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Abstract

We revisit the direct sum questions in communication complexity which asks whether
the resource needed to solve n communication problems together is (approximately)
the sum of resources needed to solve these problems separately. Our work starts with
the observation that Dinur and Meir’s fortification lemma [DM18] can be generalized
to a general fortification lemma for a sub-additive measure over set. By applying this
lemma to the case of cover number, we obtain a dual form of cover number, called
“δ-fooling set” which is a generalized fooling set. Any rectangle which contains enough
number of elements from a δ-fooling set can not be monochromatic.

With this fact, we are able to reprove the classic direct sum theorem [KKN95] of
cover number with a simple double counting argument. Formally, let S ⊆ (A×B)×O
and T ⊆ (P ×Q)×Z be two communication problems, logCov (S × T ) ≥ logCov (S)+
logCov(T ) − log log |P ||Q| − 4. where Cov denotes the cover number. One issue of
current deterministic direct sum theorems [FKNN95, KKN95] about communication
complexity is that they provide no information when n is small, especially when n = 2.
In this work, we prove a new direct sum theorem about protocol size which imply a
better direct sum theorem for two functions in terms of protocol size. Formally, let L
denotes complexity of the protocol size of a communication problem, given a commu-

nication problem F : A × B → {0, 1}, log L (F × F ) ≥ log L (F ) + Ω
(√

log L (F )
)
−

log log |A||B| − 4. All our results are obtained in a similar way using the δ-fooling set
to construct a hardcore for the direct sum problem.
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haowu@shmtu.edu.cn, you can also reach me via wealk@outlook.com.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 114 (2022)



Contents

1 Introduction 3
1.1 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Organization of the rest of the paper . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 6

3 Generalized Fooling Set and Fortification of Cover Number 8

4 Direct Sum Theorems from Fortification 9
4.1 Direct sum theorem of cover number, revisit . . . . . . . . . . . . . . . . . . 9
4.2 A direct sum theorem of protocol size . . . . . . . . . . . . . . . . . . . . . . 10

5 Conclusion and Discussion 12

A The Proof of General Fortification Lemma 13

2



1 Introduction

The direct sum question, in general, asks following question: whether the resource to solve
several tasks together is (approximately) the sum of resources to solve these tasks sepa-
rately. Particularity, we want to know whether the resource to solve n copies of certain
task is (approximately) n times the resource to solve one copy of the task. In the field of
communication complexity, the direct sum question was proposed by Karchmer, Raz and
Wigderson [KRW95]. Let communication problem F : X × Y → {0, 1} be a function and C
denote the communication complexity of a problem, current known deterministic direct sum
theorems[FKNN95, KKN95]1 tell us solving n copies of communication problem F requires

Ω
(
n ·
√

C(F )
)

bits of communication. But in some cases, current direct sum theorems are

not satisfactory. When n is small, especially when n = 2, current direct sum theorems tell us
nothing more than the trivial lower bound. Intuitively, we should be able to prove stronger
results when n = 2, that if the communication complexity of F is not too small, then solving
two copies of F should require strictly more bits of communication than solving only one
copy of F . Formally, we have following conjecture which is consistent with current known
direct sum theorems.

Conjecture 1.1. Let communication problem F : X×Y → {0, 1} be a function, C(F×F ) ≥
C(F ) + Ω

(√
C(F )

)
.

Let L(F ) denote the complexity of the protocol size of the communication problem F :
X × Y → {0, 1}, similarly, we have following conjecture about protocol size.

Conjecture 1.2. Let communication problem F : X × Y → {0, 1} be a function, log L(F ×
F ) ≥ log L(F ) + Ω

(√
log L(F )

)
.

Finally, in all direct sum question, particularly, in the case of cover number, an ideal
situation is that there is a ‘hardcore’ of cover number, when we know some information about
this hardcore, the residual hardness is just the result of the complexity of the hardcore minus
the amount of known information. A potential hardcore of cover number may be some kind
of generalized form of standard fooling set, it is well known that large standard fooling set
implies large cover number, but not vice versa. So naturally, we have following question.

Question 1.3. Is there a generalized form of fooling set which can be viewed as a dual form
of cover number? Particularly, is large cover number implies some kind of fooling set?

In this paper, we tackle these questions and make some progress about them.

1.1 Our results

All our results rely on following fact: there is a dual form of cover number, δ-fooling set, a
concept generalized from the standard fooling set. Formally, we have following concept.

1See [Pan13] for a more detailed introduction of direct sum problems in communication complexity.
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Definition 1.4 (δ-fooling set). Let S ⊆ (X × Y )×Z be a communication problem, we call

a set Λ ⊆ X × Y a δ-fooling set of S if for any subset Λ̃ ⊆ Λ such that |Λ̃||Λ| > δ, there is no

monochromatic rectangle that covers all elements in the subset Λ̃.

Note that a standard fooling set Λ is just a special case of δ-fooling set where δ = 1/|Λ|.
It is easy to see that a δ-fooling set with small δ implies a large cover number lower bound.
The harder direction is to show a large cover number implies a δ-fooling set with small δ.
This is done by the technique of “fortification”. The term “fortification” is introduced by
Moshkovitz [Mos14] to prove a parallel repetition theorem. Then Dinur and Meir[DM18]
introduced this idea into communication complexity and proved a fortification lemma of
protocol size over rectangles. The spirit of this concept is that given some hard problem, we
want to ‘fortify’ it into a hardcore such that if we already know some information about this
hardcore, the residual hardness is just the result of the complexity of the hardcore minus the
amount of known information. We observer that Dinur and Meir’s fortification lemma can
be generalized into a general form then apply it to the case of cover number. Formally, we
have following result about fortification of cover number thus complete the harder direction
of the duality.

Proposition 1.5 (Fortification of cover number). Let S ⊆ (X×Y )×Z be a communication
problem, there exists Λ ⊆ X × Y such that for any subset Λ̃ ⊆ Λ, we have

Cov(Λ̃) ≥ |Λ̃|
|Λ|
· Cov(S)

16 log |X||Y |
.

Particularly, when |Λ̃|
|Λ| >

16 log |X||Y |
Cov(S)

, we have Cov(Λ̃) > 1, this means Λ is a 16 log |X||Y |
Cov(S)

-fooling
set.

Use this dual form of cover number, we are able to reprove the direct sum theorem of
cover number.

Theorem 1.6. Given two communication problems S ⊆ (A×B)×O and T ⊆ (P ×Q)×Z,
we have logCov (S × T ) ≥ logCov (S) + logCov(T )− log log |P ||Q| − 4.

Along the way, we prove a new direct sum result of protocol size which imply a better
direct sum theorem for two functions in terms of protocol size. This gives a positive answer
to Conjecture 1.2.

Theorem 1.7. Given two communication problem S ⊆ (A×B)×O and T ⊆ (P ×Q)×Z,
we have log L (S × T ) ≥ log L (S) + logCov(T )− log log |P ||Q| − 4.

Corollary 1.8. Given a communication problem F : A×B → {0, 1},

log L (F × F ) ≥ log L (F ) + Ω
(√

log L (F )
)
− log log |A||B| − 4.

For conjecture 1.1, our approach does not work due to that the measure of communication
complexity is less structural than the measure of protocol size, and we leave this conjecture
as an interesting open problem.
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1.2 Our approach

In this section, at first, we show how to generalize Dinur and Meir’s fortification lemma
with the right abstraction. Then by applying this general fortification lemma to the case of
cover number, we have the fortification lemma of cover number and existence of δ-fooling
set. Secondly, we take the direct sum theorem of cover number as a running example of
proving direct sum type theorem using δ-fooling set. The direct sum theorem of protocol
size follows a similar paradigm, that is using the δ-fooling set to construct a hardcore for the
direct sum problem.

Dinur and Meir’s fortification lemma can be generalized into following setting: let Σ be
a nonempty finite set, a sub-additive measure over Σ is a function µ : 2Σ → N with following
properties:

� semipositivity: µ(∅) = 0 and if Λ ⊆ Σ is not empty, µ(Λ) ≥ 1,

� subadditivity: given two subsets Λ,Λ′ ⊆ Σ, µ(Λ ∪ Λ′) ≤ µ(Λ) + µ(Λ′).

And the general fortification lemma states following fact: there is a subset Λ ⊆ Σ such that
give any subset Λ̃ ⊆ Λ, it holds that

µ(Λ̃) ≥ 1

4 log |Σ|
· |Λ̃|
|Λ|
· µ(Λ),

and µ(Λ) ≥ 1
4
µ(Σ). Now we explain why the fortification lemma of [DM18] is a special case of

ours. Given a communication problem S ⊆ (X ×Y )×Z, given a rectangle A×B ⊆ X ×Y ,
recall L(A × B) denote the protocol size of the rectangle. Now give a fixed A ⊆ X, set
LA×(B) = L(A× B) where B ⊆ Y , similarly we can define L×B for some fixed B ⊆ Y . It is
easy to verify that LA×(respectively L×B) is a sub-additive measure over Y (respectively X).
Dinur and Meir’s original fortification lemma [DM18] is exactly about the two measures LA×
and L×B.

Now consider the measure of cover number, let Σ be any subset of X × Y , cover number
Cov is a sub-additive measure over Σ. Note that Σ is not necessarily a rectangle. Set
Σ = X × Y , by the general fortification lemma, there is a subset Λ ⊆ X × Y such that for
any subset Λ̃ ⊆ Λ,

Cov(Λ̃) ≥ 1

16 log |X||Y |
· |Λ̃|
|Λ|
· Cov(S).

Note that when |Λ̃|
|Λ| >

16 log |X||Y |
Cov(S)

, Cov(Λ̃) > 1, this means Λ is a 16 log |X||Y |
Cov(S)

-fooling set.
Now we show how to use δ–fooling set to prove direct sum theorem. The basic idea is to

construct the hardcore of the direct sum problem from hardcore of each problem. Directly,
Cartesian product of each problem’s δ–fooling set is a hardcore of the direct sum of problems,
but sometimes, to prove a stronger results, we need to construct a more delicate hardcore.
Take the direct sum problem of cover number as an example, given two communication
problems S ⊆ (A × B) × O and T ⊆ (P × Q) × Z, let Λ be a δ-fooling set for problem T ,
we want to lower bound the cover number of their direct sum problem S × T . Given any
(p, q) ∈ Λ, note that (A × {p}) × (B × {q}) is a rectangle of S × T , and we construct the
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hardcore for S×T to be the collection of all such rectangles (A×{p})× (B×{q}) for every
(p, q) ∈ Λ. Formally, the hardcore is simply ∪(p,q)∈Λ(A× {p})× (B × {q}).

Now we give the intuition that why this hardcore is indeed hard. At first, note that every
such rectangle (A×{p})× (B×{q}) will need at least Cov(S) monochromatic rectangles to
cover it. Since there are |Λ| such rectangles, if we allow multiplicity, the total number to cover
all such rectangles is at least |Λ| ·Cov(S). Now we handle the problem of multiplicity since a
monochromatic rectangle R could cover elements from different rectangles (A×{p})× (B×
{q}) for different (p, q) ∈ Λ. Fortunately, we can show a monochromatic rectangle R could
cover elements from at most δ|Λ| different rectangles. Denote {(p, q)|∃((a, p), (b, q)) ∈ R}
by R|T , if R is monochromatic, then R|T is also monochromatic rectangle which contains
no more than δ|Λ| such (p, q), otherwise it would contradict that Λ is a δ–fooling set of T .
This means a monochromatic rectangle R could cover elements from at most δ|Λ| different
rectangles, thus we need at least |Λ| · Cov(S)/δ|Λ| = Cov(S)/δ monochromatic rectangles to
cover the hardcore ∪(p,q)∈Λ(A× {p})× (B × {q}).

1.3 Organization of the rest of the paper

We provide the necessary preliminaries in Section 2. In Section 3, we define the δ-fooling set,
present the general fortification lemma then apply it to the case of cover number. In Section
4, we reprove the direct sum theorem of cover number and prove a new direct sum theorem
of protocol size. Finally, in Section 5, we conclude and discuss some future directions.

2 Preliminaries

In this section, we provide some basic notations, definitions and facts. Let N be the set
of nature number, for any n ∈ N, we denote by [n] the set {1, . . . , n}. We often use bold
font to indicate x ∈ Xn is a vector, and denote the i-th coordinate of the vector by xi. We
assume the readers are familiar with the basic knowledge of communication complexity, a
more detailed introduction of communication complexity can be found in textbooks such as
[KN97, RY20].

Definition 2.1 (Two party communication problems). In a two party communication prob-
lem S ⊆ (X × Y ) × Z, there are two involved players–Alice and Bob who need to solve
following task: Alice is given an input x ∈ X and Bob is given an input y ∈ Y , they need to
output a element z ∈ Z such that (x, y, z) ∈ S.

Rectangle cover and cover number

Definition 2.2. Given a communication problem S ⊆ (X×Y )×Z, let R = A×B ⊂ X×Y
be a rectangle, if for every (x, y) ∈ A×B, (x, y, z) ∈ S, we say rectangle R is monochromatic
with color z or z-monochromatic for short. Let Σ ⊆ X×Y and χ be a set of monochromatic
rectangles of S, we say χ is a rectangle cover for Σ, or simply χ covers Σ, if for every element
(x, y) ∈ Σ there is a monochromatic rectangle R ∈ χ such that (x, y) ∈ R. The cover number
of Σ, denoted by Cov(Σ), is the minimum number of monochromatic rectangles to cover Σ,
formally, Cov(Σ) = minχcovers Σ |χ|. Particularly, when Σ = X × Y , we simply write Cov(S),
that is the cover number of communication problem S.
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Deterministic protocol

Definition 2.3. A deterministic protocol Π : X × Y → Z for a communication problem
S ⊆ (X × Y )× Z is a rooted binary tree with following structure:

� Every node v in the tree belongs to Alice or Bob and is associated with a rectangle
Rv = Xv × Yv ⊆ X × Y . Particularly, the root of protocol tree is associated with the
rectangle X × Y .

� Given an internal node v, let v0, v1 be two children of v. Recall v is associated with a
rectangle Rv = Xv × Yv, if v is owned by Alice, then v0 is associated with Xv0 × Yv, v1

is associated with Xv1 × Yv where Xv0 ∩ Xv1 = ∅ and Xv0 ∪ Xv1 = Xv; if v is owned
by Bob, then v0 is associated with Xv × Yv0 , v1 is associated with Xv × Yv1 where
Yv0 ∩ Yv1 = ∅ and Yv0 ∪ Yv1 = Yv.

� Every leaf node ` is associated with a monochromatic rectangle R` with color z and z
is the output of the protocol.

Communication complexity and protocol size

Definition 2.4. Given a protocol tree Π, its depth D(Π) is the length of the longest path
from the root to a leaf in the tree. Given a communication problem S ⊆ (X × Y )× Z, the
(deterministic) communication complexity C(S) of communication problem S is the mini-
mum D(Π) over all protocol Π for the problem S. Given a protocol tree Π, its protocol size
L(Π) is the number of leaves of the tree. Given a communication problem S, its complexity
of protocol size L(S) is minimum L(Π) over all protocol Π for the problem S.

It is well known that the complexity of protocol size is sub-additive over rectangles.
Formally, we have following fact.

Fact 2.5. Given a communication problem S ⊆ (X × Y ) × Z, let A × B ⊆ X × Y and
L(A×B) be the complexity of protocol size to solve problem S when restricted to rectangle
A×B, we have

� L ((A0 ∪ A1)×B) ≤ L (A0 ×B) + L (A1 ×B).

� L (A× (B0 ∪B1)) ≤ L (A×B0) + L (A×B1).

Fact 2.6. [KN97] For every communication problem S, it holds that

log L(S) ≤ C(S) ≤ 2 log L(S)

and hence C(S) = Θ(log L(S)).

Fact 2.7. [KN97]Let communication problem F : X × Y → {0, 1} be a function, then

logCov(F ) = Ω
(√

C(F )
)
.

We will need following simple but important fact which says projection of a monochro-
matic rectangle is still a monochromatic.
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Fact 2.8. Given two communication problems S ⊆ (A × B) × O and T ⊆ (P × Q) × Z,
let R ⊆ (A × P ) × (B × Q) be a monochromatic rectangle of S × T . Denote the set
{(a, b)|∃((a, p), (b, q)) ∈ R} by R|S and similarly {(p, q)|∃((a, p), (b, q)) ∈ R} by R|T , we have
R|S(respectively R|T ) is a monochromatic rectangle of S(respectively T ).

Proof. We prove it for R|S, the case for R|T is similar. At first, we will show if (a, b), (a′, b′)
are contained in R|S, so are (a′, b), (a, b′). If (a, b), (a′, b′) are contained in R|S, there must be
two elements ((a, p), (b, q)), ((a′, p′), (b′, q′)) ∈ R, that is ((a, p), (b′, q′)), ((a′, p′), (b, q)) ∈ R,
which means (a′, b), (a, b′) are contained in R|S. Furthermore, since R is monochromatic
with some color (o, z) ∈ O × Z, every (a, b) ∈ R|S can be colored with o, thus R|S is a
monochromatic rectangle of S as required.

3 Generalized Fooling Set and Fortification of Cover

Number

In this section, we introduce a generalized form of standard fooling set called the δ-fooling
set.

Definition 3.1 (δ-fooling set). Let S ⊆ (X × Y )×Z be a communication problem, we call

a set Λ ⊆ X × Y a δ-fooling set of S if for any subset Λ̃ ⊆ Λ such that |Λ̃||Λ| > δ, there is no

monochromatic rectangle that covers all elements in the subset Λ̃.

The δ-fooling set can be viewed as a dual form of cover number, given a communication
problem, a large cover number for this problem is equivalent to there is a δ-fooling set with
small δ for this problem. At first, we show the easy direction, that is a δ-fooling set with
small δ implies a large cover number. This mimics the effect of standard fool set.

Proposition 3.2. Let S ⊆ (X × Y )× Z be a communication problem, let Λ ⊆ X × Y be a
δ-fooling set of S, then Cov(Λ) ≥ 1/δ.

Proof. Since any monochromatic rectangle can only cover at most δ|Λ| elements from Λ, at
least 1/δ monochromatic rectangles are required to cover all elements from Λ.

Now we present the other direction: that is a large cover number implies a δ-fooling set
with small δ. This is achieved by applying the general fortification lemma to the case of
cover number. At first, we need a notion called sub-additive measure over set.

Definition 3.3. Let Σ be a nonempty finite set, a sub-additive measure over set Σ is a
function µ : 2Σ → N with following properties:

� semipositivity: µ(∅) = 0 and if Λ ⊆ Σ is not empty, µ(Λ) ≥ 1,

� subadditivity: given two subsets Λ,Λ′ ⊆ Σ, µ(Λ ∪ Λ′) ≤ µ(Λ) + µ(Λ′).

Given a communication problem S ⊆ (X × Y ) × Z, the cover number is a sub-additive
measure over any subset Σ of X × Y . Formally we have following fact.

8



Fact 3.4. Give a communication problem S ⊆ (X × Y ) × Z, let Σ ⊆ X × Y be a subset,
then cover number Cov according to the communication problem S is a sub-additive measure
over Σ.

Next we define the notion of general fortification.

Definition 3.5. Let Σ be a nonempty finite set, µ be a sub-additive measure over set Σ and
Λ be a subset of Σ. Given any subset Λ̃ ⊆ Λ, we say Λ is ρ-fortified with respect to measure

µ, if for any such Λ̃, it holds that µ(Λ̃) ≥ ρ · |Λ̃||Λ| · µ(Λ).

Lemma 3.6 (General fortification lemma). Given a set Σ and a sub-additive measure µ over
Σ. There exists Λ ⊆ Σ such that

� Λ is 1
4 log |Σ|–fortified

� and µ (Λ) ≥ 1
4
µ (Σ).

The proof of the general fortification lemma is similar to its less general form in [DM18]
and is deferred to Appendix A. Now we can apply it to Fact 3.4 to obtain the fortification
of cover number.

Proposition 3.7 (Fortification of cover number). Let S ⊆ (X×Y )×Z be a communication
problem, there exists Λ ⊆ X × Y such that for any subset Λ̃ ⊆ Λ, we have

Cov(Λ̃) ≥ |Λ̃|
|Λ|
· Cov(S)

16 log |X||Y |
.

Particularly, when |Λ̃|
|Λ| >

16 log |X||Y |
Cov(S)

, we have Cov(Λ̃) > 1, this means Λ is a 16 log |X||Y |
Cov(S)

-fooling
set.

4 Direct Sum Theorems from Fortification

4.1 Direct sum theorem of cover number, revisit

In this section, we revisited the direct sum problem of cover number and present an alter-
native proof.2 In our proof, we only use Proposition 3.7 and a double counting argument.
Formally, we have following theorem.

Theorem 4.1. Given two communication problems S ⊆ (A×B)×O and T ⊆ (P ×Q)×Z,
let Λ be a δ-fooling set for problem T , we have

Cov (S × T ) ≥ Cov (S) /δ.

Particularly, by Proposition 3.7, we have

logCov (S × T ) ≥ logCov (S) + logCov(T )− log log |P ||Q| − 4.

2An anonymous reviewer points out that [KN97] give a proof of this theorem with a similar fashion but
in a different way. Nevertheless, we keep our proof here as another alternative.
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Proof. (of Theorem 4.1)Let χ be a rectangle cover of S × T , we will prove |χ| ≥ Cov (S) /δ.
Given any (p, q) ∈ Λ, (A × {p}) × (B × {q}) is a rectangle of S × T , every such rectangle
will need at least Cov(S) monochromatic rectangle to cover it. Since there are |Λ| such
rectangles, if we allow multiplicity, the total number to cover all such rectangles is at least
|Λ| · Cov(S). Formally, let R ∈ χ, denote

(R ∪ (A× {p})× (B × {q})) |T

by R(p,q), we have

∑
R∈χ

∑
(p,q)∈Λ

1R(p,q) 6=∅ =
∑

(p,q)∈Λ

(∑
R∈χ

1R(p,q) 6=∅

)
≥ |Λ| · Cov(S)

Now we handle the problem of multiplicity since a monochromatic rectangle R in χ
could cover elements from different rectangles (A×{p})× (B×{q}) for different (p, q) ∈ Λ,
but fortunately a monochromatic rectangle R in χ could cover elements from at most δ|Λ|
different rectangles. Formally, we have∑

(p,q)∈Λ

1R(p,q) 6=∅ ≤ δ|Λ|,

if not, by Fact 2.8, we know that R|T is a monochromatic rectangle which contains more
than δ|Λ| such (p, q), this contradicts that Λ is a δ-fooling set of T . Finally, we have

|χ| =
∑
R∈χ

1 ≥
∑
R∈χ

∑
(p,q)∈Λ 1R(p,q) 6=∅

δ|Λ|
≥ |Λ| · Cov(S)/δ|Λ| = Cov(S)/δ.

4.2 A direct sum theorem of protocol size

In this section, we prove a new direct sum theorem about complexity of protocol size. The
proof is inspired by ideas in [DM18]. Formally, we have following theorem.

Theorem 4.2. Given two communication problems S ⊆ (A×B)×O and T ⊆ (P ×Q)×Z,
let Λ be a δ-fooling set of T , we have

L (S × T ) = L (S) /δ.

Particularly, by Proposition 3.7, we have

log L (S × T ) = log L (S) + logCov(T )− log log |P ||Q| − 4.

Let’s recall some notations. Let R ⊆ (A×P )× (B×Q) be a rectangle of S×T . Denote
the set {(a, b)|∃((a, p), (b, q)) ∈ R} by R|S and similarly {(p, q)|∃((a, p), (b, q)) ∈ R} by R|T .
Furthermore, given any (p, q) ∈ Λ, denote (R ∪ (A× {p})× (B × {q})) |S by R(p,q).
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The sub-additive measure over protocol tree. We introduce the definition of a sub-
additive measure over protocol tree as follows.

Definition 4.3 ([DM18]). Given a rooted binary tree T and let V be the set of nodes of
tree T , we say that φ : V → N is a sub-additive measure on T if for every vertex v with
children v0 and v1 in T it holds that φ(v) ≤ φ(v0) + φ(v1).

Now we define a special sub-additive measure over protocol tree following the similar idea
in [DM18].

Definition 4.4. Given a protocol tree Π for S × T , let π be a node in the protocol tree Π,
denote the rectangle associated with the node π by Rπ ⊆ (A × P ) × (B × Q), let Λ be a
δ-fooling set for cover number of T , we define a measure φ on all such π as follows:

φ(π) =
1

|Λ|
∑

(p,q)∈Λ

L
(
Rπ(p,q)

)
.

Recall that Rπ(p,q) = (Rπ ∪ (A× {p})× (B × {q})) |T . Intuitively, the measure φ is just
the average complexity of all such rectangles Rπ(p,q) where (p, q) ∈ Λ. It easy to verify
following fact about the measure φ.

Fact 4.5. The measure φ is a sub-additive measure on protocol tree Π. Furthermore, φ
assigns L(A×B) = L(S) to the root of Π.

Proof. At first, the measure φ is sub-additive since, by Fact 2.5, for every fixed (p, q), the
measure L

(
Rπ(p,q)

)
is sub-additive over the protocol tree Π. Furthermore, φ assigns L(A×B)

to the root of Π, since when π is the root, Rπ(p,q) simply is A×B, for every (p, q).

We will also need following fact which claims for each leaf in the protocol tree, its mea-
surement is small.

Fact 4.6. Given a protocol Π which solves S × T and ` is a leaf of Π, then φ(`) ≤ δ.

Proof. Let R` be the rectangle associated with the leaf `. Since ` is a leaf, R` is monochro-
matic and L(R`) ≤ 1, this means for every (p, q) ∈ Λ, 0 ≤ L(R`(p,q)) ≤ 1, and R`|S, R`|T
are also monochromatic. Let Λ̃ be the set of all (p, q) such that L(R`,(p,q)) 6= 0. Since Λ̃ is

contained in monochromatic rectangle R|T , this means |Λ̃| ≤ δ|Λ| due to Λ is a δ-fooling set
of T . Now we are ready to bound φ(`), that is

φ(`) =
1

|Λ|
∑

(p,q)∈Λ

L(R`(p,q)) =
1

|Λ|
∑

(p,q)∈Λ

1L(R`(p,q)) 6=0 =
˜|Λ|
|Λ|
≤ δ.

Now we are ready to prove our theorem about protocol size.
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Proof. (of Theorem 4.2)Given a protocol Π for S×T , let r be the root of protocol Π, by the
subadditivity of φ,

φ(r) ≤
∑

` is a leaf

φ(`).

By Fact 4.5 and Fact 4.6, we have L(S) ≤ L(Π) · δ, that is L(Π) ≥ L(S)/δ.

By Theorem 4.2, Fact 2.6 and Fact 2.7, we have following corollary.

Corollary 4.7. Given a communication problem F : A×B → {0, 1},

log L (F × F ) ≥ log L (F ) + Ω
(√

log L (F )
)
− log log |A||B| − 4.

5 Conclusion and Discussion

We conclude with some discussion about our results and future direction. The first question
is can we fortify other measures in communication complexity besides cover number? It was
pointed out by [DM18] that it is impossible to fortify both sides of the rectangle simulta-
neously. So we should consider other measures which avoid such large gap. An interesting
question is whether we can fortify any useful measures in randomized communication com-
plexity? Note that if we relax rectangle cover to cover of nearly monochromatic rectangles,
the lemma also works, the issue here is we don’t know whether a small cover number of
nearly monochromatic rectangles implies a small randomize complexity. Besides measures
in communication complexity, we can apply the fortification lemma to other measures such
as the measure of entropy H. Let X1,X2, · · · ,Xn be n joint distributed random variables,
the measure entropy H is sub-additive over these random variables, thus can be fortified. It
is interesting that whether these fortifications lead to further applications.
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A The Proof of General Fortification Lemma

The general fortification lemma is proved in a similar way to its less general form in [DM18].
At first, we show a so called the weak fortification.

Proposition A.1. Given a set Σ, a sub-additive measure µ over Σ and 0 < ρ < 1, there
exists Λ1 ⊆ Σ such that:

� for every Λ̃ ⊆ Λ1, it holds that µ(Λ̃) ≥ ρ · |Λ̃||Σ| · µ(Σ).

� µ (Λ1) ≥ (1− ρ) · µ(Σ).

Proof. Let Λmax ⊆ Σ be a maximal subset under the order of set inclusion that satisfies

µ (Λmax) < ρ · |Λmax|
|Σ|

· µ(Σ). (A.1)

Let Λ1
def
= Σ− Λmax, by the subadditivity of measure µ, we have

µ(Σ) = µ(Λ1 ∪ Λmax) ≤ µ(Λ1) + µ(Λmax),

thus by rearranging above inequality, we have obtained the second item in this proposition,
that is

µ (Λ1) ≥ µ(Σ)− µ(Λmax) > µ(Σ)− ρ · |Λmax|
|Σ|

· µ(Σ) ≥ (1− ρ) · µ(Σ).

Now to obtain the first item of this proposition, for the sake of contradiction, suppose that

there is a nonempty subset Λ̃ ⊆ Λ1, such that µ(Λ̃) < ρ · |Λ̃||Σ| · µ(Σ). Then, this would imply

13



that

µ
(

Λ̃ ∪ Λmax

)
≤ µ(Λ̃) + µ (Λmax) , by subadditivity of µ

< ρ · |Λ̃|
|Σ|
· µ(Σ) + ρ · |Λmax|

|Σ|
· µ(Σ), by assumptions on Λ̃ and Λmax

= ρ ·

∣∣∣Λ̃ ∪ Λmax

∣∣∣
|Σ|

· µ(Σ).

It turns out that Λ̃ ∪ Λmax is a set that satisfies Inequality (A.1) and that strictly contains
Λmax, thus contradicting the maximality of Λmax. Hence, no such set Λ̃ exists, the first item
of this Proposition holds.

The above proposition is weak because the measure of Λ̃ is propositional to its density
in Σ rather than Λ. To proceed, we need following fact about “inverse fortification”.

Proposition A.2. Given a set Σ and a sub-additive measure µ over Σ, for every c ≥ 1,
there exists a subset Λ0 ⊆ Σ such that for every Λ̃ ⊆ Λ0 it holds that

|Λ̃|
|Λ0|

≥

(
µ(Λ̃)

µ (Λ0)

)c

(A.2)

and

µ (Λ0) ≥
(

1

|Σ|

) 1
c

· µ(Σ). (A.3)

Proof. At first, we set Λ0 to be a minimal set under the order of set inclusion that satisfies

|Λ0|
|Σ|
≤
(
µ (Λ0)

µ(Σ)

)c
Observe that Λ0 indeed satisfies Inequality (A.2): if not, there must be a proper subset
Λ̃ ( Λ0 which satisfies

|Λ̃|
|Λ0|

<

(
µ(Λ̃)

µ (Λ0)

)c

.

and this would have implied that

|Λ̃|
|Σ|

=
|Λ̃|
|Λ0|
· |Λ0|
|Σ|

<

(
µ(Λ̃)

µ (Λ0)

)c

·
(
µ (Λ0)

µ(Σ)

)c
=

(
µ(Λ̃)

µ(Σ)

)c

thus contradicting the minimality of Λ0. Now it remains to show that Λ0 satisfies Inequality
(A.3). Recall that we set Λ0 to satisfy

|Λ0|
|Σ|
≤
(
µ (Λ0)

µ(Σ)

)c
,
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by rearranging above inequality, we have

µ (Λ0) ≥
(
|Λ0|
|Σ|

) 1
c

· µ(Σ) ≥
(

1

|Σ|

) 1
c

· µ(Σ)

as required.

Finally, we are ready to prove our general fortification lemma.

Proof. (Proof of Lemma 3.6). Our goal is to find a subset Λ ⊆ Σ such that

� Λ is 1
4 log |Σ| -fortified,

� and µ (Λ) ≥ 1
4
· µ(Σ)

Now we apply Proposition A.2 to Σ with c = log |Σ| and obtain a subset Λ0 ⊆ Σ. Then,
we apply Proposition A.1 to Λ0 with ρ = 1

2 log |Σ| , thus obtaining a subset Λ1 ⊆ Λ0. Finally,
we choose Λ to be Λ1. We prove that Λ has the required properties. At first, we show
µ (Λ) ≥ 1

4
· µ(Σ). Note that by Proposition A.1, it holds that

µ (Λ) ≥
(

1− 1

2 log |Σ|

)
· µ (Λ0) ≥ 1

2
· µ (Λ0) (A.4)

and that by Proposition A.2, it holds that

µ (Λ0) ≥
(

1

|Σ|

) 1
log Σ

· µ(Σ) ≥ 1

2
· µ(Σ).

Therefore,

µ (Λ) ≥ 1

4
· µ(Σ)

as required. It remains to show Λ is 1
4 log |Σ|–fortified. Let Λ̃ ⊆ Λ. By Proposition A.1, it

holds that

µ(Λ̃) ≥ 1

2 log |Σ|
· |Λ̃|
|Λ0|
· µ (Λ0) ≥ 1

2 log |Σ|
· |Λ|
|Λ0|
· |Λ̃|
|Λ|
· µ (Λ)

Next, by Proposition A.2, it holds that

|Λ|
|Λ0|

≥
(
µ (Λ)

µ (Λ0)

)log |Σ|

≥
(

1− 1

2 log |Σ|

)log |Σ|

, by Equation A.4

≥ 1

2
.

Thus,

µ(Λ̃) ≥ 1

4 log |Σ|
· |Λ̃|
|Λ|
· µ (Λ) .

This means Λ is 1
4 log |Σ|–fortified as required.
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