box reductions for the NP-hardness
of PAC-learning NP/poly. This viewpoint has lent itself some success in the case of worst-case
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to average-case reductions [GST07, Hir18, HW19] and in our case, hardness of efficiently PAC-
learning EXP/poly. Indeed, the reduction for EXP/poly only works if the learning algorithm runs in
polynomial time, although the reduction still uses the learning algorithm as an oracle.11 Moreover,
[CHO+20] show a non black-box reduction from an approximate version of MCSP to learning
P/poly by sub-exponential-sized circuits (and thus, learning NP/poly). Note that, it is unclear if
approximate MCSP is NP-hard and this reduction does not imply the NP-hardness of PAC-learning
NP/poly efficiently.

Another important question is to explore an analogue of the PH collapse for learnability. In
other words, does polynomial time learnability of NP/poly imply polynomial time learnability of
PH/poly? Note that, under a strong assumption of the existence of a (possibly adaptive and non-
relativizable) worst-case to average-case reduction for NP, we can use the techniques in Lemma
4.2 along with the downward-self-reducibility of SAT to show such a collapse. On the other hand,
[Imp11] also shows that there exists an oracle O with respect to which DistNPO ⊆ AvgPO and
ΣO
2 6⊆ HeurSIZEO[2n

α
]. Essentially, this result negates the existence of any relativizable reductions

which show a statement analogous to the PH collapse for average-case algorithms i.e. if NP is easy
on average, then Σ2 is easy on average too. In a similar spirit, can we prove that no relativizable
technique can show that if NP/poly is learnable in polynomial time, then Σ2/poly is learnable in
polynomial time as well?

2 Preliminaries

Let F = {Fn}, where Fn is set of all Boolean functions over {0, 1}n, where each fn ∈ Fn is a
function fn : {0, 1}n → {0, 1}. Define tt(f) as the truth table of a function fn of length 2n. On the
other hand, given a string x ∈ {0, 1}2n , define fn(x) as the function on n inputs whose truth table
is x. For every n ∈ N, define Un as the uniform distribution over {0, 1}n.

2.1 Samplability and Learnability

Let C = {Cn}, where Cn ⊆ Fn be a class of functions over {0, 1}n and D = {Dn} be a distribution
family over {0, 1}∗, where Dn is a distribution over {0, 1}n.

Definition 2.1 (Worst-case PAC-learning using random examples). For any 0 ≤ ε, δ < 1/2,
a class C is (ε, δ)-PAC-learnable in the worst-case using random examples in time T (n), if there
exists a randomized algorithm A such that

• For every n ∈ N , for every f ∈ Cn, for every Dn over {0, 1}n, A takes inputs 1n, ε, δ,
a set of m = m(n) labeled samples (x1, f(x1)), . . . , (xm, f(xm)) where each xi ∼ Dn, and
w ∈ {0, 1}r(n) as internal randomness. A then outputs the description of a circuit h such that

Pr
w∈{0,1}r(n),x1,...,xm∼Dn

{
Pr
y∈Dn
{h(y) = f(y)} ≥ 1− ε

}
≥ 1− δ

• A runs in time at most T (n).12

11For EXP to collapse to PSPACE, we need the EXP/poly learner to be efficient so that it outputs polynomial-sized
hypothesis circuits for any language in EXP, and this further implies EXP ⊆ P/poly.

12Note that this immediately implies that m(n) ≤ T (n)

10



We can also restrict the learnability to a fixed distribution like the uniform distribution Un,
where the learner takes random examples chosen over the uniform distribution and hypothesis
error is also measured over the uniform distribution. Unless specified otherwise, we use the class
of polynomial-sized Boolean circuits P/poly, as the hypothesis class for our learning algorithms.

Furthermore, we can extend this definition to PAC-learning over membership queries by giving
the learner A oracle access to the function f ∈ Cn, in addition to the random examples drawn from
some fixed distribution Dn over {0, 1}n.

To define learnability on average, let P = {Pn} be a distribution ensemble over C, where Pn is
a fixed distribution over Cn.

Definition 2.2 (Samplable distributions). Let P be a distribution ensemble over C, where for
every n ∈ N, Pn is a distribution over the truth tables of Cn. Let N = 2n. For any non-decreasing
function S(N) ≥ N , we say that P is samplable in time S(N), if there exists a randomized algorithm
A such that for every N = 2n, using m(N) bits of randomness (where m(N) ≤ S(N)), A(1N , y) is
distributed identically to Pn, where the distribution is over the string y picked uniformly at random
from {0, 1}m(N) and A runs in time S(N).

In other words, if y is picked uniformly at random from {0, 1}m(N) then A(1N , y) outputs a truth
table from Cn which is distributed according to Pn. Furthermore, we say that P is polynomially
samplable if S(N) = poly(N).

Remark 2.3. For the special case where C is a class of fixed polynomial sized circuits like SIZE[nk]
(or SIZEEXP[nk]) for any arbitrary fixed k, we define a circuit representation scheme for Cn given by
the set Rn ⊂ {0, 1}r(n), where r(n) = O(nk log n), such that every σ ∈ Rn is a C-circuit encoding of
a function in Cn. Note that this mapping is onto and each function in Cn has many representations
in Rn. We also assume that there exists a uniform circuit sequence in C, which interprets this
encoding as a C-circuit and evaluates computations given this encoding.

Now, we can define a distribution ensemble P over C, where each Pn is a distribution over
the C-circuit encodings, which implicitly defines a distribution over Cn. We also define S(r(n))-
samplability of P, if there exists a randomized algorithm A running in time S(r(n)) such that for
every n ∈ N, A(1r(n), y) is distributed identically to Pn, where the distribution is over the random
strings y ∈ {0, 1}m(n).

Definition 2.4 (Average-case learnability [BFKL93]). Let C be a class of Boolean functions
and P = {Pn} be a distribution ensemble over C. For any 0 < ε, δ < 1/2, we say that C is (ε, δ)-
PAC-learnable on average using random examples with respect to P in time T (n), if there exists a
randomized algorithm A running in time at most T (n) such that

• For every large enough n, for any fixed f drawn according to Pn, for every Dn over {0, 1}n,
A takes inputs 1n, ε, δ, a set of m = m(n) labeled samples (x1, f(x1)), . . . , (xm, f(xm)) where
each xi ∼ Dn and w ∈ {0, 1}∗ (the internal randomness of A) and outputs the description of
a circuit h such that

Pr
f∼Pn

w∈{0,1}∗
x1,...,xm,y∼Dn

{
Pr
y∈Dn
{h(y) = f(y)} ≥ 1− ε

}
≥ 1− δ

• A runs in time at most T (n).

11



Furthermore, for any 0 < ε, δ < 1/2, we say that C is (ε, δ)-PAC-learnable on average with
respect to polynomially samplable distributions over C using random examples in time T (n) if there
exists a learning algorithm A that runs in time T (n) such that for every polynomially samplable
distribution ensemble P over C, we have that for every large enough n, A (ε, δ)-PAC-learns Cn on
average using random examples with respect to Pn.

We can naturally extend this definition to average-case learning C with respect to P and a fixed
distribution over the examples like Un, as well as average-case PAC-learning C with membership
queries with respect to P.

2.2 Self-Reducibility

In our reductions, we use the following special properties of a function.

Definition 2.5 (Downward self-reducibility). A function fn : {0, 1}n → {0, 1} is downward-self-
reducible if there is a deterministic polynomial time algorithm A such that for all x ∈ {0, 1}n,
Afn−1(x) = fn(x).

Definition 2.6 (Self-Correctibility). A function f : {0, 1}n → {0, 1} is said to be self-correctible if
there exists a constant c ≥ 0 and a probabilistic polynomial-time algorithm A such that, for every
large enough n, for any function O : {0, 1}n → {0, 1} that agrees with fn with probability (1−1/nc)
over the uniform distribution on inputs of length n, we have that Pr{AO(x) = fn(x)} ≥ 2/3 for
any x ∈ {0, 1}n.

[BFNW93] show that any function f on n Boolean inputs can be transformed into a function
f∗ on n inputs from a large enough finite field, such that f∗ coincides with f on the subset {0, 1}n.

Theorem 2.7 ([BFNW93]). There exists an EXP-Complete problem g∗ which is self-correctible.

Furthermore, Trevisan and Vadhan [TV07] construct a PSPACE-Complete problem which is
based on a careful arithmetization and padding of TQBF (using the interactive proof system for
PSPACE), which has both these properties.

Theorem 2.8 ([TV07]). There exists a PSPACE-Complete language f∗ ∈ DSPACE[n] that is both
self-correctible and downward self-reducible (DSR).

We also use the following results.

Lemma 2.9. If EXP ⊆ P/poly, then EXP = PSPACE. In particular, the function f∗ (from Theorem
2.8) is complete for EXP.

Lemma 2.10 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables such that
0 ≤ Xi ≤ 1 for every i ∈ [n]. Let X =

∑n
i=1Xi. Then, for any t > 0, we have

Pr{|X −E[X]| ≥ t} ≤ 2 exp(−2t2/n)
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2.3 Kolmogorov Complexity

Fix a universal machine U . Levin [Lev84] defined the following notion of time-bounded Kol-
mogorov complexity: The Kt complexity of a string x is the minimum Kt(x) over |p|+ log(t) such
that U(p) = x in at most t steps. it is known [All01] that Kt(x) is polynomially related to the size
of the smallest EXP-oracle circuit computing the function with truth table x (truncating x to its
longest initial segment with length a power of two).

Similarly, KS(x) is the minimum over |p| + s such that U(p) = x in at most space s. It is
known [All01] that KS(x) is polynomially related to the size of the smallest PSPACE-oracle circuit
computing the function with truth table x (truncating x to its longest initial segment with length
a power of two).

Let RKt be the language consisting of strings x such that Kt(x) ≥ |x|/2 [ABK+06]. Similarly,
let RKS be the language consisting of strings x such that KS(x) ≥ |x|/2 [ABK+06].

3 Unconditional Results for Hardness of Learning

Firstly, we show the hardness of learning BPE/poly over the uniform distribution using non-
adaptive membership queries by randomized polynomial time algorithms. The proof of this result
uses the following lemma from [KKO13].

Lemma 3.1. Let C be any circuit class, s : N → N be a size function and f∗ be the PSPACE-
Complete problem from Theorem 2.8. There exists constant c ∈ N such that if C[s(n)] is learnable
up to error n−c in time T (n), then at least one of the following holds :

• f∗ /∈ C[s(n)].

• f∗ ∈ BPTIME[poly(T (n))].

We also need the following technical result about the existence of functions which cannot even
be approximated by nlogn-sized circuits.

Lemma 3.2 (Lemma 4 [OS17]). For any s(n) ≥ n and δ ∈ [0, 1/2], we have

Pr
f∼Fn

{∃ circuit of size ≤ s(n) computing f on ≥ (1/2 + δ)-fraction of the inputs}

≤ exp(−δ22n + 10s log s)

The proof of Lemma 3.2 follows from an application of the Hoeffding tail bound (Lemma 2.10).

Proof of Theorem 1.1. Towards a contradiction, assume that there exists constants k, d ≥ 1 and
a randomized learning algorithm A which learns BPE/poly in O(nd) time over the uniform dis-
tribution using membership queries, up to error 1/2 − 1/nk and confidence 1/n, for every large
enough input length n. By non-uniformly fixing a good random string, we ensure that for ev-
ery function g ∈ BPE/poly, there exists c such that A always outputs a hypothesis circuit of
size O(nc) which computes g on at least (1/2 + 1/nk)-fraction of n-length inputs. Thus, for every
function in BPE/poly, there exists a family of polynomial-sized circuits {hn}n∈N which (1/2+1/nk)-
approximates it, where hi is the hypothesis output by the learner on input length i.
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We next show that the existence of such a learner implies the existence of a function in BPE
which cannot be (1/2 + 1/nk)-approximated by polynomial sized circuits. Consider the PSPACE-
Complete function f∗ from Theorem 2.8 which is computable in time DSPACE[n]. f∗ is in BPE/poly
(since f∗ can be computed in E) and we use the learning algorithm for BPE/poly in Lemma 3.1
to see that PSPACE ⊆ BPP. Using a padding argument we observe that DSPACE[2O(n)] ⊆ BPE.
From Lemma 3.2, we see that there exists a function which cannot be (1/2 + 1/nk)-computed by
circuits of size nlogn. We can easily construct a Turing Machine which lexicographically searches
for the truth table of a function on n inputs which cannot be (1/2 + 1/nk)-approximated by nlogn

sized circuits in 2O(n) space and answers according to the first one it finds. From this we have that
DSPACE[2O(n)], and thus BPE/poly cannot be (1/2 + 1/nk)-approximated by nlogn sized circuits,
which leads to a contradiction.

Remark 3.3. [OS17] show that if for each c, a circuit class C[nc] is (1/2−1/nc, 1/n)-learnable using
membership queries over the uniform distribution in 2n/nω(1) time, then for each c, there exists
Lc ∈ BPE such that Lc /∈ C[nk] (Theorem 12). For any c, the idea of picking C[nc] = SIZEBPE[nc],
with linear-sized queries to BPE oracles and using the learning algorithm A which learns BPE/poly
in their result to achieve a contradiction (as any function in BPE can be computed by constant sized
SIZEBPE-circuits with linear-sized oracle queries) does not work, as [OS17] crucially uses that C[nc]
has to be a subset of SIZE[nc

′
] for some c′ = O(c).

On the other hand, Theorem 4 in [FK09] shows that if C is learnable using membership queries
over the uniform distribution in polynomial time then BPE 6⊆ C[poly(n)]. Proving Theorem 1.1
by setting C as BPE/poly again does not really work, as [FK09]’s result only holds true when
C = P/poly, as it depends on the collapse of EXP to P/poly.

Additionally, we also observe that the class E/poly cannot be learnt by deterministic learners
using membership queries even in 2n/n time up to constant error over the uniform distribution.
E/poly can equivalently be defined as the class of languages which can be computed by polynomial-
sized circuit families with oracle access to some function in E, with the constraint that the oracle
queries are of size O(n).

We first rule out having deterministic exact learners for E/poly in Angluin’s model of learning
[Ang88] i.e. the learners have access to a membership oracle, as well as an equivalence oracle, where
the learner presents a hypothesis circuit to the equivalence oracle, receives yes if the hypothesis
exactly computes the target concept and receives a counter-example for the hypothesis, otherwise.

Proposition 3.4. There exists no deterministic exact learners for E/poly using membership queries
and equivalence queries which run in time O(2n/n).

Proof Sketch. The proof follows easily from [KKO13]. They show that if there exists a deterministic
exact learner that learns any function in a circuit class C in 2n/n time using membership and
equivalence queries, then there exists a function in E which cannot be computed by C-circuits.
Using E/poly for C, we observe that there exists no deterministic exact learners which learn E/poly
using membership queries and equivalence queries in 2n/n time, because, if not, we would end up
showing that there exists a function in E which cannot be computed in E/poly, which is trivially
false.

We extend this result to rule out any deterministic learners for E/poly i.e. even learners which
can output an approximate hypothesis.
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Proposition 3.5. For every constant δ ∈ [0, 1/2− 1/n), E/poly is hard to learn up to error δ over
the uniform distribution using membership queries by deterministic learning algorithms which run
in time 2n/n.

Proof. Towards a contradiction assume that there exists a constant δ > 0 and a deterministic
learner A running in time T (n) = 2n/n which learns E/poly using membership queries over the
uniform distribution up to an error δ. For every n, let L be the language consisting of only those
strings in {0, 1}n which are not queried by A, when all its queries are answered by 0. Since A
runs in time T (n), it is the clear that L ∈ E and the size of L ≤ 2n/n. However, since A only
queries those inputs which are not in L, it cannot distinguish between the all zeros function 0 and
L. Indeed, if A returns a hypothesis h1 which is (1 − δ)-close to 0, then h1 agrees with L on at
most a δ + 1/n fraction of the inputs. Similarly, if A returns a hypothesis h2 which is (1− δ)-close
to L, then h2 agrees with 0 on at most a δ + 1/n fraction. In either case, A can learn exactly one
of L or 0, which contradicts our assumption that A learns every function in E/poly with error at
most δ.

Both propositions can also be extended to show similar results for unconditional hardness of
learning PSPACE/poly by deterministic polynomial time learners.

4 Robustness of Hardness of Learning

In this section, we establish the equivalences in Theorem 1.2 for hardness of learning EXP/poly.
We first state the following results necessary for its proof.

Lemma 4.1. Let BPP = EXP. Then, for every c > 0, EXP/poly can be (1/nc, 1/20n)-PAC-learnt
using random examples in time polynomial in n.

Proof. Firstly, we show that if BPP = EXP, then for every c > 0, we can (1/nc, 1/20n)-learn P/poly
in the worst-case using random examples over arbitrary distribution D. We consider the following
search problem Π. On input y = 〈1n, 1s(n), (x1, b1) . . . (xm, bm)〉, where xi ∈ {0, 1}n and bi ∈ {0, 1},
if there exists a circuit C on n inputs of size at most s(n) such that C(xi) = bi for all i ∈ [m],
then Π(y) outputs an encoding of C. The input length to Π is t(n) = O(s(n) + n ·m(n)). Π is in
EXP as we can exhaustively search through all circuits on n inputs of size s(n) and check if it is
consistent with bi on each x1, . . . , xm in time 2O(s(n) log s(n)) · O(m(n) · s(n)) = O

(
2t(n)poly(t(n))

)
.

Since EXP = BPP, there exists a randomized algorithm A(y) which runs in time poly(t(n)) which
outputs a circuit Cn of size at most s(n) consistent with bi on each x1, . . . , xm, if there exists one.

Following this, we use an argument based on Occam’s razor [KV94b] to see that for every
ε, δ > 0 and k ≥ 0, SIZE[nk] can be (ε, δ)-learnt in the worst-case by A using random examples
over Dn, for any arbitrary distribution Dn over {0, 1}n, if m = O

(
1
ε (n

k log n+ log
(
1
δ

)
)
)
. For any

fixed c > 0, when ε = 1/nc and δ = 1/20n, m(n) = O(nc+k+1). Thus, for every n, every k ≥ 0 and
every f ∈ SIZE[nk], using m = O(nc+k+1) many random examples drawn from Un and their labels
f(x1), . . . , f(xm), the randomized algorithm A runs in time poly(n) and outputs a circuit of size
O(nk) which is (1− ε)-close to f , with probability at least (1− δ).

Finally, observe that if BPP = EXP, then EXP ⊆ P/poly, which in turn implies that EXP/poly ⊆
P/poly. In other words, this means that there exists some constant k ≥ 0 such that EXP/poly ⊆
SIZE[nk]. This proves the lemma as the learner A can now (1/nc, 1/20n)-learn EXP/poly in the
worst case using random examples over Dn in poly(n) time over any aribitary distribution Dn.
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Lemma 4.2. Let EXP 6= BPP. Then, there exists c ≥ 0 such that EXP/poly is not (1/nc, 1/20n)-
learnable in the worst-case using random examples over the uniform distribution in time polynomial
in n.

Proof. Towards a contradiction assume that there exists a constant a > 0 and an O(na)-time
learner A that (1/nc, 1/20n)-learns EXP/poly using random examples over Un, for every c ≥ 0. We
first show that the existence of the learner A for EXP/poly implies that EXP ⊆ P/poly. Let g∗

be an EXP-Complete problem which is self-correctible, whose existence is given by Theorem 2.7,
with c1 ≥ 0 being the corresponding constant. Use A to (1/nc1 , 1/20n)-learn g∗ using random
examples over the uniform distribution. Let A′ be the algorithm which takes as input y ∈ {0, 1}n
in addition to the inputs of A and runs the learner A, following which it returns the evaluation of
the hypothesis circuit output by A on the input y. In other words, for every n ∈ N, we have

Pr
w∈{0,1}r(n)
x1,...,xm∼Un

{
Pr
y∼Un

{A′(1n, w, (x1, g∗(x1)), . . . , (xm, g∗(xm), y) = g∗(y)} ≥ 1− 1/nc1
}

≥ 1− 1/20n

where both r(n) and m = m(n) = poly(n).
By amplifying the correctness of A′ using standard techniques, we can then non-uniformly fix

the random strings w, x1, . . . , xm and the values of g∗ on each xi to get a polynomial sized circuit
C, which takes input y ∈ {0, 1}n and outputs the answer of A′ on the advice string and y. Thus Cn
agrees with g∗ on at least (1 − 1/nc1)-fraction of the inputs. Using Cn with the self-correctibility
of g∗ (and fixing another ”good” random string non-uniformly in the resulting algorithm), we get
a polynomial-sized circuit which computes g∗ on every input and by the EXP-Completeness of g∗,
we see that EXP ⊆ P/poly.

Since EXP ⊆ P/poly, we use Lemma 2.9 to observe that f∗ given by Theorem 2.8 is now an
EXP-Complete problem that is both downward self-reducible and self-correctible. Let c2 be the
constant associated with the self-corrector for f∗. For any integer k, given a procedure Bk which
computes f∗ on every instance of size k with high probability, we use A together with the downward
self-reduction for f∗, followed by the self-corrector for f∗ to obtain a procedure Bk+1 that computes
f∗ on any input of size k + 1. We use this inductively, to compute f∗ on n inputs in probabilistic
polynomial time.

More precisely, consider the following algorithm Bn which computes f∗ on a given input x and
does the following. First, it starts with a procedure Bk0 , for a constant k0, which can be computed
easily using a look-up table. Assuming that we have the procedure Bk for some input length k ≤ n,
we show how to construct the procedure Bk+1 inductively. We use the learner A to learn the
function f∗k+1 up to error 1/(k + 1)c2 . For every input f∗(y) passed to A, where y is a string

randomly picked from {0, 1}k+1, we use Bk with the downward self-reduction of f∗ to compute
f∗(y). A outputs a hypothesis hk+1 which computes f∗k+1 on at least a (1 − 1/(k + 1)c)-fraction
of the inputs with high probability. We now use the self-corrector for f∗ to obtain from hk+1 a
procedure Bk+1 which is correct on every input of size k + 1 with probability 1 − γ (by using
standard error reduction arguments), for some γ > 0 which we pick later. Repeating this process
at most n times, we obtain Bn and output Bn(x).

First, we show that Bn outputs f∗(x) with probability at least 2/3. Let d(n) be the number of
queries made by the DSR to the oracle f∗n−1 in computing f∗(x) on any input x of length n. The
idea is that at each stage k, the procedure Bk fails only if at least one of m(n)·d(n) queries answered
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by Bk−1 is incorrect, with probability at most m(n)d(n)γ ≤ 1/20n for γ = 1/20nm(n)d(n), or if
A fails to output the right hypothesis, with probability at most 1/20n. Thus, the total failure
probability at each stage is at most 1/10n and over the n stages, using the union bound, the total
failure probability is at most 1/10 + γ ≤ 1/3.

We inductively observe that every stage Bk runs in time poly(k). It is easily seen that Bk0
runs in constant time. Assume that Bk−1 runs in poly(k − 1) time. At stage k, the time taken to
compute f∗ on m(k) many inputs of length k is O(m(k) ·d(k) ·poly(k−1)) ≤ poly(k). After this, A
takes O(kd) time to output hk of size at most kd, which is used by the poly(k)-time self-corrector to
compute f∗ on all inputs of size k with high probability. Thus, Bk runs in time poly(k) = poly(n).
Since there at most n stages, the total running time of Bn is poly(n). This shows that f∗ ∈ BPP
and contradicts the original assumption.

Using a very similar proof idea, we obtain an analogous statement to Lemma 4.2, but now for
worst-case learning EXP/poly using membership queries.

Lemma 4.3. Suppose that EXP/poly is (1/nc, 1/20n)-learnable in the worst case for every c ≥ 0
over the uniform distribution Un using membership queries in time poly(n). Then, EXP = BPP.

Proof Sketch. Assume that there exists a poly(n)-time learnerA that (1/nc, 1/20n)-learns EXP/poly
over Un using membership queries, for every c > 0 and for every large enough input length n. We
learn the function g∗ (given by Theorem 2.7) using A. For every large enough n, let hn be a circuit
of polynomial size output by A as the hypothesis with probability at least (1− 1/20n). From the
guarantees of the learner, we see that any hypothesis circuit hn computes g∗ on n inputs with error
at most 1/nc1 (after non-uniformly fixing its randomness). Let h′n be the polynomial-sized circuit
which uses hn with the self-corrector for g∗ (and non-uniformly fixing another random string for
the resulting algorithm) and computes g∗ on length n. Let {h′n}n∈N be this sequence of circuits
which computes g∗ on every large enough n. Since g∗ is EXP-Complete, we see that EXP ⊆ P/poly.

We now use the learner A to learn the PSPACE-Complete problem f∗ given by Theorem 2.8.
Using similar ideas as Lemma 4.2, we see that f∗ ∈ BPP. Since EXP has now collapsed to PSPACE
we see that EXP = BPP.

We next show similar results for learning EXP/poly on average. In fact, we prove that learning
EXP/poly on average using random examples, with respect to quasi-polynomially samplable distri-
butions over EXP/poly, implies that EXP = BPP. Remark 4.5 provides a natural extension of this
result to polynomially samplable distributions over EXP/poly.

Lemma 4.4. Suppose that EXP/poly is (1/nc, 1/20n)-learnable on average for every c ≥ 0 with
respect to quasi-polynomially samplable distributions over EXP/poly and the uniform distribution
Un using random examples in time poly(n). Then, EXP = BPP.

Proof Sketch. Again, the proof strategy is very similar to that of Lemma 4.2. Let A be a polyno-
mial time learner such that for every quasi-polynomially samplable distribution ensemble P over
EXP/poly, for every large enough n, for every c ≥ 0, A (1/nc, 1/20n)-learns EXP/poly with respect
to P and Un using random examples. Formally, we have for every quasi-polynomially samplable P
over EXP/poly

Pr
f∼Pn

w∈{0,1}∗
x1,...,xm∼Un

{L(1n, ε, δ, w, x1, f(x1), . . . , xm, f(xm), w) is (1− ε)-close to f} ≥ 1− δ
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for sufficiently large n.
We first show that the existence of A implies EXP ⊆ P/poly. Indeed, consider the quasi-

polynomially samplable distribution P supported only on the function g∗ given by Theorem 2.7,
defined by the algorithm SP which takes as inputs 1N (where N = 2n) and outputs the truth table
of g∗ on n inputs by running the EXP-machine which computes g∗ on every input in {0, 1}n. Clearly,
the running time of the sampler is quasi-polynomial in N . From our assumption in the lemma and
since P is supported only on g∗, A can be used to output a hypothesis which is (1− 1/nc1)-close to
g∗ with probability at least 1−1/20n. Using the same idea as Lemma 4.2, we show that g∗ ∈ P/poly.

Following this, we design a similar quasi-polynomially samplable distribution D supported on
the PSPACE-Complete problem f∗ given by Theorem 2.8. Since EXP ⊆ P/poly, we see that f∗ is
also EXP-Complete. Again, since D is supported only on f∗, A can be used to output a hypothesis
which approximates f∗ with high probability and following from the ideas used in Lemma 4.2, we
show that f∗ ∈ BPP proving that EXP = BPP.

Using the proof strategy of Lemma 4.3, we can also show a natural extension of Lemma 4.4 for
average-case learning using membership queries as well.

Remark 4.5. It is easy to extend lemma 4.4 to the case where the samplable distribution is over
SIZEEXP[nk]-circuit encodings in Rn ⊆ {0, 1}r(n), where r(n) = O(n2k+1) (see Remark 2.3 for
more details). In such a case, we only need poly(n)-time learnability of SIZEEXP[nk] with respect to
polynomially samplable distributions over SIZEEXP[nk] and Un, to show that EXP = BPP.

Indeed, for the distribution P over SIZEEXP[nk] supported only on the function g∗ (or f∗) used

in the proof, the sampler S′P takes 1n
k

as input and outputs a SIZEEXP[nk]-circuit encoding of g∗

which is just an EXP-oracle gate on n inputs and this encoding is of size O(n2). The running time
of this sampling algorithm is polynomial in the input size.

We now prove the equivalences for efficiently learning EXP/poly.

Proof of Theorem 1.2. The following implications establish the desired equivalences.

(b) =⇒ (a), (c) =⇒ (a): The contrapositives of each of these implications follow from Lemma
4.1. In particular, PAC-learning EXP/poly with error at most 1/nc for any c > 0 using random
examples, implies PAC-learnability of EXP/poly using membership queries, where the queries are
just made on the random examples given to the learner.

(d) =⇒ (b), (e) =⇒ (c): Follows from the definitions, since PAC-learning EXP/poly in the worst
case in poly(n) time using random examples implies PAC-learnability for EXP/poly on average in
poly(n) time using random examples, for any distribution over EXP/poly. A similar implication
holds for learning with membership queries too.

(a) =⇒ (b): For any c > 0, suppose EXP/poly is (1/nc, 1/20n) PAC-learnable in polynomial
time using random examples over every arbitrary distribution. In particular, this means that
EXP/poly can be (1/nc, 1/20n)-learnt in polynomial time using random examples over the uniform
distribution. The implication follows from the contrapositive of Lemma 4.2.

(a) =⇒ (c): Similar to the previous implication, we see that EXP/poly is (1/nc, 1/20n)-learnable
in polynomial time using membership queries over the uniform distribution. The implication holds
from the contrapositive of Lemma 4.3.
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(a) =⇒ (d), (a) =⇒ (e): The implications follow from Lemma 4.4 (along with Remark 4.5) and its
corresponding extension to learning on average with membership queries.

The proof of Corollary 1.3 (equivalences for learning PSPACE/poly) follows from the same ideas
as Theorem 1.2. In more detail, Lemma 4.1 extends easily as the procedure which searches for
a polynomial-sized consistent hypothesis also runs in polynomial space. Lemmas 4.2, 4.3 and 4.4
can also be extended, by only using the second step from their proofs, where we compute the
downward-self-reducible and self-correctible PSPACE-Complete function f∗ (Theorem 2.8) directly
using the PSPACE/poly learner.

5 Reducing Succinct Search to Decision

The key concepts in this section are verifiability and succinct search. We define verifiers first.

Definition 5.1. Given language L ⊆ {0, 1}∗ and polynomial-time computable relation V (·, ·), we
say that V is a verifier for L if for each x ∈ {0, 1}∗, x ∈ L iff ∃yV (x, y).

Given language L, a verifier V for L, and function f : N → N, we say that L has f(n)-size
proofs with respect to V , such that for each x ∈ {0, 1}∗, x ∈ L implies ∃y, |y| ≤ f(|x|) : V (x, y).
We say that L has f(n)-size proofs if there is a verifier V for L such that L has f(n)-size proofs
with respect to V .

Given language L, a verifier V for L and a machine class D, we say that L has D-computable
proofs with respect to V if there is a machine M ∈ D such that for each x ∈ {0, 1}∗, x ∈ L implies
V (x,M(x)). We say that L has D-computable proofs if there is a verifier V for L such that L has
D-computable proofs with respect to V .

Note that NP is the class of languages with polynomial-sized proofs, NEXP is the class of
languages with exponential-sized proofs, and for D ∈ {EXP,PSPACE}, D is the class of languages
with D-computable proofs (where we abuse notation and use D to refer both to a machine class
and to the class of languages computable by such machines).

Next we define succinct search. We will assume w.l.o.g. that the proof size for any verifier is a
power of 2 - this can be ensured by padding the proof if necessary.

Definition 5.2. Given language L and verifier V for L, we say that succinct search is easy for
L with respect to V if there is a probabilistic polynomial-time machine N such that for each x ∈ L,
there is a V -proof y such that with probability 1− o(1), tt(N(x)) = y, where for Boolean circuit C,
tt(C) denotes the truth table of the function computed by C.

Thus succinct search is easy for L with respect to a verifier V if there is a probabilistic
polynomial-time machine outputting compressed descriptions of V -proofs with high probability
for any positive instance of L.

Using the downward self-reducibility of SAT, it is straightforward to see that NP ⊆ BPP iff for
each L ∈ NP and for every verifier V such that L has poly-size proofs with respect to V , succinct
search is easy for L with respect to V . We now show analogous results for PSPACE,EXP and NEXP.
First we show for each of these classes that easiness of the class implies easiness of succinct search.
We need the Easy Witness Lemma of Impagliazzo, Kabanets and Wigderson [IKW02].

Lemma 5.3. [IKW02] If NEXP ⊆ P/poly, then for each L ∈ NEXP and for each verifier V for L
such that L has exponential-size proofs with respect to V , for each x ∈ L, there is a polynomial-size
circuit Cx such that V (x, tt(Cx)) holds.
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Lemma 5.4. The following implications hold:

1. Let D ∈ {PSPACE,EXP}. If D = BPP, then for each L ∈ D and for each verifier V such that
L has D-computable proofs with respect to V , succinct search is easy for L with respect to V .

2. If NEXP = BPP, then for each L ∈ NEXP and for each verifier V such that L has exponential-
size proofs with respect to V , succinct search is easy for L with respect to V .

Proof. We establish the first item. Let D ∈ {PSPACE,EXP}, and assume D = BPP. Let L ∈ D
and V be a verifier for L such that L has D-computable proofs with respect to V . We construct
a probabilistic poly-time machine N such that for each input x ∈ L, there is a V -proof y such
that with high probability tt(N(x)) = y. Let M be a D-machine outputting V -proofs for positive
instances of L.

Consider the language L′ = {〈x, i〉|ith bit of M(x) is 1}. Since M is a D machine, we have that
L′ ∈ D. By assumption, D = BPP, therefore there is a probabilistic poly-time machine N ′ deciding
L′. Assume w.l.o.g. that N ′ has error at most 2−|y|

2
on any input y. Given input x, N operates

as follows. It first computes a probabilistic poly-size circuit C ′ simulating N ′. This can be done
using the standard efficient conversion of efficient algorithms into small circuits. It then hardwires
x into the first part of the input for C ′, obtaining a circuit C ′x. It then fixes the random input of
the circuit C ′x to a uniformly generated random string r to obtain a circuit D′x,r, which it outputs.

Since the error of N ′ is smaller than 2−|y|
2

on any input y, by a simple union bound, with
probability 1− o(1) over the choice of the random string r, D′x,r correctly computes the i’th bit of
M(x) for each i ∈ [m]. For x ∈ L, V (x,M(x)) holds, and therefore N efficiently solves succinct
search for L with respect to V .

We establish the second item. Assume NEXP = BPP and let L ∈ NEXP and V be a verifier for
L such that L has exponential-size proofs with respect to V . Since NEXP = BPP, we have that
NEXP ⊆ P/poly. By Lemma 5.3, there is a polynomial p such that for each x ∈ L, there is a circuit
Cx of size at most p(|x|) such that V (x, tt(Cx)) holds.

Consider the language L′ = {〈x, i〉| There is a circuit C of size p(|x|) such that V (x, tt(C)) is 1,
and the ith bit of the lexicographically first such circuit is 1}. Clearly L′ ∈ EXP, just by enumer-
ating circuits of size p(|x|) in lexicographic order and finding the first one encoding a V -proof for
x, if one exists. Since EXP = BPP, there is a probabilistic poly-time machine N ′ deciding L′ with
error exponentially small. We construct a probabilistic poly-time machine N as follows: on input x,
N runs N ′ on {〈x, i〉} for each i at most the description length of a circuit of size p(|x|). It outputs
the circuit C whose description has bit i set to 1 iff N ′ accepts on {〈x, i〉}. Since N ′ has error
exponentially small, we have that with error exponentially small, N outputs a circuit C encoding
a V -proof of x, and therefore N efficiently solves succinct search for L with respect to V .

For the reverse directions, we use the PCP characterization of NEXP [BFL91, FRS94], where
we only require polynomial upper bound on query complexity of the verifier.

Theorem 5.5. [BFL91, FRS94] Let L ∈ NEXP. There is a probabilistic poly-time oracle machine
V ′ such that:

1. For each x ∈ L, there is y of length exponential in |x| such that V ′(x) accepts with probability
at least 2/3 when given oracle access to y.

2. For each x 6∈ L and for all y, V ′(x) accepts with probability at most 1/3 when given oracle
access to y.
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We now show that easiness of succinct search implies easiness of decision for any L ∈ NEXP.

Lemma 5.6. Let L ∈ NEXP and V be a verifier such that L has exponential-size proofs with respect
to V . If succinct search is easy for L with respect to V , then L ∈ BPP.

Proof. Let L ∈ NEXP. We show that L ∈ BPP. By Theorem 5.5, there is a probabilistic poly-time
oracle machine V ′ such that if x ∈ L, there is y of length exponential in |x| for which V ′ accepts
with high probability on x when given oracle access to y, and if x 6∈ L rejects with high probability
irrespective of the oracle.

Now consider a verifier V for L which given input x and proof y, accepts iff V ′(x) accepts with
oracle y on a majority of its computation paths. Since succinct search is easy for L with respect
to V , there is a probabilistic poly-time machine N such that for input x ∈ L, there is a V -proof y
for x such that with high probability tt(N(x)) = y. We define a probabilistic poly-time machine
W that on input x simulates V ′(x) as follows. It first runs N(x) to find a circuit C. It then runs
V (x), answering all oracle calls to y by simulating C on input corresponding to the bit of y that is
queried. It accepts iff V (x) accepts.

If x ∈ L, by using the assumption that N solves succinct search, W (x) accepts with probability
close to 2/3. If x 6∈ L, W (x) rejects with probability close to 2/3 since the circuit C output by N(x)
corresponds to some purported V ′-proof, and every such V ′-proof is rejected with high probability
by V when given oracle access to the proof.

Theorem 5.7. Let D ∈ {PSPACE,EXP}. D = BPP iff for each L ∈ D and for each verifier V for
L such that L has D-computable proofs with respect to V , succinct search is easy for L with respect
to V .

NEXP = BPP iff for each L ∈ NEXP and for each verifier V such that L has exponential-size
proofs with respect to V , succinct search is easy for L with respect to V .

Proof. The forward directions of both items follow from Lemma 5.4. The backward direction of
the second item follows Lemma 5.6. The backward direction of the first item follows from Lemma
5.6 and the fact that for D ∈ {PSPACE,EXP}, if L ∈ D and V is a verifer for L such that L has
D-computable proofs with respect to V , then L ∈ NEXP and L has exponential-size proofs with
respect to V .

We now prove Theorem 1.4. Recall that RKt as the language consisting of strings x such that
Kt(x) ≥ |x|/2. Similarly, RKS is the language consisting of strings x such that KS(x) ≥ |x|/2
[ABK+06].

Theorem 5.8 (Theorem 1.4 stated formally). RKt ∈ BPP iff for each verifier V for RKt such that
RKt has EXP-computable proofs with respect to V , succinct search is easy for RKt with respect to V .

RKS ∈ BPP iff for each verifier V for RKS such that RKS has PSPACE-computable proofs with
respect to V , succinct search is easy for RKS with respect to V .

Proof. The backward directions of both items follow from Lemma 5.6 and the facts that RKt and
RKS are in NEXP.

For the forward direction of the first item, we use the result shown in [ABK+06] that RKt ∈ BPP
implies EXP = BPP. Combining this with the first item of Lemma 5.4 completes the proof.

For the forward direction of the second item, we use the theorem shown in [ABK+06] that
RKS ∈ BPP implies PSPACE = BPP. Combining this with the first item of Lemma 5.4 completes
the proof.
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6 Barriers for Conditional Hardness of Learning

Firstly, we formally define what it means to have a Black-Box Turing reduction from a language
L to a PAC-learning algorithm for a class C. Fix the error of the learner to be ε = 1/poly(n) (we
ignore the confidence parameter, but this only makes our hardness results stronger).

Definition 6.1 (Turing Reduction to Learning C.). A B-adaptive black-box reduction from deciding
L to PAC-learning C using random examples up to error ε, is a tuple of probabilistic polynomial time
algorithms R = (T1, . . . , TB,M) where R is given an input z ∈ {0, 1}n and randomness w ∈ {0, 1}∗.
For each query, R constructs a joint distribution (X, f(X)) over {0, 1}r × {0, 1} for some r ≤ n
and f ∈ C, samples a set S = {(xi, yi)}i≤poly(n) of independent labeled examples according to (X,Y )
and passes it to the learner. Let t(n) be the query complexity of each round of adaptivity. R decides
z by doing the following -

• For each 1 ≤ j ≤ B, Tj gets input z, fresh random bits from w and all the (j − 1) · t(n)
hypothesis circuits answered for the queries from the previous rounds (T1 only has z and
randomness w as input), and outputs t(n) new queries Sj1, . . . , Sjt for the learner, each of
which are sets of labeled examples sampled from joint distributions (Xj1, Yj1), . . . , (Xjt, Yjt).

• R only has oracle access to the learner.

• M takes as input z, fresh random bits from w and the B ·t(n) hypothesis circuits which are the
answers made by the learner for all the queries asked by T1, . . . , TB, and outputs the answer.

• The reduction guarantees that if for every oracle A that is a C-circuit learner, if every hy-
pothesis circuit returned by the learner is (1− ε)-close with respect to its corresponding query
given to the learner by T1, . . . , TB, then M(z) = L(z) with high probability over the internal
randomness of the reduction R.

Definition 6.2. For any B-adaptive black-box reduction R = (T1, . . . , TB) from deciding L to
PAC-learning C using random examples up to error ε, we have

• R is called strongly black-box, if T1, . . . , TB,M only have oracle access to the hypothesis
circuits and M decides L given access to any (1− ε)-close hypothesis circuit answered to each
query made by T1, . . . , TB.

• If B = 1, we call the reduction as non-adaptive, and if R is strongly black-box and M also
makes only non-adaptive queries to the hypotheses circuits, we call the reduction as fully
non-adaptive.

• R is oblivious, if T1, . . . , TB output new queries using only fresh randomness from w as
input and access to the hypotheses generated during the previous rounds. Furthermore, M
accesses each hypothesis using non-adaptively generated, identically distributed queries made
from the corresponding distribution over which each hypothesis is guaranteed to be a good
approximation. In particular, the obliviousness of the reduction implies the fact that the
queries to the learner do not depend on the input z.

Unless mentioned we think of the query complexity t(n) = poly(n). It is worth noting that since
the algorithms T1, . . . , TB are polynomial time algorithms, each joint distribution (X,Y ) must be
efficiently samplable.
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We first prove Lemma 1.5. This is a reformulation of the proof of Lemma 4.2 used to show
hardness of learning PSPACE/poly from a PSPACE-Complete language, into the framework of a
black-box reduction.

Proof of Lemma 1.5. This a readaptation of the proof of Corollary 1.3 (via Lemma 4.2). Consider
R = (T1, . . . , Tn,M) as an n-adaptive reduction from deciding f∗ to learning PSPACE/poly using
random examples over the uniform distribution, where T1, . . . , Tn,M are probabilistic polynomial
time algorithms which are defined as follows.

For every k ≤ n, Tk makes exactly one query to the learner which is the set of examples
Sk = {(xi, yi)}i≤poly(n) drawn from the joint distribution (Uk, f

∗(Uk)), where Uk is the uniform

distribution over {0, 1}k. In the kth round of adaptivity, Tk only makes oracle queries to the
hypothesis hk−1 output in the last round. Indeed, let h′k−1 be the oracle circuit which uses hk−1
as an oracle in the self-corrector algorithm for f∗, and computes f∗ on all k − 1 length inputs
with high probability. It then outputs a set Sk of independent labeled samples (xi, yi), where each
xi is sampled uniformly at random from Uk and yi = f∗(xi) computed by using the downward
self-reducibility of f∗ with h′k−1. M takes the final hypothesis hn output by the learner over n
inputs and outputs the value of the self-corrector of f∗ with the oracle hn. The correctness of R
and the run-time analyses of T1, . . . , Tn,M follow from the proof techniques of Lemma 4.2.

We next show that R has the required properties. As the self-corrector and the downward self-
reduction for f∗ work for any oracle which satisfy the appropriate constraints, R is correct for any
oracle which outputs any correct hypothesis for f∗ with respect to the uniform distribution (over
different input lengths). Further, it makes only oracle queries to the learner, as well as to all the
hypothesis circuits h1, . . . , hn. This makes the reduction strongly black-box. By the property of the
self-corrector, M only makes queries sampled from Un to hn, which is the same as the query made
to the learner. The obliviousness now follows, since only f∗ is learnt in each query, irrespective of
the choice of z.

The main result of the section is the following.

Theorem 6.3. There exists a universal constant c > 0 such that the following holds. For any
language L, ε0 = 1/nc and any B = poly(n), if there exists an oblivious, B-adaptive, strongly
black-box reduction from L to PAC-learning NP/poly using random examples over polynomially
samplable distributions up to error ε0, then L ∈ AMpoly.

Recall that the class AMpoly refers to the class of languages recognized by constant-round inter-
active protocols with advice, where we require proper acceptance/rejection probabilities only when
the advice is correct. [FF93] show that AMpoly = NP/poly. Using Theorem 6.3 with L = SAT, we
get

Corollary 6.4. There exists a universal constant c > 0 such that the following holds. For ε0 = 1/nc

and any B = poly(n), if there exists an oblivious, B-adaptive, strongly black-box reduction from
deciding SAT to learning NP/poly using random examples from polynomially samplable distributions
up to error ε0, then coNP ⊆ NP/poly.

Corollary 6.4 easily implies Theorem 1.6, since coNP ⊆ NP/poly implies that ΣP
3 = ΠP

3 [Yap83].

We now prove Theorem 6.3. For the ease of presentation, we prove it for the case of an oblivious,
B-adaptive, strongly black-box reduction R = (T1, . . . , TB,M) from L to learning NP/poly over the

23



uniform distribution. This means that the queries generated by the reduction to the learner are
labeled examples drawn from the uniform distribution. The proof can be easily extended to the case
where the reduction makes queries to learn over any polynomially samplable distribution, rather
than just the uniform distribution.

Proof of Theorem 6.3. Let R = (T1, . . . , TB,M) be an oblivious, B-adaptive, strongly black-box
reduction from L to learning NP/poly using random examples over the uniform distribution, where
T1, . . . , TB,M are probabilistic polynomial time machines.

By using standard techniques (Adleman’s trick over R), we non-uniformly fix a random string w1

to be used by T1, . . . , TB as non-uniform advice to R. This ensures that for every input z ∈ {0, 1}n,
R decides z correctly with probability at least 1− γ over M ’s randomness, for some 0 < γ < 1/2.

By fixing w1 non-uniformly, we also ensure that the queries made in the first round of adaptivity
T1 get fixed. Let (X11, Y11), . . . , (X1t, Y1t) be the joint distributions constructed by T1, where for
each i ∈ [t], X1i = Ur1i , the uniform distribution over r1i bits for r1i ≤ n and Y1i = f1i(Ur1i) for
some f1i ∈ NP/poly. Define Q1 = {(r11, f11), . . . , (r1t, f1t)}.

For any b, where 2 ≤ b ≤ B, assume that the queries to the learner from the previous rounds have
been fixed as Qb−1. Tb takes fresh randomness from w1 (which has been non-uniformly fixed) as in-
put and has oracle access to the hypotheses, which (1−ε0)-approximate each corresponding function
in Qb−1 according to the uniform distribution over their respective input lengths. Let Sb be the set
of all possible tuples of joint distributions queried by Tb to the learner based on the choices it makes
after w1 and the hypothesis oracles for the queries made up to Tb−2 have been fixed. Arbitrarily pick
any such tuple ((Urb1 , fb1(Urb1), . . . , (Urbt , fbt(Urbt)) and fix Qb = Qb−1∪{(rb1, fb1), . . . , (rbt, fbt)}. In
other words, this means that there exists some choice of hypothesis oracles, each of which (1− ε0)-
approximates the functions queried by Tb−1, which along with the hypothesis oracles fixed in the
previous rounds generate the tuple ((Urb1 , fb1(Urb1), . . . , (Urbt , fbt(Urbt)).

Let ` = Bt be the total number of queries made to the learner. For each i ∈ [`], let {Di
n}n∈N be

the corresponding family of non-deterministic circuits which verifies fi. Let pi be the probability
that fi accepts a string sampled from Uri i.e. |pi − Pry∼Uri{hi(y) = 1}| ≤ ε0. Finally, let q be the
number of non-adaptive queries M makes to each hypothesis hi according to the distribution Uri .

On input z ∈ {0, 1}n, non-uniform advice D1
r1 , . . . , D

`
r`
, p1, . . . , p` and any error parameter

0 < δ < 1/2, the Arthur-Merlin protocol for L is as follows :

1. Verifier: Let K = 4q2`2

δ2
ln
(
2q`
δ

)
. Run M independently K times. For each k ∈ [K], let

V k = (vk11, . . . , v
k
1q), (v

k
21, . . . , v

k
2q), . . . , (v

k
`1, . . . , v

k
`q) be the set of queries made by M in the

kth run, where for every i ∈ [t], (vki1, . . . , v
k
iq) are the q queries of length ri made to hi. Send

all the queries V 1, . . . , V K to the prover.

2. Prover: For each vkij , respond by saying if vkij ∈ fi and if so, provide a certificate that vkij ∈ fi
which can be verified by Di

ri .

3. Verifier: Accept if all the conditions hold :

• All certificates sent by the prover are valid (verified by the circuits D1
r1 , . . . , D

t
r`

).

• For every 1 ≤ i ≤ `, at least q ·
(
piK − ε0K −

(√
K ln

(
2`q
δ

)))
many queries made to

the prover for fi are answered by the prover as “yes”.
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• For k picked uniformly at random from [K] and on input z, using the answers given by
the prover for the oracle queries on V k, the output of the kth run of M is “no”.

Completeness: Let ε = γ+ 2δ+ 2q`ε0. Pick c > 0 large enough such that ε0 = 1/nc and thus,
ε = 1/poly(n). To show completeness, for any input z ∈ L, observe that an honest prover would
send correct answers for every query and corresponding certificates, if necessary. Furthermore,
if all queries are answered correctly, then M decides z correctly with probability at least 1 − γ
on every run. Finally, observe that for each fixed i ∈ [`], j ∈ [q], the queries v1ij , . . . , v

K
ij are

independent and distributed identically according to Xi, with probability at least pi− ε0 of being a

yes instance. Using Hoeffding’s inequality (Lemma 2.10), with probability at least
(

1− δ
q`

)
, at least

piK−ε0K−
(√

K ln(2q`/δ)
)

of these queries are yes instances. By a union bound, with probability

at least (1 − δ/`), this is satisfied for all j ∈ [q] and at least q ·
(
piK − ε0K −

(√
K ln(2q`/δ)

))
many queries made to fi are yes instances. Using a final union bound over all 1 ≤ i ≤ `, we see
that with probability at least (1 − δ), the threshold is satisfied for every function fi. Thus, the
verifier accepts z with probability at least 1− δ − γ ≥ 1− ε.

Soundness: For any z /∈ L, note that the cheating prover can only cheat by saying ”no” on a
query which is a yes instance for any fi, which is ensured by the first condition. Using Hoeffding’s
inequality in the same way as above, we see that with probability at least (1−δ), for every 1 ≤ i ≤ `,
at most q

(
piK + ε0K +

(√
K ln(2q`δ)

))
many queries made to the prover for fi are yes instances.

In particular, this means that with probability at least (1−δ), the verifier ensures that the prover can

cheat on at most 2q ·
(√

K ln(2q`/δ) + ε0K
)

many yes instances for each fi. Thus, the probability

that there exists a run of M which consists of a query to some fi on which the prover has cheated

is at most 2q` ·
(√

ln(2q`/δ)/K + ε0

)
≤ δ + 2q`ε0 for the value of K defined. Thus, the overall

probability that the verifier accepts is at most δ + γ + (δ + 2q`ε0) ≤ γ + 2δ + 2q`ε0 ≤ ε.

Remark 6.5. In addition, we can also extend the proof to the case where M still makes non-
adaptive queries but is not constrained distributionally in its access to all the hypotheses, by directly
applying the techniques of [BT06] for the simulation of R in AMpoly.
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