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Abstract

A central open problem in complexity theory concerns the question of whether all efficient
randomized algorithms can be simulated by efficient deterministic algorithms. The celebrated
“hardness v.s. randomness” paradigm pioneered by Blum-Micali (SIAM JoC’84), Yao (FOCS’84)
and Nisan-Wigderson (JCSS’94) presents hardness assumptions under which e.g., prBPP = prP
(so-called “high-end derandomization), or prBPP ⊆ prSUBEXP (so-called “low-end derandomiza-
tion), and more generally, under which prBPP ⊆ prDTIME(C) where C is a “nice” class (closed
under composition with a polynomial), but these hardness assumptions are not known to also be
necessary for such derandomization.

In this work, following the recent work by Chen and Tell (FOCS’21) that considers “almost-
all-input” hardness of a function f (i.e., hardness of computing f on more than a finite number of
inputs), we consider “almost-all-input” leakage-resilient hardness of a function f—that is, hard-
ness of computing f(x) even given, say,

√
|x| bits of leakage of f(x). We show that leakage-resilient

hardness characterizes derandomization of prBPP (i.e., gives a both necessary and sufficient con-
dition for derandomization), both in the high-end and in the low-end setting.

In more detail, we show that there exists a constant c such that for every function T , the
following are equivalent:

• prBPP ⊆ prDTIME(poly(T (poly(n))));

• Existence of a poly(T (poly(n)))-time computable function f : {0, 1}n → {0, 1}n that is
almost-all-input leakage-resilient hard with respect to nc-time probabilistic algorithms.

As far as we know, this is the first assumption that characterizes derandomization in both the
low-end and the high-end regime.

Additionally, our characterization naturally extends also to derandomization of prMA, and also
to average-case derandomization, by appropriately weakening the requirements on the function f .
In particular, for the case of average-case (a.k.a. “effective”) derandomization, we longer require
the function to be almost-all-input hard, but simply satisfy the more standard notion of average-
case leakage-resilient hardness (w.r.t., every samplable distribution), whereas for derandomization
of prMA, we instead consider leakage-resilience for relations.
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1 Introduction

Randomness is an ubiquitous tool in algorithm design. A central open problem in complexity theory
concerns the question of whether all randomized algorithms can be derandomized; that is, can every
randomized polynomial-time algorithm be simulated by a deterministic polynomial-time, or perhaps
even just sub-exponential one? In this work, we consider this question with respect to promise
problems; as usual, we refer to prBPP as the class of promise problems (as opposed to languages)
that can be solved in probabilistic polynomial time (with 2-sided error), and prP to the class of
promise problems than can be solved in deterministic polynomial time.

We here focus on the questions of whether prBPP = prP (the, so-called, “high-end regime”),
prBPP ⊆ prSUBEXP (the, so-called, “low-end regime”) and more generally whether prBPP ⊆
prDTIME(C), where C is a “nice” class of time bounds (where by “nice” we here mean that C is
closed under composition with a polynomial).

A long sequence of works originating with the works of Blum-Micali [BM84], Yao [Yao82],
Nisan [Nis91], Nisan-Wigderson [NW94], Babai-Fortnow-Nisan-Wigderson [BFNW93], Impagliazzo-
Wigderson [IW97] have presented beautiful connections between this problem and the problem of
proving computational-complexity lower bounds—the so-called hardness v.s. randomness paradigm.
For instance, the results of [NW94, IW97] show that prBPP = prP under the assumption that
E = DTIME(2O(n)) contains a language that requires Boolean circuits of size 2Ω(n) for almost all
input lengths (i.e., E is not contained in ioSIZE(2Ω(n))). Additionally, results by Impagliazzo, Ka-
banets and Wigderson [IKW02] show a partial converse: if prBPP = prP, then some non-trivial
circuit lower bound must also hold. In more detail, if prBPP = prP (or even just MA = NP), then
NEXP 6⊆ P/poly; very recent works [Tel19, MW18] managed to strengthen the conclusion to e.g.,
NTIME[npoly logn] 6⊆ P/poly.

But despite over 40 years of research on the topic of derandomization, there has still been a large
“gap” between the hardness assumptions required for derandomizing prBPP, and the ones that are
known to be necessary for derandomization, leaving open the following question:

For “nice” classes C, does there exist some (natural) hardness assumption that is equiv-
alent to prBPP ⊆ prDTIME[C]?

Most notably, known derandomization results for prBPP require complexity lower-bounds on func-
tions in EXP, whereas it is only known that derandomization of prBPP implies complexity lower
bounds for functions in non-deterministic classes.

There as been some recent progress on the above problem:

• An elegant work by Chen, Rothblum, Tell and Yogev show an equivalence between derandom-
ization and circuit lower bound under a conjecture (a weaker version of the non-deterministic
exponential-time hypothesis) [CRTY20]. There work applies for both the high-end and the
low-end regime, but is only conditional (i.e., relies on a conjecture).

• Chen and Tell [CT21], relying on the work by Goldreich [Gol11a], show that the existence
of a multi-output function f : {0, 1}n → {0, 1}n computable by polynomial size logspace-
uniform circuits with depth bounded by n2 that cannot be computed in some (a-priori bounded)
probabilistic polynomial time on any sufficiently large input—this is referred to as “almost-
all-input hardness”—implies that prBPP = prP. They also show a partial converse: That a
relaxed version of this conjecture, where the depth requirement is dropped, also is necessary.

• Liu and Pass [LP22], following the work of Hirahara [Hir20], demonstrates a class of promise
problems (related to conditional time-bounded Kolmogorov complexity) such that (worst-case)
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hardness with respect to a-prior polynomially bounded probabilistic algorithms of all problems
in the class is equivalent to prBPP = prP. (The result of Liu and Pass also shows that a single
problem can be used to characterize prBPP = prP but this problem is very artificial.) Similar
to the results of [CT21], this characterization can be extended slightly beyond the “high-end
regime”, but fails to capture the “low-end regime”: it only works to handle derandomization
in time C, where C is a class closed under composition (i.e., if T ∈ C, then T (T (·) ∈ T ), and
thus already does not apply to e.g., SUBEXP.

• Finally, a very recent elegant work by Korten [Kor22] demonstrates a natural search problem—
the R-Lossy Code problem—that is complete for prBPP. As such, the assumption that this
problem can be solved in deterministic time C characterizes when prBPP ⊆ DTIME(C). We
note, however that this assumption is not a hardness assumption, but rather an “easiness”
assumptions.

Thus summing up, it is known how to characterize both the high-end and low-end derandomization
through a hardness assumption under a conjecture [CRTY20]; unconditionally, however, it is only
known how to characterize the high-end regime (i.e., prBPP = prP) and even there it is only known
under either (a) a class of hardness assumptions (as opposed to one), or (b) a very specific and
artificial single hardness assumption.

In this work, we follow the work by Chen and Tell [CT21] and also consider the notion of
“almost-all-input” hardness of a multi-output function. In contrast to them, however, we consider
such “almost-all-input” hardness in the context of leakage resilience, a notion first considered in the
cryptographic literature in the 1980s. As we shall see, our main result show that “almost-all-input”
leakage resilient hardness can be used to fully characterize derandomization, both in the high-even
and in the low-end setting; additionally, our characterization will extend also to derandomization
of prMA, and also to average-case (a.k.a. “effective”) derandomization. In particular, for the case
of average-case derandomization, we longer require the function to be almost-all-input hard, but
simply satisfy the standard notion of average-case leakage-resilient hardness (w.r.t., every samplable
distribution). And to characterize derandomization of prMA, we instead consider the notion of a
leakage-resilient relation, which again is a notion considered in the cryptographic literature. Taken
together, we believe that our results demonstrate an intriguing connection between derandomization
and notions from cryptography.

1.1 Leakage-resilient Hardness

Consider some multi-output function f : {0, 1}n → {0, 1}n. Roughly speaking, we say that f is
T -hard if no T (|x|)-time algorithm/attacker A can compute f(x) given any input x. Perhaps the
most widely known example of a candidate construction of a hard function is integer factorization:
given a product of two-primes x, compute the factorization f(x) of x. In 1985, Rivest and Shamir
[RS85] asked the question of what happens to this candidate hard function if the attacker gets
some additional “side-information” about the factorization of x. Namely, the attacker gets not only
x, but also some T -time computable side-information (a.k.a. “leakage”) leak(x, f(x)). Of course,
if |leak(x, f(x))| ≥ |f(x)|, then the problem becomes trivial since the side-information can simply
reveal the whole factorization; in fact, for the particular factorization problem, it trivially suffices to
leak n/2 bits to reveal just one of the primes. Rivest and Shamir [RS85] show that, in fact, it suffices
to get n/3 bits of leakage for the function to becomes easy; this result was improved by Coppersmith
[Cop97] to n/4 bits, and a heuristic (with a conjectured polynomial running-time bound) by Maurer
[Mau92] shows an attack given just εn bits of leakage for any constant ε > 0. As far as we know, it
is unknown if this problem can be solved using just nε bits of leakage, for any ε < 1.
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The notion of leakage-resilient hardness captures the notion that a function is hard even given
some bounded-length leakage [RS85, Mau92, AGV09]: We say that a function f is (T, `)-leakage
resilient hard if no T (|x|)-time attacker A can compute f(x) given x and leak(x, f(x)) for any T (|x|)-
time computable leakage function leak that outputs at most `(|x|) bits. In recent years, leakage-
resilient cryptography [ISW03, MR04, DP08, AGV09]—the design of cryptographic protocols resilient
to some forms of leakage of honest players’ secrets—has received significant attention and has become
a subfield in cryptography; the bounded-length leakage model is the most common way of formalizing
the class of leakage functions.

In this paper, we will consider this notion of leakage-resilient hardness, except that following
Chen and Tell, we will also consider it in the context of almost-all-input hardness: that is, for any
pair (A, leak) there can be at most finitely many x for which A can compute f(x) given x and
leak(x, f(x)).

1.2 Characterizing Derandomization

We are now ready to state our main theorem, which shows that almost-all-input leakage-resilient
hardness characterizes both high-end and low-end derandomization. We say that a class of time-
bounds C is nice if for all polynomials p, q it holds that if T ∈ C, then p(n)T (q(n)) ∈ C. For instance,

the sets poly(n) and 2n
o(1)

are nice and recall that P = DTIME(poly) and SUBEXP = ∩ε>0DTIME(2n
ε
).

Derandomizing prBPP Our main theorem gives a characterization of derandomization of prBPP:

Theorem 1.1. There exists a constant c such that for every “nice” class of running-time bounds C,
and for every 0 < ε < 1, the following are equivalent:

• prBPP ⊆ ∪T∈CprDTIME[T (n)].

• The existence of a multi-output function f : {0, 1}n → {0, 1}n computable in deterministic time
T ∈ C such that f is almost-all-input (nc, nε)-leakage-resilient hard.

In particular, prBPP = prP (resp. prBPP ⊆ prSUBEXP) iff there exists a polynomial-time (resp.
subexponential-time) computable multi-output function f that is almost-all-input (nc,

√
n)-leakage-

resilient hard.

Some Corollaries to Leakage-resilient Hardness For the proof of Theorem 1.1 , in one di-
rection, we only require leakage-resilience with a “small” amount of leakage, whereas in the other
direction, we obtain a function that is leakage-resilient hard with a “large” amount of leakage. Con-
sequently, our proof actually also yields an amplification theorem for leakage-resilient hardness: For
any ε > 0, d ≥ 1, the existence of an efficient (nc, nε)-leakage-resilient hard function implies an
efficient (nd, n− Ω(log n))-leakage-resilient hard function.

Theorem 1.2. There exists a constant c such that for every nice class C, all constants ε > 0, d ≥ 1,
the following holds. If there exists a C-computable almost-all-input (nc, nε)-leakage-resilient hard
function. Then there exists a C-computable almost-all-input (nd, n − 3 log n)-leakage-resilient hard
function.

Let us highlight that as far as we know, this is the first type of leakage-resilience amplification
result in the literature that we are aware of. (Brakerski and Kalai [BK12] demonstrate a parallel
repetition theorem for leakage-resilience but it does not show how to amplify the amount of leakage
a function is resilient against, but rather only how to maintain the (relative) amount of leakage.)
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Additionally, by combing the result of Chen and Tell [CT21] with our Theorem 1.1, we get
an interesting (one-sided) connection between low-depth computable hard functions and leakage-
resilience:

Theorem 1.3. There exists some c such that the following holds. If there exists a function f
computable by polynomial-size logspace-uniform circuits with depth bounded by n2 that is almost-all-
input nc-hard, then for any constant d ≥ 1, there exists a polynomial-time computable almost-all-input
(nd, n− 3 log n)-leakage-resilient hard function.

Comparison with IW: leakage-resilient local hardness Recall that Impagliazzo and Wigder-
son [IW97] shows that prBPP = prP under the assumption that E 6⊆ ioSIZE(2Ω(n)) (i.e., that there
exists some exponential-time computable function that does not have 2Ω(n)-size circuits.) Since
Theorem 1.1 shows that leakage-resilient hardness is both a sufficient and necessary condition for de-
randomizing prBPP, it directly follows that E 6⊆ ioSIZE(2Ω(n)) implies leakage-resilient hardness (by
combining [IW97] with Theorem 1.1), but it gives little insight into whether the type of assumption
used by IW is inherent, or to what extent it “overshots”. Indeed, understanding to what extent the
NW/IW framework is inherent for derandomization is a long standing open problem.

We now show how to use our framework to provide an (in our eyes) crisp answer to this question.
We start by noting that by a slight adjustment to the proof of Theorem 1.1, an (a-priori) weaker
notion of leakage-resilient local hardness actually suffices to derandomize prBPP: Given a function
f : {0, 1}n → {0, 1}n, we say that A t-locally computes f(·) on input x if for every i ∈ [|x|], A(x, i) =
f(x)i (i.e., the ith bit of f(x)), and A(x, i) runs in time bounded by t(|x|); we analogously say that A
t-locally computes f on input x given (T, `)-leakage leak if for every i ∈ [|x|], A(x, leak(x, f(x)), i) =
f(x)i, A(x, z, i) runs in time bounded by t(|x|), leak(x, f(x)) runs in time bounded by T (|x|), and
|leak(x, f(x))| ≤ `(|x|). We finally say that f is almost-all-input (T, `)-leakage resilient t-local hard
if there does not exists (A, leak) such that A t-locally computes f on infinitely many x given (T, `)-
leakage leak. Note that this notion of leakage-resilient hardness differs from the standard one in two
ways: (a) we are decoupling the running time T of the leakage function, and the running time t of the
computing machine A, and (b) we require the computing machine A to be able to locally compute
each bit of the output of f(x)—this will allow us to consider sublinear running times t. Indeed, we
will focus our attention on the regime where A is required to reconstruct each bit of f(x) in sublinear
time: We say that f is simply almost-all-input (T, `)-leakage resilient locally hard if there exists some
0 < ε < 1 such that f is almost-all-input (T, `)-leakage resilient t-locally hard where t(n) = nε. Note
that (T, `)-leakage resilient hardness is trivially an (a-priori) stronger condition than (T, `)-leakage
resilient local hardness when T ∈ Ω(n2). We now have the following generalization of Theorem 1.1:

Theorem 1.4. There exists a constant c ≥ 2 such that for every “nice” class of running-time bounds
C, and for every 0 < ε < 1, the following are equivalent:

• prBPP ⊆ ∪T∈CprDTIME[T (n)].

• The existence of a multi-output function f : {0, 1}n → {0, 1}n computable in deterministic time
T ∈ C such that f is almost-all-input (nc, nε)-leakage-resilient locally hard.

• The existence of a multi-output function f : {0, 1}n → {0, 1}n computable in deterministic time
T ∈ C such that f is almost-all-input (nc, nε)-leakage-resilient hard.

Leakage-resilient local hardness is useful as it allows to capture the assumption that E 6⊆ ioSIZE(2Ω(n)).
In fact, we observe that E 6⊆ ioSIZE(2Ω(n)) directly implies the existence of a (nc, nε)-leakage-resilient
locally hard function for every c. To see this, consider some E-computable function gn : {0, 1}n →
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{0, 1} that does not have circuits of size 2Ω(n); in other words, gn cannot be computed by a 2Ω(n) time
algorithm even when given any (potentially non computable) advice string. Define the multi-output
function f that is constant on each input length n and simply outputs the truthtable of glogn; that
is,

f(x) = gm(1)||gm(2)|| . . . ||gm(|x|)

where m = log |x|. Note that f(x) is polynomial-time computable (since we are only evaluating
gm on input of logarithmic length in |x|), and additionally by the hardness of g, it directly follows
that f is almost-all-input leakage-resilient locally hard (since locally computing f on some input
x in sublinear time with efficiently computable leakage implies computing glog |x|(y) on every input

y ∈ {0, 1}log |x| in subexponential time with advice).1 In fact, it directly follows that this construction
is almost-all-input leakage-resilient locally hard even with respect to uncomputable leakage.

In other words, the IW assumption “overshoots” the minimal assumption needed for derandom-
izing BPP in two ways: (a) it considers leakage-resilient hardness of a “degenerated” multi-output
function that is constant on each input length, and (b) it requires leakage resilient hardness also with
respect to uncomputable leakage, whereas the minimal assumption only requires it w.r.t. polynomial-
time computable leakage.

Effective Derandomization Goldreich [Gol11a] (see also [Gol11b, Kab01]) considers a notion of
“effective” derandomization of prBPP where the derandomizer does not need to work on all inputs—
rather, it can fail sometimes, but only on inputs that are “hard to find”—in more detail, no PPT
finder/refuter can find instances on which the derandomization fails except with negligible probability.
In essence, effective derandomization is good enough for all efficient applications of derandomization.

For technical reasons, however, Goldreich, is not able to characterize such effective derandomiza-
tion, but rather only a notion of p(·)-effective derandomization where the finder/refuter running time
is bounded by p(n) for some fixed polynomial p and it success probability is bounded by 1

p(n) . (In

more details, for every a-priori fixed polynoomial bound p(·) on the running-time/success probability
of a refuter, we require the existence of derandomization that works for that particular bound. In
contrast, effective derandomization (as we consider it here) requires the existence of a single deran-
domization procedure that works for any polynomial-time refuter, and with only negligible failure
probability.)

Using our leakage-resilient framework, we can get a clean characterization also of effective de-
randomization through average-case leakage-resilient hardness, where average-case leakage-resilient
hardness with respect to some distribution D is defined just like before except we now consider in-
stances x sampled from D and we allow the attacker A to succeed on at most a negligible fraction
of instances.

More precisely, we say that Π is effectively contained in Π′ (denoted Π ⊆poly Π′) if for every PPT
A there exists a negligible µ such that the probability that A(1n) is able to output an n-bit element
in the symmetric difference between Π and Π′ is bounded by µ(n); we may extends this notion of
classes of problems in the usual way: D ⊆poly D′ iff for every Π ∈ D, there exists some Π′ ∈ D′ such
that Π ⊆poly Π′.

Theorem 1.5. There exists a constant c such that for every 0 < ε < 1, the following are equivalent:

• prBPP ⊆poly prP.

1There is a minor subtlety here. If we have an attacker A that locally computes f(x) on some input x in sublinear
time, then A can compute glog |x|(y) for every y ∈ {0, 1}log |x| in sublinear time given access to x which can be of
exponential length compared to |y|. But since A runs in sublinear time, it can access at most a sublinear number of
bits of x, and thus we can compute gm by a circuit of subexponential size.
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• The existence of a multi-output function f : {0, 1}n → {0, 1}n computable in deterministic
polynomial time such that f is average-case (nc, nε)-leakage-resilient hard for every efficiently
samplable distribution D.

The result also extends to the low-end regime but only if we consider a stronger form of effective
containment (which allows the refuter to have super polynomial running time).

Derandomizing prMA Finally, we consider the problem of derandomizing prMA (as opposed to
just prBPP). Here, we require considering the notion of a leakage-resilient hard relation [Pas20],
which is identically defined to that of a leakage-resilient hard function, except that any input x can
be mapped to multiple values y ∈ R(x). We show:

Theorem 1.6. There exists a constant c such that for every “nice” class of running-time bounds C,
and for every 0 < ε < 1, the following are equivalent:

• prMA ⊆ ∪T∈CprNTIME[T (n)].

• The existence of a relation R ⊂ {0, 1}n × {0, 1}n computable in non-deterministic time T ∈ C
such that R is almost-all-input (nc, nε)-leakage-resilient hard.

In particular, prMA = prNP iff there exists a relation R ∈ NP that is almost-all-input (nc,
√
n)-

leakage-resilient hard.

Proof Overview We focus our attention on the proof of Theorem 1.1 (and Theorem 1.4); af-
terwards, we briefly discuss how to extend these techniques to prove the remaining results. For
simplicity, here focusing only on the high-end setting, but the key point is that the same technique
directly extends also to the low-end setting.

• Leakage-resilient Hardness implies prBPP = prP: Following Goldreich [Gol11a], we con-
sider the notion of a targeted PRG—roughly speaking, this is a PRG g that gets an additional
target z as input, and indistinguishability holds with respect to uniform algorithms that also
get the target z as input. In other words, g is just like a normal PRG, but with the excep-
tion that both the PRG and the distinguisher get access to the auxiliary “target” string z,
and we require security to hold for all strings z. (Since we consider PRGs in the context of
derandomization, we allow the running-time of the PRG to be (polynomially) larger than the
running-time of the distinguisher.) Using standard techniques, it follows that the existence of
such a targeted PRG, with sufficiently large stretch, implies that prBPP = prP (simply let the
instance to be decided be the target for the PRG).

We next show how to use leakage-resilient hardness to construct a targeted PRG. Assume
the existence of a leakage-resilient hard multi-output function f : {0, 1}n → {0, 1}n. Given a
target z ∈ {0, 1}n, we compute gz = ECC(f(z)), where ECC is an appropriate list-decodable
error-correcting code with good parameters, and interpret gz as a hard function to use in
the Impaglizzo-Wigderson (IW)/Nisan-Wigderson (NW) pseudo-random generator generator
[IW97, NW94]. That is, we are relying on the Sudan-Trevisan-Vadhan PRG [STV01]. The
IW-NW proof essentially shows that given a distinguisher D for the PRG, and some (bounded-
length) advice about the truthtable (and D), we efficiently compute the evaluation of gz with
probability 1/2 + 1

p(n) for some polynomial p over random n-bit inputs. We observe that this
advice in fact can be efficiently computed if we have access to the truthtable of gz and the
distinguisher D, and we can thus view it as efficiently leakage on (z, f(z)). We can next
list-decode (again efficiently) gz and recover a polynomial-length list of candidates for f(z);
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given f(z), we can efficiently determine which of these candidates is the correct one, and also
include the index of this candidate in the leakage (which again will be short). Given both these
leakage, we can now re-compute f(z) by simply again running the list-decoding algorithm and
outputting the string specified by the index. We note that we here rely on the fact that once
this leakage has been fixed, the rest of the NW reconstruction procedure is deterministic, and
furthermore, the list-decoding procedure is also deterministic, so the attacker A can recompute
the same list of candidates in the same order, and thus we are guaranteed that it also recovers
the exact same string.

In other words, if anyone can break the targeted PRG on infinitely many targets z, we can
compute f(z) on infinitely many inputs z given short and efficiently computable leakage on
(z, f(z)); we note that, somewhat curiously, the leakage function actually also needs to access
z and not just f(z) in order to simulate the distinguisher D (that gets z as an input).

We finally observe that if the error-correcting code additionally satisfies a local list decoding
property—e.g., by using the error-correcting code of [STV01]— then we can actually locally
compute each bit of f(z) in sublinear time in the length of f(z) which we can use to conclude
also the implication in the proof of Theorem 1.4. There is just one small catch; the local list
decoding procedure will be randomized, so we may not necessarily recover the same list of
candidates, or the same ordering of them. But the list-decoding procedure has a small running
time and thus also uses a small amount of randomness, so we can just include this additional
randomness as part of the leakage.

In the actual proof, we show the above in a more modular way:

– We first consider a notion of a strongly black-box PRG —roughly speaking a PRG based
on f for which there exists (a) an efficient algorithm that given black-box access to f
and some distinguisher for the PRG outputs some advice string, and (b) another efficient
algorithm that given this advice string and black-box access to the same distinguisher, is
able to efficiently compute f . This notion is a strengthening of the notion of a black-box
PRG from [Vad12] where the advice string did not need to be efficiently computable.
Nevertheless, following [IW98], we note that the advice string needed in the reduction to
prove security of the [STV01] PRG construction actually can be efficiently computed.

– Next, we show that any such strongly black-box PRG construction can be used to get a
targeted PRG from leakage-resilient hardness.

• prBPP = prP implies Leakage-resilient Hardness: Our proof, roughly speaking, proceeds in
two steps. First, we show using an information theoretic argument that a random function f is
almost-all-input leakage-resilient hard. Next, we show how this function can be “derandomized”
assuming prBPP = prP—the crucial aspect that makes this derandomization possible is that it
is possible to efficiently verify whether there exists some attacker that efficiently computes the
function on some input given efficient leakage (by enumerating the log n first Turing machines
and evaluating them).

For the first step, we use a simple compression argument to show that for every attacker,
leakage-function pair (A, leak), for any input x, with high probability over the choice of y =
F (x) ∈ {0, 1}n, it is the case that the attacker A can compute F (x) with probability at
most, say, 1/6. In fact, we will show a slightly stronger statement: for any A, x, with high
probability over y, there does not exists any leakage function, leak, such that (A, leak) computes
y with probability 1/6. The advantage of this stronger formulation is that now it is without of
generality to restrict attention to deterministic leakage functions leak (since for any fixed A, x, y
we can always consider the deterministic leakage function that fixes the best randomness).
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To prove the (stronger) statement, let us first consider the case when also the attacker A is
deterministic. Since the length ` of the leakage is significantly shorter than |y|, it follows that
for any fixed x, most strings y are not in the range of what the attacker can output given x
and any leakage, and thus for every x, with high probability over the choice of y, the attacker
fails to output y no matter what the function leak is.

Next, note that even if A is randomized, there can be at most 6 strings that A outputs with
probability 1/6 given any fixed x and any fixed leakage output, so the above argument actually
also extends to randomized A (except that we increase the number of string y that can be hit
by a factor 6). This thus concludes a random choice of y will with high probability not be
computable by any (A, leak).

Next, we show that for any x, this random choice of y can actually be derandomized assuming
prBPP = prP, and relying on the fact that we only need y to be hard to compute with respect
to uniform (bounded) polynomial-time computable (A, leak). Towards this, we follow the
approach of Goldreich [Gol11a] and show that for any x, we can greedily compute the bits of
y = f(x) one at a time, relying on the fact that we know that a random selection will work, and
then use the fact that prBPP = prP to efficiently find a good selection. In more details, we know
that with high probability over the choice of y, the first log n uniform (A, leak) machines with
running time bounded nc will fail to compute y so we can start by picking bit 1 y1 of y that leads
to a high probability over the continuation of y of all those log n machines failing to compute y.
Estimating this probability requires randomness, but if prBPP = prP then it can also be done
deterministically. This second step can be done in a modular way by appealing to the elegant
BPP-decision-to-search reduction of Goldreich [Gol11a] and by appropriately specifying the
above problem of finding a “good” y that fools the log n first uniform (A, leak) machine with
running time nc (in the sense that their estimated success probability is significantly smaller
than 1/6) as a BPP-search problem.

Effective Derandomization To characterize “effective derandomization”, the proof follows a
very similar structure, except to perform the derandomization we instead pass through a new notion
of an “average-case targeted PRG”. The converse direction (showing necessity of the assumption)
becomes a bit more complicated than before as we no longer have access to a perfect derandomization,
but these additional subtleties can be dealt with. (Roughly speaking, the issue is that since the
derandomizer only succeeds on average, we may run into trouble during the decision to search
process. On a high-level, the way we get around these issues is by relying on the fact that we
only need to derandomize a single fixed problem, and that effective derandomization yields a single
derandomized algorithm for solving it, and we can next show that if an error occurs during the
decision to search process, the location of the first mistake can be efficiently guessed.)

Characterizing Derandomization of prMA To show how to derandomize prMA, we instead
pass through a new notion of a non-deterministic targeted PRG, which can be instantiated from our
assumption and which implies derandomization of prMA.

To prove the converse direction, we proceed a bit different from the proof of Theorem 1.1—we can
no longer passing through the above-mentionned search-to-decision reduction, as no such reduction
is known for prMA. Instead, we show how to directly construct a leakage-resilient hard relation
from the assumption that prMA can be derandomized using a diagonalization argument. Roughly
speaking, we show that the above described BPP-search problem (of given a string x, finding some y
that is leakage-resilient hard to compute w.r.t. the first logn algorithms) actually is a leakage-reslient
hard relation assuming that prMA can be derandomized! First note that this problem trivially is in
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prMA and thus also in prNP under the assumption that prMA = prNP. More interestingly, if there
exists some attacker A that given an input x and given some efficient leakage on x can compute a y
in this relation, then this y cannot be in the relation (since by definition, y cannot be computed by
any efficient algorithm with small description), which is a contradiction.

2 Preliminaries

We assume familiarity with basic concepts such as Turing machines, polynomial-time algorithms, and
probabilistic algorithms and computational classes such as prBPP and prP. We say that a function f
is time-constructible if f is increasing and for all n ∈ N, f(n) can be computed by a Turing machine
in time poly(f(n)). We say that a class of functions C is nice if for all T ∈ C, t(p(n))q(n) ∈ C for all
polynomials p, q.

We say that D = {Dn}n∈N is an ensemble if for all n ∈ N, Dn is a probability distribution over
{0, 1}n. We say that an ensemble D = {Dn}n∈N is samplable if there exists a probabilistic polynomial
time Turing machine S such that S(1n) samples Dn.

2.1 Leakage Resilient Hardness of (Multi-output) Functions

We consider multi-output functions f : {0, 1}n → {0, 1}n (as opposed to binary functions, tradi-
tionally considered in the derandomization literature). We will focus on a leakage-resilient notion of
hardness. Roughly speaking, we say that f is (T, `)-leakage resilient hard if no T -time attacker can
compute f(x) given x and leak(x, f(x)), where leak is any T -time computable leakage function such
that leak(x, f(x)) ≤ `(|x|). We will consider this notion of in the context of almost-all-input hardness
[CT21] which requires all potential attackers to succeed only on finitely many inputs.

Definition 2.1 (Almost-all-input leakage-resilient hardness). Let f : {0, 1}n → {0, 1}n be a (multi-
output) function. We say that f is almost-all-input (T, `)-leakage resilient hard if for all T -time2

probabilistic algorithms leak, A satisfying leak(x, f(x)) ≤ `(|x|), for all sufficiently long strings x,
A(x, leak(x, f(x))) 6= f(x) with probability ≥ 2/3 (over their internal randomness).

The notion of leakage-resilient local hardness will be useful for us. In the local hardness condition,
we require no attacker A can produce each bit of f(x) given the input x together with the coordinate.
This allows us to consider attackers A that run in |x|ε time on input x.

Definition 2.2 (Almost-all-input leakage-resilient local hardness). Let f : {0, 1}n → {0, 1}n be a
(multi-output) function. We say that f is almost-all-input (T, `)-leakage resilient t-local hard for all
T -time probabilistic algorithms leak satisfying leak(x, f(x)) ≤ `(|x|), for all t-time probabilistic algo-
rithms A, for all sufficiently long strings x, A(x, leak(x, f(x))) locally computes f(x) with probability
at most ≥ 1/3 (over their internal randomness), where we say that A(x, leak(x, f(x))) locally computes f(x)
if for all i ∈ {0, 1}log |x|, i ≤ |x|, A(x, leak(x, f(x)), i) = f(x)i.

We simply say that f is almost-all-input (T, `)-leakage resilient local hard if there exists ε > 0
such that f is almost-all-input (T, `)-leakage resilient nε-local hard.

We remark that we are decoupling the running time T of the leakage function and the running
time t of the computing machine A. In addition, we only require hardness with respect to |x|ε-
time attackers A which can only read the first |x|ε bits of the string x.3 As mentioned in the

2To simplify notation, we say that an algorithm A(·, ·) runs in time T if A runs in T (n) time where n is the size of
the first input.

3We assume that A is a standard Turing machine with each input on a separate tape, and we do not assume that A
has oracle access to its inputs. This is a weaker hardness assumption than letting A have oracle access to the inputs.
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introduction, the notion of leakage-resilient local hardness enables us to capture the assumption that
E 6⊆ ioSIZE(2Ω(n)).

Lemma 2.3. If there exists a constant ε > 0 such that E 6⊆ ioSIZE(2εn), then there exists a function
f : {0, 1}n → {0, 1}n that is (nc, nε/2)-leakage resilient nε/2-locally hard for every c ≥ 1.

Proof: Let gn : {0, 1}n → {0, 1} be a E-computable function that requires circuits of size > 2εn

to compute (which is guaranteed to exist by the assumption). Consider the following multi-output
function f such that for each x ∈ {0, 1}∗,

f(x) = gk(1)|| . . . ||gk(2k)||0|| . . . ||0

where k = blog |x|c. Note that f(x) can be computed in time 2O(k) = 2O(log |x|) = |x|O(1) so f is
poly-time computable. Assume for contradiction that f is not (nc, nε/2)-leakage resilient nε/2-locally
hard. Then there exist attackers (A, leak) such that leak(x, f(x)) outputs at most |x|ε/2 bits and
A(x, leak(x, f(x))) computes f(x) locally in time |x|ε/2 for infinitely many x. For each such x and
input length k = blog |x|c, we will construct a 2εk-size circuit Ck to compute g on input length k,
which is a contradiction. Since A(x, leak(x, f(x))) locally computes f(x) in time |x|ε/2, there exists

a leakage string w ∈ {0, 1}|x|ε/2 and a random tape r ∈ {0, 1}|x|ε/2 such that for each i ∈ {0, 1}log |x|,
A(x,w, i; r) will compute f(x)i within time |x|ε/2, and it follows that A(x,w, i; r) will only read the
first |x|ε/2 bits of the string x; let x′ denote the |x|ε/2-bit prefix of x. Consider a circuit Ck having
the strings x′, w, r hardwired in it, and on input i ∈ {0, 1}k, it will compute A(x,w, i; r). Ck is of
size O(|x|ε/2 log |x|) ≤ 2εk that computes g on input length k, which concludes the proof.

In addition, we can also consider just “plain” (as opposed to leakage-resilient) hardness. As
above, we also require the hardness condition holds on almost all inputs.

Definition 2.4 (Almost-all-input hardness). Let f : {0, 1}n → {0, 1}n be a (multi-output) func-
tion. We say that f is almost-all-input T -hard if for all T -time probabilistic algorithms A, for all
sufficiently long strings x, A(x) 6= f(x) with probability ≥ 2/3 (over their internal randomness).

2.2 Targeted Pseudorandom Generator

We consider the notion of a targeted pseudorandom generator (targeted PRG) [Gol11a]. Roughly
speaking, a targeted pseudorandom generator G takes a seed along with a “target” string x as input,
and we require that its output is indistinguishable from uniform by (computationally-bounded)
distinguishers that additionally get the target x as input. In other words, G is just like a normal
PRG, but with the exception that both the PRG and the distinguisher get access to the auxiliary
“target” string x, and we require security to hold for all strings x. Since we consider PRGs in the
context of derandomization, we allow the running-time of the PRG to be larger than the running-time
of the distinguisher.

Definition 2.5 (Targeted pseudorandom generator [Gol11a]). Let G : 1n×{0, 1}`(n)×{0, 1}m(n) →
{0, 1}n be a computable function. We say that G is an T (n)-secure (`(n),m(n))-targeted pseudoran-
dom generator (T -secure (`(n),m(n))-targeted PRG) if for all deterministic attackers D that run in
T (n) time (where n is the length of its first input), for all sufficiently large n ∈ N and all strings
x ∈ {0, 1}`(n), it holds that

|Pr[s← {0, 1}m(n) : D(1n, x,G(1n, x, s)) = 1]− Pr[y ← {0, 1}n : D(1n, x, y) = 1]| < 1

6
.
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For any targeted PRG G, we say that G is O(T (n))-secure if for all constant c > 0, G is (cT (n))-
secure. Note that the length of the target string `(n) can be potentially larger than the running time
bound of the distinguisher T (n). In such cases, we only require security with respect to distinguishers
D which can only read the first T (n) bits of the target string. Note that this is a weaker security
requirement than allowing D to have oracle access to the target string.

It is well-known that a (non-uniformly) secure PRG can derandomize prBPP. When considering a
targeted uniformly-secure PRG, the same derandomization result still holds. This in essence follows
by the standard proof (that non-uniformly secure PRG derandomize prBPP), but with an additional
padding argument to deal with the “target”/auxiliary input.

Lemma 2.6 ([Gol11a]). Assume that there exist constants σ ≥ 1, θ ≥ 1 and a O(n)-secure (nθ, σ log n)-
targeted PRG G that runs in time t(n) ≥ n. Then, prBPP ⊆ ∪p,q∈polyprDTIME[t(p(n))q(n)].

For the sake of completeness, we refer the reader to Appendix A for a detailed proof.

3 Derandomization and Leakage Resilient Hardness

In this section, we show a characterization between derandomizing prBPP and the existence of almost-
all-input leakage resilient hard functions. Our result can be adapted to both the high-end and the
low-end setting.

Theorem 3.1. There exists a constant c ≥ 1 such that for all nice classes of functions C, the
following are equivalent.

1. prBPP ⊆ ∪T∈CprDTIME[T ].

2. The existence of a constant ε > 0, a function T ∈ C, and an almost-all-input (nc, nε)-leakage
resilient locally hard function f : {0, 1}n → {0, 1}n computable in deterministic time T .

3. For all d ≥ 1, there exist T ∈ C and an almost-all-input (nd, n− 3 log n)-leakage resilient hard
function f : {0, 1}n → {0, 1}n computable in deterministic time T .

Proof: The implication (1) ⇒ (3) follows from Theorem 3.8 (stated and proved in Section 3.1). To
show (2) ⇒ (1), we apply Lemma 3.9 (stated and proved in Section 3.2) to obtain a targeted PRG
and (1) follows from Lemma 2.6. (3) trivially implies (2).

We then state corollaries of Theorem 3.1 in both the high-end regime and the low end regime.
To characterize derandomizing prBPP in polynomial time, we take the class C in Theorem 3.1 to be
the class of polynomials poly(·).

Corollary 3.2. There exists a constant c ≥ 1 such that the following holds. prBPP = prP if and
only if there exists an efficiently computable multi-output function f that is almost-all-input (nc,

√
n)-

leakage resilient hard.

To characterize derandomizing prBPP in subexponential time prSUBEXP = ∩ε>0prDTIME[2n
ε
],

we consider the class C consisting of (all) time-constructible functions T such that T (n) is smaller
than 2n

ε
for all ε > 04, and we refer to a function f as being computable in subexponential time if

f runs in time 2n
ε

for all ε > 0.

4Note that this class is indeed nice since if T (n) < 2n
ε

for all ε > 0, it holds that T (p(n))q(n) < 2n
ε

for all ε > 0
and all polynomials p, q.
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Corollary 3.3. There exists a constant c ≥ 1 such that the following holds. prBPP ⊆ prSUBEXP
if and only if there exists an subexponential time computable multi-output function f that is almost-
all-input (nc,

√
n)-leakage resilient hard.

In addition, we note that the proof of Theorem 3.1 also yields the following amplification result
for leakage resilient hardness.

Theorem 3.4. There exists a constant c such that if there exist a constant ε > 0 and an almost-all-
input (nc, nε)-leakage-resilient hard function computable in time t(n), then for all d ≥ 1, there exist
polynomials p, q and an almost-all-input (nd, n − 3 log n)-leakage-resilient hard function computable
in time t(p(n))q(n).

Proof: The theorem follows from Lemma 3.9, Lemma 2.6, and Theorem 3.8.

Besides amplifying leakage resilience, we observe that by combining the result of Chen and Tell
with Theorem 3.1, we obtain a leakage-resilient hard function from a low-depth function with just
plain hardness.

Theorem 3.5. There exists some c such that the following holds. If there exists a function f
computable by polynomial-size logspace-uniform circuits with depth bounded by n2 that is almost-all-
input nc-hard, then for any constant d ≥ 1, there exists a polynomial-time computable almost-all-input
(nd, n− 3 log n)-leakage-resilient hard function.

Proof: Chen and Tell [CT21] showed that the existence of such f implies prBPP = prP. The
existence of a leakage-resilient hard function then follows from Theorem 3.1.

3.1 Leakage Resilient Hardness from Derandomization

We proceed to constructing a multi-output function that is almost-all-input leakage resilient hard.
Towards this, it is instructive to recall some ingredients from [Gol11a]. We first recall the definition
of a prBPP search problem.

Definition 3.6 (prBPP search problem). Let RYES and RNO be two disjoint binary relations ⊆
{0, 1}∗×{0, 1}∗. We say that (RYES, RNO) is a prBPP search problem if the following two conditions
hold.

1. The decisional problem (RYES, RNO) ∈ prBPP; that is, there exists a PPT algorithm V such
that for every (x, y) ∈ RYES it holds that Pr[V (x, y) = 1] ≥ 2/3, and for every (x, y) ∈ RNO it
holds that Pr[V (x, y) = 1] ≤ 1/3.

2. There exists a PPT algorithm A such that, for every x ∈ SRYES
, it holds that Pr[A(x) ∈

RYES(x)] ≥ 2/3, where RYES(x) = {y : (x, y) ∈ RYES} and SRYES
= {x : RYES 6= ∅}

It has also been shown in [Gol11a] that there exists a deterministic search to decision reduction
for prBPP by using techniques resembling the Conditional Expectation Method.

Theorem 3.7 (Search to decision reduction [Gol11a]). For every prBPP search problem (RYES, RNO),
there exists a binary relation R such that RYES ⊆ R ⊆ ({0, 1}∗×{0, 1}∗)\RNO and solving the search
problem of R is polynomial-time deterministically reducible to some decisional problem in prBPP.

Now we return to showing the existence of a multi-output function that is hard to compute on
almost all inputs with leakage assuming prBPP can be derandomized.
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Theorem 3.8. If prBPTIME[O(n)] ⊆ prDTIME[t(n)], then for any constant c ≥ 1, there exists a
function f : {0, 1}n → {0, 1}n running in time t(p(n))q(n) (for some polynomials p, q) such that f
is almost-all-input (nc, n− 3 log n)-leakage resilient hard.

Proof: We start by defining a prBPP-search problem which the task of constructing a leakage-
resilient hard function can be reduced to. Consider any constant c ≥ 1 and let `(n) = n−3 log n. To
construct an almost-all-input (nc, `(n))-leakage resilient hard function, for each input x ∈ {0, 1}n,
we need to find (uniformly) a string f(x) = r such that r is hard to compute (for any nc-time
algorithms) given x and any (nc-time) “side information” leaked from r. We observe that for any
attacker/leakage functions g, leak—even non-computable g, leak—with high probability over r, r will
satisfy the hardness with leakage condition w.r.t. g, leak.

Claim 1. For any probabilistic algorithms leak, g, for all n ∈ N, ` ≤ n, x ∈ {0, 1}n, with probability
at most 6 · 2−n+`+1 over random r ∈ {0, 1}n, it holds that

Pr [|leak(x, r)| ≤ ` ∧ g(x, leak(x, r)) = r] ≥ 1

6
(1)

Proof: Consider any n ∈ N, x ∈ {0, 1}n, and any probabilistic algorithm g. We will show that with
probability at most 6 · 2−n+`+1 over random r ∈ {0, 1}n, for any deterministic function leak′ that
outputs ≤ ` bits, it holds that

Pr[g(x, leak′(x, r)) = r] ≥ 1

6
(2)

The proof of Claim 1 will directly follow from Equation 2 by noting that given any probabilistic
leak, g, any n ∈ N, ` ≤ n, x ∈ {0, 1}n, we can consider the deterministic leak′ obtained by fixing the
random tape of leak to be such that it maximize the number r’s that satisfy Equation 1.

To show Equation 2, consider the set of “bad” r’s: B = {r : ∃w, |w| ≤ `,Pr[g(x,w) = r] ≥ 1/6}.
For any r ∈ {0, 1}n, if there exists a function leak′ that outputs ≤ ` bits and Pr[g(x, leak′(x, r)) =
r] ≥ 1

6 , it follows that r ∈ B. We now bound |B|. Note that are at most 2`+1 strings w such that
|w| ≤ `, and for each such w, there can be at most 6 strings ouput by g with probability ≥ 1/6; thus
we have that |B| ≤ 6 · 2`+1. It follows that the probability that a random r falls into B is at most
6 · 2−n+`+1.

Next, we note that if we only consider efficiently (and uniformly) computable g, leak, it suffices to
consider attacker/leakage functions of description length no more than log n. We can thus defined an
prBPP-search problem that will enable us to find a “hard” r w.r.t. all such efficient attacker/leakage
functions.

The BPP search problem: Let RYES be a binary relation such that (x, r) ∈ RYES if

1. |x| = |r|

2. For all probabilistic machines leak, g such that |leak| ≤ log n, |g| ≤ log n, it holds that

Pr
[
|leak′(x, r)| ≤ `(n) ∧ g′(x, leak′(x, r)) = r

]
<

1

6
(3)

where n denotes |x|, and leak′ and g′ denote “time-truncated” versions of leak, g that are only
executed for nc steps, where c is the constant in the lemma statement.

Let RNO be a binary relation such that (x, r) ∈ RNO if for at least one pair of leak and g with
|leak|, |g| ≤ log n, the above equation with 1

6 replaced by 1
3 does not hold.

We turn to showing that (RYES, RNO) is a prBPP search problem by presenting a verifying algo-
rithm V and a solution finding algorithm A.
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The search problem verifier: On input (x, r), the verifier V enumerates all probabilistic ma-
chines leak, g such that |leak|, |g| ≤ log n. V estimates the value

pleak,g = Pr
[
|leak′(x, r)| ≤ `(n) ∧ g′(x, leak(x, r)) = r

]
by running the following experiment for sufficiently many times and computing the average accep-
tance probability. In each experiment, V emulates leak(x, r) for nc steps, and emulates g(x, leak(x, r))
for nc steps. V accepts in this experiment if g(x, leak(x, r)) = r. After estimating the average accep-
tance probability for each pair of leak and g, V outputs 1 if the estimated values of pleak,g are < 3

12
for all pairs of leak, g. By the Chernoff bound and the Union bound, V will accept if (x, r) ∈ RYES

(and reject if (x, r) ∈ RNO) with very high probability.

The solution finder: We next construct a solution finding algorithm A such that (x,A(x)) ∈ RYES

with high probability for all x. On input x, A simply outputs a random string of the same length.
For any fixed x ∈ {0, 1}n, by Claim 1 and a Union bound over the choice of leak and g, we conclude
that A(x) outputs a valid witness with probability at least 1− 6n2 · 2−n+`(n)+1 ≥ 2

3 .

Constructing the hard function f : Finally, we show how to construct a function f that is hard
to compute in the presence of any leakage, by making use of the prBPP search problem (RYES, RNO).
By Theorem 3.7, there exists a binary relation R such that RYES ⊆ R ⊆ ({0, 1}∗×{0, 1}∗)\RNO and
solving the search problem of R is polynomial-time deterministic reducible to some decisional prBPP
problem. This leads us to our construction of f . On input x, f solves the search problem of R and
outputs a R-witness of x. We first show that f is almost-all-input (nc, `(n))-leakage resilient hard.
Consider any nc-time algorithms leak and g satisfying |leak(x, f(x))| ≤ `(|x|), all sufficiently large
inputs x ∈ {0, 1}n such that |g| ≤ log n and |leak| ≤ log n. Since R and RNO are disjoint and f solves
the search problem of R, (x, f(x)) 6∈ RNO and this implies that

Pr [g(x, leak(x, f(x))) 6= f(x)] ≥ 2

3

We turn to proving that f runs in deterministic time t(p(n))q(n) for some polynomials p, q, which will
conclude our proof. Recall that f can be polynomial-time deterministically reduced to a decisional
problem Π ∈ prBPP. Since prBPTIME[O(n)] ⊆ prDTIME[t(n)], by padding instances in Π so that
the probabilistic algorithm for Π now runs in linear time in the length of the padded instance, it
follows that Π ∈ prDTIME[t(p′(n))] (for some polynomial p′). This, combined with the fact that
the reduction runs in deterministic polynomial time, shows that f can be computed in deterministic
time t(p′(a(n)))b(n) for some polynomials a, b and the claim follows.

3.2 Derandomization from Leakage Resilient Hardness

We turn our attention to the converse direction and we will show how to obtain a targeted PRG,
which is later used to derandomize prBPP, from an almost-all-input leakage resilient hard function.
Combining the result from the previous section, we will obtain a characterization between deran-
domization and leakage resilient hardness.

Lemma 3.9. There exists a constant c ≥ 1 such that the following holds. Assume that there exist a
constant ε > 0 and an almost-all-input (nc, nε)-leakage resilient nε-locally hard function f : {0, 1}n →
{0, 1}n computable in deterministic time t(n) ≥ n. Then there exist constants σ, θ ≥ 1 and a O(n)-
secure (nθ, σ log n)-targeted PRG computable in time t(nθ)poly(n).
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The proof of Lemma 3.9 relies on the notion of black-box PRG construction from a worst-case
hard function f [STV01, Vad12]. Roughly speaking, this notion of black-box PRG from a function f
requires the existence of an efficient oracle algorithm that given (a) some fixed advice string, and (b)
black-box access to any distinguisher for the PRG, is able to compute function f . Following, [IW98],
we will here consider a strengthening of this notion of a black-box construction, simply referred to
as strongly black-box, where also the advice string can be efficiently computed using black-box access
to f .

Definition 3.10. Let g : 1n × 1m × {0, 1}d → {0, 1}m be a (deterministic) oracle algorithm, and let
k(·) be functions. We say that g is a k-reconstructive PRG construction if there exist PPT oracle
algorithms R,M such that for every f : [n]→ {0, 1} and T : {0, 1}m → {0, 1}, if

|Pr[T (gf (1n, 1m,Ud)) = 1]− Pr[T (Um) = 1]| ≥ 1

6

then Mf,T (1n, 1m) will output at most k(n,m) bits such that for all i ∈ [n],

RT (Mf,T (1n, 1m), i) = f(i)

with probability at least 2/3.

We next observe that the Sudan-Trevisan-Vadhan PRG [STV01] obtain by combining a locally
list-decodable error correcting code [STV01] and the Nisan-Wigderson PRG construction [NW94]
yields a strongly black-box construction of a PRG. We note that [Vad12] previously argued that this
construction is black-box; we here simply observe that the advice string needed can be efficiently
computed.

Theorem 3.11 (Extending [STV01]; see also [Vad12, Theorem 7.67]). There exists a k-reconstructive
PRG construction g : 1n×1m×{0, 1}d → {0, 1}m such that for every m ∈ N, n ≥ m, f : [n]→ {0, 1}
the following conditions are satisfied:

1. Explicitness: gf is computable in uniform time poly(m,n).

2. Seed length: d(n,m) = O(log2 n/ logm).

3. Reduction advice length: k(n,m) = poly(m, log n).

Since the proof follows standard techniques, we have deferred it to Appendix B.

Return to proving Lemma 3.9 We are now ready to prove Lemma 3.9 by relying on the above
result.
Proof: [of Lemma 3.9] Consider any constant ε > 0.

A padding trick. In this proof, we will use a padding argument to make the leakage we need
as small as it is required. Let m denote the output length of the targeted PRG that we hope to
construct. Let n denote the input length of the multi-output function f . Let θ = O(1/ε) ∈ N be a
constant such that 1

θ is sufficiently smaller than ε. In this proof, we usually assume that n = poly(m)
and it holds that n = n(m) = mθ. In some cases depending on the context, m is defined w.r.t. n
and it holds that m(n) = bn1/θc (and we can think of m as being sublinear in n).

Constructing the PRG. Let g be the k-reconstructive PRG obtained from Theorem 3.11, and
let R,M be the algorithms associated with g (as in Definition 3.10). We will consider a function

G : 1m × {0, 1}mθ × {0, 1}d → {0, 1}m. On input (1m, x, y) where x ∈ {0, 1}mθ , y ∈ {0, 1}d, the
algorithm G proceeds in the following steps.
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• G first computes z = f(x). Let n = mθ = |z|.

• G outputs
G(1m, x, y) = gz(1n, 1m, y)

Note that the seed length of the PRG d(n,m) = O(log2 n/ logm) so we can let σ be a constant such

that d = σ logm and G is now a function of the form 1m × {0, 1}mθ × {0, 1}σ logm → {0, 1}m.
We claim that G is a O(m)-secure (mθ, σ logm)-targeted PRG. Suppose not; then there exists a

O(m)-time deterministic distinguisher D such that for infinitely many m ∈ N, n = mθ, x ∈ {0, 1}n,∣∣∣Pr[v ← {0, 1}σ logm : D(1m, x,G(1m, x, v)) = 1]− Pr[w ← {0, 1}m : D(1m, x, w) = 1]
∣∣∣ ≥ 1

6
(4)

(Note that D runs in time O(m) so it is unable to read the whole string x.) We will prove that f
can be computed locally in nε time with nc-time computable leakage, for some constant c which we
will fix later.

Computing f with leakage. We will construct a nc-time algorithm leak, and a nε-time (local)
algorithm A, where leak(x, f(x)) will produce a |x|ε-bit leakage and A(x, leak(x, f(x)) will locally
compute the function f(x) on input x for infinitely many x (i.e., those inputs x on which Equation 4
holds). The algorithms A and leak will collaboratively proceed as follows. On input x, z, leak
computes n = |x| and m = bn1/θc, and leak simply outputs M z,D(1m,x,·)(1n, 1m). We turn to
constructing the algorithm A. On input x, the output of leak (denoted by a), and a bit index i ∈ [n],
A simply outputs RD(1m,x,·)(a, i).

Analyzing the reduction. We turn to analyzing the reduction. We first show thatA(x, leak(x, f(x)), i)
will indeed compute f(x)i for all i ∈ [|x|] on infinitely many inputs x. This follows from the cor-
rectness of the distinguisher D, and the security of the reconstructive PRG g. In more detail,
let us fix a (sufficiently long) string x ∈ {0, 1}n w.r.t. which Equation 4 holds. Note that the
distinguisher D(1m, x, ·) will also distinguish the reconstructive PRG gz(1n, 1m, ·), and therefore
A(x, leak(x, f(x)), i) will output

RD(1m,x,·)(M z,D(1m,x,·)(1n, 1m), i)

which equals zi = f(x)i with probability at least 2/3. In addition, leak(x, f(x)) is short and of
length at most nε (due to our choice of θ). Since leak(x, f(x)) contains the reduction advice for the
reconstructive PRG g, and by Theorem 3.11 it is at most of length poly(m, log n) = poly(n1/θ, log n),
which is at most nε (since θ is picked to be much larger than 1/ε).

We proceed to showing that leak runs in time nc (for some sufficiently large universal constant
c) and A runs in time nε. Note that leak simply invokes the algorithm M on input 1n, 1m (given z
and D(1m, x, ·)), M runs in polynomial time, and D runs in time O(m). It follows that leak runs
in time poly(n) and we can pick c to be large enough such that leak runs in time nc. A will call
the algorithm R on input (a, i), which (as argued above) is of length at most n2/θ. Since R runs in
polynomial time, A runs in time poly(n2/θ) which will be at most nε if we pick θ much larger than
1/ε.

It remains to show that G runs in time t(mθ)poly(m). Note that it takes t(mθ) time to compute
z = f(x), and the construction g runs in time polynomial in n = mθ. Thus, it follows that G(1m, x, ·)
runs in time t(mθ)poly(m).

4 Derandomization and Average Case Leakage-resilient Hardness

We turn to showing that the connection between derandomization of prBPP and the existence of a
leakage-resilient hard function established in the previous section also holds in the average case, where
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our focus lies on derandomization of prBPP on inputs produced by some probabilistic polynomial-
time sampler (or more generally, by probabilistic T -time sampler for some super-polynomial T ).
We prove that average-case derandomization is characterized by an average-case notion of leakage-
resilient hardness. Informally, a function f is said to be average-case leakage-resilient hard with
respect to some distribution D if the hardness condition holds on inputs sampled from D.

Definition 4.1 (Average-case Leakage-resilient Hardness). Let f : {0, 1}n → {0, 1}n be a (multi-
output) function. We say that f is α-average-case (T, `)-leakage resilient hard on an ensemble D =
{Dn}n∈N if for all T -time probabilistic algorithms leak, A satisfying leak(x, f(x)) ≤ `(|x|), for all
sufficiently large n ∈ N, it holds that

Pr[x← Dn : A(x, leak(x, f(x))) computes f(x)] ≤ 1− α(n)

where for any string x ∈ {0, 1}∗, we say that A(x, leak(x, f(x))) computes f(x) if A(x, leak(x, f(x))) =
f(x) with probability at least 1

3 (over internal randomness of A and leak).
We say that f is simply average-case (T, `)-leakage resilient hard on D if it is (1− 1/p)-average-

case (T, `)-leakage resilient hard on D for all polynomials p.

We then discuss what average-case derandomization of some promise problem means. Roughly
speaking, we require that no probabilistic poly-time sampler (which is referred to as a refuter
in [Kab01]) can find an “error” in the derandomization, where an “error” is an instance/input
that lies in the symmetric difference between the two promise problems (where one is the promise
problem we aim to derandomize, the other one is the promise problem we obtain after deran-
domization). We now recall the notion of symmetric difference. For any two sets S1, S2, let
∇(S1, S2) denote (S1\S2) ∪ (S2\S1). Let Π1 = (Π1,YES,Π1,NO) and Π2 = (Π2,YES,Π2,NO) be two
promise problems. We let ∇(Π1,Π2) denote the symmetric difference between Π1 and Π2 where
∇(Π1,Π2) = ∇(Π1,YES,Π2,YES) ∪∇(Π1,NO,Π2,NO).

We proceed to introducing the notion of effective containment, which will be used to (formally)
capture the notion of average-case derandomization of some class of promise problems.

Definition 4.2 (Effective Containment [Gol11a]). Let D1,D2 be two classes of promise problems.
We say that D1 is effectively contained in D2 (denoted by D1 ⊆poly D2) if for all promise problems
Π1 ∈ D1, there exists a promise problem Π2 ∈ D2, such that for all polynomials p, all polynomial-time
probabilistic samplers F , and for all sufficiently large n,

Pr[x← F (1n) : x ∈ ∇(Π1,Π2) ∩ {0, 1}n] ≤ 1

p(n)

As mentioned before, we remark that the above notion slightly differs from what Goldreich
formally defined in [Gol11a], but in our eyes, the notion we consider is more suitable for considering
“derandomization” from a practical perspective5

We are now ready to present the result formally.

Theorem 4.3. There exists a constant c such that for every 0 < ε < 1, the following are equivalent:

• prBPP ⊆poly prP.

5Goldreich defines the notion of effective containment with respect to some polynomial p and he characterizes deran-
domization of prBPP where for each promise problem Π1 ∈ prBPP and each polynomial p, there exists a derandomized
promise problem Π2 such that no p-time algorithm can tell apart Π1 and Π2 with probability 1/p. In other words, the
problem Π2 may be dependent on the running time of the “attacker/sampler”. In contrast, the notion we consider has
a different order of quantifiers where for each promise problem Π1 ∈ prBPP, we obtain a single promise problem Π2

such that no poly-time algorithm can only find a “mistakes” with noticeable probability.
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• The existence of a multi-output function f : {0, 1}n → {0, 1}n computable in deterministic poly-
nomial time that is average-case (nc, nε)-leakage resilient hard on all samplable distributions.

Proof: The implication (1) ⇒ (2) follows from Theorem 4.5 (stated and proved below). To show
(2)⇒ (1), we apply Lemma 4.9 (stated and proved below) to obtain a targeted PRG and (1) follows
from Lemma 4.8.

Remark 4.4. We remark that Theorem 4.3 can be generalized to the low-end setting. For example,
to effectively derandomize prBPP into prSUBEXP, we need to consider a stronger notion of average-
case leakage-resilient hardness and effective containment where the finder/refuter is allowed to run in
subexponential time. (Note that we also allow the hard function to be computable in subexponential
time (as opposed to just polynomial time) so the actual assumption seems incomparable.) See more
details in Remark 4.6 after Theorem 4.5. (On the other hand, the rest of Lemmas we need in the
above proof (Lemma 4.9 and Lemma 4.8) directly extend to the low-end setting with the stronger
notion of effective containment and average-case hardness.)

Towards proving Theorem 4.3, we start by showing that average-case leakage-resilient hard func-
tion can be obtained from “effective” derandomization of prBPP, which proves one implication in
Theorem 4.3.

Theorem 4.5. Let t be some polynomial. If prBPTIME[O(n)] ⊆poly prDTIME[t(n)], then for any
constant c ≥ 1, there exists a function f : {0, 1}n → {0, 1}n running in time t(p(n))q(n) (for some
polynomials p, q) such that f is average-case (nc, n− 3 log n)-leakage resilient hard on all samplable
distributions.

Proof: This theorem can be viewed as an average-case analog of Theorem 3.8, so we will borrow
many notations from Theorem 3.8. For any constant c ≥ 1, let (RYES, RNO) be the prBPP search
problem, R be the binary relation as in the proof of Theorem 3.8. Let Π1 denote the decisional
problem ∈ prBPP that the search problem of R can be reduced to (see more details in Theorem 3.8).
Let M(x) be the deterministic decision-to-search reduction (for R) such that M(x)Π1 will output a
R-witness of x.

Recall that the leakage resilient hard function obtained in Theorem 3.8 runs the reduction M and
answers its oracle queries by using a (perfect) derandomization of Π1. Since a perfect derandomization
is no longer available in this proof, we will instead assist M with an effective derandomization of
Π1. To obtain the effective derandomization, we first pad instances in Π1 such that the probabilistic
algorithm for Π1 now runs in linear time in the length of padded instances, and let Π1,padded denote
the padded version. Since Π1,padded ∈ prBPTIME[O(n)], there exists a promise problem Π2,padded ∈
prDTIME[t] such that no one can tell apart Π1,padded and Π2,padded. We will use Π2,padded to construct
our function f . On input x, f(x) runs the reduction M(x) with the help of Π2,padded (by sending
the padded oracle queries to Π2,padded) and outputs the output of the reduction. Note that f is
deterministic since M (and Π2,padded) is, and the running time of f follows from the same analysis
as in Theorem 3.8.

We next show that f is average-case (nc, n − 3 log n)-leakage resilient hard on all samplable
distributions. Assume for contradiction that there exist a polynomial p′, a PPT sampler S, nc-time
algorithms g, leak, such that with probability 1/p′(n) (over the internal randomness of S), S(1n)
finds an input x on which g(x, leak(f(x), x)) computes f(x), for infinitely many n ∈ N. We will
construct a PPT refuter F (using S) to tell apart Π1,padded and Π2,padded (which is a contradiction).
On input 1n

′
(the padded input length), our refuter F (1n

′
) runs S(1n) to obtain an input x (where

n is the unpadded input length and n can be computed from n′). Consider some sufficiently large n
and x such that g(x, leak(f(x), x)) computes f(x) (so such x can be sampled by S with probability
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at least 1/p′(n)). It follows that (x, f(x)) ∈ RNO and (x, f(x)) 6∈ R. Since M is a good reduction,
there exists at least one oracle query of M(x) that is answered incorrectly (by Π2,padded). Since
M(x) makes at most polynomially many queries, the refuter F can guess randomly the index of
the first (incorrectly answered) query i ∈ [q′(n)] (for some poly q′), and output the i-the query of
M(x) (by feeding the answers to the prior (i−1) queries to M(x) using Π2,padded). Therefore, F (1n

′
)

will output an instance in the symmetric difference between Π1,padded and Π2,padded with probability
1

p′(n)q′(n) ≥
1

p′(n′)q′(n′) and F runs in time p′(n) + q′(n) · t(n′) ≤ p′(n′) + q′(n′) · t(n′), for infinitely

many n′. This contradicts to the assumption and we conclude that f is average-case leakage-resilient
hard.

Remark 4.6. We observe that the sampler F we construct in the above proof runs in time p′+ q′ · t.
When considering the low-end derandomization of prBPP, it only holds that prBPTIME[O(n)] is
effectively contained in prDTIME[t(n)] for some super-polynomial t. Therefore, we will require a
stronger notion of average-case leakage-resilient hardness and a stronger notion of effective contain-
ment (where the refuter is also allowed to run in super-polynomial time).

We proceed to proving the other implication in Theorem 4.3, which asserts that an average-case
leakage-resilient hard function can be employed to derandomize prBPP effectively. Towards this, we
introduce the notion of an average-case targeted PRG, which is an average-case analog of a targeted
PRG where the security is only required to hold on targets sampled from some samplable distribution.

Definition 4.7 (Average-case Targeted pseudorandom generator). Let G : 1n×{0, 1}`(n)×{0, 1}m(n) →
{0, 1}n be a computable function. We say that G is an T (n)-secure α(n)-average-case (`(n),m(n))-
targeted pseudorandom generator on ensembleD = {Dn} of targets (T -secure α-average-case (`(n),m(n))-
targeted PRG on D) if for all deterministic attackers A that run in T (n) time (where n is the length
of its first input), for all sufficiently large n ∈ N, it holds that

Pr[x← Dn : G is secure on x w.r.t. A] ≥ α(n)

where for all x ∈ {0, 1}n, we say that G is secure on x w.r.t. A if

|Pr[s← {0, 1}m(n) : A(1n, x,G(1n, x, s)) = 1]− Pr[y ← {0, 1}n : A(1n, x, y) = 1]| < 1

6
.

We say that G is simply T -secure average-case (`(n),m(n))-targeted PRG on D if it is (1−1/p)-
average-case targeted on D for all polynomials p.

Analogous to the almost-all-input setting (where we showed that a targeted PRG is sufficient
to derandomize prBPP), we show that the existence of an average-case targeted PRG implies an
effective derandomization of prBPP.

Lemma 4.8. Assume that there exist constants σ ≥ 1, θ ≥ 1 and a O(n)-secure average-case
(nθ, σ log n)-targeted PRG G running in time t(n) ≥ n that is average-case targeted on all sam-
plable distributions. Then, prBPP is effectively contained in ∪p,q∈polyprDTIME[t(p(n))q(n)].

Proof: This lemma follows from the proof of Lemma 2.6 since the security reduction in Lemma 2.6
is one-to-one with respect to instances/targets. The reduction shows that an instance on which
the derandomization fails6 is also a target (up to some padding) on which the targeted PRG G is
broken, and this mapping is one-to-one. The lemma follows since the padding argument only pads

6Note that we can guarantee that an instance in the symmetry difference is also an instance on which the deran-
domization fails by restricting the derandomized promise problem within the promise of the original problem.
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an instance to a polynomially longer target string (so the same sampler will still succeed with high
probability with respect to the length of the padded target string).

Finally, we show that a targeted PRG can be obtained from an average-case leakage-resilient
hard function, and (as consequence) the targeted PRG will be only average-case targeted. This
completes the characterization between effective derandomization and leakage-resilient hardness in
the average-case.

Lemma 4.9. There exists a constant c ≥ 2 such that the following holds. Assume that there exist a
constant ε > 0 and a function f : {0, 1}n → {0, 1}n computable in deterministic time t(n) ≥ n that is
average-case (nc, nε)-leakage resilient hard on all samplable distributions. Then there exist constants
σ, θ ≥ 1 and a O(n)-secure average-case (nθ, σ log n)-targeted PRG computable in time t(nθ)poly(n)
that is average-case targeted on all samplable distributions.

Proof: This lemma will also follow from the proof of Lemma 3.9 since the security reduction in
Lemma 3.9 is one-to-one with respect to instances/targets. The reduction shows that a target on
which the targeted PRG G is broken is also an input on which the function f can be computed with
some leakage, and this mapping is one-to-one. Note that Lemma 3.9 requires a local hard function,
and a (nc, nε)-leakage resilient hard function is trivially a (nc, nε)-leakage resilient nε-locally hard
function if c ≥ 2. Thus, the lemma follows.

5 Characterizing Derandomization of prMA

In this section, we present a characterization between derandomization and leakage-resilient hardness
regarding prMA and prNP. In the non-deterministic setting, we need to consider a notion of leakage-
resilient hard relations (generalizing the notion of leakage-resilient hard functions), which will be
both sufficient and necessary to derandomize prMA.

For any relation R ⊆ {0, 1}∗×{0, 1}∗ and any class of languages C, we say that R is computable
in C if there exists a language L ∈ C such that (x, y) ∈ R iff (x, y) ∈ L.

Definition 5.1 (Leakage Resilient Hard Relation). Let R ⊆ {0, 1}∗ × {0, 1}∗ be a relation such that
for every (x, y) ∈ R, |x| = |y|. We say that R is almost-all-input (T (·), `(·))-leakage resilient hard if
the following two conditions hold.

• (Non-triviality.) For every x ∈ {0, 1}∗, R(x) = {y : (x, y) ∈ R} 6= ∅.

• (Leakage-resilient.) For all T -time probabilistic algorithms leak, A satisfying leak(x, y) ≤ `(|x|),
for all sufficiently long strings x, y satisfying (x, y) ∈ R, A(x, leak(x, y)) 6= y with probability
≥ 2/3 (over their internal randomness).

Now we are ready to state our characterization of derandomizing prMA.

Theorem 5.2. There exists a constant c ≥ 1 such that for all nice classes of functions C, all
constants 0 < ε < 1, the following are equivalent.

1. prMA ⊆ ∪T∈CprNTIME[T ].

2. The existence of a function T ∈ C and an almost-all-input (nc, nε)-leakage resilient hard relation
R ⊆ {0, 1}∗ × {0, 1}∗ computable in NTIME[T ].

Proof: The implication (1) ⇒ (2) follows from Theorem 5.3 (stated and proved below). To show
(2) ⇒ (1), we apply Lemma 5.6 (stated and proved in below) to obtain a targeted PRG and (1)
follows from Lemma 5.5.
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As demonstrated in the proof above, the proof Theorem 5.2 contains two parts. In the first
part, we show that we can directly obtain a leakage-resilient hard relation from the assumption that
prMA = prNP without relying on a search-to-decision reduction.

Theorem 5.3. If prMATIME[O(n)] ⊆ prNTIME[t(n)], then for any constant c ≥ 1, there exists a
relation R computable in NTIME[t(p(n))] (for some polynomials p) that is almost-all-input (nc, n −
3 log n)-leakage resilient hard.

Proof: For any constant c ≥ 1, let (RYES, RNO) be the prBPP-search problem defined in the proof
of Theorem 3.8. Note that the promise problem Π = (RYES, RNO) is in prBPP, and therefore Π ∈
prMA. Since prMATIME[O(n)] ⊆ prNTIME[t(n)], by padding instances in Π so that the probabilistic
verifier for Π now runs in linear time in the length of the padded instances, it follows that Π ∈
prNTIME[t(p(n))] (for some polynomial p). Let V be the deterministic verifier for Π and let L be
the language associated with V . Let R be a relation such that (x, y) ∈ R iff (x, y) ∈ L and |x| = |y|.
It follows that R can be computed in NTIME[t(p(n))].

We then show that R is almost-all-input (nc, n − 3 log n)-leakage resilient hard. Consider any
probabilistic nc-time algorithms leak and g satisfying leak(x, y) ≤ |x| − 3 log |x|, all sufficiently large
n ∈ N such that |g| ≤ log n and |leak| ≤ log n, all strings x, y ∈ {0, 1}n such that (x, y) ∈ R. Since
(x, y) ∈ R, (x, y) 6∈ RNO. It follows that g(x, leak(x, y)) 6= y with probability 2/3. This shows that R
is almost-all-input leakage-resilient hard and concludes the proof.

In the second part of the proof, we prove the converse implication of Theorem 5.3. We rely on the
following non-deterministic variant of a targeted PRG (where the PRG takes as input an additional
witness whose validity can be checked by an verifier).

Definition 5.4 (Targeted non-deterministic pseudorandom generator). Let G : 1n × {0, 1}`(n) ×
{0, 1}`(n) × {0, 1}m(n) → {0, 1}n be a computable function. We say that G is an T (n)-secure
(`(n),m(n))-targeted non-deterministic pseudorandom generator (T -secure (`(n),m(n))-targeted NPRG)
if there exists a non-deterministic verifier V such that the following two conditions hold:

• For all sufficiently large n ∈ N, for all x ∈ {0, 1}`(n), there exists w ∈ {0, 1}`(n), |w| = |x|, and
V (1n, x, w) = 1.

• For all deterministic attackers D that run in T (n) time (where n is the length of its first input),
for all sufficiently large n ∈ N and all strings x,w ∈ {0, 1}`(n) satisfying V (1n, x, w) = 1, it
holds that

|Pr[s← {0, 1}m(n) : D(1n, x,G(1n, x, w, s)) = 1]− Pr[y ← {0, 1}n : D(1n, x, y) = 1]| < 1

6
.

We say that a targeted NPRG G is computable in time T (for some function T ) if G is computable
in time T (with respect to the length of its first input) and there exists a verifier for G computable
in non-deterministic time T (w.r.t. the length of its first input).

We then show that the notion of a targeted NPRG is indeed useful by proving that it can be
used to derandomize prMA.

Lemma 5.5. Assume that there exist constants σ ≥ 1, θ ≥ 1 and a O(n)-secure (nθ, σ log n)-targeted
NPRG G that is computable in time t(n) ≥ n. Then, prMA ⊆ ∪p,q∈polyprNTIME[t(p(n))q(n)].

Proof: To show that prMA ⊆ ∪p,q∈polyprNTIME[t(p(n))q(n)], it suffices to prove that prMATIME[O(n)] ⊆
∪p,q∈polyprNTIME[t(O(n))poly(n)] (and by a standard padding argument in which we pad instances
in prMATIME[p(n)] to length p(n), the claim follows). We will show that for any linear-time ran-
domized verifier V (that uses as many random coins as its input length and also takes a witness
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of the same length), there exists a non-deterministic t(n)poly(n)-time machine N such that for all
sufficiently large n ∈ N, x ∈ {0, 1}n, if there exists w ∈ {0, 1}n such that Prr[V (x,w; r) = 1] ≥ 2

3 ,
then N(x) accepts; and if for all w ∈ {0, 1}n, Prr[V (x,w; r) = 0] ≥ 2

3 , N(x) rejects (where r denotes
the random coins of V ).

If θ > 1, we need to consider the following padded version of V (to obtain a long enough
target string for the targeted NPRG). For any x,w ∈ {0, 1}∗ such that |x| = |w|, let pad(x,w) =

xw0(2|x|)θ−2|x|; that is, we pad as many ‘0’ at the end of x||w until it becomes of length (2|x|)θ. Let
V ′ be an algorithm such that V ′(12|x|, pad(x,w); r) = V (x,w; r) for any x,w, r. (In more detail, V ′

on input (1m, y; r), splits the m-bit prefix of y into two parts of equal length to obtain x,w, and
simply returns V (x,w; r).) If θ = 1, we define pad and V ′ in the natural way.

We proceed to describing the non-deterministic machine N . Let VNPRG be the verifier of G. On
input x ∈ {0, 1}n, N(x) guesses a witness w and a NPRG witness wNPRG. N(x) then enumerates all
possible seeds v of the targeted NPRG G. Finally, N(x) accepts if VNPRG(12n, pad(x,w), wNPRG) = 1
and the majority of V ′(12n, pad(x,w);G(12n, pad(x,w), wNPRG, v)) among all possible seeds v equals
1. Note that N(x) invokes VNPRG once, and invokes G and V ′ for 2|v| = poly(n) times. Thus, N(x)
runs in time t(2n)poly(n).

Finally, we prove the correctness of N . Since G is a O(m)-secure (mθ, σ logm)-targeted NPRG
G and V ′ runs in deterministic time O(|x|), it follows that G is secure with respect to V ′; that is, for
all sufficiently large n ∈ N, all x,w ∈ {0, 1}n, all wNPRG such that VNPRG(12n, pad(x,w), wNPRG) = 1,
it holds that∣∣∣Pr[r ← {0, 1}2n :V ′(12n, pad(x,w); r) = 1]

− Pr[v ← {0, 1}σ log(2n) : V ′(12n, pad(x,w);G(12n, pad(x,w), wNPRG, v)) = 1]
∣∣∣ < 1

6

Consider any sufficiently large n ∈ N and x ∈ {0, 1}n. If there exists a witness w ∈ {0, 1}n such that
Prr[V (x,w; r) = 1] ≥ 2

3 , it follows that V ′(12n, pad(x,w); r) = 1 with probability 2
3 over r. Since

VNPRG is the verifier ofG, there exists a NPRG witness wNPRG such that VNPRG(12n, pad(x,w), wNPRG) =
1. Given w and wNPRG, the majority bit computed in N(x) will be 1 (due to the security of G) and
N(x) will accept. If for all w ∈ {0, 1}n, Prr[V (x,w; r) = 0] ≥ 2

3 . Consider any NPRG withness
wNPRG. If VNPRG accepts wNPRG, the majority bit N(x) obtains will be 0. Therefore, N(x) will
reject.

It remains to show that the existence of a leakage-resilient hard relation implies the existence
of a targeted NPRG, which can be proved by generalizing Lemma 3.9 to allow non-deterministic
computation.

Lemma 5.6. There exists a constant c ≥ 1 such that the following holds. Assume that there exist
a constant ε > 0 and an almost-all-input (nc, nε)-leakage resilient hard relation R computable in
NTIME[t]. Then there exist constants σ, θ ≥ 1 and a O(n)-secure (nθ, σ log n)-targeted NPRG GN

computable in time t(nθ)poly(n).

Proof: The proof of Lemma 3.9 will also prove Lemma 5.6 with some modifications to adapt to non-
determinism. For any ε > 0, let θ, σ be the constants, and G : 1m×{0, 1}mθ ×{0, 1}σ logm → {0, 1}m
be the targeted PRG as in Lemma 3.9. We will replace the leakage-resilient hard function f used
in the construction of G by a leakage-resilient hard relation. Let GN : 1m × {0, 1}mθ × {0, 1}mθ ×
{0, 1}σ logm → {0, 1}m be a function defined as follows. On input (1m, x, w, y), GN proceeds as G
does on input (1m, x, y), except that in the first step, GN lets z = w. (Note that G only depends
on the the function f in the first step, so GN can proceed to the rest steps without f .) Since R
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is computable in NTIME[t], let N be the non-deterministic machine deciding R. Let V be a non-

deterministic verifier such that V (1m, x, w) = N(x,w) where x,w ∈ {0, 1}mθ . We will show that GN

is a O(nθ)-secure (nθ, σ log n)-targeted NPRG with verifier V .
Note that the function GN is computable in polynomial time, and the verifier runs in non-

deterministic time t(mθ). So the targeted NPRG GN is computable in time t(mθ)poly(m). Due to

the non-triviality of R, it holds that for every m ∈ N, x ∈ {0, 1}mθ , there exists a witness w ∈ {0, 1}mθ

such that V (1m, x, w) = 1.
We proceed to arguing the security of the targeted NPRG GN. Assume for contradiction that

there exists aO(m)-time deterministic distinguisherD that breaks the targeted NPRGGN(1m, x, w, ·)
on infinitely many m ∈ N, n = mθ, x,w ∈ {0, 1}n satisfying V (1m, x, w) = 1. We refer to such (x,w)
as being good. Let leak, A be the attackers constructed in Lemma 3.9. Note that the attacker leak
run in probabilistic time nc, leak(x,w) ≤ |x|ε. The attacker A runs (locally) in nε time, and therefore
A runs in n · nε to produce every bit in the output. The security proof in Lemma 3.9 will also show
that A(x, leak(x,w)) computes w (with probability 2/3) on such good x,w. Since V (1m, x, w) = 1,
it follows that (x,w) ∈ R, which contradicts to the leakage-resilient hardness of R. This concludes
the proof.
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A Proof of Lemma 2.6

Proof: To show that prBPP ⊆ ∪p,q∈polyprDTIME[t(p(n))q(n)], it suffices to prove that prBPTIME[O(n)] ⊆
prDTIME[t(O(n))]poly(n) (and by a standard padding argument in which we pad instances in prBPTIME[p(n)]
languages to length p(n), the claim follows). We will show that for any linear-time randomized al-
gorithm A (that uses as many random coins as its input length), there exists a t(n)poly(n) time
deterministic algorithm B such that for all sufficiently long x ∈ {0, 1}∗, if Prr[A(x; r) = 1] ≥ 2

3 , then
B(x) = 1; and if Prr[A(x; r) = 0] ≥ 2

3 , then B(x) = 0 (where r denotes the random coins that A
uses).

If θ > 1, the following padding argument is needed. For any string x ∈ {0, 1}∗, let x′ be the

string x0|x|
θ−|x|; that is, we pad as many ‘0’ at the end of x until it becomes of length |x|θ. Let A′

be an algorithm such that A′(1|x|, x′; r) = A(x; r) for any x, r. 7

We proceed to constructing a deterministic algorithm B that deterministically emulates A. On
input an instance x ∈ {0, 1}n, B(x) tries all possible seeds v ∈ {0, 1}σ logn and B(x) outputs the
majority of A′(1n, x′;G(1n, x′, v)) = 1 among all seeds v. Note that B will invoke G(1n, x′, ·) and
A′(1n, x′; ·) for 2σ logn = poly(n) times, and thus B runs in time t(n)poly(n).

We show that, for all sufficiently long x, B(x) will derandomize A(x, ·) correctly. Since G is
a O(n)-secure (nθ, σ log n)-targeted PRG and A′ runs in deterministic O(n) time with respect to

n = |r| = |x|, it follows that for all sufficiently large n ∈ N, x′ ∈ {0, 1}nθ , it holds that∣∣∣Pr[r ← {0, 1}n : A′(1n, x′; r) = 1]− Pr[v ← {0, 1}σ logn : A′(1n, x′;G(1m, x′, v)) = 1]
∣∣∣ < 1

6
(5)

Consider some string x such that G is secure on auxiliary input x′ (with respect to A′). By the above
equation, if Prr[A(x; r) = 1] ≥ 2

3 , the majority bit B obtains will equal 1; If Prr[A(x; r) = 0] ≥ 2
3 ,

the majority bit B obtains will equal 0. Finally note that G will be secure on all sufficiently long x′,
which concludes the proof.

7More formally, A′ on input (1n, x′; r), picks x to be the first n bits of x′, and simply returns A(x; r).
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B Proof of Theorem 3.11

The proof of Theorem 3.11 relies on several important tools/results developed in the literature.

Tool 1: Locally List-decodable ECCs We start by recalling the notion of a locally list-decodable
error correcting code that we will be relying on.

Definition B.1 (Locally list-decodable error correcting code (see e.g. [Vad12])). For any n, n′, L ∈
N and δ > 0, a function Enc : {0, 1}n → {0, 1}n′ is said to be a locally (L, 1

2 − δ)-list-decodable error
correcting code if there exists a probabilistic oracle machine Dec : [n]× [L]→ {0, 1} such that for any
x ∈ {0, 1}n and x′ ∈ {0, 1}n′ satisfying Pri∈[n′][Enc(x)i 6= x′i] ≤ 1

2 − δ it holds that with probability at
least 2/3 over the internal randomness r of Dec, there exists j ∈ [L] such that

∀i ∈ [n],Decx
′
(i, j; r) = xi

We refer to Dec as a decoder of Enc.

The following construction of a locally list-decodable error correcting code will be useful for us.

Theorem B.2 ([STV01]; see also [Vad12, Theorem 7.61]). There exist a deterministic polynomial
time algorithms Enc and a probabilistic oracle algorithm Dec such that for all n ∈ N, δ > 0, the
function Encn,δ : {0, 1}n → {0, 1}2r where r = O(log(n/δ)) is a locally (poly(1/δ), 1

2−δ)-list-decodable
error correcting code with Decn,δ being its decoder, Encn,δ runs in time poly(n, 1/δ), and Decn,δ runs
in time poly(log n, 1/δ).

Tool 2: The NW PRG We turn to recalling the construction of the Nisan-Wigderson (NW)
PRG [NW94]. For any string y ∈ {0, 1}d and subset I ⊆ [d], we let yI denote the |I|-bit string
consisting of the the projection of y to the coordinates ∈ I.

Definition B.3 (NW generator). Let I = (I1, . . . , Im) be a family of m subsets of [d] with each
|Ij | = r and let h : {0, 1}r → {0, 1} be a function. The (I, h)-NW generator is the function NWh

I :
{0, 1}d → {0, 1}m that takes any string y ∈ {0, 1}d as a seed and outputs

NWh
I(y) = h(yI1) . . . h(yIm)

The core ingredient of the Nisan-Wigderson construction is a combinatorial design which will be
used as the family of subsets in a NW generator.

Definition B.4 (Combinatorial designs). For any integers d, r, s ∈ N such that d > r > s, a family
I = {I1, . . . , Im} of subsets of [d] is said to be a (d, r, s)-design if for every j ∈ [m], |Ij | = r, and for
every k ∈ [m], k 6= j, |Ij ∩ Ik| ≤ s.

Recall that combinatorial designs can be efficiently constructed.

Lemma B.5 ([NW94]; see also [Vad12, Problem 3.2]). There exists a deterministic algorithm
GenDesign such that on input d, r, s ∈ N where r > s and d = O(r2/s), runs in poly(2s, d) steps
and outputs a (d, r, s)-design I containing 23s subsets of [d].

The following version of the reconstruction theorem will be useful for us.

Lemma B.6 (Implicit in [NW94, IW97]). There exist a PPT algorithm NWRecon such that the
following conditions hold.
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• Input: the truthtable of a function h : {0, 1}r → {0, 1}, a (d, r, s)-design I = {I1, . . . , Im}, a
parameter α−1 ∈ N (presented in unary).

• Given oracle access to an oracle D ⊆ {0, 1}m such that∣∣∣Pr[y ← {0, 1}d : D(NWh
I(y)) = 1]− Pr[w ← {0, 1}m : D(w) = 1]

∣∣∣ ≥ α. (6)

• Output: a program M of description length ≤ m · 2s +m+ d+O(log drsm) such that

Pr[p← [2r] : MD(I, p) 6= h(p)] ≤ 1

2
− α

2m

and for every p ∈ [2r], MD(I, p) runs in poly(r,m, 2s) steps.

• NWRecon(h, I, α) runs in poly(2r,m, 2s, α−1) time.

Proof: Our proof starts with a standard hybrid argument. To remove the absolute value in Equa-
tion 6, observe that there exists a bit b ∈ {0, 1} such that

Pr[y ← {0, 1}d : D(NWf
I(y)) = b]− Pr[w ← {0, 1}m : D(w) = b] ≥ α.

For every j ∈ {0, 1, . . . ,m}, we consider the hybrid distribution Hj defined as the following:

Hj = (f(yI1), . . . , f(yIj ), wj+1, . . . , wm)

where y ← {0, 1}d and each wk ← {0, 1} (for j + 1 ≤ k ≤ m). Notice that H0 and Um are identically

distributed, and Hm is a distribution identical to NWf
I(Ud). Therefore, it follows that

1

m

∑
j∈[m]

(
Pr
y,w

[D(Hj) = b]− Pr
y,w

[D(Hj−1) = b]

)
=

1

m

(
Pr
y,w

[D(Hm) = b]− Pr
y,w

[D(H0) = b]

)
≥ α

m

If we think of j as a random variable distributed over [m], we obtain

Ej←[m],y,w

[
Pr[D(Hj) = b]− Pr[D(Hj−1) = b]

]
= Ej∈[m]

[
Pr
y,w

[D(Hj) = b]− Pr
y,w

[D(Hj−1) = b]

]
≥ α

m

Observe that the value Pr[D(Hj) = b]−Pr[D(Hj−1) = b] is upper bounded by 1. By an averaging
argument, with probability at least α

2m over the choice of j ← [m], y[d]\Ij ← {0, 1}d−r, w[m]\[j] ←
{0, 1}m−j , the strings j, y[d]\Ij , w[m]\[j] will satisfy

Pr
yIj←{0,1}

r

[
D(Hj) = b

]
− Pr
yIj←{0,1}

r,wj←{0,1}

[
D(Hj−1) = b

]
≥ α

2m
(7)

We refer to a choice of j, y[d]\Ij , w[m]\[j] as being good if it satisfies the above condition. Note that we
can find a good choice of j, y[d]\Ij , w[m]\[j] with high probability (≥ 2/3) by drawing O(m/α) random
samples and verifying if Equation 7 holds. Fix some good choice of j, y[d]\Ij , w[m]\[j]. By Yao’s
prediction versus indistinguishability theorem [Yao82] (see also [AB09, Theorem 10.12] and [Vad12,
Proposition 7.16]), Equation 7 turns out to imply a good approximation of the function f , and it
holds that

Pr
yIj←{0,1}

r,wj←{0,1}

[
D(Hj−1)⊕ b⊕ wj = f(yIj )

]
≥ 1

2
+

α

2m
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By an average argument, there exists wj ∈ {0, 1} such that

Pr
yIj←{0,1}

r

[
D(Hj−1)⊕ b⊕ wj = f(yIj )

]
≥ 1

2
+

α

2m
(8)

Notice that we can use Equation 8 to approximate the function f . Let M be a machine with
the values d, r, s,m, the bit b, the choice of j ∈ [m], y[d]\Ij ∈ {0, 1}d−r, w[m]\[j] ∈ {0, 1}m−j , and the
bit wj hardwired in it. M also needs to hardwire some values of f in order to compute Hj−1. For
each k < j, note that |Ik ∩ Ij | ≤ s and there are only s bits in yIk depends on yIj . Thus, we need to
hardwire 2s values of f to compute f(yIk). Finally, for every p ∈ [2r], let yIj = p and MD(I, p) will
output

MD(I, p) = D(f(yI1), . . . , f(yIj−1), wj , wj+1, . . . , wm)⊕ b⊕ wj .
Note that MD(I, p) = D(Hj−1)⊕ b⊕wj and thus by Equation 8, MD(I, ·) is a good approximation
of the function f(·). M uses O(log drsm) bits to include d, r, s,m, b, j, wj and its code, no more than
d + m bits to store y[d]\Ij and w[m]\[j], and no more than m2s bits to save the values of f that it

needs. So the description length of M is ≤ m ·2s+m+d+O(log drsm). On every p ∈ [2r], MD(I, p)
runs in time poly(rm2s).

Finally, note that to find the machine M , we need to pick the bit b ∈ {0, 1}, select a good choice
of j, y[d]\Ij , w[m]\[j], and then pick the bit wj ∈ {0, 1}. As mentioned, we can select a good choice
of j, y[d]\Ij , w[m]\[j] by sampling and checking (which takes O(m/α) · 2rpoly(m2s) time), and we can
also use the same approach to determine b and wj . We conclude that there exists a randomized
algorithm finding M in polynomial time.

Returning to the proof of Theorem 3.11 We are finally ready to prove Theorem 3.11 by
relying on the above two tools/results.
Proof: [of Theorem 3.11] Before presenting a formal proof, it may be helpful to first discuss the
choice of parameters in our construction.

Notations. Let m denote the output length of the targeted PRG that we hope to construct.
Let n denote the “input length” of oracle f , f : [n]→ {0, 1}. Let α = 1

6 be a constant.
Constructing the PRG. Our PRG will take as input a unary string 1n, a unary string 1m,

along with a seed y. Let δ = O( 1
m) and we will need a locally list-decodable ECC that corrects a 1

2−δ
fraction of errors. By Theorem B.2, there exists a function L = poly(1/δ), a function r = O(log n),
a locally (L, 1

2 − δ)-list-decodable ECC Encn,δ that produces codewords of length 2r, and a decoding
algorithm Decn,δ that produces a list of L elements (in a local fashion). We will also need a NW
generator that takes functions with truthtable length 2r (matching the output length of the ECC)
and outputs m bits (matching the output length of our PRG). To achieve this, we require a (d, r, s)-
design I that contains m subsets of [d]. By Lemma B.5, we can pick s = logm/3 to ensure that I
contains m subsets, and pick d = Ω(log2 n/ logm) to satisfy that d > 10r2/s. (Such designs can be
efficiently generated by GenDesign.)

We proceed to describe our PRG formally. We will consider a function G : 1n × 1m × {0, 1}d →
{0, 1}m defined as follows. For any function f : [n]→ {0, 1}, on input (1n, 1m, y) where y ∈ {0, 1}d,
the algorithm G proceeds in the following steps.

• G (given access to f) first computes z = f(1)||f(2)|| . . . ||f(n).

• Then G lets h : {0, 1}r → {0, 1} be the function h = fn(Encn,δ(z)) that is associated with the
truthtable Encn,δ(z) ∈ {0, 1}2

r
.

• Next, G invokes the design generating algorithm GenDesign(d, r, s) to obtain a (d, r, s)-design
I = {I1, . . . , Im}.
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• Finally, G outputs
G(1n, 1m, y) = NWh

I(y) = h(yI1) . . . h(yIm)

where the function NW is defined in Definition B.3.

Note that the seed length of the PRG d = O(log2 n/ logm), so the seed length condition in Theo-
rem 3.11 is satisfied.

We claim that G is a k(·)-reconstructive PRG for k(n,m) = poly(m, log n). Fix some integer
n,m, some function f : [n]→ {0, 1}, and consider any statistic test T : {0, 1}m → {0, 1} such that∣∣∣Pr[v ← {0, 1}d : T (G(1n, 1m, v)) = 1]− Pr[w ← {0, 1}m : T (w) = 1]

∣∣∣ ≥ α (9)

We will show that there exist algorithms M and R (as defined in Definition 3.10).
Constructing M and R. Consider an algorithm M that defines as follows.

1. On input 1n, 1m, given access to f and T , M computes z = f(1)||f(2)|| . . . ||f(n) and the
function h = fn(Encn,δ(z)).

2. M runs the design generating algorithm GenDesign(d, r, s) to obtain a (d, r, s)-design I =
{I1, . . . , Im}.

3. M executes the NW reconstruction algorithm NWReconT (h, I, α) and let Π denotes the pro-
gram it outputs.

4. M will let O be an oracle such that O(p) = ΠT (I, p) (for any p ∈ [2r]).

5. leak will pick a good random tape γ for Decn,δ such that there exists an index pos satisfying

∀i ∈ [n],DecOn,δ(pos, i; γ) = zi.

This can be done in a brute-force way by repeated sampling γ and enumerating every value of
pos and i to check if γ is good.

6. leak(x, z) will output (Π, γ, pos).

We then turn to describing the algorithm R (given the access to T ).

1. On input 1m, the advice string a (interpreted as (Π, γ, pos)), and a bit index i, R first invokes
GenDesign(d, r, s) to get a (d, r, s)-design I = {I1, . . . , Im}.

2. R lets O = ΠT (I, ·).

3. R outputs DecOn,δ(pos, i; γ).

Analyzing the reconstruction. We turn to analyzing the algorithms M and R. We first
show that RT (1m,Mf,T (1n, 1m), i) will indeed compute f(i) for all i ∈ [n]. This follows from the
correctness of the distinguisher T , the NW reconstruction algorithm, and the list decoding algorithm.

Observe that G(1n, 1m, v) = NW
fn(Encn,δ(z))
I (v). Therefore, by Equation 9, T distinguishes the output

of NWh
I from uniform with advantage α and breaks the NW generator. Then by Lemma B.6, the

NW reconstruction algorithm NWReconT (h, I, α) will output a good approximation for h; that is, it
holds that

Pr[p← [2r] : Encn,δ(z)p 6= ΠT (I, p)] ≤ 1

2
− α

2m
≤ 1

2
− δ
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So O = ΠT (I, ·) is an oracle that is relatively close to Encn,δ(z). Since Enc is a good error correcting
code, by Theorem B.2, DecOn,δ will return a list containing z and will be able to produce each

element in the list locally. Mf,T (1n, 1m) will then find the coordinate pos and a good random tape γ
such that DecOn,δ(pos, ·; γ) locally computes z. Note that RT (1m,Mf,T (1n, 1m), i) will finally output

DecOn,δ(pos, i; γ) and we conclude that RT (1m,Mf,T (1n, 1m), i) will produce zi = f(i).

We next argue that Mf,T (1n, 1m) is short and of length at most nε. Mf,T (1n, 1m) consists
of Π, γ, and pos. Note that by Lemma B.6, the description of machine Π is of length m · 2s +
m + d + log(drsm) < poly(m, log n). The random tape γ is of length at most the running time of
Decn,δ, which is at most poly(log n, 1/δ) < poly(m, log n). The coordinate pos is of length at most
logL(n) = O(logm). Therefore, |Mf,T (1n, 1m)| ≤ poly(m, log n).

We then prove that the algorithm Mf,T (1n, 1m) runs in polynomial time. Note that f is given
as oracle to M , so Encn,δ(z) takes only poly(n, 1/δ) = poly(n) steps. GenDesign(d, r, s) runs in
time poly(2s, d) ≤ poly(m,O(1/ε) log n). It takes poly(2r,m, 2s, 1/α) = poly(n) steps to execute
NWReconT (h, I, α). The list-decoding algorithm runs in time poly(log n, 1/δ) = poly(m), the oracle
O runs in poly(r,m, 2s) = poly(m) time. Thus, M takes poly(m)L · O(n) = poly(n) time to pick
a good random tape γ and an index pos. To sum up, the running time of M can be bounded by
poly(n).

We now show that the algorithm R runs in polynomial. R takes (a, i) of input, which is of length
m + log n. R first invokes GenDesign(d, r, s) which runs in poly(m) time. Note that both the oracle
O and the list-decoding algorithm runs in time poly(m), it follows that R runs in poly(m) time.

It remains to show that G runs in polynomial. Note that it takes O(n) time to compute z =
f(1)||f(2)|| . . . ||f(n), and algorithms Enc,GenDesign,NW run in time polynomial in n and m. Thus,
it follows that G(1n, 1m, ·) runs in time poly(n,m).
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