
Error Correcting Codes that Achieve BSC Capacity Against
Channels that are Poly-Size Circuits

Ronen Shaltiel∗ Jad Silbak†

August 23, 2022

Abstract

Guruswami and Smith (J. ACM 2016) considered codes for channels that are poly-size circuits which
modify at most a p-fraction of the bits of the codeword. This class of channels is significantly stronger
than Shannon’s binary symmetric channel (BSC), but weaker than Hamming’s channels which are com-
putationally unbounded. Guruswami and Smith gave an explicit Monte-Carlo construction of codes with
optimal rate ofR(p) = 1−H(p) that achieve list-decoding in this scenario. Here, “explicit Monte-Carlo”
means that both encoding and decoding algorithms run in polynomial time. However, the encoding and
decoding algorithms also receive a uniformly chosen string of polynomial length (which is chosen and
published, once and for all, in a pre-processing stage) and their correctness is guaranteed w.h.p. over this
random choice. Guruswami and Smith asked whether it is possible to obtain uniquely decodable codes
for poly-size channels with rate that beats the Gilbert-Varshamov bound RGV (p) = 1−H(2p). We give
an affirmative answer, Specifically:

• For every 0 ≤ p < 1
4 , we give an explicit Monte-Carlo construction of uniquely-decodable codes

with optimal rate R(p) = 1 − H(p). This matches the rate achieved by Guruswami and Smith
for the easier task of list-decoding, and also matches the capacity of binary symmetric channels.
Moreover, this rate is strictly larger than that of codes for the standard coding scenario (namely,
uniquely-decodable codes for Hamming channels).

• Even ignoring explicitness, our result implies a characterization of the capacity of poly-size chan-
nels, which was not previously understood.

Our technique builds on the earlier list-decodable codes of Guruswami and Smith, achieving unique-
decoding by extending and modifying the construction so that we can identify the correct message in the
list. For this purpose we use ideas from coding theory and pseudorandomness, specifically:

• We construct codes for binary symmetric channels that beat the Gilbert-Varshamov bound, and are
“evasive” in the sense that a poly-size circuit that receives a random (or actually pseudorandom)
string, cannot find a codeword within relative distance 2p. This notion of evasiveness is inspired
by the recent work of Shaltiel and Silbak (STOC 2021) on codes for space bounded channels.

• We develop a methodology (that is inspired by proofs of t-wise independent tail inequalities, and
may be of independent interest) to analyze random codes, in scenarios where the success of the
channel is measured in an additional random experiment (as in the evasiveness experiment above).

• We introduce a new notion of “small-set non-malleable codes” that is tailored for our application,
and may be of independent interest.
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1 Introduction

1.1 Codes and channels

Coding theory studies transmission of messages using noisy channels. In this paper we are interested in
binary codes, and prefer to focus on decoding properties of a code, rather than combinatorial properties like
minimal distance. More specifically, given a family C of (possibly randomized) functions C : {0, 1}n →
{0, 1}n (which we call “channels”) the goal is to design a code (namely, a pair (Enc,Dec) of an encoding
map Enc : {0, 1}k → {0, 1}n and a decoding map Dec : {0, 1}n → {0, 1}k) such that for every message
m ∈ {0, 1}k and every channel C ∈ C, decoding is successful, namely:

Dec(Enc(m)⊕ C(Enc(m))) = m.

The rate of a code is R = k
n . For a family C of channels, we use R(C) to denote the capacity of the family,

which is the best possible rate of a code for this family.1 For a family C of channels, there are two main
goals:

1. Determine the capacity R(C).
2. Construct explicit codes (namely codes with poly-time encoding and decoding algorithms).

Let us review some coding scenarios and channel families. In all examples below 0 ≤ p < 1
2 is a parameter.

Binary symmetric channels. A binary symmetric channel (denoted by BSCp) is the randomized function
that ignores its input and produces n i.i.d. random bits, where each of them is one with probability p.
This is a special case of an extensively studied class of randomized channels (often referred to as “Shannon
channels”). A celebrated theorem of Shannon shows that R(BSCp) = 1 − H(p).2 Later work on code
concatenation (due to Forney [For65]) produced codes with explicit and even linear time algorithms [GI05].

Hamming channels. The class of Hamming channels (denoted by Hamp) is the class of all functions such
that for every input x, the relative Hamming weight of C(x) is at most p.3 (This corresponds to a channel
that flips at most a p fraction of the bits). This class is probably the most studied class of channels, and yet,
its capacity R(Hamp) is not precisely understood. It is known that R(Hamp) = 0 for p ≥ 1

4 , and that for
0 < p < 1

4 , R(Hamp) < 1 − H(p).4 The Gilbert-Varshamov bound shows that R(Hamp) ≥ RGV (p) =
1 − H(2p), but explicit codes with this rate are unknown. Recently, there has been progress on explicit
codes with rate that is close to the Gilbert-Varshamov bound for p approaching 1

4 [TS17, JST21, BD22].

List-decoding. In the relaxed goal of list-decoding, the decoding map is allowed to output a list of L =
O(1) messages, and decoding is considered successful if Dec(Enc(m)⊕C(Enc(m))) 3 m. Unlike the case
of unique decoding, the list decoding capacity of Hamming channels (denoted by RList(Hamp)) is known

1More formally, R(C) is the largest number R such that for every ε > 0, there exist infinitely many n, for which there exists a
code for C, with rate at least R − ε. We mostly use the term “rate” for a specific (family of) codes, and “capacity” for a class of
channels, but these terms are interchangeable in this paper.

2Here H(p) = p · log(1/p) + (1− p) · log(1/(1− p)) is Shannon’s entropy function.
3The relative Hamming weight of a string z ∈ {0, 1}n is wt(z) = |{i∈[n]:zi 6=0}|

n
.

4This follows because by the Elias-Bassalygo bound, which states that R(Hamp) < RElias-Bassalygo(p) where the latter is
strictly smaller than 1−H(p). We remark that the Elias-Bassalygo bound gives a stronger result, and that later work by McEliece,
Rodemich, Rumsey and Welch [MRRW77] improves this bound in some ranges. We state the bound R < 1−H(p) to stress that
R(Hamp) < R(BSCp) = 1−H(p).
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to be RList(Hamp) = 1 − H(p),5 which allows positive rate even for 1
4 ≤ p < 1

2 (in contrast to unique
decoding). Explicit constructions of such codes are unknown.

Intermediate classes of channels. It is natural to consider intermediate classes of channels that lie be-
tween binary symmetric channels and Hamming channels. One such example was studied by Guruswami
and Smith [GS16] that considered the class of additive channels. This class (denoted by Addp) contains
all constant functions C ∈ Hamp. This means that an additive channel C : {0, 1}n → {0, 1}n has a
predetermined noise vector e ∈ {0, 1}n of Hamming weight at most p, and the channel C uses this noise
vector regardless of its input. In particular, the channel does not choose the noise vector as a function of the
transmitted codeword.

It turns out that with the standard definition of codes, every code for additive channels is also a code for
Hamming channels.6 In order to take advantage of restricted families of channels, one needs to consider a
different coding scenario. Several such scenarios were considered in the literature. In this paper, we follow
the approach of Guruswami and Smith [GS16] and consider stochastic codes.

Stochastic codes. These are codes where the encoding algorithm is randomized, and decoding only needs
to succeed with high probability. More precisely, an encoding map of a stochastic code, is a function
Enc : {0, 1}k ×{0, 1}d → {0, 1}n and it is required that for every m ∈ {0, 1}k, and every channel C in the
considered class:

Pr
S←Ud

[Dec(Enc(m,S)⊕ C(Enc(m,S)) = m] ≥ 1− ν,

where ν is an error parameter. (A precise formal definition is given in Definition 3.8). Note that the decoding
algorithm does not need to receive S, and so, these codes can be used in the standard coding communication
scenario. The rate of a stochastic code is R = k

n . Stochastic codes do not give an improvement in capacity
in the case of Hamming channels (as it is easy to show that a stochastic code for Hamming channels yields
a standard code with the same rate) but they do allow improved capacities for other classes.

Additive channels. Recall that an additive channel C ∈ Addp is a channel that ignores the transmitted
codeword, and always uses a predetermined noise vector of Hamming weight at most p. Guruswami and
Smith [GS16] showed that the stochastic capacity, RStoc(Addp) = 1−H(p),7 while also providing explicit
encoding and decoding algorithms for the stochastic code.

Online channels with small space. The class of space-bounded channels (denoted by Spcsp) is the class
of all C ∈ Hamp, where C reads its input in one pass, using space s, and produces its i’th output bit before
reading the (i + 1)’th bit. Guruswami and Smith [GS16] showed that RStoc(Spclogn

p ) = 0 for p > 1
4 .8

Shaltiel and Silbak [SS21b] (building on earlier work [GS16, SS21a, KSS19] that considered list-decoding)
showed that RStoc(Spcsp) is 1 −H(p) for s = n1−o(1) and 0 < p < 1

4 , while also providing explicit codes
for s = nΘ(1). Chen, Jaggi and Langberg [CJL15], and Dey, Jaggi, Langberg, and Sarwate [DJLS13],
considered Causal channels (in which s = n, and there are no space restrictions). These works determined

5This formally means that for every ε > 0, there exists a constant Lε such that there are infinitely many n, for which there exists
a code with rate R = 1−H(p)− ε and a list-decodable code with list size Lε.

6This follows as if there is a message m ∈ {0, 1}k and a channel C ∈ Hamp such that Dec(Enc(m) ⊕ C(Enc(m))) 6= m,
then the channel C′(x) = C(Enc(m)) is a channel in Addp on which decoding is not successful.

7This formally means that for every ε > 0, and for infinitely many n, there is a stochastic code with rate R = 1−H(p)− ε for
Addp that achieves success probability 1 − o(1). In fact, the success probability achieved by [GS16] against additive channels is
much better.

8More formally, Guruswami and Smith [GS16] showed that for every constant p > 1
4

, there does not exist a family of stochastic
codes with positive rate against Spclogn

p , that achieves success probability 1− o(1).
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the capacity RStoc(Spcnp ), and showed that this capacity is 1 − H(p) for p ≤ p0 ≈ 0.0804, and is strictly
smaller than 1−H(p) for p > p0. These bounds are achieved by non-explicit constructions.

Poly-size channels. In this paper we will consider the class of channels that can be implemented by poly-
nomial size circuits, that includes channels that can be implemented in polynomial time. The class Cktsp
is the class of all C ∈ Hamp such that C is a circuit of size s. We will focus on the case that s = nc for
a constant c, and call this class poly-size channels. Guruswami and Smith gave an “explicit Monte-Carlo
construction” of stochastic codes with rate 1−H(p) that are list-decodable for Cktn

c

p . We define and discuss
the notion of “Monte-Carlo constructions” in the next section.
We summarize all theses surveyed results (as well as our new results) in Table 1.

Table 1: Summary of surveyed known results. The results of this paper appear in bold text
Channel Decoding Stochastic? Range Rate Explicit? Reference
BSCp Unique No 0 ≤ p < 1

2 R = 1−H(p) Yes [For65]
Hamp Unique No 0 ≤ p < 1

4 R < 1−H(p) N/A [MRRW77]
Hamp Unique No 1

4 ≤ p <
1
2 R = 0 N/A Plotkin bound

Hamp List No 0 ≤ p < 1
2 R = 1−H(p) No Easy

Addp Unique Yes 0 ≤ p < 1
2 R = 1−H(p) Yes [GS16]

Spcnp Unique Yes 0 ≤ p < 0.0804 R = 1−H(p) No [CJL15]
Spcnp Unique Yes 0.0804 < p < 1

4 R < 1−H(p) No [DJLS13]
Spcn

Θ(1)

p List Yes 0 ≤ p < 1
2 R = 1−H(p) Yes [KSS19]

Spcn
Θ(1)

p Unique Yes 0 ≤ p < 1
4 R = 1−H(p) Yes [SS21b]

Spcn
1−o(1)

p Unique Yes 0 ≤ p < 1
4 R = 1−H(p) No [SS21b]

Ckt
O(n)
p Unique Yes 1

4 < p < 1
2 R = 0 N/A [GS16]

Cktn
c

p List Yes 0 ≤ p < 1
2 R = 1−H(p) Monte-Carlo [GS16]

Cktn
c

p List Yes 0 ≤ p < 1
2 R = 1−H(p) explicit, under [SS21a]

hardness assumptions

Cktn
c

p Unique Yes 0 ≤ p < 1
4 R = 1−H(p) Monte-Carlo Here

1.2 Explicit Monte-Carlo constructions

A Monte-Carlo construction (with q bits of Monte-Carlo randomness) is a pair (Enc,Dec) of maps, such that
in addition to their usual inputs Enc and Dec also receive a string y ∈ {0, 1}q. (More specifically, a Monte-
Carlo code is a pair of maps Enc : {0, 1}q × {0, 1}k → {0, 1}n and Dec : {0, 1}q × {0, 1}n → {0, 1}k,
and a Monte-Carlo stochastic code is a pair of maps: Enc : {0, 1}q × {0, 1}k × {0, 1}d → {0, 1}n and
Dec : {0, 1}q × {0, 1}n → {0, 1}k).

Let (Ency,Decy) denote the maps obtained with fixed strings y ∈ {0, 1}q, as first input. We say that
the construction has Monte-Carlo error η = η(n), if with probability 1− η over choosing y ← {0, 1}q, the
obtained code (Ency,Decy) have the desired property (which in our case is that (Ency,Decy) is a stochastic
code for Cktn

c

p ). A Monte-Carlo code is explicit if q = q(n) is polynomial, and Enc and Dec run in time
polynomial in n.9

9An alternative definition is that an explicit Monte-Carlo construction is a randomized algorithm A that on input n, runs in time
poly(n), and with probability 1− η(n) produces circuits Enc,Dec of polynomial size with the desired property.
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A more formal definition is given in Definition 3.8.

Explicit Monte-Carlo constructions vs. Random codes. We stress that a random code does not yield
an explicit Monte-Carlo construction. One reason is that sampling a random code requires exp(n) random
bits. A more acute reason is that even if one somehow reduces the number of random bits to polynomial,
it is not clear how to implement a polynomial time decoding algorithm. A good example to keep in mind
is a random linear code. Random linear codes can be sampled using polynomially many random bits, and
have polynomial time encoding algorithms. Nevertheless, they are not explicit Monte-Carlo constructions,
because we do not know how (and don’t think it is possible to) couple them with polynomial time decoding
algorithms.

Necessity of Monte-Carlo constructions in the case of poly-size channels. Explicit constructions of
stochastic codes against a class C immediately imply lower bounds against the class C (unless they also
apply for Hamming channels). See [SS21a] for a precise formulation of this statement and a discussion.

Given our current inability to prove circuit lower bounds, we cannot expect to obtain unconditional
explicit constructions of stochastic codes for Cktn

c

p , and the best we can hope for is explicit Monte-Carlo
constructions (as is achieved in the aforementioned result of Guruswami and Smith [GS16], and in this
paper). An alternative approach taken by Shaltiel and Silbak [SS21a] (that we discuss later in Section 2.6)
is to base explicit constructions on complexity theoretic hardness assumptions.

1.3 Our results

1.3.1 An explicit Monte-Carlo construction of stochastic codes with optimal rate for Cktn
c

p

We give an explicit Monte-Carlo construction of a uniquely decodable stochastic code for Cktn
c

p with opti-
mal rate of R = 1−H(p).

Theorem 1.1 (Explicit Monte-Carlo construction of stochastic codes with optimal rate for Cktn
c

p ). For every
constants 0 ≤ p < 1

4 , ε > 0, and c > 1, there is an explicit Monte-Carlo construction of a stochastic code
with rate 1−H(p)− ε for Cktn

c

p , achieving success probability 1− 1
nc .

Theorem 1.1 is restated in a more general way that includes more precise parameters in Theorem 7.1.
Guruswami and Smith [GS16] showed that stochastic codes for Ckt

O(n)
p (in fact even for a weaker class)

cannot have positive rate for p > 1
4 . This means that Theorem 1.1 achieves the best possible capacity for

every choice of p, and in particular, we obtain a characterization of the capacity RStoc(Cktn
c

p ) of stochastic
codes for Cktn

c

p , showing that:

RStoc(Cktn
c

p ) =

{
1−H(p) 0 ≤ p < 1/4

0 p > 1/4.

Note that this determines RStoc(Cktn
c

p ) for every p except p = 1
4 .10 A curious consequence is that the

capacity function is not continuous at p = 1
4 , as 1−H(1

4) > 0.

10The aforementioned result of Guruswami and Smith [GS16] (that rules out stochastic codes for Ckt
O(n)
p with positive rate,

and success probability 1− o(1), for p > 1
4

) can be extended to the case that p = 1
4

, and show that there does not exist a stochastic
code for Ckt

O(n)
p with positive rate, and success probability 1−O( 1

n
). It is open whether this lower bound can be extended to rule

out stochastic codes with success probability 1− o(1). We omit the details to the full version.
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Comparison to previous work. Prior to this work it was not known whether codes for Cktn
c

p can beat the
Gilbert-Varshamov bound RGV = 1 −H(2p), and this was raised as an open problem by Guruswami and
Smith [GS16]. We completely resolve this problem, while achieving the best possible rate (matching the rate
of codes for BSCp, or list-decoding for Hamp) while also achieving an explicit Monte-Carlo construction.
Our codes achieve the same rate, and success probability as those given by Guruswami and Smith [GS16] for
the harder task of unique-decoding whereas the codes of Guruswami and Smith only achieve list-decoding.

The running time of Enc and Dec in Theorem 1.1 is polynomial in n, for a larger polynomial than nc.
This is also the case in the list-decodable codes of Guruswami and Smith [GS16]. See Section 2.6 for a
discussion.

The capacity of Cktn
c

p is larger than that of Hamp. The codes of Theorem 1.1 have rate that is superior
to that of codes for the standard model of decoding against Hamming channels (regardless of the issue of
explicitness). More precisely, while the capacity of codes for Hamp is not understood, it is known (by
the aforementioned Elias-Bassalygo bound, and improvements in [MRRW77]) that this capacity is strictly
smaller than 1−H(p). We show that it is possible to achieve rate 1−H(p) for Cktn

c

p ,
Note that this is in contrast to the case of list-decodable stochastic codes for Cktn

c

p considered by Gu-
ruswami and Smith [GS16], where the rate of the (Monte-Carlo constructed) stochastic codes, matches the
rate of list-decoding for Hamp, rather than beating it. Indeed, in the case of Guruswami and Smith [GS16],
the advantage of codes for Cktn

c

p over codes for Hamp is in explicitness, rather than in “combinatorial
supremacy”.

Perspective. Our results immediately extend to channels that are randomized poly-size circuits, as these
can be viewed as a convex combination of channels from Cktn

c

p . It seems that all classes of channels that
are studied in the Shannon literature are captured by Cktsp for s = O(n). On a more philosophical level, it
is hard to imagine a “physical channel” that is not implementable by a poly-size or even linear size circuit.

1.3.2 An analysis of random stochastic codes

Prior to this work it was unknown whether stochastic codes for Cktn
c

p with rate that beats the Gilbert-
Varshamov bound exist. In particular, it was not known whether a random stochastic code achieves this.
This is an intriguing question, even though, now, by Theorem 1.1 there exist such codes with rate 1−H(p).

In this paper, we develop new techniques to argue about random stochastic codes, and related scenarios.
This technique (that is inspired from ideas used in proofs of t-wise independent tail inequalities) is outlined
in Section 2, and presented in Section 4. We can use this technique to give a direct proof that a random
stochastic code with rate 1−H(p) is w.h.p. good for Cktn

c

p , or in fact for any class C which contains 22αn

channels, where α > 0 is a constant.

Theorem 1.2 (Random stochastic codes that decode against small families). For every constants 0 ≤ p < 1
4

and ε > 0, there exist constants α > 0 and cd > 0, such that forR = 1−H(p)−ε, and for every sufficiently
large n, and every class C ⊆ Hamp of size at most 22α·n , a function Enc : {0, 1}Rn × {0, 1}cd·n → {0, 1}n
chosen uniformly from all such functions, coupled with a function Dec : {0, 1}n → {0, 1}Rn that applies
maximum likelihood decoding, is with probability 1 − 2−2α·n a code for C achieving success probability
1− 2−α·n.

Theorem 1.2 is restated in a more precise way that includes more precise parameters in Theorem 8.1.
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2 Overview of the technique

In this section we give an overview of the main ideas that we use. For this purpose we will allow ourselves to
be informal, and not entirely precise. The later technical sections do not build on the content of this section,
and the reader can skip to the technical section if they wish.

Our overall approach builds on the list-decodable stochastic codes for Cktn
c

p by Guruswami and Smith.
We would like to modify and enhance the construction so that we can identify the correct message in the
output list, and achieve unique decoding. For this purpose, we introduce several ideas that we explain below.

2.1 Codes for BSCp that are also evasive for Cktn
c

p

Following Guruswami and Smith [GS16] we will use a code (EncBSC,DecBSC) for BSCp as a component
in the construction of stochastic codes, and the final stochastic code will inherit the rate of the BSC code.
Shaltiel and Silbak [SS21b] introduced a notion of “evasive codes” that plays a major part in their construc-
tion of stochastic codes for space bounded channels. We will now present a related notion that is tailored
for our intended application where we are interested in poly-size channels.

Evasiveness of codes. We will be interested in (standard) codes (EncBSC,DecBSC) for BSCp that have
an additional evasiveness property against Cktn

c

p . More specifically, we would like to modify the decoding
algorithm DecBSC into a new decoding algorithm Dec′BSC, where Dec′BSC is allowed to output fail, so that:

• (EncBSC,Dec′BSC) still form a code for BSCp, meaning that, for every m ∈ {0, 1}k, for z =
EncBSC(m), we have that w.h.p. Dec′BSC(z ⊕ BSCp) = m.
• We say that the code is ρ-evasive for a class C, if when a uniform Z ← Un is corrupted by a channel
C ∈ C, then w.h.p. Dec′ fails. Namely, PrZ←Un [Dec′BSC(Z ⊕ C(Z)) = fail] ≥ 1− ρ.

A more formal definition appears in Section 5.1. We stress that in the second requirement we are interested
in a scenario in which C receives Z ← Un (rather than a codeword z = Enc(m)).

An easy modification of DecBSC is to make it fail if it decodes to a codeword that has distance slightly
larger than p from the received corrupted word. This obviously satisfies the first item. Using this modifica-
tion, codes for BSCp with rate that doesn’t beat the Gilbert-Varshamov bound (namely, rateR < RGV (p) =
1 −H(2p)) can be easily made evasive even against the class Hamp of computationally unbounded chan-
nels.11

Shaltiel and Silbak [SS21b] gave an explicit construction of codes for BSCp that beat the Gilbert-
Varshamov bound, and are evasive for small space channels. This constructions rely on the weakness of
small space channels, and roughly show that any “well behaved” code for BSCp can be made evasive for
small space channels.

We need to construct codes for BSCp, that are evasive for Cktn
c

p , which is a significantly more powerful
class (for which we have no lower bounds). By the discussion in Section 1.2 we cannot expect to have
unconditional constructions, unless they are also evasive for Hamp. We will therefore require a very different
approach from that of Shaltiel and Silbak [SS21b].12

11More precisely, any code with rate R ≤ 1 −H(2p) − ε is immediately 2−εn-evasive. This is because a uniform Z ← Un is
likely to have relative Hamming distance larger than 2p from any codeword, and so, by the triangle inequality, a channelC ∈ Hamp,
cannot corrupt a p fraction of the bits, so that the corrupted codeword is within relative Hamming distance p from a codeword.

12Furthermore, in the case that DecBSC is the maximum likelihood decoder, and runs in polynomial time, evasiveness for poly-
size circuits implies that no poly-size circuit can find a codeword that is within relative Hamming distance 2p from a random
string.
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We first give an explicit construction of codes for BSCp with rate R∗(p) > RGV (p) = 1−H(2p) that
are evasive not only for Cktn

c

p , but in fact for the computationally unbounded class Hamp. We find this quite
surprising, as it is easy to see that random codes with rate that beats the Gilbert-Varshamov bound (namely,
R > RGV = 1 −H(2p)) are not evasive against Hamp (See Section 5 for details). This means that in the
construction given in Section 5.3, we will need to use codes that are very different than random codes.
We also give an explicit Monte-Carlo construction (which achieves optimal rate of 1 − H(p)) for Cktn

c

p ,
that is stated below:

Informal Theorem 2.1 (Monte-Carlo codes for BSCp with optimal rate, that are evasive for Cktn
C

p ). For
every constants p < 1

4 , c > 1, and ε > 0, there is an explicit Monte-Carlo construction of codes for BSCp

with rate 1−H(p)− ε that is evasive against Cktn
c

p .

As we are shooting for a Monte-Carlo construction of stochastic codes for Cktn
c

p , we can afford to use
the Monte-Carlo construction of Theorem 2.1. In Section 2.6 we discuss the possibility of constructing
explicit (rather than Monte-Carlo) stochastic codes based on hardness assumptions, and the aforementioned
explicit construction of evasive codes with rate R∗(p) can be viewed as a first step towards this goal.

An overview of the proof of Theorem 2.1 appears in Section 2.4. For this proof, we develop new
machinery to analyze random codes, based on an intuition that is borrowed from techniques used to prove
t-wise independent tail inequalities. We believe that this machinery is of independent interest, and we also
use it as part of our Monte-Carlo construction of “small-set non-malleable codes” that we describe next.

2.2 Small Set Non-malleable codes

In this paper we introduce a new notion of stochastic codes that is related to the well studied notion of non-
malleable codes (defined by Dziembowski, Pietrzak and Wichs [DPW18]) but is defined using a different
methodology and tailored to handle a related, but somewhat different scenario that comes up in our setting.

Background on non-malleable codes. Loosely speaking, non-malleable codes are designed to work
against channels C : {0, 1}n → {0, 1}n, which when given a codeword z, produce a “corrupted word”
C(z). However, in contrast to earlier settings that we discussed, there will be no bound on the number of
errors that C can induce. This means that C can erase the codeword and replace it with another string, and
we cannot expect the decoding algorithm to produce the original message m. Instead, the goal is to show
that C is unable to make the decoding algorithm produce a message m̄ 6= m that is related to m.

The new notion of SS-non-malleability, and comparison to earlier notions. We will be interested in
the scenario where the message M is chosen uniformly from {0, 1}k, and will require that for every small
circuitC, one can guess in advance a small setHC of messages, such thatC is unlikely to make the decoding
algorithm produce a message that is neither in HC nor the original message M .

Moreover, we will require that this holds even if the adversary also receives additional information about
M , in the form of some specific function ψ(M). (It is instructive to think of the case that ψ(M) = M ,
giving the adversary the ability to decode “for free”).13 This means that unlike the notion of non-malleable
codes defined by Dziembowski, Pietrzak and Wichs [DPW18], this notion does not imply the inability of
the adversary to decode. Instead, it intuitively relies upon the inability of the adversary to encode.14

13A definition with a similar “small set” flavor (but with a “worst-case” choice of message, and without allowing C to obtain
additional information in the form of ψ(M)) was defined by Faust et al. [FMVW16] where it was called “bounded malleability”
and used as an intermediate notion, in order to produce the standard notion of non-malleability.

14More specifically, while this definition has the same intuition as the standard definition given by Dziembowski, Pietrzak and
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Definition of SS-non-malleable codes. More specifically, let Enc : {0, 1}k × {0, 1}d → {0, 1}n and
Dec : {0, 1}n → {0, 1}k be a stochastic code, and let ψ(m) be some function that outputs strings. We
say that (Enc,Dec) is an SS-non-malleable code with respect to ψ, set size h and error ρ, against a circuit
C : {0, 1}n → {0, 1}n if there exists a set HC of size at most h such that:

Pr
M←{0,1}k
S←{0,1}d

[Dec (C(Enc(M,S), ψ(M))) 6∈ HC ∪ {M}] ≤ ρ.

Note that this definition is quite compact, and does not mention “simulators” or “indistinguishability”.
This makes it easy to use, and to argue about.

More importantly, this definition is tailored for our intended application, in which the adversary will
receive information ψ(M) about M that we do not completely control, and can potentially reveal a lot of
information about M . We remark that in our actual application we use a more general definition (that also
allows C to view many encodings of the same message M , in addition to ψ(M)). This comes up because in
our application the adversary receives this additional information. The precise formal definition and some
additional discussion, appear in Section 6.

We will be interested in the adversaries that are poly-size circuits. There are several known constructions
of non-malleable codes for this class [DPW18, CG16, FMVW16, BDK+19, DKP21, BDL22]. Some of
these constructions rely on complexity theoretic and/or cryptographic assumptions, and others are Monte-
Carlo. We cannot use these constructions as they do not seem to have the properties that we require. More
specifically, we require SS-non-malleability, as well as some additional properties listed below.

Additional properties that are required in our intended application. In our intended application (of
constructing stochastic codes with optimal rate for Cktn

c

p ) we will require stochastic codes that in addition
to being SS-non-malleable for poly-size circuits, also decode against channels in Hamp, and moreover, we
will need them to have certain additional pseudorandom properties. It seems very hard to construct such
stochastic codes (even assuming cryptographic assumptions). Fortunately, in our intended application, these
SS-non-malleable codes will be used to encode short strings of logarithmic length, and this will make it
easier to give a Monte-Carlo construction of such codes that runs in polynomial time (by choosing a random
stochastic code, which requires a polynomial number of random bits). This is stated in the next theorem.

Informal Theorem 2.2 (A Monte-Carlo construction of SS-non-malleable codes). For every constants p <
1
4 and c > 1, there exist constants cd, cb ≥ 1, such that a random stochastic code (namely, a random
encoding map Enc : {0, 1}logN × {0, 1}cd·logN → {0, 1}cb·logN which can be sampled using poly(N)
random bits) is w.h.p. both a stochastic code for Hamp and SS-non-malleable for circuits of size N c (when
coupled with maximum likelihood decoding up to distance p).

Wichs [DPW18], it is on one hand weaker, as it is only designed to guarantee security if M is chosen uniformly from {0, 1}k,
whereas the standard definition guarantees security on any distribution. Moreover, even in the case of a uniform M , the small
set condition seems weaker than what is guaranteed by the standard definition (as it allows the decoded message to be relate to
M if it is in HC ). On the other hand, the definition given here is stronger in the sense that security is guaranteed even if the
adversary receives additional information ψ(M) about M that may allow it to “decode” and obtain M . We also remark that an
adversary that can compute the encoding function, can break SS-non-malleability (regardless of the function ψ) by replacing the
codeword with an encoding of a uniform messageM ′ that is independent ofM , and trivially, M ′ is unlikely to fall in any small set.
This demonstrates that the notion of SS-non-malleability that we define, does not allow the adversary to encode the code, whereas
the standard notion does not seem to prevent the adversary from computing the encoding, as can be seen by the construction of
Dachman-Soled, Komargodski and Pass [DKP21] which (under cryptographic assumptions) give a non-malleable code in which
the adversary is able to compute the encoding function).
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Theorem 2.2 is stated more formally as Theorem 6.5 in Section 6. We stress that it is not obvious that
a random code is non-malleable or SS-non-malleable. The seminal paper of Dziembowski, Pietrzak and
Wichs [DPW18] had an analysis of a randomized construction, which was later improved by Faust et al.
[FMVW16] and Cheraghchi and Guruswami [CG16]. However, we need the additional security against
adversaries that see many encodings, and receive additional information ψ, as well as additional decoding
properties against Hamming channels and pseudorandomness properties. Consequently, we cannot use the
previous analyses.15 An intriguing open problem is to obtain such codes explicitly (rather than Monte-Carlo)
under complexity theoretic or cryptographic hardness assumptions. Together with our explicit construction
of evasive codes, this will give a construction of stochastic codes for Cktn

c

p with rate R∗(p) that is explicit
(rather than Monte-Carlo) assuming these assumptions, see Section 2.6 for a discussion.

2.3 Stochastic codes that are uniquely decodable for Cktn
c

p

At this point, we are ready to explain how to use the components that we already discussed (SS-non-
malleable codes, and evasive codes for BSCp) to obtain stochastic codes for Cktn

c

p . We start with a brief
overview of the list-decodable stochastic codes of Guruswami and Smith in Section 2.3.1, and in Section
2.3.2 we explain how to identify the correct candidate in the list, and obtain unique decoding.

2.3.1 A brief overview of the list-decodable stochastic codes of Guruswami and Smith

Guruswami and Smith [GS16] use an approach that “boosts” a (standard) code for BSCp, so that it works
for stronger channels like Cktn

c

p , albeit, in an easier scenario than that of stochastic codes, called “codes
with shared private randomness”.

Codes with shared private randomness. This is a pair of maps Encspr : {0, 1}k×{0, 1}d → {0, 1}n and
Decspr : {0, 1}n × {0, 1}d → {0, 1}k such that for every message m ∈ {0, 1}k, and for every C ∈ Cktncp ,
let Z = Encspr(m,S) be the codeword, and Z̄ = Z ⊕ C(Z) be the “received word”. It is guaranteed that:

Pr
S←Ud

[Decspr(Z̄, S) = m] ≥ 1− ν.

Note that unlike the scenario of stochastic codes, in this scenario of shared private randomness, the
decoding algorithm, does receive the randomness S chosen by the encoding procedure. This gives the
decoding algorithm a huge advantage over the case of stochastic codes (where the decoding does not receive
S).

Indeed, it is much easier to construct codes for shared private randomness than stochastic codes, and such
a construction for Cktn

c

p was given by Lipton [Lip94], and extended by Smith [Smi07], and Guruswami and
Smith [GS16]. In this paper we use a variant of this construction (which we need to modify, as in our
application it will be crucial that d = O(log n)). We explain this construction in Section 2.5.

Converting codes with shared randomness to stochastic codes for Cktn
c

p . In order to convert a code
with shared private randomness (Encspr,Decspr) for Cktn

c

p , into a stochastic code (Enc,Dec) for Cktn
c

p ,
Guruswami and Smith suggested to “embed” the seed S into the codeword in a way that will allow Dec to
“list-decode” a small list of candidates for S, even after the codeword is corrupted by a channel in Cktn

c

p .

15We remark that some of the aforementioned earlier works also showed how to derandomize the sampling of the random
stochastic code, using t-wise independence, resulting in a Monte-Carlo construction. We stress that in our methodology, we do not
rely on t-wise independence, but rather on techniques that were developed to prove t-wise independent tail inequalities. These two
issue are orthogonal, and our technique seems different than that used in previous work.
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This step will rely on a constant rate code (Encctrl,Decctrl) called a “control code” that decodes mes-
sages of length d = O(log n) (so that it can be applied to encode S) into codewords of length b = O(log n).

We now explain how Guruswami and Smith [GS16] used a code for shared randomness for Cktn
c

p ,
and a control code (with certain properties to be discussed later) to construct a stochastic code that is list-
decodable for Cktn

c

p . The stochastic encoding algorithm Enc will receive an additional random seed I ∈ [n]

(in addition to the message m ∈ {0, 1}k, and seed S ∈ {0, 1}d that are inputs to Encspr) and will start by
preparing Z = Encspr(m,S). It will then replace the b bits ZI , . . . , ZI+b−1 of Z with Encctrl(S).

Guruswami and Smith [GS16] showed how to match Enc with a list-decoding algorithm Dec that outputs
a list of candidate messages such that w.h.p. one of them is the original message. Loosely speaking, this is
done as follows:16 When Dec receives a “corrupted codeword” Z̄ = Z ⊕C(Z), it will first prepare a list of
candidate control strings S̄1, . . . , S̄n for the seed S, by setting S̄i = Decctrl(Z̄i, . . . , Z̄i+b−1). It will then
output n candidate messages M̄1, . . . , M̄n by setting M̄i = Decspr(Z̄, S̄i).

Loosely speaking, Guruswami and Smith [GS16] showed that if the control code decodes from Hamp

(and has certain additional pseudorandomness properties that we will not discuss in this overview, and
prevent the channel from identifying I) then w.h.p there exists i∗ ∈ [n] such that S̄i∗ = S, so that M̄i∗ =
Decspr(Z̄, S̄i) = m, and the correct message appears in the list of candidates.

2.3.2 Using evasiveness and SS-non-malleability to find the correct candidate in the list

Summing up the overview given above (of the list-decodable stochastic codes for Cktn
c

p ) when a channel
C ∈ Cktn

c

p corrupts the codeword Z = Enc(m; (S, I)) into Z̄ = Z ⊕ C(Z):

• C cannot prevent Dec from having S appear in the list of candidate control strings S̄1, . . . , S̄n, and so
the original message will appear in the list of candidate messages M̄1, . . . , M̄n.
• However, C can affect the candidate control strings S̄1, . . . , S̄n, and inject candidates to the list. (Note

for example, that C can place the fixed string Encctrl(s̄) for any fixed s̄ ∈ {0, 1}d that he chooses, as
a substring of the corrupted codeword Z̄, which will cause s̄ to appear in the list of candidates).

We want to trim the list, and discard incorrect candidates. We will be interested in the following questions:

1. Can a channel C ∈ Cktn
c

p arrange it so that some of the candidates S̄i are related to the correct control
string S, and yet different from it?

2. What happens when Decspr(Z̄, S̄i) is applied on a corrupted codeword Z̄, using an incorrect seed
S̄i 6= S, and is unrelated to S?

Jumping ahead, we mention that we will use SS-non-malleability to handle the first case, and evasiveness
to handle the second. We first address the first question. It turns out that in the construction of Guruswami
and Smith [GS16], a channel C ∈ Cktn

c

p can control many of the candidate control strings S̄1, . . . , S̄n.
Moreover, C can arrange things so that many of these candidates are different than S, and yet correlated
with S.

16The description that we give here is an over-simplification that is used to give the flavor of the construction of [GS16], and
motivate the ingredients and ideas that we introduce in order to extend it so that it uniquely-decodes, rather than list-decodes.
The actual construction of Guruswami and Smith is more involved, and we use the same approach (with some modifications) in
Section 7.2.
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Using SS-non-malleable control codes. The first step in our plan is to require additional “non-malleability”
properties from the control code (Encctrl,Decctrl). Using the SS-non-malleable codes of Theorem 2.2, pre-
vents C from injecting candidate control strings that are different than S, except for candidates in a small
set HC that is fixed in advance. We will use the stochastic codes from Theorem 2.2 as the control code
(Encctrl,Decctrl), and they indeed decode from Hamp and are SS-non-malleable for poly-size circuits.

We remark that Guruswami and Smith, also used random stochastic codes on logarithmic length strings
to obtain their control codes, and so, we are also guaranteed that these codes have the additional pseudoran-
domness required for the application. See Section 6 for a specification of these properties.

Note that in our scenario, in addition to a control encoding of S, the channel C also receives additional
information about S in the form of ψ(S) = Encspr(m,S). We need to argue that receiving ψ(S) does not
help C to break the SS-non-malleability. Indeed, the definition of SS-non-malleability is precisely tailored
so that for every poly-size circuit C, there exists a small set HC such that when C receives Encctrl(S) and
ψ(S), it is unlikely to make Decctrl produce S̄ 6∈ HC ∪ {S}.

Handling the case that S̄i ∈ HC. We now have that for every channel C ∈ Cktn
c

p , there exists a small
set HC of control strings, such that w.h.p. every element S̄i 6= S in the list of candidates is in HC . Our plan
is to arrange things so that for every fixed control string s̄ ∈ {0, 1}d (which in particular does not vary with
S) when running Decspr(Z̄, s̄) (on fixed s̄) we can detect that s̄ is “incorrect”, and discard this candidate.

Once this is achieved, by a union bound over the few s̄ ∈ HC , we have that w.h.p. all incorrect control
candidates are discarded, and only the correct candidate S, which decodes to the correct messagem survives.

Summing up this discussion, we would like to address the scenario considered in the second question
above: what happens when Decspr(Z̄, s̄) is applied on a corrupted codeword, with a fixed string s̄.

Using evasive BSC codes to discard incorrect candidates. Loosely speaking, the construction of the
code for shared private randomness, Encspr(m,S) encodes m using a code for EncBSC(m), and then xors
the codeword with a string W = G(S), where G is a pseudorandom generator for circuits of size nc. (For
completeness, we will review the construction of Encspr, which is more complicated than this oversimpli-
fied description, in Section 2.5). The decoding algorithm Decspr(Z̄, S) “reverses this operation”. More
specifically, when obtaining a corrupted message Z̄ = Z ⊕ C(Z), it computes W = G(S), and applies
DecBSC(Z̄ ⊕W ). This is done so that the two operations of “masking with W ”’, cancel each other out
when Encspr and Decspr are applied with the same seed S.

For the sake of intuition, let us pretend that W is truly random, rather than just pseudorandom. In the
scenario that we are considering, where Decspr is applied with a fixed s̄ (which is obviously independent
of S), W is not masked out by the constant G(s̄). In fact, W ⊕ G(s̄) is uniformly distributed. It follows
that Decspr(Z̄, s̄) is distributed like DecBSC(W ⊕ C(W )). This is precisely the scenario considered in the
evasiveness experiment!

Consequently, if we use the code (EncBSC,Dec′BSC) from Theorem 2.3, then we are guaranteed that
w.h.p. DecBSC outputs fail, which means that Decspr(Z̄, s̄) outputs fail, and the candidate s̄ is discarded.

Summing up, together, SS-non-malleability and evasiveness allow us to discard all incorrect control
candidates (SS-non-malleability discards candidates that are related to S, and evasiveness discards the can-
didates in HC). We are therefore left with only the correct control candidate, and the decoding algorithm
will return the unique (and correct) message m. (We stress that in this informal overview we are ignoring
some additional technical issues, and a full proof appears in Section 7).
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2.4 A Monte-Carlo construction of evasive codes for BSCp with rate 1−H(p)

In this section we prove Theorem 2.1. Our plan is to use code concatenation, where the inner code encodes
messages of lengthO(log n) and is a code for BSCp. It is standard that this construction gives a BSCp code,
for a suitable outer code (in fact, as we are not picky with respect to decoding success probability, we can
use the identity function as an outer code). We will be able to argue that the concatenated code is evasive
for Cktn

c

p if the inner code is. (This argument appears in Section 5.4, and we will not review it here). As we
are shooting for a Monte-Carlo construction, it will be sufficient to analyze a random inner code (as such a
code can be sampled using poly(n) random bits). Consequently, it is sufficient to show that:17

Informal Theorem 2.3 (A Monte-Carlo construction of inner codes that are evasive). For every constants
p < 1

4 , c > 1, and ε > 0, there exists a constant e > 1, such that setting R = (1−H(p)− ε), a uniformly
chosen Enc : {0, 1}R·e·logN → {0, 1}e·logN (that can be sampled using poly(N) random bits) is w.h.p.
evasive for CktN

c

p (when coupled with maximum likelihood decoding up to distance p).

In order to prove Theorem 2.3, we develop a general methodology that we describe in detail in Section
4, and is also used to prove Theorem 2.2 and the results on random stochastic codes presented in Section
1.3.2.

2.4.1 A methodology inspired by proofs of t-wise independent inequalities

We will explain our methodology in the context of proving Theorem 2.3. (A detailed formal statemet,
and discussion of this method appears in Section 4). We will consider a random code with the required
parameters. Namely, let n = e · logN and k = R · n, so that we are aiming for a code Enc : {0, 1}k →
{0, 1}n. Let K = 2k, and X = ({0, 1}n)K , so that elements x ∈ X can be viewed as “encoding maps”
by Enc(m) = xm. We associate an “encoding map” x ∈ X with a decoding map Decx which on input
z̄ ∈ {0, 1}n, finds the closest codeword (that is the index j ∈ [k], that minimizes the relative Hamming
distance δ(xj , z̄)), and outputs fail if this distance is larger than p.

With this notation, choosing a random code, corresponds to the experiment x ← X . Once the code x
is selected, we are interested in the evasiveness experiment, in which z ← Un is selected, and a channel
C ∈ CktN

c

p wins if Decx(z ⊕ C(z)) does not fail. Let us define a function WC(x, z) which outputs 1 iff
“C wins on z with the code x”, namely if there exists j ∈ [K] such that δ(xj , z ⊕C(z)) ≤ p. This notation
is set up so that in order to prove that the code is ρ-evasive for CktN

c

p , we need to prove that:

Pr
X←X

[
∃C ∈ CktN

c

p s.t. Pr
Z←Un

[WC(X,Z) = 1] > ρ

]
is small.

Note that for every constant α > 0, the number of channels in CktN
c

p is bounded by 2N
2c

= 22
2c
e ·n ≤ 22α·n

for a sufficiently large constant e. By a union bound over all C ∈ CktN
c

p , it will be sufficient to show that
for every C ∈ CktN

c

p ,

Pr
X←X

[
Pr

Z←Un
[WC(X,Z) = 1] > ρ

]
< 2−2α·n .

17In Theorem 2.3 we discuss only evasiveness and do not mention decoding against BSCp, this is because by Shannon’s theorem,
the code of Theorem 2.3 can be “trimmed” to yield a code for BSCp. More precisely, Shannon’s proof shows that while the random
code Enc chosen in Theorem 2.3 is unlikely to be a code for BSCp, it is likely that after removing at most half of the codewords,
the obtained code is good for BSCp. Note that removing codewords does not harm the evasiveness property, and is insignificant in
terms of rate. Moreover, in time poly(N), one can identify a set of “offending codewords” that needs to be removed, and so, the
trimming step, can be viewed as an explicit Monte-Carlo construction. This argument appears in Section 5.
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Let WC
z (X) = WC(X, z) so that we can view the 2n random variables WC

z , as random variables over
choosing X ← X . With this notation we have that:

Pr
X←X

[
Pr

Z←Un
[WC(X,Z) = 1] > ρ

]
= Pr

X←X

 1

2n
·
∑

z∈{0,1}n
WC
z > ρ

 , (1)

which now looks like a tail inequality for the sum of the 2n random variables (WC
z )z∈{0,1}n . If these random

variables were independent, then we would be able to argue (by the Chernoff bound) that the probability
that the sum “deviates from the expectation” is indeed doubly exponentially small.

These random variables are dependent, and not even pairwise independent. Nevertheless, by utilizing
ideas from t-wise independent tail inequalities, we show that, in order to show that (1) is smaller than 2−2α·n ,
it is sufficient to show that for every q < 2α·n,

Pr
X←X ,Z←{0,1}n

Z1,...,Zq
wor← {0,1}n

[WC(X,Z) = 1|WC(X,Z1) = . . . = WC(X,Zq) = 1] ≤ ρ

3
, (2)

where the notation Z1, . . . , Zq
wor← {0, 1}n means that Z1, . . . , Zq ← {0, 1}n without replacement. The

precise statement appears as Lemma 4.1. Intuitively, (2) is a way to account for the dependance of the
random variables (WC

z )z∈{0,1}n as it identifies a sufficient condition for a tail inequality.
This means that we have reduced the task of achieving doubly exponentially small probabilities for (1),

to obtaining a moderate bound of ρ/3, on a scenario where we are interested in a version of the original
experiment where Z ← {0, 1}n, and an independent X ← X is chosen, conditioned on the event E ={
WC(X,Z1) = . . . ,WC(Z,Zq) = 1

}
(namely conditioned that C wins on all Z1, . . . , Zq

wor← {0, 1}n).
The hope is that (X|E) can be shown to be “roughly the same” as X . Indeed, it possible to show that

having won on Z1, . . . , Zq
wor← {0, 1}n, gives C only limited information about X . Loosely speaking, it

allows C to learn the locations of q ≤ 2α·n codewords. (This is because every time C wins on Zi, we
might as well reveal to C, the index j, and the value Xj for the codeword that was decoded by Dec on
Zj ⊕ C(Zj)). This means that conditioning on having won on Z1, . . . , Zq, essentially fixes q variables of
X1, . . . , XK , leaving the others uniform. (Here we are somewhat oversimplifying, and the formal proof is
given in Section 5.6).

We can now prove (2) as follows: When a freshZ ← {0, 1}n is chosen, then for each one of the q < 2α·n

codewords that were revealed to C, the probability that Z ← {0, 1}n has relative distance ≤ 2p from the
revealed codeword is at most 2−(1−H(2p))·n, which for p < 1

4 , is sufficiently small, so that by a union bound,
over all the q < 2α·n revealed codewords, we have that the probability that all the revealed codewords have
relative Hamming distance at least 2p to Z, is large.

This means that the location of these codewords (that was revealed toC) is unhelpful toC, asC ∈ Hamp

cannot corrupt Z in a p fraction of positions, and “push it” to within distance p to one of these codewords.
It follows that in order to win, C needs to push the received word Z to within relative Hamming distance

p to some codeword that was not revealed. To handle this case, we show that w.h.p. Z ⊕C(Z) is not within
relative Hamming distance p to one of the unrevealed codewords. Recall, that an unrevealed codeword, Xj

is still uniformly distributed and independent of Z, and so the probability that δ(Xj , Z ⊕ C(Z)) ≤ p, is at
most 2−(1−H(p))·n. There are at most K = 2(1−H(p)−ε)·n unrevealed codewords, and by a union bound, the
probability that one of them is within distance p to Z ⊕ C(Z) is at most 2−ε·n.

Overall, we have shown that (1) holds for ρ = 2−α·n for a sufficiently small constant α > 0, and this
completes the proof. See Section 5.6 for a complete formal proof (rather than an oversimplified overview).
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2.5 An overview of earlier codes for shared private randomness against Cktn
c

p .

For completeness, we now explain how the construction of codes with shared private randomness (Encspr,Decspr)
works. Recall that we want to transform a code (EncBSC,DecBSC) with rate RBSC for BSCp, into a code
with shared private randomness (Encspr,Decspr) for Cktn

c

p that inherits the same rate, and can therefore
achieve rate R = 1−H(p). The construction presented below emerged out of the works of Lipton [Lip94]
and Smith [Smi07], and is essentially similar to the way it was used by Guruswami and Smith [GS16].18

The construction of the code for shared private randomness (Encspr,Decspr) will rely on a PRG G for
circuits of size nc that uses a seed of length d = O(log n).19 On input message m ∈ {0, 1}k=RBSC·n and
randomness S ∈ {0, 1}d, Encspr(m,S) acts as follows:

• Apply the PRG on S to generate a pseudorandom stringG(S), and split it into two partsW ∈ {0, 1}n,
and Π ∈ {0, 1}logn!=Θ(n·logn). The string Π can be interpreted as a permutation Π : [n]→ [n].
• Encode m using the BSC code to obtain x = EncBSC(m).
• Permute the indices of x using Π−1. That is, generate the string Y ∈ {0, 1}n where Yi = xΠ−1(i).
• Output Z = Y ⊕W . (That is, mask Y using W ).

In the scenario of shared private randomness, the decoding algorithm Decspr receives a corrupted codeword
Z̄ = Z ⊕ C(Z), where C ∈ Cktn

c

p , and the seed S used by Encspr. As Decspr receive S, it can compute
W,Π, and undo the operations performed by the decoding. Specifically, Decspr(m,S) acts as follows:

• Unmask Z̄ using W : Namely, compute Ȳ = Z̄ ⊕W .
• Undo the permutation Π, namely compute X̄ ∈ {0, 1}n, by X̄i = ȲΠ(i).
• Decode the BSC code and output M̄ = DecBSC(X̄).

Let us imagine that W and Π are uniform and independent (rather than just pseudorandom). The rationale
behind this construction is the following:

• Let C ∈ Addp be an additive channel. Namely, C(z) = e for a fixed noise vector e ∈ {0, 1}n with
relative Hamming weight ≤ p. When Decspr decodes, it permutes the indices of e, according to Π,
generating a noise distribution that is essentially BSCp. This means that when Decspr applies DecBSC

on the “received message” Z̄ = Z ⊕ C(Z) = Z ⊕ e, it decodes correctly to the message m.20

• Let C ∈ Cktn
c

p be a poly-size channel. The encoded string Z is masked with W , and completely
masks out m and Π. This intuitively means that the noise E = C(Z) that C induces is independent
of m and Π, intuitively “reducing” C to an additive channel. Using the previous item. This can be
used to argue that when Decspr applies DecBSC on the “received message” Z̄ = Z⊕C(Z) = Z⊕E,
it correctly decodes to the message m. The precise argument appears in Section 7.3.

18There are some minor differences, as it is crucial for our purposes that d = O(logn), which prevents us from using “t-wise
independent permutations” that were used in previous work. This creates some complications in the analysis, see Section 7.2 for
more details.

19Such PRGs can be constructed under complexity theoretic hardness assumptions as shown by Impagliazzo and Wigderson
[IW97], but as we are shooting for a Monte-Carlo construction, we note that a random function G that stretches O(logn) bits into
nc bits, can be sampled using poly(n) bits, and is w.h.p. a PRG for circuits of size nc. In other words, there is a Monte-Carlo
construction of PRGs for circuits of size nc.

20The noise distribution obtained by permuting e using a uniform permutation Π is not identical to BSCp. Therefore, for this
argument to go through, we will need that (EncBSC,DecBSC) decodes against this slightly different noise model, which we call
“decoding from noise induced by a random permutation”. A precise definition of this model appears in Section 5. It turns out that
codes designed for BSC often apply also for this more general model, and in particular, there are explicit constructions of codes
with rate 1−H(p) for this noise model.
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2.6 Open problems

Stochastic codes for channels that are more powerful than the encoding and decoding algorithms.
Our results (as well as all aforementioned previous work) critically relies on the fact that the channel is
not sufficiently strong to simulate the decoding algorithm. In particular, this means that when considering
Cktn

c

p , we use decoding algorithms that run in time nd where d > c. Is this necessary? Can we obtain codes
in which encoding and decoding run in time nd for Cktn

c

p with c > d, and rate that beats (or even matches)
the Gilbert-Varshamov bound? Such codes seem to imply cryptographic assumptions. Can we construct
such codes based on cryptographic assumptions?

Explicit constructions of stochastic codes for classes C for which lower bounds are known. Our con-
struction of stochastic codes for Cktn

c

p is Monte-Carlo. As explained in Section 1.2, because the rate of our
stochastic codes is better than the best rate possible for Hamming channels, it follows that matching the rate
that we obtain with an explicit construction, implies circuit lower bounds.

Our approach can be seen as giving a “recipe” for constructing stochastic codes with optimal rate for a
class C. Loosely speaking, we show that this can be done if one has PRGs for C, SS-non-malleable codes
for C, and codes for BSCp that are evasive for C, and achieve optimal rate.

We would like to use this recipe to give explicit (rather than Monte-Carlo) constructions of stochastic
codes with optimal rate against intermediate classes C for which we have lower bounds. One intriguing such
example is AC0, namely the class of poly-size, constant depth circuits.

Explicit constructions for Cktn
c

p under hardness assumptions. Another possible avenue is to give con-
ditional explicit constructions of stochastic codes for Cktn

c

p , assuming circuit lower bounds. One example
of this direction was given by Shaltiel and Silbak [SS21a]. Following the Monte-Carlo construction of list-
decodable stochastic codes for Cktn

c

p of Guruswami and Smith [GS16], Shaltiel and Silbak [SS21a] showed
how to achieve the same goal with an explicit (rather than Monte-Carlo) construction under a complexity
theoretic hardness assumption. Specifically, they assumed the “Imapgliazzo-Wigderson assumption” which
was used by Impagliazzo and Wigderson [IW97] to prove that BPP=P.

An intriguing open problem is whether an explicit construction of codes with the parameters of Theo-
rem 1.1 (or even just beating the Gilbert-Varshamov bound) can be based on complexity theoretic and/or
cryptograhic assumptions. We remark that our techniques can be used to beat the Gilbert-Varshamov bound
if one can replace the Monte-Carlo construction of Theorem 2.2 with an explicit construction based on
hardness assumptions. This is because, as we explain in Section 2.1, we can obtain codes for BSCp that
are evasive against Hamp (and in particular, against Cktn

c

p ) that are explicit, and have rate that beat the
Gilbert-Varshamov bound. This is an intriguing open problem.

There are recent explicit constructions of non-malleable codes for poly-size circuits by Dachman-Soled,
Komargodski and pass [DKP21], and Ball, Dachman-Soled and Loss [BDL22]. These constructions rely
on strong assumptions. It is an intriguing open problem whether these techniques can yield non-malleable
codes with the many additional properties that we need in our application.

Codes for BSCp that are evasive for Hamp. We give explicit constructions of codes for BSCp that are
evasive for Hamp, and have rate that beats the Gilbert-Varshamov bound. More specifically, we obtain rate:

R∗(p) = (1−H(p)) · 1− 4p

1− 2p
.

Is it possible to achieve rate 1−H(p) in this scenario? This is especially interesting in light of the previous
open problem.
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2.7 Organization of this paper

In Section 3 we give some preliminaries, and ingredients that we use from earlier work. In Section 4 we
outline the methodology for analyzing random codes that will be used in later sections. In Section 5 we
define evasive codes, and present our construction of codes for BSCp that are also evasive. The analysis
of the construction relies on the methodology of Section 4. In Section 6 we define the notion of small-
set non-malleable codes, and give a Monte-Carlo construction of such codes against poly-size circuits on
logarithmic length strings. The analysis of this construction relies on the methodology of Section 4. In
Section 7 we present our main result, giving a Monte-Carlo construction of stochastic codes with optimal
rate for Cktn

c

p . This construction relies on the evasive codes of Section 5, and the small set non-malleable
codes of Section 6. Finally, in Section 8 we present the results stated in Section 1.3.2 concerning random
stochastic codes, showing that they achieve optimal rate against families with few channels. This result does
not rely on Sections 5,6 and 7, and only relies on the methodology explained in Section 4.

3 Preliminaries, and ingredients used in the construction

In this section we give formal definitions of the notions and ingredients used in the construction. We also
cite previous results from coding theory and pseudorandomness that are used in the construction.

General notation. We use [n] to denote {1, . . . , n}. We sometimes use the notation Oλ(·) to emphasize
that the constant hidden in the O(·) notation may depend on λ.

Tuples and distinct tuples. For a set A and an integer b, we use Ab to denote the set of tuples (a1, . . . , ab)
such that a1, . . . , ab ∈ A. We useAb(ds) to denote the set of such distinct tuples, namely, tuples (a1, . . . , ab)
such that for every i 6= j ∈ [b], ai 6= aj . For a set B, we use AB to denote the set of tuples (ai)i∈B , such
that for every i, ai ∈ A. We use AB(ds) to denote the set of such distinct tuples, namely, tuples (ai)i∈B
such that for every i 6= j ∈ B, ai 6= aj .

Probability distributions. We use Un to define the uniform distribution on n bits. The statistical distance
between two distributions P,Q over Ω is maxA⊆Ω |P (A)−Q(A)|. Given a distribution P , we useX ← P to
denote the experiment in which the random variableX is chosen according to P . For a setA, we useX ← A
to denote the experiment in which X is chosen uniformly from A. We use X1, . . . , Xn ← A to denote the
experiment in which n variables are chosen uniformly from A with replacement, and X1, . . . , Xn

wor← A to
denote the experiment where the n variables are chosen without replacement.

Shannon’s entropy function. We use H(p) to denote the Shannon binary entropy function: H(p) =
p · log(1/p) + (1 − p) · log(1/(1 − p)). It is standard that the derivative H ′(p) in the interval (0, 1

2) is
decreasing, and satisfies H ′(p) ≤ log 1

p . This implies that for 0 < p < 1
2 , if p(1 + δ) < 1

2 then:

H(p(1 + δ)) ≤ H(p) + δ · p ·H ′(p) ≤ H(p) + δ. (3)

We will also rely on the standard fact that H(1
2 − ε) = 1−O(ε2).

Hamming distance and weight. The Hamming weight of x ∈ [q]n is WT(x) = | {i : xi 6= 0} |. The
relative Hamming weight of x is wt(x) = WT(x)

n . The Hamming distance between x, y ∈ [q]n is ∆(x, y) =

| {i : xi 6= yi} |. The relative Hamming distance between x, y ∈ [q]n is δ(x, y) = ∆(x,y)
n .
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Channels. Let BSCp denote the distribution over n bits, where bits are i.i.d., and each bit has probability p
to be one. We will sometimes abuse the notation and think of BSCp as a probabilistic procedure that on input
z ∈ {0, 1}n, produces the distribution BSCp. Let Hamp denote the class of functionsC : {0, 1}n → {0, 1}n
such that for every z ∈ {0, 1}n, wt(C(z)) ≤ p. Let Cktsp be the class of all functions in Hamp that can be
computed by size s circuits.

3.1 Permuting strings

We will use a permutation π : [n] → [n] to “reorder” the bits of a string x ∈ {0, 1}n: The i’th bit in the
rearranged string will be the π(i)’th bit in x. This is captured in the definition below.

Definition 3.1 (Permuting strings). Given a string x ∈ {0, 1}n and a permutation π : [n] → [n]. Let π(x)
denote the string x′ ∈ {0, 1}n with x′i = xπ(i).

3.2 Pseudorandom generators

We need the following standard definition of pseudorandom distributions and generators.

Definition 3.2 (Pseudorandom generators). A distribution X on n bits is ε-pseudorandom for a class C of
functions from n bits to one bit, if for every C ∈ C, |Pr[C(X) = 1] − Pr[C(Un)] = 1]| ≤ ε. A function
G : {0, 1}d → {0, 1}n is an ε-PRG for C if G(Ud) is ε-pseudorandom for C.

We also record the standard fact that (by a union bound) a uniformly chosen functionG : {0, 1}O(logm) →
{0, 1}n, is likely to be a PRG against any class C of at most 2m functions.

Proposition 3.3 (A Monte-Carlo construction of PRGs). Let C be a class of at most 2m functions from n bits
to one bit. There exists a constant c such that for d = O(logm+ log(1/ε) + log log(1/γ)), if we consider
the experiment B1, . . . , B2d ← {0, 1}n, and define the function G : {0, 1}d → {0, 1}n by G(s) = Bs
(where on the right hand side we view s as a binary number between 1 and 2d) then:

Pr
B1,...,B2d

←{0,1}n
[G is an ε-PRG for C] ≥ 1− γ.

3.3 Pseudorandomly chosen permutations

Let UniPermn denote the uniform distribution on the set of permutation π : [n] → [n]. We will omit n
when it is clear from the context. Fix some poly-time computable function function F : {0, 1}n2 → Sn
such that F (Un2) is a 2−n-close to UniPermn. (Note that since |Sn| = n! is not a power of 2, there has to
be some statistical error, but using a seed sufficiently larger than log n!, the error can be made small).

We will be interested in the distribution F (G(Ud)) where G is a function (that will later be chosen to be
a PRG).

Definition 3.4 (Pseudorandomly-chosen permutation). Given a function G : {0, 1}d → {0, 1}n2
we define:

πG : {0, 1}d × [n] → [n] by: πG(s, i) = (F (s))(i) (namely, applying the permutation π = F (s) on i).
We use πGs to denote the permutation π, defined by π(i) = πG(s, i). We omit G when it is clear from the
context.

We use the term “pseudorandonly-chosen permutation” to differentiate this notion from the crypto-
graphic notion of “pseudorandom permutation” (which is different).

17



3.4 Averaging Samplers

The reader is referred to Goldreich’s survey [Gol97] on averaging samplers.

Definition 3.5 (Averaging Samplers). A function Samp : {0, 1}n → ({0, 1}m)t is an (ε, δ)-Sampler if for
every f : {0, 1}m → [0, 1],

Pr
(z1,...,zt)←Samp(Un)

[|1
t

∑
i∈[t]

f(zi)−
1

2m

∑
x∈{0,1}m

f(x)| > ε] ≤ δ.

A sampler has distinct samples if for every x ∈ {0, 1}n, the t elements in Samp(x) are distinct.

Zuckerman [Zuc97] showed that extractors can be viewed as samplers. Moreover, “strong extractors”
translate into samplers with distinct samples. Using this connection, and the competitive extractor con-
structions of Guruswami, Umans and Vadhan [GUV07], we obtain the following sampler. (In fact, the
construction of [GUV07] translates into a sampler with much better parameters than the one cited here).

Theorem 3.6. For every constant c1 ≥ 1 there exists a constant c2, such that for every sufficiently large
m, and 2m

0.1 ≤ t(m) ≤ 2m, there is a ( 1
mc1 ,

1
mc2 )-sampler with distinct samples Samp : {0, 1}c2·m →

({0, 1}m)t(m). Furthermore, Samp is computable in time t(m) · poly(c2 · logm).

We remark that previous work in this area [GS16, SS21a, KSS19, SS21b] used “expander based sam-
plers”, rather than “extractor based ones”. We need a sampler with shorter seed than what was used in
previous work, and this is why we choose this sampler.

3.5 Error-Correcting Codes

In this section we give formal definitions of some of the various notions of error correcting codes used in
this paper. We will also introduce less standard definitions in the next sections.

A code is a pair (Enc,Dec) of encoding and decoding maps, and different notions are obtained by
considering the requirements on the decoding algorithm.

3.5.1 Standard notions of error correcting codes

We start by giving definitions of error correcting codes that covers the standard cases of Hamming channels
and binary symmetric channels.

Definition 3.7 (Codes for Shannon and Hamming channels). Let k, n be parameters and let Enc : {0, 1}k →
{0, 1}n and Dec : {0, 1}n → {0, 1}k be functions. We say that (Enc,Dec):

• decodes from t errors, if for every m ∈ {0, 1}k and every v ∈ {0, 1}n with ∆(Enc(m), v) ≤ t,
Dec(v) = m.

• decodes from a distribution P , with success probability 1 − ν, if P is a distribution over {0, 1}n,
0 ≤ ν ≤ 1, and for every m ∈ {0, 1}k, Pre←P [Dec(Enc(m)⊕ e) = m] ≥ 1− ν.

The rate of the code is the ratio of the message length and output length of Enc, where both lengths are
measured in bits. That is the rate R = k

n .
The code is explicit if both encoding and decoding run in polynomial time. (Naturally, this makes sense

only for a family of encoding and decoding functions with varying block length n, message length k(n)).
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The notion of “decoding from errors” corresponds to Hamming channels, where the decoding algo-
rithm needs to decode (or list-decode) from a certain distance. We remark that it is standard that a code is
decodable from t errors if and only if the Hamming distance between every two codewords is at least 2t+1.

The notion of decoding from P covers the case of BSC channels, where P is taken to be the distribution
BSCp of n i.i.d. bits where each bit has probability p to be one.

3.5.2 Stochastic Codes for a class of channels

In this section we give a precise formal definition of the notion of stochastic codes for a class of channels
(that was already explained in the introduction).

Definition 3.8 (Stochastic codes for channels). Let k, n, d be parameters and let Enc : {0, 1}k×{0, 1}d →
{0, 1}n, and Dec : {0, 1}n → {0, 1}k be functions. Let C be a class of functions from n bits to n bits. We
say that (Enc,Dec) is a stochastic code for “channel class” C, with success probability 1 − ν, if for every
m ∈ {0, 1}k and every C ∈ C, setting X = Enc(m,Ud), we have that

Pr[Dec(X ⊕ C(X)) = m] ≥ 1− ν.

The rate of the code is the ratio of the message length and output length of Enc, where both lengths are
measured in bits. That is the rate R = k

n .
The code is explicit if both encoding and decoding run in polynomial time. (Naturally, this makes sense

only for a family of encoding and decoding functions with varying block length n, message length k(n) and
randomness d(n)).

A Monte-Carlo stochastic code with success 1 − ν for a class C, that uses q bits of Monte-Carlo
randomness, with Monte-Carlo error η > 0, is a pair of functions Enc : {0, 1}q × {0, 1}k × {0, 1}d →
{0, 1}n and Dec : {0, 1}q ×{0, 1}n → {0, 1}k, such that with probability 1− η over choosing y ← Uq, the
pair of functions Ency(m, s) = Enc(y,m, s) and Decy(v) = Dec(y, v) form a stochastic-code for C with
success 1− ν.

A Monte-carlo stochastic code is explicit if Enc,Dec run in time polynomial in n, and q is a polynomial
in n. (Naturally, this makes sense only for a family of encoding and decoding functions with varying block
length n, message length k(n), seed length d(n) and Monte-Carlo randomness length q(n)).21

3.6 t-wise independent tail inequalities

We will be interested in obtaining tail inequalities on a random variable which is the sum of n independent
indicator random variables that are roughly t-wise independent.

The following Lemma was proven in [KSS19].

Lemma 3.9 (tail bounds for variables that are roughly t-wise independent). LetX1, ..., Xn be binary random
variables, such that for every set of distinct t indices i1, · · · , it ∈ [n], Pr[Xi1 = . . . = Xit = 1] ≤ µt. If
0 < δ ≤ 1 and t ≤ δ·µ·n

2 then

Pr[

n∑
j=1

Xj ≥ (1 + δ) · µ · n] ≤ e−Ω(δt)

21An alternative view of Monte-Carlo constructions (that is sometimes preferable) is that a Monte-Carlo construction is a ran-
domized algorithm that tosses q(n) coins, and produces circuits Enc,Dec, such that with probability 1−η(n), the obtained circuits
have the required property.
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4 A methodology inspired by proofs of t-wise independent inequalities

In this paper we develop a methodology to show that random codes (or sometimes random stochastic codes)
are “good” in the sense that no channel C from a family C that contains “few” channels, can win in a some
random experiment, that occurs after the code is constructed. (Here, “few” is typically 22α·n � 22n for a
small constant α > 0. Note that this is quite large. For example, Cktn

c

p is of much smaller size, as the
number of channels in Cktn

c

p is bounded by 2n
2c

).
Examples are the scenarios that were considered in Section 1 and Section 2, specifically:

Stochastic codes for C: In this scenario, once a stochastic code is chosen, the random experiment is that
some message m is encoded using a random seed S, and C ∈ C wins, if it can corrupt the codeword,
so that decoding does not produce the message m.

SS-Non-Malleable codes for C: In this scenario, once a stochastic code is chosen, the random experiment
is that a random message M is encoded using a random seed S, and C ∈ C wins, if it can corrupt the
codeword, so that decoding produces a message that is not in a small setHC (whereHC is determined
in advance as a function of C).

Codes for BSCp that are evasive for C: In this scenario, once a (standard) code for BSCp is chosen, the
random experiment is that a random Z ← Un is chosen, and C ∈ C wins, if it can corrupt Z, so that
the decoding will not fail.

In this paper we develop a technique to analyze random codes in this scenario, which is a key ingredient
in obtaining our results, and may be of independent interest.

4.1 Overview of the setting of random codes with an additional random experiment

When choosing a random code for the scenarios described above, there are two experiments taking place:

• First a random code is selected. Let us denote this experiment as choosing a code x← X . The precise
definition ofX depends on the application. It will typically be the set of all codes (or stochastic codes)
of a certain rate.

• Once x← X , is chosen and fixed, another random experiment takes place. In this experiment, a new
random variable z ← Z is selected. (The choice of Z will depend on which scenario is considered).
In each scenario, there is a game, and the goal is to show that w.h.p. over x ← X every C ∈ C has
small probability to win for z ← Z .

In other words, we would like to show statements of the form:

Pr
x←X

[
∃C ∈ C s.t. Pr

z←Z
[C wins with “too large” probability]

]
is small.

The natural approach is to obtain this by a union bound over all C ∈ C, and this will follow if we show that
for every C ∈ C:

Pr
x←X

[
Pr
z←Z

[C wins with “too large” probability]

]
is significantly smaller than 1

|C| .
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For a fixed C ∈ C we will define a function W (x, z) which answers one if C wins on x, z. Let Wz(X) be
the random variable (over the choice of X ← X ) that answers W (X, z). This is done so that if we define

Wavg(X) =
1

|Z|
∑
z∈Z

Wz(X),

What we need to prove looks like a tail inequality for the sum of the random variablesWz . More specifically,
we need to prove that:

Pr
X←X

[
Wavg =

1

|Z|
∑
z∈Z

Wz is “too large”

]
is significantly smaller than 1

|C| .

Recall that we are interested in cases where C is of size doubly expoential in n, and Z is of size exponential
in n. This is exactly the setting in which tail bounds for independent variables (like the Chernoff bound)
perform best, and it is standard to get such a bound if the random variables Wz are independent.

Unfortunately, in the settings that we will consider, these variables will not be independent or even
pairwise independent.

4.2 Formal statement of the methodology and a recipe for applications

Continuing the earlier discussion, we now state a “tail inequality” that will be useful in all three scenarios
above, and may be of independent interest.

Lemma 4.1. Consider a probability space defined by some random variable X over a set X , and let Z be
a set of size n. Let W : X × Z → {0, 1} be some function, and let

Wavg(x) =
1

|Z|
·
∑
z∈Z

W (x, z).

For every real numbers 0 ≤ µ ≤ 1, δ > 0, and every integer 0 ≤ t ≤ δ·µ·n
2 , if for every integer 0 ≤ q < t,

Pr
X;Z←Z

Z1,...,Zq
wor← Z

[W (X,Z) = 1 |W (X,Z1) = . . . = W (X,Zq) = 1] ≤ µ,

then
Pr
X

[Wavg(X) > (1 + δ) · µ] ≤ e−
δ·t
2 .

Lemma 4.1 reduces the task of showing a tail-bound to that of analyzing a case in which X ← X and
Z ← Z are chosen independently, and we ask whether C wins in this game, conditioned on the event that
C already won q games on random Z1, . . . , Zq

wor← Z (namely, on Z1, . . . , Zq that were chosen from Z
without replacement).

The advantage is that while X is affected by this conditioning, Z is not, and remains independent of
X . This means, that in order to use this lemma, we only need to understand how X is affected, when
conditioned on C having won on q independently chosen Z1, . . . , Zq

wor← Z .
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A general recipe for applying Lemma 4.1. In the three scenarios mentioned above, we will be able (with
some considerable effort) to show that this conditioning does not affect the “code” X too much, under this
conditioning. This will allow us to analyze this single game, and by Lemma 4.1, we will obtain the bounds
in the three scenarios discussed above.

More precisely, in each one of the scenarios described above, we will show that the event:

T = {W (X,Z1) = . . . = W (X,Zq) = 1}

can be expressed as a disjoint union of events, namely:

T =
⋃
i

Ei

This means that it is sufficient to bound:

Pr
X;Z←Z

Z1,...,Zq
wor← Z

[W (X,Z) = 1 | Ei] ≤ µ,

for every event Ei. We will then show that every event Ei is “simple” in the sense that the distribution of X ,
in the experiment

X ← X
Z1, . . . , Zq

wor← Z
| Ei.

is not that different than the initial distribution of X , and “many” codewords, are still “somewhat random”
conditioned on Ei. This means that in order to complete the proof, all we have to do is show that C
is unlikely to win in an experiment, where X is chosen from the conditioned distribution (which is very
similar to a random code) and Z ← Z is chosen independently.

Applications of the approach in this paper. This approach is used in Section 5 to analyze random codes,
and show that they are evasive. (An overview of this argument, which is the simplest of the three, appears
in Section 2.4.1). The approach is also used in Section 6 to analyze random stochastic codes and show that
they are SS-non-malleable. The approach is used in Section 8 to show that random stochastic codes with
optimal rate, decode against small classes of channels.

In some cases, we will be able to leverage these random codes into explicit Monte-Carlo constructions,
by using them as “inner codes” on short blocks in some form of “code concatenation”. See Section 2 for an
overview.

4.3 Proof of Lemma 4.1

The proof of Lemma 4.1 uses ideas that are employed in proving t-wise independent tail inequalities
[BR94, SSS95, DHRS07, KSS19], see e.g., Lemma 3.9. In the proof that we give below, we generalize
a folklore combinatorial approach to t-wise independent tail inequalities (in contrast to some earlier proofs
for t-wise independent tail inequalities that generalize Chebichev’s in equality to higher moments). This
approach is also somewhat related to the approach used in the alternative proof of Chernoff’s bound given
by Impagliazzo and Kabanets [IK10].

We will first prove the following lemma (which discusses t games) and will then deduce Lemma 4.1.
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Lemma 4.2. Consider a probability space defined by some random variable X over a set X , and let Z be
a set of size n. Let W : X × Z → {0, 1} be some function, and let

Wavg(x) =
1

|Z|
·
∑
z∈Z

W (x, z).

For every real numbers 0 ≤ µ ≤ 1, every δ > 0 and every integer t ≤ δ·µ·n
2 , if

Pr
X;Z1,...,Zt

wor←Z
[W (X,Z1) = . . . = W (X,Zt) = 1] ≤ µt,

then
Pr
X

[Wavg(X) > (1 + δ) · µ] ≤ e−
δ·t
2 .

Proof. For every x ∈ X we define:

• nx = | {z ∈ Z : W (x, z) = 1} |.
• n̄x = | {z1, . . . , zt ∈ Z : z1, . . . , zt are distinct, and W (x, z1), . . . ,W (x, zt) = 1} |.
• n̂x = n̄x

(nt)
.

This definition is tailored so that:

n̂x = Pr
X;Z1,...,Zt

wor←Z
[W (X,Z1) = . . . = W (X,Zt) = 1 | X = x].

Let
A = {x ∈ X : Wavg(x) ≥ (1 + δ) · µ} ,

and let
` = (1 + δ) · µ · n.

By definition, for every x ∈ A, we have that nx ≥ `. It follows that for every x ∈ A,

n̄x ≥
(
`

t

)
=
` · (`− 1) · . . . · (`− t+ 1)

t!

≥ (`− t)t

t!

≥
(
(1 + δ

2) · µ · n
)t

t!
,

where the last inequality is by the requirement on t. Therefore, for every x ∈ A:

n̂x =
n̄x(
n
t

)
≥

((1+ δ
2

)·µ·n)
t

t!
n·(n−1)·...·(n−t+1)

t!

≥
(
(1 + δ

2) · µ · n
)t

nt

≥ ((1 +
δ

2
) · µ)t
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We have that:

µt ≥ Pr
X;Z1,...,Zt

wor←Z
[W (X,Z1) = . . . = W (X,Zt) = 1]

=
∑
x∈X

Pr
X;Z1,...,Zt

wor←Z
[W (X,Z1) = . . . = W (X,Zt) = 1 | X = x] · Pr[X = x]

=
∑
x∈X

n̂x · Pr[X = x]

≥
∑
x∈A

n̂x · Pr[X = x]

≥ ((1 +
δ

2
) · µ)t ·

∑
x∈A

Pr[X = x]

≥ ((1 +
δ

2
) · µ)t · Pr[X ∈ A]

≥ ((1 +
δ

2
) · µ)t · Pr

X
[Wavg(X) > (1 + δ) · µ]

We conclude that:

Pr
X

[Wavg(X) > (1 + δ) · µ] ≤ µt

((1 + δ
2) · µ)t

≤ 1

(1 + δ
2)t

≤ e−
δ·t
2

We now derive Lemma 4.1 from Lemma 4.2.

Proof. (of Lemma 4.1) Lemma 4.1 follows by using Lemma 4.2. More specifically, we show that the
conditions on Lemma 4.1 immediately imply the conditions of Lemma 4.2. Let Ai = {W (X,Zi) = 1}.

Pr
X;Z1,...,Zt

wor←Z
[A1 ∩ . . . ∩At] =

∏
0≤q<t

Pr
X;Z1,...,Zt

wor←Z
[Aq+1 | A1 ∩ . . . ∩Aq].

Thus, it is sufficient to show that for every 0 ≤ q < t,

pq = Pr
X;Z1,...,Zt

wor←Z
[Aq+1 | A1 ∩ . . . ∩Aq] ≤ µ.

We note that the event above does not consider Zq+2, . . . , Zt and therefore:

pq = Pr
X;Z1,...,Zq+1

wor←Z
[Aq+1 | A1 ∩ . . . ∩Aq]

≤ Pr
X;Z1,...,Zq

wor← Z
Zq+1←Z

[Aq+1 | A1 ∩ . . . ∩Aq],

where the last inequality is because choosing Zq+1 independently of Z1, . . . , Zq only increases the proba-
bility. This concludes the proof.
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5 Evasive codes

In this section, we aim to construct explicit codes with the following properties:

• Decoding from BSCp for every 0 ≤ p < 1
4 . (In fact, we will need a related, but stronger property of

decoding from “errors induced by a random permutation” that we will explain in Section 5.2).

• Large as possible rate R(p). We aim to beat the Gilbert Varshamov bound of RGV (p) = 1−H(2p),
and the best we can hope for is R(p) = 1−H(p).

• “Evasiveness” against Cktn
c

p .

We give formal definitions of what we mean by “evasiveness” in Section 5.1 and what we mean by codes
for errors induced by random permutations in Section 5.2. Let us start by explaining the big picture.

Motivation and background to evasive codes. The notion of evasiveness that we give below, is essen-
tially similar to that considered by Shaltiel and Silbak [SS21b] (A major difference is that we will be inter-
ested in the case where channels are poly-size circuits, rather than space bounded channels). Shaltiel and
Silbak [SS21b] introduced an approach to convert a list-decodable stochastic code against space bounded
channels [GS16, SS21a, KSS19] into a uniquely-decodable stochastic code against space bounded channels.
As part of this approach one requires a (standard, non-stochastic) code with decoding from BSCp (actually,
from “errors induced by a random permutation”) that is also “evasive” against space bounded channels. The
rate of the final stochastic code that is constructed using this approach is inherited from the rate achieved for
the (standard code) for BSCp.

Using this approach (and building upon previous constructions of list-decodable stochastic codes for
space bounded channels [GS16, KSS19]) Shaltiel and Silbak [SS21b] constructed stochastic codes against
space bounded channels that match the rate RBSC(p) = 1 − H(p) of binary symmetric channels. A com-
ponent in this construction is a construction of a (standard) code with rate R = 1−H(p) that decodes from
BSCp and is also “evasive” against space bounded channels.

Codes that are evasive against poly-size circuits. We would like to imitate the overall approach of
[SS21b] replacing space bounded channels with poly-size circuits. We will construct (standard) codes that
decode from BSCp, and are evasive against poly-size circuits, rather than space bounded channels. We stress
that unlike space bounded channels, for which we have lower bounds, poly-size circuits are quite powerful,
and we will need very different techniques. The main results of this section are:

• We give an explicit construction of such codes with rate

R∗(p) = (1−H(p)) · 1− 4p

1− 2p
.

This rate is larger than the Gilbert-Varshamov bound RGV (p) = 1−H(2p) for every 0 < p < 1
4 .

• We give an explicit Monte-Carlo construction of such codes with rateR(p) = 1−H(p). This matches
the rate RBSC(p) = 1−H(p) of binary symmetric channels.

Organization of this section. In Section 5.1 we give a formal definition of evasiveness. In Section 5.2
we give a formal definition of codes for errors induced by random permutations. In Sections 5.3 and 5.4
we present some results on evasive codes, including the two main results above (stated as Theorem 5.5 and
Theorem 5.7). In the remainder of the section we prove the two theorems.
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5.1 Definition of evasiveness

We start by giving an informal definition of the evasiveness property (we will state things more precisely
below). This description is similar to the one given in Section 2.1.

The evasiveness experiment: Given Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k ∪ {fail},
and a channel C: rather than giving the channel C a codeword of Enc to corrupts, we will be interested in
the behavior of the channel and decoding algorithm on a uniformly chosen string. Specifically, we consider
the following experiment:

• A uniform Z ← Un is chosen.

• The “received word” V = Z ⊕ C(Z) is obtained when the channel C “corrupts” Z.

• We apply Dec(V ) and will say that the code (Enc,Dec) is evasive if the probability that Dec(V ) 6=
fail is small.

This is stated formally in the definition below.

Definition 5.1 (Evasive codes). Let Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k ∪ {fail}. We
say that (Enc,Dec) are ρ-evasive for a function C : {0, 1}n → {0, 1}n if:

Pr
Z←Un

[Dec(Z ⊕ C(Z)) 6= fail] ≤ ρ.

We say that (Enc,Dec) are ρ-evasive for a class C if (Enc,Dec) are ρ-evasive for every C in C.

Naturally, evasiveness is only interesting when coupled with some additional decoding properties of the
code, like in our case decoding from BSCp. When considering codes for BSCp we will assume that the
decoding algorithm Dec changes its answer from m ∈ {0, 1}k to fail on a “received word” v ∈ {0, 1}n, if
δ(Enc(m), z) is slightly larger than p. This is w.l.o.g. as a BSCp channel has exponentially small probability
to corrupt Enc(m) to such a z.

5.2 Decoding from errors induced by a random permutation

As is the case of earlier work on codes for bounded channels [GS16, SS21a, KSS19, SS21b] we will actually
be interested in evasive codes that decode not just from BSCp, but in a related (and more general) setup that
we now explain. The definition below uses the notion of permuting strings from Definition 3.1.

Definition 5.2 (Noise induced by a distribution on permutations). Let Π be a distribution over permutations
π : [n]→ [n]. For every e ∈ {0, 1}n, we can consider the “noise distribution” Π(e), and let PermΠ

p denote
the class of all such distributions over all choices of e ∈ {0, 1}n such that wt(e) ≤ p.

We say that a pair (Enc,Dec) decodes from PermΠ
p if it decodes from every distribution in PermΠ

p .

Recall that we use UniPermn to denote the uniform distribution on permutations on [n] and omit n
when it is clear from the context. Note that for every e ∈ {0, 1}n such that wt(e) = p, the distribution
UniPerm(e) is “somewhat similar” to BSCp. More formally, individual bits of UniPerm(e) are distributed
like individual bits of BSCp, and while bits of UniPerm(e) are not independent, the correlation between
“not too many” of them is “small”. By the same rationale the distributions in PermUniPerm

p are “somewhat
similar” to the distributions in

{
BSCp′ : p′ ≤ p

}
.

This similarity can be used to show that codes designed to decode from BSCp, often also decode from
PermUniPerm

p . We will be relying on such a code construction, which we now state. These constructions
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rely on good “standard codes” with high rate (specifically, previous work relied on the codes of [GI05,
KMRS17]).

Theorem 5.3 ([Smi07, GS16, SS21a, KSS19]). Let R(p) = 1−H(p). For every constant 0 ≤ p < 1
4 , and

every sufficiently small constant ε > 0, there exist infinitely many n, and functions Enc : {0, 1}k(n)=(R(p)−ε)·n →
{0, 1}n, Dec : {0, 1}n → {0, 1}k(n) such that:

• (Enc,Dec) decode from PermUniPerm
p with success probability 1− 2−Ω(n0.1).

• (Enc,Dec) are explicit.

• (Enc,Dec) has “monotone decoding” meaning that for every m ∈ {0, 1}k(n) and every e, e′ ∈
{0, 1}n such that for every i ∈ [n], ei ≤ e′i,

Dec(Enc(m)⊕ e′) = m⇒ Dec(Enc(m)⊕ e) = m.

These constructions are based on concatenating an outer code with rate roughly 1 − ε/2 (that decodes
from few errors) with a random inner code of rate 1−H(p)−ε/2 that decodes from BSCp. The monotonicity
property (that is not stated explicitly in these results) is a byproduct of this concatenation approach. We also
remark that the result is stated for infinitely many n, but this subset of integers is very dense, and depends
on the density of block lengths n achieved by existing constructions of the outer codes.

Remark 5.4 (Uniform, t-wise, and pseudorandomly chosen permutations). The previous work on stochastic
codes for bounded channels [Smi07, GS16, SS21a, KSS19, SS21b] considered distributions Π that are “al-
most t-wise independent” rather than completely uniform. In fact, Theorem 5.3 is proven for almost t-wise
independent permutations (for a sufficiently large t < n) but obviously follows for a uniform permutation.

The advantage of t-wise independent permutations on [n] is that they can be sampled using only d =
O(t · log n) random bits [KNR09], which for t = polylog(n) allows d = polylog(n)� n. This is in contrast
to a random permutation that requires d = Ω(n log n) random bits.

The approach of Guruswami and Smith [GS16] and later work [SS21a, KSS19, SS21b] critically relies
on distributions over permutation that can be sampled using only d = o(n) random bits. (Loosely speaking,
this is because the “seed” used to sample the permutation is “appended” to the encoding, and we don’t
want the rate to substantially decrease).

In our setting, the parameters will be even tighter, and it will be crucial that d = O(log n). This means
that we cannot afford “almost t-wise independent permutations” for t = ω(1).

Instead, we will make use of the fact that in our setting, we have access to PRGs with exponential stretch
against poly-size circuits. We will “derandomize” the random permutation by using a PRG G to stretch
d = O(log n) bits into Θ(n log n) bits that are used to sample a uniform permutation, as explained in

Section 3.3. This means that we will be interested in decoding from Perm
πGUd
p , where πG is the family of

permutations defined in Section 3.3.
By taking a PRG that fools DecBSC, we will be able to argue that decoding from PermUniPerm

p implies

decoding from Perm
πGUd
p , paying an additional error factor in the success probability.

5.3 An explicit evasive code for Hamp that beats the Gilbert-Varshamov bound

Given 0 ≤ p < 1
4 , and a constant c > 1, we would like to construct codes with the largest possible rate that

decode from PermUniPerm
p , and are evasive against Cktn

c

p .
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Somewhat surprisingly, we will explicitly construct codes with rate that improves on the Gilbert-Varshamov
bound, that are evasive not only for the computationally bounded class of Cktn

c

p , but in fact, to the un-
bounded class Hamp of Hamming channels!

Theorem 5.5 (Explicit evasive codes for Hamp that beat the Gilbert-Varshamov bound). Let

R∗(p) = (1−H(p)) · 1− 4p

1− 2p
.

For every constant 0 < p < 1
4 , and every sufficiently small constant ε > 0, there exists a constant β > 0 and

infinitely many n, such that there are functions Enc : {0, 1}k(n)=(R∗(p)−ε)·n → {0, 1}n, Dec : {0, 1}n →
{0, 1}k(n) ∪ {fail} that satisfy:

• (Enc,Dec) are explicit.

• (Enc,Dec) decode from PermUniPerm
p with success probability 1− 2−n

0.09
.

• (Enc,Dec) are 2−β·n-evasive for Hamp.

• R∗(p) > RGV (p) = 1−H(2p).

The proof of Theorem 5.5 appears in Section 5.5.

Random codes that beat the GV bound are not evasive for Hamp. We now explain why we think
Theorem 5.5 is surprising. It is easy to see that any code with rate R(p) < RGV (p) = 1−H(2p) (namely
a code that does not beat the Gilbert Varshamov bound) is evasive against the class Hamp (of unbounded
channels).22 It is also easy to see that a random code with rate that beats the Gilbert-Varshamov bound
is unlikely to be evasive against Hamp, which means that random codes do not satisfy the properties in
Theorem 5.5. This is stated formally below.

Proposition 5.6 (Random codes with rate that beats the GV-bound are not evasive for Hamp). Let R(p) >
RGV (p) = 1 − H(2p). For every 0 < p < 1

4 , and for every sufficiently large n, if we choose a uniform
function Enc : {0, 1}R(p)·n → {0, 1}n, then with probability 1− e−2Ω(n)

it holds that for every z ∈ {0, 1}n,
there exists m ∈ {0, 1}R(p)·n such that δ(Enc(m), z) ≤ 2p.

Proof. Consider the experiment in which a random code with rate R(p) is chosen. For every z ∈ {0, 1}n,
the probability that for every codeword c ∈ {0, 1}R·n, z is not within relative distance 2p to c, is (by
independence of theRn codewords) at most (1−v)2Rn where v is the volume of a Hamming ball of relative
radius 2p. As v ≥ 2(1−H(2p)−o(1))·n we have that this is bounded as follows:

(1− v)2R·n ≤ (1− 2−(1−H(2p)−o(1)·n))R·n ≤ e−2−(1−H(2p)−o(1))·n·2R·n ≤ e−2α·n ,

For some constant α > 0. Therefore, by a union bound on the 2n choices for z, we have that with probability
1− e−2α

′·n
for some α′ > 0, every z ∈ {0, 1}n has a codeword c that is within relative Hamming distance

2p.
22This is because with high probability a random word Z has relative distance larger than 2p from any codeword. This means that

if (an unbounded channel) examines Z and induces p relative errors, the corrupted word is still not within distance p to a codeword,
and therefore will be rejected by a decoding algorithm that decodes from p relative errors.
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Interpretation of Proposition 5.6. Proposition 5.6 says that if we choose a random encoding map Enc,
and pair it with the “maximum likelihood decoder” (that on input v ∈ {0, 1}n, returns the message m ∈
{0, 1}k, such that δ′ = δ(Enc(m), v) is minimal if δ′ ≤ p, and rejects otherwise) then it is likely that a
channel C in Hamp can win in the evasiveness game with probability 1, because it is likely that for every
z ∈ {0, 1}n, there exists an m ∈ {0, 1}k such that δ(Enc(m), v) ≤ 2p, and the channel C can corrupt v to
cover “half the distance” towards Enc(m), so that the decoding will cover the other half, and decode to m.

This in particular means that in order to prove Theorem 5.5 we will need to use a code that “looks very
different from” a random code.

A hybrid between BSC codes and constant maps. It turns out that once we are open to this possibility
of dealing with Hamp rather than Cktn

c

p , it is not difficult to construct such codes. The intuition is that an
encoding map, that maps all messages to the same codeword is obviously evasive, but does not decode from
BSCp. We will use codes that are a hybrid of codes for BSCp and constant encoding maps. Specifically, we
will take the code of Theorem 5.3 and append α · n zeros to each codeword, where α is a carefully chosen
constant so that:

• The rate decreases, but still beats the Gilbert-Varshamov bound.

• A random Z is likely to have relative Hamming distance at least 2p from all codewords (simply
because all codewords have a suffix of αn zeros).

This proof appears in Section 5.5, in which we show that such an α exists, and that this construction decodes
from PermUniPerm

p .

5.4 An explicit Monte-Carlo construction of evasive codes for Cktn
c

p with BSC rate

While the rate R∗(p) that we achieve in Theorem 5.5 beats the Gilbert-Varshamov bound, it does not match
the optimal rate RBSC(p) = 1−H(p) (achieved for binary symmetric channels).

A natural question is whether there exist codes that decode from BSCp, are evasive, and have rate
RBSC(p) = 1−H(p), if we do not insist on evasiveness against Hamming channels and settle for evasiveness
for poly-size circuits. The next theorem shows that such codes exist, and furthermore, gives an explicit
Monte-Carlo construction. The next theorem is a formal restatement of Theorem 2.1.

Theorem 5.7. For every constant 0 < p < 1
4 , every sufficiently small constant ε > 0, and every constant

c > 1, there exists a constant D > 1 such that for R = 1 − H(p) − ε, there is a randomized algorithm
M running in time ND, such that for every sufficiently large N , when M is given input N , with probability
1 − 1

Nc it produces circuits Enc : {0, 1}RN → {0, 1}N and Dec : {0, 1}N → {0, 1}RN ∪ {fail} of size
ND, such that:

• (Enc,Dec) decode from BSCp with success 1− 1
Nc .

• (Enc,Dec) decode from PermUniPerm
p with success 1− 1

Nc .

• (Enc,Dec) are 1
Nc -evasive for CktN

c

p .

The proof of Theorem 5.7 relies on the proof of Theorem 5.9 (that is stated next) and appears in Section
5.8. (An overview of this argument appears in Section 2.4).

A weakness of Theorem 5.7 is that the evasiveness error, decoding error, and Monte-Carlo error are
only polynomially small, whereas we can expect (and obtain in the case of Theorem 5.5) errors that are
exponentially small.
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This does not matter in our intended application of stochastic codes for Cktn
c

p , as there are currently
other bottlenecks, that prevent us from achieving sub-polynomial error in that setting. Nevertheless, if these
bottlenecks were to be removed, it would be beneficial to improve this aspect of Theorem 5.7.

Jumping ahead, the code in Theorem 5.7 will be a concatenated code, where the inner code will be a
random code on strings of logarithmic length. We will therefore be interested in the evasiveness of random
codes against small circuits.

Random codes are evasive for small circuits. We can show that a random code Enc (paired with maxi-
mum likelihood decoding) achieves evasiveness for small circuits, and the other desired properties. Recall
that in contrast, we have already seen in Proposition 5.6 that random codes are not evasive for Hamp.

Theorem 5.8 (Existence of evasive codes with optimal rate). For every constants 0 ≤ p < 1
4 and every

sufficiently small constant ε > 0, there exists a constant α > 0 such that for R = 1 − H(p) − ε, and for
every sufficiently large n, there exist Enc : {0, 1}Rn → {0, 1}n, and Dec : {0, 1}n → {0, 1}Rn ∪ {fail}
such that:

• (Enc,Dec) is 2−α·n-evasive for Ckt2α·n
p .

• (Enc,Dec) decode from BSCp with success 1− 2−α·n.

We stress that the proof of Theorem 5.8 does not follow by a straightforward union bound, and relies on
the methodology presented in Section 4

A random code does not yield a Monte-Carlo construction (as explained in Section 1.2). Nevertheless,
in the theorem below, we present a generalized version of Theorem 5.8 that is stated as an exponential time
Monte-Carlo construction. This point of view will be helpful, as we plan to use this construction as an inner
code (on blocks of logarithmic length) as part of the explicit Monte-Carlo construction of Theorem 5.7.

Theorem 5.9 (Exponential time Monte-Carlo construction). There exists a universal constant d, such that
for every constant 0 ≤ p < 1

4 and every sufficiently small constant ε > 0, there exists a constant α > 0, and
a randomized algorithm M running in time 2d·n such that for R = 1−H(p)− ε, and for every sufficiently
large n, whenM is given input n, with probability 1−2−α·n it produces circuits Enc : {0, 1}Rn → {0, 1}n,
and Dec : {0, 1}n → {0, 1}Rn ∪ {fail}, of size 2d·n such that:

• (Enc,Dec) is 2−α·n-evasive for Ckt2α·n
p .

• (Enc,Dec) decode from BSCp with success 1− 2−α·n.

Furthermore, on input v ∈ {0, 1}n, Dec is a “maximum likelihod decoder up to distance p”, namely:

• Finds m ∈ {0, 1}k, such that δ(Enc(m), v) is minimal (breaking ties arbitrarily).

• If δ(Enc(m), v) ≤ p, outputs m, and otherwise outputs fail.

A high level overview of this argument appears in Section 2.4. The proofs of Theorem 5.8 and Theorem
5.9 appear in Section 5.6. The proof of Theorem 5.7 will use Theorem 5.9 and is given in Section 5.8.

5.5 Proof of Theorem 5.5

In this section we prove Theorem 5.5. We will use the intuition and simple construction outlined in Section
5.3. We will make use of Theorem 5.3. More specifically, when given parameters 0 < p < 1

4 and ε > 0, we
set δ > 0 for a sufficiently small constant that we will set later, and set p′ = (1 + δ) · p. We apply Theorem
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5.3 using p′ and a sufficiently small constant ε′ > 0. Let n′ be an integer on which Theorem 5.3 applies, and
let Enc′ : {0, 1}k → {0, 1}n′ and Dec′ : {0, 1}n′ → {0, 1}k be the encoding and decoding maps that are
guaranteed by the Theorem. In particular, we have that k = (1−H(p)− ε′) · n′, and (Enc′,Dec′) decode
from Perm

UniPermn′
p with success 1− 2−Ω((n′)0.1).

Let α > 0 be some constant that we will choose later. Let n′′ = α ·n′ and let n = n′+n′′ = (1+α) ·n′.
Given a string v ∈ {0, 1}n, we will use v′ to denote the first n′ bits of v and v′′ to denote the last n′′ bits of
v. We define a map Enc : {0, 1}k → {0, 1}n as follows:

Enc(m) = Enc′(m) ◦ 0n
′′
.

We define Dec : {0, 1}n → {0, 1}k ∪ {fail} as follows:

• On input v ∈ {0, 1}n, Dec operates as follows:

– Compute m = Dec′(v′), and v̄ = Enc(m) .
– If δ(v, v̄) > p′ output fail.
– Otherwise, output m.

It is obvious that (Enc,Dec) are explicit. We will now verify the other requirements.

Claim 5.10. The construction satisfies:

• (Enc,Dec) is 2−β·n-evasive for Hamp, where β > 0 is a constant that depends on p and ε.

• The rate of Enc is at least R∗(p)− ε = (1−H(p)) · 1−4p
1−2p − ε.

Proof. Let C : {0, 1}n → {0, 1}n be a channel in Hamp. We will show that for every m ∈ {0, 1}k,

Pr
Z←Un

[δ(Enc(m), Z) > p+ p′] ≤ 2−β·n,

for some constant β > 0 that we choose later. This is sufficient, because δ(Z,Z ⊕ C(Z)) ≤ p, and if the
event above occurs, then by the triangle inequality, δ(Enc(m), Z ⊕ C(Z)) > p′, and Dec(Z) = fail. By
construction we have that for every m ∈ {0, 1}k and z ∈ {0, 1}n:

δ(Enc(m), z) =
n′ · δ(Enc′(m), z′) + n′′ · wt(z′′)

n
.

We will analyze the two summands separately: For the first part, we show that:

Pr
Z←Un

[∃m ∈ {0, 1}k : s.t δ(Enc′(m), Z ′) ≤ p′] ≤
∑

m∈{0,1}k
Pr

Z←Un
[δ(Enc′(m), Z ′) ≤ p′]

≤ 2k · 2−(1−H(p′))·n′ .

≤ 2(1−H(p′)−ε′)·n′−(1−H(p′)·n′

≤ 2−ε
′·n′ .

For the second part, we observe that as the n′′ indices of Z ′′ are chosen uniformly, by a Chernoff bound, for
every constant η > 0,

Pr
Z←Un

[wt(Z ′′) ≤ 1

2
− η] ≤ e−

η2·n′′
3 .
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Therefore, by a union bound, with probability at least 1 − 2−ε
′·n′ − e−

η2·n′′
3 over choosing Z ← Un, we

have that wt(Z ′′) > 1
2 −

η
2 and for every m ∈ {0, 1}k, δ(Enc′(m), Z ′) > p′. If both events occur then for

every m ∈ {0, 1}k:

δ(Enc(m), Z) >
n′ · p′ + n′′ · (1

2 − η)

n
=
p′ + α · (1

2 − η)

1 + α
.

The last quantity is equal to p+ p′ = (2 + δ) · p for:

α =
2p · (3 + δ)− η

1− 2 · (2 + δ) · p
> 0,

where the last inequality is because we are allowed to assume that p < 1
4 and δ, η > 0 are sufficiently small,

so that 2 · (2 + δ) · p < 1. This gives that the rate of Enc is

k

n
=

k

(1 + α) · n′
= (1−H(p′)− ε′) · 1

1 + α
= (1−H(p′)− ε′) · 1− 4 · (4 + δ) · p

1 + η − 2 · (1 + δ) · p
.

By continuity, we can take δ > 0 and η > 0 to be sufficiently small constants so that:

1− 4 · (4 + δ) · p
1 + η − 2 · (1 + δ) · p

≥ 1− 4p

1− 2p
− ε

2
.

Using Equation (3) from Section 3, we get that:

H(p′) = H((1 + δ) · p) ≤ H(p) + δ.

which gives that:
1−H(p′)− ε′ ≥ 1−H(p)− ε′ − δ ≥ 1−H(p)− ε

2
,

For sufficiently small constants δ > 0 and ε′ > 0. Putting everything together, we have that for sufficiently
small ε′ > 0 and δ > 0 we get that the rate of Enc is at least

(1−H(p)− ε

2
) · (1− 4p

1− 2p
− ε

2
) ≥ (1−H(p)) · 1− 4p

1− 2p
− ε,

as required. Finally, we note that we have bounded the evasiveness error ρ by:

2−ε
′·n′ + e−

η2·n′′
3 ≤ 2−β·n,

for a sufficiently small constant β > 0, that we can choose as a function of p and ε.

Claim 5.11. (Enc,Dec) decode from PermUniPerm
p with success probability 1− 2−n

0.09
.

Proof. We need to show that for every e ∈ {0, 1}n with wt(e) ≤ p, Dec decodes from UniPerm(e). The
monotonicity property of (Enc′,Dec′) immediately gives monotonicity also for (Enc,Dec), which implies
that it is sufficient to restrict our attention to e ∈ {0, 1}n with wt(e) = p.23

23Here we are implicitly assuming that pn is an integer, which doesn’t necessarily applies. However, if pn is not an integer, we
will replace p by the smallest p∗ ≤ p such that p∗ · n is an integer, and for large enough n, this difference is negligible.

32



We will consider the experiment π ← UniPermn, and note that in this experiment, π−1 is also a uniform
permutation. For every i ∈ [n′], let Xi = π(e)i, and let X =

∑
i∈[n′]Xi be the weight of π(e)′. We claim

that by Lemma 3.9, taking t = δ·p·n′
2 .

Pr
π←UniPerm

[X > (1 + δ)p · n′] ≤ e−
δ·t
2 ≤ e−

δ2·p·n′
2 .

Let ` = (1 + δ)p · n′ = p′ · n′, so that p′ = `/n′, and let E = {X ≤ `}.
Consider the distribution π conditioned on the event E, and let us denote this distribution by σ. We note

that by considering different choices for the n′′ indices j such that n′ < σ(j) ≤ n, the distribution σ can be
expressed as a convex combination of distributions τ in which:

• For every n′ < i ≤ n, τ−1(i) is fixed.

• This means that there are fixed indices j1 < . . . < jn′ such that for every g ∈ [n′], τ(jg) ∈ [n′].

• The n′ bit long string ej1 , . . . , ejn′ has Hamming weight at most `, meaning that it has relative Ham-
ming weight at most p′ = `/n′.

• The random variables τ(j1), . . . , τ(jn′) are distributed like n′ random values in [n′] that are chosen
without replacement.

Each one of the elements τ in the convex combination can be viewed as a permutation on [n′], by identifying
{j1, . . . , jn′} with [n′]. Furthermore, this permutation is distributed like UniPermn′ (that is, like a uniform
permutation on [n′]). It follows that τ(e)′ is a distribution in Perm

UniPermn′
p′ . For every such τ , we have that

Dec′ decodes from τ(e)′ with success 1− 2−Ω((n′)0.1). We conclude that:

Pr
π←UniPermn

[Dec(Enc(m)⊕ π(e)) = m | E] ≥ 1− 2−Ω((n′)0.1).

Putting things together we conclude that:

Pr
π←UniPermn

[Dec(Enc(m)⊕ π(e)) = m] ≥ 1− 2−Ω((n′)0.1) − e−
δ2·p·n′

2 ≥ 1− 2−n
0.09

,

for sufficiently large n.

Finally, it is not difficult to verify that for every 0 < p < 1
4 , R∗(p) > 1 − H(2p). This concludes the

proof of Theorem 5.5.

5.6 Random codes with rate 1−H(p) are evasive for Ckt2O(n)

p

In this section we prove Theorem 5.8 and Theorem 5.9. We first show that a random code with rate ap-
proaching 1−H(p) is w.h.p. evasive against any class C ⊆ Hamp of 22O(n)

channels, and in particular for
Cktn

c

p or even circuits of almost exponential size. This is stated in the next lemma.

Lemma 5.12 (Random codes are evasive for small classes). For every constants 0 ≤ p < 1
4 and ε > 0,

there exists a constant α > 0, such that for R = 1 − H(p) − ε, and for every sufficiently large n, the
following holds: Let C ⊆ Hamp be a class of functions that contains at most 22α·n functions, and let Enc :
{0, 1}Rn → {0, 1}n be chosen uniformly from all such functions. Let Dec : {0, 1}n → {0, 1}Rn ∪ {fail},
be the map that on input v ∈ {0, 1}n:
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• Finds m ∈ {0, 1}k, such that δ(Enc(m), v) is minimal (breaking ties arbitrarily).

• If δ(Enc(m), v) ≤ p, outputs m, and otherwise outputs fail.

With probability 1− 2−2α·n , (Enc,Dec) is 2−α·n-evasive for C.

A high level overview of this argument is given in Section 2.4. The formal proof is given in Section 5.7.
Before proving Lemma 5.12, we observe that Theorem 5.8 follows from Lemma 5.12.

Proof of Theorem 5.8. We will apply Lemma 5.12 using p′ = p+ε′ for a constant ε′ > 0 that is sufficiently
small as a function of p and ε, so that H(p′) ≤ H(p) + ε. This gives that when applying Lemma 5.12, we
obtain a code with rate 1−H(p)− 2ε, which is just as good for our purposes.

Shannon showed that if one chooses a random code Enc (as is done in Lemma 5.12) then, while the ob-
tained code is not necessarily likely to decode from BSCp′ , it does hold that except for probability 2−Ωε,p(n),
it is possible to remove half of the codewords, and obtain a code that does decode from BSCp using maxi-
mum likelihood decoding algorithm Dec. Therefore, following this removal we obtain a code that is decod-
able from BSCp′ (and in particular from BSCp) with success probability 1− 2−Ωε,p(n).

The reason that we took some slack, choosing p′ = p + ε′ is to guarantee that with probability 1 −
2−Ωε,p(n) over the choice of e ← BSCp, we have that wt(e) ≤ p′. This guarantees that it is unlikely that
Dec will reject a codeword that was corrupted by BSCp.

Removing codewords from a code cannot harm the evasiveness property, therefore, by a union bound,
it is possible to obtain a code that is both decodable from BSCp and 2−α·n-evasive against C. This proves
Theorem 5.8.

Extending the proof to prove Theorem 5.9. For Theorem 5.9 we observe that given a candidate encoding
map Enc : {0, 1}k → {0, 1}n, and a message m ∈ {0, 1}k, in time 2n, one can go over all choices of
noise from BSCp and compute the probability that Dec decodes correctly. By going over all 2k choices of
messages, we can check which messages we want to remove from the code Enc in time 2O(n). This means
that in time 2O(n) we can trim the encoding map Enc to one that is decodable from BSCp with success
1− 2−Ωε,p(n), giving a Monte-Carlo construction that runs in exponential time, uses 2O(n) random bits, and
has Monte-Carlo error 2−Ωε,p(n) as required.

5.7 Proof of Lemma 5.12

We will use the methodology explained in Section 4, and start with some notation.

5.7.1 Preperations for the methodology of Section 4

The setup: Let 0 ≥ p < 1
4 be a constant, let ε > 0 be a sufficiently small constant, and let n be an integer

(that we are allowed to assume that is sufficiently large). Let R = 1−H(p)− ε, k = Rn and K = 2k. We
will use the following notation for the probability space of choosing Enc.

Experiment expr: A random code.

• Let X = ({0, 1}n)K .

• Let X ← X be a uniform element X = (X1, . . . , XK) from X .

• we identify j ∈ [K] with elements j ∈ {0, 1}k.

• Let Enc(j) = Xj .
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5.7.2 The game of a channel C

Following the recipe in Section 4 we now define a game for a channel C.

Definition 5.13 (Circuit C wins). Given a C ∈ C, x ∈ X , and z ∈ {0, 1}n, we say that C wins on x, z if

∃j ∈ [K] : δ(z ⊕ C(z), xj) ≤ p.

To make the notation easier, we define WC(x, z) = 1 iff C wins on x, z.

Note when considering the code Enc defined by x, if Dec(z ⊕ C(z)) 6= fail then C wins on x, z. This
means that whenever C is able to make Dec decode, C wins.

Let α > 0 be a sufficiently small constants that we will choose later. We will shoot for “evasiveness
error” ρ = 2−α·n. Definition 5.13 is made so that the task of proving Lemma 5.12 reduces to the task of
proving that:

Pr
X←X

[
∃C ∈ C s.t. Pr

Z←{0,1}n

[
WC(X,Z) = 1

]
> 2−α·n

]
< 2−2α·n .

This will follow by a union bound if we can prove that for every for every one of the 22α·n choices of
C ∈ C:

Pr
X←X

[
Pr

Z←{0,1}n

[
WC(X,Z) = 1

]
> 2−α·n

]
<

2−2α·n

22α·n
.

Let Z = {0, 1}n and let:

Wavg(x) =
1

|Z|
·
∑
z∈Z

WC(x, z),

as is done in Lemma 4.1. We would like to use Lemma 4.1. For that purpose we choose t = 22α·n, so that it
is sufficient to prove that:

Pr
X←X

[Wavg(X) > 2−α·n] ≤ e−t. (4)

We will use Lemma 4.1 choosing δ = 2, and µ = 2−α·n

3 (so that (1 + δ) ·µ = 2−α·n), We need to verify
that we meet the condition on t in Lemma 4.1, and indeed:

t = 22·α·n ≤ µ · δ · 2n

2
,

by taking the constant α > 0 to be sufficiently small. Using Lemma 4.1, it follows that in order to prove
that (4) holds, it is sufficient to prove the following claim:

Claim 5.14. For every integer 0 ≤ q < t,

Pr
X;Z←Z

Z1,...,Zq
wor← Z

[W (X,Z) = 1 |W (X,Z1) = . . . = W (X,Zq) = 1] ≤ µ,

We therefore focus our attention on proving Claim 5.14, and the lemma will follow once we prove Claim
5.14. We prove Claim 5.14 in Section 5.7.3.
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5.7.3 Using the recipe of Section 4: proof of Claim 5.14

Fix some 0 ≤ q < t. We will now show that we can express the event {W (X,Z1) = . . . = W (X,Zq) = 1}
as a disjoint union of “simple events”.

More specifically, the event {W (X,Z1) = . . . = W (X,Zq) = 1} can be viewed as a subset T ⊆ X ×
Zq by setting:

T = {(x; z1, . . . , zq) : W (x, z1) = . . . = W (x, zq) = 1} .

We will now show that T can be expressed as a disjoint union of “simple events”. Loosely speaking, a
simple event E is a subset E ⊆ T in which z1, . . . , zq, as well as several xj’s are fixed, in a very specific
way.

Definition 5.15 (Simple event). For every choice of:

• z1, . . . , zq ∈ Z = {0, 1}n.

• A function h : [q]→ {0, 1}n

• j1, . . . , jq ∈ [K].

We define a set E ⊆ X × Zq (called the simple event induced by z1, . . . , zq, h and j1, . . . , jq). The event
E is defined by:

E = D × {(z1, . . . , zq)} ,

where D is the set of all x ∈ X such that for every g ∈ [q]:

• xjg = h(g).

• δ(xjg , zg ⊕ C(zg)) ≤ p.

• For every u < jg, δ(xu, zg ⊕ C(zg)) > p.

We will say that a simple event E is nontrivial if

Pr
X←X ,Z1,...,Zq

wor←Z
[(X,Z1, . . . , Zq) ∈ E] > 0.

Experiment expr2: conditioning on a simple event. We will be interested in the distribution obtained by
conditioning the distribution (X ← X , Z1, . . . , Zq

wor← Z) on {(X,Z1, . . . , Zq) ∈ E} for a nontrivial simple
eventE induced by z1, . . . , zq, h and j1, . . . , jq. Let us denote this experiment by expr2(z1, . . . , zq;h; j1, . . . , jq).
We observe that for (X,Z1, . . . , Zq)← expr2(z1, . . . , zq;h; j1, . . . , jq) we have that for every g ∈ [q]:

• Zg is fixed to zg.

• Xjg is fixed to xjq = h(g), such that δ(xjg , zg ⊕C(zg)) ≤ p (which means that W (x, zg) = 1 and C
wins on x, zg).

• jg is the smallest index u for which δ(Xu, zg ⊕ C(zg)) ≤ p, or in other words, that for every u < jg,
Pr[δ(Xu, zg ⊕ C(zg)) > p] = 1.

This means that X ← expr2(z1, . . . , zq;h; j1, . . . , jq) is distributed as follows:

• For u ∈ {j1, . . . , jq}, Xu is fixed to a value h(g) in the Hamming ball of radius p around zg ⊕C(zg).
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• For u 6∈ {j1, . . . , jq}, Xu is uniformly distributed over a subset of {0, 1}n, which is of size at least
2n − q · 2H(p)·n. This is because Xu is uniform given the restriction that it does not belong to a
Hamming ball of relative radius p around some zg ⊕ C(zg) where the corresponding index jg > u.

There are at most q choices for g, and each one rules out a Hamming ball of relative radius p, which
is a set of size at most 2H(p)·n.

• (Xj)j∈[K]\{j1,...,jg} are independent. (We will actually not use this property in the proof below, but
we list it anyway to make things more clear.)

We can also conclude that:

• Every simple event E, satisfies E ⊆ T = {W (X,Z1) = . . . = W (X,Zq) = 1}. This is because by
definition on every (x, z1, . . . , zq) ∈ E, W (x, z1) = . . . = W (x, zq) = 1.

• Every two simple events are either equal or disjoint. This is because in order for two simple events
to have a non-empty intersection, the two events must agree on z1, . . . , zq. They also must agree on
j1, . . . , jq, because if they don’t agree on some jg, then one of the two simple events will use a larger
jg, enforcing that for all u < jg, δ(xu, zg ⊕ C(zj)) > p, and this cannot occur on the other simple
event. Once they agree on j1, . . . , jq, they must also (by definition) agree on h.

The discussion above implies that:

• The event T = {W (X,Z1) = . . . = W (X,Zq) = 1} is a disjoint union of nontrivial simple events.

• In order to show that:

Pr
X←X ,Z←Z
Z1,...,Zq

wor← Z

[W (X,Z) = 1 |W (X,Z1) = . . . = W (X,Zq) = 1] ≤ µ,

it is sufficient to show that for every choice of nontrivial simple event E that is induced by some
z1, . . . , zq, h and j1, . . . , jq:

Pr
X←X ,Z←Z
Z1,...,Zq

wor← Z

[W (X,Z) = 1 | (X,Z1, . . . , Zq) ∈ E] ≤ µ,

• Simplifying the expression above, it is sufficient to show the following for every choice of nontrivial
simple event E that is induced by some z1, . . . , zq, h and j1, . . . , jq:

Pr
X←expr2(z1,...,zq ;h;j1,...,jq)

Z←Z

[W (X,Z) = 1] ≤ µ. (5)

In the remainder of the proof, we will prove that (5) holds. We will fix some nontrivial simple event E
that is induced by some z1, . . . , zq, h and j1, . . . , jq, and to avoid clutter, we will define:

expr2 = expr2(z1, . . . , zq;h; j1, . . . , jq).

We are interested in bounding:

Pr
X←expr2
Z←Z

[W (X,Z) = 1] = Pr
X←expr2
Z←Z

[∃j : δ(Xj , Z ⊕ C(Z)) ≤ p].

The two next claims bound this probability for a specific j, depending on whether j ∈ {j1, . . . , jq} or
j 6∈ {j1, . . . , jq}.
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Claim 5.16. For every g ∈ [q],

Pr
X←expr2
Z←Z

[δ(Xjg , Z ⊕ C(Z)) ≤ p] ≤ 2−(1−H(2p))·n

Proof. Recall that for X ← expr2, Xjg is fixed to h(g). It follows that:

Pr
X←expr2
Z←Z

[δ(Xjg , Z ⊕ C(Z)) ≤ p] = Pr
Z←Z

[δ(h(g), Z ⊕ C(Z)) ≤ p]

≤ Pr
Z←Z

[δ(h(g), Z) ≤ 2 · p]

≤ 2−(1−H(2p))·n,

where the second line follows because using the fact thatC ∈ C ⊆ Hamp, we have that δ(Z,Z⊕C(Z)) ≤ p
and therefore, by the triangle inequality we have that if δ(h(g), Z ⊕ C(Z)) ≤ p then δ(h(g), Z) ≤ 2p.

Claim 5.17. For every j ∈ [K] \ {j1, . . . , jq},

Pr
X←expr2
Z←Z

[δ(Xjg , Z ⊕ C(Z)) ≤ p] ≤ 2 · 2−(1−H(p))·n

Proof. Recall that for X ← expr2, and j ∈ [K] \ {j1, . . . , jq}, we have that Xj is uniform over a set of size
at least 2n − q · 2H(p)·n. It follows that:

Pr
X←expr2
Z←Z

[δ(Xj , Z ⊕ C(Z)) ≤ p] ≤ max
z∈Z

(
Pr

X←expr2

[δ(Xj , z ⊕ C(z)) ≤ p]
)

≤ 2H(p)·n

2n − q · 2H(p)·n

≤ 2 · 2−(1−H(p))·n,

where the first line follows because X,Z are independent, and the last line follows because q ≤ t = 22·α·n,
p < 1

4 , and we can take α > 0 to be sufficiently small, so that t · 2H(p)·n ≤ 2n−1.

We are finally ready to prove Claim 5.14.

Pr
X←expr2
Z←Z

[W (X,Z) = 1] = Pr
X←expr2
Z←Z

[∃j : δ(Xj , Z ⊕ C(Z)) ≤ p]

≤
∑
j∈[K]

Pr
X←expr2
Z←Z

[δ(Xj , Z ⊕ C(Z)) ≤ p]

≤
∑

j∈{j1,...,jq}

Pr
X←expr2
Z←Z

[δ(Xj , Z ⊕ C(Z)) ≤ p]

+
∑

j∈[K]\{j1,...,jq}

Pr
X←expr2
Z←Z

[δ(Xj , Z ⊕ C(Z)) ≤ p]

≤ q · 2−(1−H(2p))·n +K · 2 · 2−(1−H(p))·n

≤ q · 2−O(ε2)·n + 2 · 2−ε·n

≤ 22·α·n−O(ε2·n) + 2−ε·n+1

≤ µ,
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where the fourth line follows using Claim 5.16 and Claim 5.17, the fifth line follows because we can assume
that ε is sufficiently small so that p+ ε < 1

4 , which gives that 2p < 1
2 − 2ε, and H(1

2 − 2ε) ≤ 1−O(ε2), the
fifth line also uses the choice of K = 2(1−H(p)−ε)·n, the penultimate line follows because q < t = 22·α·n,
and the final line follows because we can take α > 0 to be sufficiently small as a function of ε, and we have
chosen µ = 2−α·n

3 .

5.8 Proof of Theorem 5.7

Intuition for the proof. In this section we prove we prove Theorem 5.7. As in many constructions of
codes for BSCp, we will use code concatenation. As an inner code, we will use Theorem 5.9 over blocks
of length O(log n) (where its encoding and decoding run in polynomial time). As an outer code we use the
identity map (as in our setting, we will not need to recover from errors in the outer code).

The main issue is to argue that the code is evasive. This is because the channel C ∈ Cktn
c

p , does not
have to “evenly allocate the number of errors” on the different inner blocks. Moreover, it can choose the
error pattern on different blocks in a correlated way, that depends on the entire input string. In the proof that
is given below, we will need to address this problem. This is treated formally in the proof of Claim 5.19
below.

Let cs = c + 2 and pBSC = p · (1 + ε
10). We will apply Theorem 5.9 that gives a Monte-Carlo

construction using the constants pBSC and ε
10 . Theorem 5.9 guarantees the existence of a constant α > 0.

Let e > 1 be a sufficiently large constant. At this point, we will require that e ≥ cs/α, and we will make
additional requirements that e is sufficiently large, later. Let N be sufficiently large for Theorem 5.9, and let
n = e · logN , so that

2α·n ≥ N cs .

The algorithm M that we construct will run the randomized algorithm from Theorem 5.9 using n. By
Theorem 5.9, this takes time 2d·n, and we take the constant D to be sufficiently large so that 2d logn ≤ ND,
so that the randomized algorithm runs in time ND, and produces circuits Encin : {0, 1}RBSC·n → {0, 1}n
and circuits Decin : {0, 1}n → {0, 1}RBSC·n of size Nd, for

RBSC = 1−H(pBSC)− ε

10
≥ R = 1−H(p)− ε,

where the inequality follows using (3) from Section 3. We now define the encoding and decoding maps
Enc : {0, 1}RN → {0, 1}N and Dec : {0, 1}N → {0, 1}Rn ∪ {fail} as follows: Let ` = N/n. We divide
strings m of length k = RN into ` blocks of length Rn, and use mi to be the i’th block. We also divide
strings v of length N into ` blocks of length n, and use vi to be the i’th block. We define:

• Enc(m) = Encin(m1), . . . ,Encin(m`).

• Dec(v) applies Decin(vi) for every i ∈ [`]. If all of them do not fail, then Dec(v) = Decin(v1), . . . ,Decin(vk),
and otherwise, Dec(v) = fail.

We can choose D to be sufficiently large so that Enc,Dec are of size ND.

Claim 5.18.

• (Enc,Dec) are decodable from BSCp with success 1− 1
Nc .

• (Enc,Dec) are decodable from PermUniPerm
p with success 1− 1

Nc .
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Proof. By the properties of Decin guaranteed in Theorem 5.9, we have that for every m ∈ {0, 1}k, and
e ∈ {0, 1}n, if for every i ∈ [n], wt(ei) ≤ pBSC, then Decin(Enc(mi) ⊕ ei) = mi, which gives that
Dec(Enc(m⊕ e)) = m. Thus, it is sufficient to prove that for E ← BSCp or E ← PermUniPerm

p , for every
i ∈ [n],

Pr[wt(Ei) > pBSC] ≤ 1

N c+1
.

so that:
Pr[∃i : wt(Ei) > pBSC] ≤

∑
i∈[n]

Pr[wt(Ei) > pBSC] ≤ N

N c+1
=

1

N c
.

In both cases (namely, both when E ← BSCp and E ← PermUniPerm
p ), we have that:

Pr[wt(Ei) > p · (1 +
ε

10
)] ≤ e−Ω(ε2·p·n) ≤ 1

N c+1
,

if we take the constant e to be sufficiently large. For BSCp this follows by a Chernoff bound. For
PermUniPerm

p this follows by Lemma 3.9, taking δ = ε
10 , µ = p, t = δ · µ · n/2 and considering the

random variables X1, . . . , Xn, where Xj is the j’th bit of Ei.

It remains to show that (Enc,Dec) are 1
Nc -evasive for CktN

c

p . Let C : {0, 1}N → {0, 1}N be a circuit
of size N c. We will consider the experiment where Z ← UN is chosen uniformly. For every i ∈ [`], and let

Wi = {Decin(Zi ⊕ C(Z)i) 6= fail} .

In words, Wi is the event that Decin does not fail on the i’th block. Let W = ∩i∈[`]Wi be the event that Dec
does not fail. Let Bi = {wt(C(Z))i > p}, and Si be the complement, namely Si = {wt(C(Z))i ≤ p}.

Assume for the purpose of contradiction that Pr[W ] > N−c. We will iteratively apply the following
claim, starting with i = 1, and γ = 1

Nc :

Claim 5.19. For every z1, . . . , zi−1 ∈ {0, 1}n, if

Pr[W ∩B1 ∩ . . . ∩Bi−1 | Z1 = z1, . . . , Zi−1 = zi−1] > γ,

then there exists zi ∈ {0, 1}n, such that:

Pr[W ∩B1 ∩ . . . ∩Bi | Z1 = z1, . . . , Zi = zi] > γ −N−cs .

Proof.

γ < Pr[W ∩B1 ∩ . . . ∩Bi−1 | Z1 = z1, . . . , Zi−1 = zi−1]

= Pr[W ∩B1 ∩ . . . ∩Bi−1 ∩Bi | Z1 = z1, . . . , Zi−1 = zi−1]

+ Pr[W ∩B1 ∩ . . . ∩Bi−1 ∩ Si | Z1 = z1, . . . , Zi−1 = zi−1]

We have that:

Pr[W ∩B1 ∩ . . . ∩Bi−1 ∩ Si | Z1 = z1, . . . , Zi−1 = zi−1] ≤ Pr[Wi ∩ Si | Z1 = z1, . . . , Zi−1 = zi−1]

≤ N−cs ,
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where the last inequality follows because Zi is uniform over {0, 1}n, and we can consider a circuit C ′(zi)
which is hardwired with z1, . . . , zi−1, and also with the best choices for zi+1, . . . , z`, andC ′(zi) = C(z1, . . . , z`)i.
As such a circuit cannot break the evasiveness of Encin,Decin when modifying only a p fraction of the out-
put bits (which happens in Si), we have that:

Pr[Wi ∩ Si | Z1 = z1, . . . , Zi−1 = zi−1] ≤ Pr
Zi←Un

[Dec(Zi ⊕ C ′(Zi)) 6= fail ∩ wt(C ′(Zi)) ≤ p] ≤ N−cs .

Combining the inequalities, we get that:

P := Pr[W ∩B1 ∩ . . . ∩Bi | Z1 = z1, . . . , Zi−1 = zi−1] > γ −N−cs .

We can conclude that:

P =
∑

zi∈{0,1}n
Pr[W ∩B1 ∩ . . . ∩Bi | Z1 = z1, . . . , Zi = zi] · Pr[Zi = zi],

and therefore, by averaging, there exists zi ∈ {0, 1}n, such that:

Pr[W ∩B1 ∩ . . . ∩Bi | Z1 = z1, . . . , Zi = zi] ≥ P > γ −N−cs .

After applying the claim ` times, we conclude that:

Pr[W ∩B1 ∩ . . . ∩B` | Z1 = z1, . . . , Z` = z`] ≥ N−c − ` ·N−cs > N−c −N−(cs−1) > 0.

This is a contradiction, because C ∈ Hamp outputs a string of hamming weight at most p, and therefore
Pr[B1 ∩ . . . ∩B`] = 0, because in the latter event

wt(C(Z)) =
1

`
·
∑
i∈[`]

wt(C(Z)i) > p.

6 Small set non-malleable codes

In this section we give the definition of SS-non-malleable codes (which we discussed in Section 2.2). In
Section 6.1 we define SS-non-malleable codes and compare them to the standard definition of non-malleable
codes given by Dziembowski, Pietrzak and Wichs [DPW18]. In Section 6.2 we state the main theorem of
this section (Theorem 6.5 which is the formal restatement of Theorem 2.2) that gives an explicit Monte-
Carlo construction of SS-non-malleable codes on logarithmic length strings, for circuits of polynomial size,
with certain additional decoding and pseudorandomness properties. In remainder of the section is devoted
to the proof of Theorem 6.5. The proof is quite involved, and uses amongst other ideas, the methodology
developed in Section 4.
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6.1 Definition of small set non-malleable codes

In this paper we introduce a new notion of stochastic codes. This notion is a variant in the framework of
non-malleable codes that was defined by the seminal work of Dziembowski, Pietrzak and Wichs [DPW18].
Non-malleable codes consider a scenario where the channel C is not necessarily in Hamp, and there is no
bound on the number of errors that it can induce. The goal is to guarantee that no channel C from some
specific channel class C can corrupt the codeword, so that the decoder outputs a message that is related
with the original message. This is defined using notions of “simulators” and “indistinguishability” that are
inspired from cryptographic definitions. The reader is referred to [DPW18] for a precise definition and a
discussion.

In this paper we introduce a different definition which we call “small set non-malleable codes” that is
tailored for our application, and may be of independent interest.

We will use these SS-non-malleable codes to encode seeds S of our final stochastic code, and therefore, it
will be more convenient in this section to denote the message of the stochastic code by s, and the randomness
by r. We start with a simple case which we call “weakly SS-non-malleability” (that introduces some of the
modifications and is strictly weaker than the standard definition of non-malleable codes). The full-fledged
definition adds additional components to this weak notion.24

Definition 6.1 (weakly SS-non-malleable codes). A stochastic code (that is a pair of maps Enc : {0, 1}k ×
{0, 1}d → {0, 1}n, and Dec : {0, 1}n → {0, 1}k ∪{fail}) is weakly SS-non-malleable for a class C, with
set size h and error ρ, if for every C ∈ C, there exists a set HC ⊆ {0, 1}k, with |HC | ≤ h, such that:

Pr
S←{0,1}k
R←{0,1}d

[Dec(C(Enc(S,R))) 6∈ HC ∪ {S} ∪ {fail}] ≤ ρ.

This definition requires that every C ∈ C, there exists a small set of messages, that can be guessed
in advance, such that it is unlikely that by modifying Enc(S,R), the channel C can lead Dec to decode a
message S̄ that is neither S nor in HC .

This intuitively means that for S ← {0, 1}k, while it is possible for S̄ = Dec(C(Enc(S,R))) to be
correlated with S, this correlation is limited, as Pr[S̄ ∈ HC ] ≥ 1− ρ.

This discussion shows that this notion is somewhat different than full fledged non-malleability, and
allows some correlation to occur. We remark that a very similar notion termed “bounded-malleability”
was defined by Faust et al. [FMVW16] where it was used as an intermediate notion on route to achieving
standrad non-malleability.

In our application we will use a stronger form of SS-non-malleability, in which we will allow C to
receive many encodings of S, and more crucially, some information ψ(S) (for a specific function ψ) about
S. We now define this notion.

Definition 6.2 (SS-non-malleable codes). Let v be an integer, and ψ be a function that on input s ∈ {0, 1}k
returns a string. A stochastic code (that is a pair of maps Enc : {0, 1}k × {0, 1}d → {0, 1}n, and
Dec : {0, 1}n → {0, 1}k ∪ {fail}) is (v, ψ)-SS-non-malleable for a class C, with set size h and error ρ, if
for every C ∈ C, there exists a set HC ⊆ {0, 1}k, with |HC | ≤ h, such that:

Pr
S←{0,1}k

R1,...Rv←{0,1}d

[Dec (C(ψ(s),Enc(S,R1), . . . ,Enc(S,Rv))) 6∈ HC ∪ {S} ∪ {fail}] ≤ ρ.

24A technical comment is that in contrast to the setting of decoding against channels, in which the channel C, produces an “error
pattern” e = C(z) and the “corrupted codeword” is z ⊕ C(Z), in this setting it is more natural that C produces the “corrupted
codeword” directly, namely that C(z) is the “corrupted codeword”, and this is the choice made below, following previous work in
this area.
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For simplicity let’s first consider the case that v = 1, so that Dec gets to see a single instance of
Enc(S,R) as in Definition 6.1. Note that in Definition 6.2, C also receives some information about S in the
form of the function ψ(S). It is instructive to think about the case that ψ(S) = S, which means that C has
no uncertainty about S (or intuitively, that C can decode). As we require that C cannot produce S̄ 6∈ HC ,
even in this case, this intuitively should follow because C cannot encode.

We believe that this captures a different intuition about non-malleability. Moreover, this will be crucial
for our application in which C will be given information ψ(S) about S, that we do not entirely control, and
may give C the ability to know quite a bit about S.

In addition, in our application we allow C to see many encodings of S (using independent random
strings), and Definition 6.2 guarantees that this does not help C to break the security of the code.

We will be interested in SS-non-malleable codes against poly-size circuits, and will also require codes
that have additional decoding properties (against Hamp) and pseudorandomness properties, that we list in
Section 6.2.

Ball et al [BDK+19], Dachman-Soled, Komargodski and Pass [DKP21], and Ball, Dachman-Soled and
Loss [BDL22] gave constructions of non-malleable codes (with the standard definition) against poly-size
circuits. These constructions are explicit and rely on complexity theoretic and/or cryptographic assumptions.
Faust et al. [FMVW16] and Cheraghchi and Guruswami [CG16] gave Monte-Carlo explicit constructions of
non-malleable codes. We cannot use any of these codes, as they don’t seem to have the added security against
a function ψ that we require in SS-non-Malleability, and do not seem to have the additional “decoding from
errors” properties that we also require in Theorem 6.5.

6.2 A Monte-Carlo construction of SS-non-malleable control codes on logarithmic strings

We will be interested in a scenario where there are constants ck, cd, cb ≥ 1, and the SS-non-malleable
codes will be used to encode messages of length k = ck · logN to strings of length n = cb · logN , using
d = cd · logN random bits. Here, N will be the length of codewords in our final construction of stochastic
codes for CktN

c

p , and C will be the class of circuits of sizeN c (note that this size is exponential in the length
of codewords).

We will also want these codes to have several additional properties:

• We want that the decoding algorithm Dec (in addition to satisfying SS-non-malleability with set size
h = NO(1), v = N , and some specific function ψ) will also have the property it decodes against
Hamp, (for p that is as close as we want to 1

4 ) with success probability one. This means that for every
s, r, if Enc(s, r) is modified in pn positions, then Dec decodes correctly to s.

This can be obtained if we can choose a constant β > 0, and guarantee that any two codewords of the
code have relative distance 1

2 − β.

(We are not aware of stochastic codes in the literature which are both non-malleable and can decode
in the Hamming sense. This is partly, because very different techniques are used to construct codes
with the different properties).

• We want that the encoding algorithm Enc (in addition to the aforementioned SS-non-malleability
property) will have the following pseudorandomness property: For every s ∈ {0, 1}ck·logN , Enc(s, Ud)
is 1

Ncε -pseudorandom for circuits of size N cε , where N cε is significantly larger than both h and N c.

As we want codes on messages of logarithmic length, a random stochastic code Enc : {0, 1}ck·logN ×
{0, 1}cd·logN → {0, 1}cb·logN takes poly(N) random bits to sample, and we can obtain a Monte-Carlo
construction if we can analyze such random stochastic codes and show that they are small set non-malleable,
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in addition to the other properties. While we do want all these properties, in this construction, rate is
unimportant, and any positive constant rate will do.25

Let us define the notion of minimum distance for a stochastic code that was discusses above, and asso-
ciate it with a suitable maximum likelihood decoder.

Definition 6.3 (minimum distance of a sequence). The minimum distance of a sequence a = (a1, . . . , am) ∈
{0, 1}b is

min
i,i′∈[m] s.t. i 6=i′

δ(ai, ai′).

The minimum distance of a map Enc : {0, 1}k×{0, 1}d → {0, 1}n, is the minimum distance of the sequence
(Enc(s, r))s∈{0,1}k,r∈{0,1}d .

In the definition above, we measure distance also between pairs (s, r), (s, r′) for the same s. This is
done to keep the definition simple, and this is an overkill for the next maximum likelihood decoder, which
is set up to decode up to p which is half the minimum distance.

Definition 6.4 (Maximum likelihood decoder). Given a function Enc : {0, 1}k × {0, 1}d → {0, 1}b, and a
parameter p > 0, the p-ML-Decoder associated with Enc, is the function Dec : {0, 1}b → {0, 1}k∪{fail}
defined as follows: On input z ∈ {0, 1}b do the following:

• For every pair (s, r) ∈ {0, 1}k × {0, 1}d, compute δ(s,r) = δ(z,Enc(s, r)).

• Let δ′ = min(s,r)∈{0,1}k×{0,1}d δ(s,r). If δ′ > p output fail.

• Let A =
{
s ∈ {0, 1}k : ∃r ∈ {0, 1}d s.t. δ(s,r) = δ′

}
.

• Output the element s ∈ A that is minimal according to some order on {0, 1}k (say lexicographic
order).

Note that once we have chosen and fixed a stochastic code Enc : {0, 1}ck·logN × {0, 1}d·logN →
{0, 1}cb·logN the ML-dcoder can be implemented in time polynomial in N . This means to get a Monte-
Carlop construction we can sample a random stochastic code and pair it with an ML-decoder. We therefore
need to show that such a pair of maps, satisfies the three required properties w.h.p. We are finally ready to
state the Monte-Carlo construction.

Theorem 6.5 (A Monte-Carlo construction of SS-non-malleable codes on logaithmic strings). For every
constants cs, cρ ≥ 1 there exists a constant cH ≥ 1 such that for every constants ck, cγ , cε ≥ 1 and β > 0,
there exist constant cd, cb ≥ 1 such that every sufficiently large integer N the following holds: For every
choice of 1 ≤ v ≤ N and ψ : {0, 1}ck·logN → {0, 1}N3

, a function Enc : {0, 1}ck·logN × {0, 1}cd·logN →
{0, 1}cb·logN that is chosen uniformly from all function from {0, 1}ck·logN × {0, 1}cd·logN to {0, 1}cb·logN ,
satisfies the three properties below with probability at least 1−N−cγ .

Distance and decoding: Enc has minimum distance 1
2 − β. This means that for p =

1
2
−β
2 , the p-ML-

decoder Dec associated with Enc decodes for Hamp with success probability one.

SS-non-Malleability. (Enc,Dec) is (v, ψ)-SS-non-malleable for circuits of size N cs with set size N cH and
error N−cρ .

25Cheraghchi and Guruswami [CG16] analyzed random stochastic codes, and showed that they are w.h.p. non-malleable ac-
cording to the standard definition. Once again, we cannot use this analysis because we require additional properties of SS-non-
malleability with respect to a function ψ, as well as decoding from errors.
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Pseudorandomness. For every s ∈ {0, 1}ck·logN , the distribution Enc(s, Ucd·logN ) isN−cε-pseudorandom
for circuits of size N cε .

The Proof of Theorem 6.5 appears in Section 6.3. The proof uses the methodology explained in Section
4, which is different than the approach used by Cheraghchi and Guruswami [CG16] that analyzed random
stochastic codes with the standard notion of non-malleability.

Interpretation of Theorem 6.5 as an explicit Monte-Carlo construction. In Section 7 we will interpret
Theorem 6.5 as a Monte-Carlo construction of a stochastic code with the properties listed above, that runs
in time poly(N), uses poly(N)-Monte-Carlo randomness, and has Monte-Carlo error N−cγ .

Remark 6.6 (Exponentially small Monte-Carlo error in Theorem 6.5). We remark that (using repetition) the
probability of failure in Theorem 6.5 can be reduced from N−cγ to exponentially small in N . See Remark
6.15 for precise details.

6.3 Proof of Theorem 6.5

We first set up some notation for the probability space of choosing a random stochastic code Enc. We
will analyze the three different properties separately. Showing that a random stochastic code achieves the
distance property and the pseudorandomness property follows by a standard union bound. The main tech-
nical difficulty is in the SS-non-Malleability property. Here, we will use the methodology explained in
Section 4, and it will also be helpful to imagine that the experiment in which Enc is chosen, is done in two
steps: First, a random subset of “potential codewords” is chosen from {0, 1}cb·logN and fixed, and then each
pair (s, r) ∈ {0, 1}ck·logN × {0, 1}cd·logN will select a codeword Enc(S,R) from the potential codewords
(without repetition). This yields the same distribution, but is beneficial as we can imagine that an adversarial
channel circuit C is aware of the choice made in the first step, but not of the choice made in the second step.
This will make it easier to analyze the behavior of such a circuit. Details follow:

The setup: Let cs, cρ ≥ 1 be some constants. We will later choose a constant cH ≥ 1, such that for every
constants ck, cγ , cε ≥ 1 and β > 0, we will show that there exists choices of constants cd, cb ≥ 1 that satisfy
the conclusion of the Theorem 6.5.

For that purpose, we fix an integer N , and throughout the proof we will be allowed to assume that N is
sufficiently large relative to the constants above. We also fix 1 ≤ v ≤ N and ψ : {0, 1}ck·logN → {0, 1}N3

.
We will show that if the constants are carefully chosen, then a random choice of Enc satisfies the conclusion
of the theorem.

We will use the following notation for the probability space of choosing Enc.

Experiment expr1: A random code.

• We set J = {0, 1}ck·logN × {0, 1}cd·logN .

• We set ` = |J | = N ck ·N cd .

• We consider the following experiment (which we will denote by expr1).

– Let B ∈ ({0, 1}cb·logN )J be a random variable B = (Bj)j∈J ← ({0, 1}cb·logN )J . (Namely,
B consists of ` independent, uniformly chosen Bj ← {0, 1}cb·logN ).

– Let Enc(s, r) = Bs,r.
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Indeed this gives that if Enc : {0, 1}ck·logN × {0, 1}cd·logN → {0, 1}cd·logN is chosen according to
expr1 then it is uniformly from all function from {0, 1}ck·logN × {0, 1}cd·logN to {0, 1}cd·logN .

It is a standard argument to see that Enc chosen in expr1 satisfies the distance and pseudorandom-
ness properties (we will handle this later). The main difficulty is to show that Enc satisfies the SS-non-
malleability property. For this purpose it will be helpful to imagine that Enc is chosen by a different exper-
iment.

Experiment expr2: A slightly different experiment.

• Let cA ≥ ck + cd be a constant that will be chosen later, and let `A = N cA ≥ N ck ·N cd = `.

• We consider the following experiment (which we will denote by expr2).

– Let A = ({0, 1}cb·logN )`A . Let A = (A1, . . . , A`A) ∈ A be a random variable where A ←
A. (Namely, A consists of `A random variables A1, . . . , A`A ← {0, 1}cb·logN ) chosen with
replacement).

– Let X = [`A]J (ds). (That is X is the set of `-tuples (Xj)j∈J where all elements Xj are
distinct). Let X = (Xj)j∈J ∈ X be a random variable X ← X . (Namely X consists of `
random variables (Xj)j∈J

wor← [`A] chosen without replacement).
– For every j ∈ J , let Bj = AXj , and let B = (Bj)j∈J .
– Let Enc(s, r) = Bs,r.

Note that the distribution of B is identical in the two experiments (this can be seen as for each fixing
x ∈ X of X , the distribution (B | X = x) for B ← expr2 is identical to B ← expr1). Therefore, the
distribution of Enc is identical in expr1 and expr2.

Intuition for the SS-non-malleability property. The advantage of expr2 is that it allows us to analyze
Enc as follows: We will first use a standard argument to show that we can choose the parameters so that
w.h.p a ← A satisfies the distance property (that is that for i 6= i′ ∈ [`A], δ(ai, ai′) > 1

2 − β). We will
now focus on the case that a← A is already chosen, fixed, and satisfies the distance property, and so expr2

amounts to choosing X ← X .
For such a fixing of A = a, we have that for every z ∈ {0, 1}b, there is at most one i ∈ [`A] such that

δ(z, ai) ≤ p =
1
2
−β
2 . However, whether or not ai will be a codeword of Enc (meaning that there exists

j ∈ J such that Xj = i) has not yet been determined, and has small probability.
Our goal is to show that for every circuit C of size N cS , the probability that C breaks the SS-non-

malleability property of Enc is exponentially small (say smaller than 2−N
2·cs ) so that we can do a union

bound over all such circuits.
Having fixed A = a, allows us to imagine that when a circuit C tries to break the SS-non-malleability

property of Enc, it already knows a, but it does not know X . Intuitively, when such a circuit outputs some
z ∈ {0, 1}b, then we can without loss of generality assume that z = ai for i ∈ [`A]. This is because if
z 6∈ {a1, . . . , a`A} then when performing ML-decoding, if the decoding will not fail, then the codeword that
will be considered is the unique b ∈ {a1, . . . , a`A} that is within distance p of z. (Note however, that the
output of Dec(z) is not yet determined as at this point we do not know which s ∈ {0, 1}k (and also whether
there will exists such an s that) will have an r ∈ {0, 1}d such that aX(s,r)

= b).
Given a circuit C that tries to break the SS-non-malleability property of Enc, we will consider the

distribution:
BC = C(ψ(S), aY1 , . . . , aYv) for S ← {0, 1}ck·logN , Y1, . . . , Yv ← [`A]
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Intuitively, C can choose between two strategies:

• There are elements b in the support of BC which are “heavy”, meaning that Pr[Bc = b] ≥ 1/N cH for
some constant cH .

• All b ∈ [`a] are “light”.

If C implements the first strategy, and assume for simplicity that all the elements in the support of BC are
heavy, then the number of heavy b is obviously bounded by the polynomial N cH . Intuitively, this should
allow us to mark these elements as “belonging toHC” so that by definition of SS-non-malleability, C cannot
win when outputting these elements. (A technicality that we ignore here is that HC is supposed to be a set
of “messages” s ∈ {0, 1}k rather than a set of “codewords). This intuitively means that in some sense, we
can deal with heavy elements.

If C implements the second strategy, then intuitively, C is unlikely to win with large probability. This is
because, in order to win with sufficiently large probability, it intuitively must be the case that polynomially
many of the b’s in the support of BC end up being codewords of Enc (meaning that there exists (s, r) ∈ J
such that aXs,r = b). Intuitively, the probability of polynomially many b’s ending up as codewords is
exponentially small. (Here we are supposed to benefit from the observation that having fixed a, the events
that C succeeds for different a’s are intuitively somewhat independent).

Overall, we can hope to show that the probability that C breaks the SS-non-malleability property is
exponentially small (no matter what strategy it uses).

There are technical difficulties when trying to convert this high level intuition into a proof.
One difficulty is that we will need to argue that the distribution BC (which was defined in terms of

selecting a codeword from a1, . . . , a[`A] is a good approximation to the distribution of selecting a codeword
from (axj )j←J for a typical choice of x← X (which is the distribution on which the circuit C is evaluated).

Another difficulty is how to argue that the events that come up in the intuition above are “sufficiently
independent” so that we can obtain exponentially small probabilities for events that are conjunctions of
polynomially many events that are “intuitively somewhat independent” but not formally independent.

The actual argument handles both difficulties by using the methodology explained in Section 4.

Back to the formal proof. Our plan is to show that when Enc is chosen at random, then for each of the
three properties in Theorem 6.5, the probability that it does not hold is small. The theorem will then follow
by a union bound.

As explained earlier, the main difficulty is handling the SS-non-malleability property, so we will start by
implementing the strategy outlined in the intuition above. More specifically, we assume that Enc is chosen
as in experiment expr2 (which consists of independent choices of A← A, X ← X ).

Definition 6.7 (good a). We say that a ∈ A is good if a has minimal distance larger than 1
2 − β.

We start by observing that if the parameters are chosen correctly, then the probability that A does not
have minimum distance larger than 1

2 − β is very small.

Lemma 6.8 (Distance property for A). For every choice of constants cγ , cA ≥ 1 and β > 0, if cb is
sufficiently large as a function of cγ , cA and β, then for every sufficiently large N ,

Pr
A←A

[A does not have minimum distance larger than 1
2 − β] ≤ N−10·cγ .
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Proof. The proof of Lemma 6.8 is a completely standard union bound. More specifically, for every i 6= i′ ∈
[`A], using the fact that H(1

2 − β) = 1−O(β2) we have that:

Pr
A←A

[δ(Ai, Ai′) ≤
1

2
− β] ≤ 2−(1−H( 1

2
−β))·cb·logN

≤ 2−(1−(1−O(β2)))·cb·logN ]

≤ 2−Ω(β2)·cb·logN

= N−Ω(cb·β2).

The number of pairs i 6= i′ ∈ [`A] is bounded by `2A = N2·cA . By a union bound,

Pr
A←A

[A does not have minimum distance larger than 1
2 − β] ≤ N2·cA ·N−Ω(cb·β2),

which is smaller than N−10·cγ if cb is sufficiently large as a function of cγ , cA and β.

Before proceeding with handling the SS-non-Malleability property, we note that as the elements of X
are distinct, Lemma 6.8 immediately implies the distance property in Theorem 6.5.

Corollary 6.9 (Distance property). Under the conditions of Lemma 6.8,

Pr
Enc←expr2

[Enc does not satisfy the distance property] ≤ N−10·cγ .

The main technical lemma in the proof of Theorem 6.5 is the following:

Lemma 6.10. If the following conditions on the constants cs, cρ, cH , ck, cd, cA are met:

• cH is sufficiently large as a function of cs and cρ.

• cd is sufficiently large as a function of cs and cρ.

• cA is sufficiently large as a function of ck, cd, cs and cρ.

Then for every sufficiently large N , and for every good a ∈ A,

Pr
Enc←expr2

[Enc does not satisfy the SS-non-malleability property | A = a] ≤ N−10·cγ .

Remark 6.11. In fact, the probability is exponentially small in N cs , and this is why the lemma does not
mention the constant cγ .

The main innovation in the proof of Theorem 6.5 is the proof of Lemma 6.10. This proof appears in
Section 6.4.

An immediate consequence of lemma 6.8 and Lemma 6.10 is that if the conditions in both lemmas hold
then Enc is likely to satisfy the SS-non-malleability property. This is stated in the next corollary:

Corollary 6.12 (SS non-malleability property). Under the conditions of Lemma 6.8 and Lemma 6.10,

Pr
Enc←expr2

[Enc does not satisfy the the SS-non-malleability property] ≤ 2 ·N−10·cγ .

It is standard to show that for an appropriate choice of parameters, Enc ← expr1 is likely to have the
pseudorandomness property. This is stated below:
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Lemma 6.13 (Pseudorandomness property). For every choice of constants ck, cε ≥ 1, if cd is sufficiently
large as a function of ck, cε, then for every sufficiently large N ,

Pr
Enc←expr1

[Enc does not satisfy the the Pseudorandomness property] ≤ N−10·cγ .

Proof. The proof of Lemma 6.13 is a completely standard union bound. Here it is more convenient to use
expr1. More specifically, for every circuitC of sizeN cε and s ∈ {0, 1}ck·logN , the probability over choosing
B ← expr1 that C distinguishes the output of the function G(r) = Enc(s, r) from uniform with advantage
N−cε , can be expressed as the probability that then fraction of (Bs,r)r∈{0,1}cd logN such that C(Bs,r) = 1

deviates from Pr[C(Ucb·logN ) = 1] by N−cε . Using the independence of (Bs,r)r∈{0,1}cd logN , by a Chernoff

bound, this probability is upper bounded by 2−Ω( Ncd

N2·cε ). Therefore by a union bound over the at most
2N

cε circuits of size N cε and N ck choices of s ∈ {0, 1}ck·logN , the probability that the pseudorandomness
property does not hold is at most:

2N
cε ·N ck · 2−Ω( Ncd

N2·cε ),

which is smaller thanN−10·cγ for every large enoughN , if cd is sufficiently large as a function of ck, cε.

Remark 6.14. In fact, the probability is exponentially small in N cd , and this is why the lemma does not
mention the constant cγ .

In order to conclude the proof of Theorem 6.5 we need to show how to choose the parameters to meet
all the conditions in the lemmas above. This is done next.

Choosing the constants to meet all requirements. We are given cs, cρ ≥ 1. We first choose cH to be
sufficiently large as instructed by the first item of Lemma 6.10. We are then given constants ck, cγ , cε ≥ 1
and β > 0. We now choose cd to be sufficiently large as instructed by the second item of Lemma 6.10, and
by Lemma 6.13. We now choose the constant cA to be sufficiently large as instructed in the third item of
Lemma 6.10. Finally, we choose cb to be sufficiently large as instructed in Lemma 6.8.

Using this process, we meet all the requirements in Lemma 6.8, Lemma 6.10 and Lemma 6.13. There-
fore, by a union bound, it follows that the probability that a random Enc fails to meet all the three properties
is at most 3 ·N−10·cγ ≤ N−cγ . This concludes the proof of Theorem 6.5.

Remark 6.15 (Exponentially small probability of failure in Theorem 6.5). The only reason that we did
not get an exponentially small probability of failure is that in Lemma 6.8 the probability of failure is not
exponentially small. (This is in contrast to Lemma 6.10 and Lemma 6.13 where we do get exponentially
small probability).

We remark that given a = (a1, . . . , a`A) for a1, . . . , a`A ∈ {0, 1}cb·logN , one can test in time polynomial
in N , whether a is good. Therefore, if we choose a polynomial number of candidates A1, . . . , Ap(N) ← A
and X1, . . . , Xt(n) ← X , then with probability 1 − 2−t(N), there will exist an i ∈ [t(n)] such that Ai is
good, and if we choose Enc in expr2 using Ai, Xi then the probability that we will not obtain a code that
satisfies all three properties is exponentially small.

6.4 Proof of Lemma 6.10

In this section we prove Lemma 6.10. Fix some good a ∈ A, and recall that Lemma 6.10 considers the
experiment expr2 conditioned on the event {A = a}. In this experiment, onceA is fixed, the only remaining
random variable is X ← X . Therefore, in this experiment for every (s, r) ∈ J , Enc(s, r) = aXs,r .

49



6.4.1 Preparations for the methodology of Section 4

With this notation, in order to prove Lemma 6.10 we need to prove that:

Lemma 6.16. With probability at least 1−N10·cγ , over X ← X , for every circuit C of size N cs there exists
a set HC ⊆ {0, 1}ck·logN with |HC | ≤ N cH such that

Pr
S←{0,1}ck·logN

R1,...,Rv←{0,1}
cd·logN

[Dec(C(ψ(S), aXS,R1
, . . . , aXS,Rv )) 6∈ HC ∪ {S} ∪ {fail}] < N−cρ .

We now explain how to define the set HC for a given circuit C.

Defining a set HC . Note that we are allowed to define HC as a function of C (but also as a function of X
that was chosen in the experiment X ← X ). We start by defining a circuit Ca for every circuit C. Loosely
speaking, Ca receives the same input as C, and after applying C, it outputs the unique i ∈ [`A] such that the
output of C is within distance p to ai.

Definition 6.17 (The circuit Ca). Let C(w, e1, . . . , ev) be a size N cs circuit that receives as input w ∈
{0, 1}N3

and e1, . . . , ev ∈ {0, 1}cb·logN . For every good a ∈ A, we define the function Ca(w, e1, . . . , ev)
as follows: if there exist i ∈ [`A] such that δ(C(w, e1, . . . , ev), ai) ≤ p then Ca outputs i (and note that if
such an i exists, then it is unique because a has minimum distance larger than 1

2 − β = 2p). If such an i
does not exist then Ca outputs fail.

We now use the circuit Ca to define a small set TC ⊆ [`A].

Definition 6.18 (The set TC). For every circuit C of size N cs we define:

TC =

i ∈ [`A] : Pr
Y1,...,Yv

wor← [`A]

S←{0,1}ck·logN

[Ca(ψ(S), aY1 , . . . , aYv) = i] ≥ 1

N cH

 .

Note that by definition, we immediately have that:

Claim 6.19. For every circuit C of size N cs , |TC | ≤ N cH .

A crucial observation to keep in mind is that TC is defined in terms of C and a, but not in terms of X .
Loosely speaking, this means that before selecting X ← X , we can define a fixed set TC that contains all
the indices of “codewords” which C is likely to output in an experiment that is intuitively related to the one
that is considered when C tries to break the SS-non-malleability property with a specific choice of x ∈ X .
The point is that we use the same experiment in the definition of TC regardless of the specific choice of x.
This intuitively means that we can identify “likely” outputs of C before knowing which x ← X will be
chosen.

Once x← X is chosen, we can use TC (which is a set of indices to a) to define a setHC,x of s ∈ {0, 1}k,
which are “likely to be decoded” following corruption by C.

Definition 6.20 (The set HC,x). For every circuit C of size N cs , and x ∈ X we define:

HC,x =
{
s ∈ {0, 1}ck·logN : ∃r ∈ {0, 1}cd·logN s.t. xs,r ∈ TC

}
.

We now observe that HC is small.
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Claim 6.21. For every circuit C of size N cs , and x ∈ X , |HC,x| ≤ |TC | ≤ N cH .

Proof. We have that elements in x ∈ X are of the form (xj)j∈J where the xj’s are distinct. It follows that
for every i ∈ TC , there is at most one j = (s, r) such that xj = i. It follows that for every i ∈ TC there is at
most one s ∈ {0, 1}ck·logN such that there exists an r ∈ {0, 1}d·logN such that xs,r = i.

6.4.2 The game of a channel C

Continuing with the methodology of Section 4, we will define a game for the circuit C. Here we use the
intuition (explained earlier) that it is helpful to imagine that C is aware of the choice of a ∈ A, but not of
x ∈ X .

Let C be a circuit of size N cs . For fixed x ∈ X , s ∈ {0, 1}ck·logN and r1, . . . , rv ∈ {0, 1}cd·logN , we
will be interested in whether C breaks the SS-non-malleability property when the code Enc is defined as
in expr2 (that is Enc(j) = axj ) and s, r1, . . . , rv are the elements chosen in the inner SS-non-malleability
experiment.

Definition 6.22 (Circuit C wins game). For every circuit C of size N cs , x ∈ X , s ∈ {0, 1}ck·logN and
r1, . . . , rv ∈ {0, 1}cd·logN , we say that C wins on x, s, (r1, . . . , rv) if there exists (s′, r′) ∈ J such that
s′ 6= s and,

xs′,r′ = Ca(ψ(s), axs,r1 , . . . , axs,rv ) 6∈ TC

The next claim justifies the definition above, by showing that wheneverC breaks the SS-non-malleability
property, it wins in the game defined above.

Claim 6.23. For every circuit C of size N cs , x ∈ X , s ∈ {0, 1}ck·logN and (r1, . . . , rv) ∈ ({0, 1}cd·logN )v,

• If: Dec(C(ψ(s), axs,r1 , . . . , axs,rv )) 6∈ HC,x ∪ {s} ∪ {fail}.
• Then: C wins on x, s, (r1, . . . , rv).

Proof. Assume for contradiction thatC doesn’t win on x, s, (r1, . . . , rv), and let i = Ca(ψ(s), axs,r1 , . . . , axs,rv ).
We will show that

Dec(C(ψ(s), axs,r1 , . . . , axs,rv )) ∈ HC,x ∪ {s} ∪ {fail} .

If i = fail then for every i′ ∈ [`A],

δ(C(ψ(s), axs,r1 , . . . , axs,rv ), ai′) > p,

meaning that (by the definition of ML-decoding) Dec(C(ψ(s), axs,r1 , . . . , axs,rv ) = fail, and we are done.
We can therefore assume that i 6= fail. If there does not exists (s′, r′) ∈ J such that xs′,r′ = i, then

(again by the definition of ML-decoding) Dec(C(ψ(s), axs,r1 , . . . , axs,rv ) = fail, and we are done.
If there exists a pair (s′, r′) ∈ J such that i = xs′,r′ , then this pair is unique, and using the fact that a

has minimum distance larger than 2p it follows that:

δ(axs′,r′ , C(ψ(s), axs,r1 , . . . , axs,rv )) ≤ p.

It follows that:
Dec(C(ψ(s), axs,r1 , . . . , axs,rv ) = s′.

• If s′ = s then Dec(C(ψ(s), axs,r1 , . . . , axs,rv ) = s and we are done.
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• If s′ 6= s then as we have that C does not win on x, s, (r1, . . . , rv), then it must be that xs′,r′ ∈ TC .
By the definition of HC,x, this gives that s′ ∈ HC,x and we are done.

This means that in order to bound the probability that C breaks the SS-non-malleability property, it is
sufficient to bound the probability that C wins. More precisely, in order to prove Lemma 6.16, it is sufficient
to prove:

Pr
X←X

∃C of size N cs s.t. Pr
S←{0,1}ck·logN

R1,...,Rv←{0,1}
cd·logN

[C wins on X,S, (R1, . . . , Rv)] > N−cρ

 < N−10·cγ .

As the number of circuit of size N cs is smaller than 2N
2·cs , and because we are allowed to assume that

N is sufficiently large, this will immediately follow by a union bound, if we prove that for every circuit C
of size N cs ,

Pr
X←X

 Pr
S←{0,1}ck·logN

R1,...,Rv←{0,1}
cd·logN

[C wins on X,S, (R1, . . . , Rv)] > N−cρ

 < 2−N
3·cs

.

Let Z = {0, 1}ck·logN × ({0, 1}cd·logN )v, so that elements z ∈ Z are of the form z = (s, (r1, . . . , rv)).
Let WC : X ×Z → {0, 1} be the function defined by WC(x, z) = 1 iff C wins on x, z. We also define

the function WC
avg : X → [0, 1] by:

WC
avg(x) =

1

|Z|
·
∑
z∈Z

WC(x, z).

With this notation it is sufficient to prove that:

Lemma 6.24. Under the requirements in Lemma 6.10, for every circuit C of size N cs ,

Pr
X←X

[
WC

avg(X) > N−cρ
]
< 2−N

3·cs
.

This is exactly the setting that is considered in Section 4 and handled by Lemma 4.1.

6.4.3 Using the recipe of Section 4: proof of Lemma 6.24

We will apply the recipe explained in Section 4. Let us recall the setup. We have fixed a good a ∈ A, and a
circuit C of size N cs . We need to prove that under the requirements in Lemma 6.10,

Pr
X←X

[
WC

avg(X) > N−cρ
]
< 2−N

3·sc
.

We will use Lemma 4.1 with parameters t = N10·cs , µ = N−cρ/3 and δ = 2. To meet the condition of
the lemma, we have to verify that

t = N10·cs ≤ δ · µ · |Z|
2

=
N−cρ

3
·N ck+v·cd ,
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which follows as we are assuming that cd is sufficiently large as a function of cs and cρ as part of the
assumptions of Lemma 6.10. We conclude that to prove Lemma 6.24 it is sufficient to prove that for every
0 ≤ q < t,

Pr
X←X ,Z←Z
Z1,...,Zq

wor← Z

[W (X,Z) = 1 |W (X,Z1) = . . . = W (X,Zq) = 1] ≤ µ.

Fix some 0 ≤ q < t. We will now show that we can express the event {W (X,Z1) = . . . = W (X,Zq) = 1}
as a disjoint union of “simple events”.

More specifically, the event {W (X,Z1) = . . . = W (X,Zq) = 1} can be viewed as a subset T ⊆ X ×
Zq by setting:

T = {(x; z1, . . . , zq) : W (x, z1) = . . . = W (x, zq) = 1} .

We will now show that T can be expressed as a disjoint union of “simple events”. We now define what we
mean by “simple events”. We start with some notation.

Definition 6.25. For z1, . . . , zq ∈ Z such that for every g ∈ [q], zg = (sg, rg1, . . . , r
g
v), we define J(z1, . . . , zq) =

{(s, r) ∈ J : ∃g ∈ [q], i ∈ [v] : s = sg, r = rgi }

Loosely speaking, a simple event E is a subset E ⊆ T in which z1, . . . , zq, as well as several xj’s are
fixed, in a very specific way.

Definition 6.26 (Simple event). For every choice of:

• z1, . . . , zq ∈ Z , such that for every g ∈ [q], zg = (sg, rg1, . . . , r
g
v).

• A function h : J(z1, . . . , zt)→ [`A]

• j1, . . . , jq ∈ J such that for each g ∈ [q], jg = (s′, r′) for s′ 6= sg.

We define a set E ⊆ X × Zq (called the simple event induced by z1, . . . , zq, h and j1, . . . , jq). The event
E is defined by:

E = D ×
{

(z1, . . . , zq)
}
,

where D is the set of all x ∈ X such that:

• For every j ∈ J(z1, . . . , zq), xj = h(j).

• For every g ∈ [q], xjg = Ca(ψ(sg), ah(sg ,rg1), . . . , ah(sg ,rgv)).

• xjg 6∈ TC .

We will say that a simple event E is nontrivial if

Pr
X←X ,Z1,...,Zq

wor←Z
[(X,Z1, . . . , Zq) ∈ E] > 0.

Experiment expr3: conditioning on a simple event. We will be interested in the distribution obtained by
conditioning the distribution (X ← X , Z1, . . . , Zq

wor← Z) on {(X,Z1, . . . , Zq) ∈ E} for a nontrivial simple
eventE induced by z1, . . . , zq, h and j1, . . . , jq. Let us denote this experiment by expr3(z1, . . . , zq;h; j1, . . . , jq).
We observe that for (X,Z1, . . . , Zq)← expr3(z1, . . . , zq;h; j1, . . . , jq) we have that:

• For every g ∈ [q], Zg = (Sg, Rg1, . . . , R
g
v) is fixed to zg = (sg, rg1, . . . , r

g
v).

• For every j ∈ J(z1, . . . , zq), Xj is fixed to h(j).
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• For every g ∈ [q],Xjg is fixed toCa(ψ(sg), ah(sg ,rg1), . . . , ah(sg ,rgv)) that is not in TC , and furthermore,

Xjq = Ca(ψ(sg), ah(sg ,rg1), . . . , ah(sg ,rgv))

= Ca(ψ(Sg), aX
Sg,R

g
1

, . . . , aX
Sg,R

g
v
).

• We also have that every simple event E, satsifies E ⊆ T = {W (X,Z1) = . . . = W (X,Zq) = 1}.
This is because for every g ∈ [q], in the event E, we have that for every g ∈ [q]:

Ca(ψ(sg), ax
sg,r

g
1

, . . . , ax
sg,r

g
v
) = Ca(ψ(sg), ah(sg ,rg1), . . . , ah(sg ,rgv))

= xjg 6∈ TC ∪
{
xsg ,r : r ∈ {0, 1}cd·logN

}
∪ {fail} ,

where the last inequality uses the requirements that xjg 6∈ TC , and that jg = (s′, r′) for s′ 6= sg,
which implies that xjg 6∈ ∪

{
xsg ,r : r ∈ {0, 1}cd·logN

}
.

This means that for every (x, z1, . . . , zq) ∈ E, C wins on (x, sg, rg1, . . . , r
g
v) for every g ∈ [q].

• By definition, every element in (x, z1, . . . , zq) ∈ T belongs to some simple event. This is because if
C wins on (x, z1), . . . , (x, zq), then there exist j1, . . . , jq such that for every g ∈ [q],

– xjq = Ca(ψ(sg), ax
(sg,r

g
1)
, . . . , ax

(sg,r
g
v)

) 6∈ TC .

– jg = (s′, r′) for s′ 6= sg.

• By definition, every two simple events are either equal or disjoint. This is because in order for two
simple events to have a non-empty intersection, the two events must agree on z1, . . . , zq. Using the
fact that the elements of x ∈ X are disjoint, it follows that the two events must also agree on h and on
j1, . . . , jq. Thus, they must coincide.

The discussion above implies that:

• The event T = {W (X,Z1) = . . . = W (X,Zq) = 1} is a disjoint union of nontrivial simple events.

• In order to show that:

Pr
X←X ,Z←Z
Z1,...,Zq

wor← Z

[W (X,Z) = 1 |W (X,Z1) = . . . = W (X,Zq) = 1] ≤ µ,

it is sufficient to show that for every choice of nontrivial simple event E that is induced by some
z1, . . . , zq, h and j1, . . . , jq:

Pr
X←X ,Z←Z
Z1,...,Zq

wor← Z

[W (X,Z) = 1 | (X,Z1, . . . , Zq) ∈ E] ≤ µ,

• Simplifying the expression above, and using our choice of µ = N−cρ
3 it is sufficient to show the

following for every choice of nontrivial simple event E that is induced by some z1, . . . , zq, h and
j1, . . . , jq:

Pr
X←expr3(z1,...,zq ;h;j1,...,jq)

Z←Z

[W (X,Z) = 1] ≤ N−cρ

3
. (6)
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In the remainder of the proof, we will prove that (6) holds. We will fix some nontrivial simple event E
that is induced by some z1, . . . , zq, h and j1, . . . , jq, and to avoid clutter, we will define:

expr3 = expr3(z1, . . . , zq;h; j1, . . . , jq).

In the next definition and claim, we express the left hand side of (6) more specifically.

Definition 6.27. For every (s′, r′) ∈ J , let

ps′,r′ = Pr
X←expr3

(S,R1,...,Rv)←Z

[
{
Ca(ψ(S), aXS,R1

, . . . , aXS,Rv ) = Xs′,r′

}
∩
{
Xs′,r′ 6∈ TC

}
∩
{
S 6= s′

}
].

Claim 6.28.
Pr

X←expr3
Z←Z

[W (X,Z) = 1] =
∑

(s′,r′)∈J

ps′,r′ .

Proof. Let P = PrX←expr3
Z←Z

[W (X,Z) = 1]. We have that:

P = Pr
X←expr3

(S,R1,...,Rv)←Z

[W (X, (S,R1, . . . Rv)) = 1]

= Pr
X←expr3

(S,R1,...,Rv)←Z

[C wins on X,S, (R1, . . . , Rv)]

= Pr
X←expr3

(S,R1,...,Rv)←Z

[∃(s′, r′) ∈ J s.t. S 6= s′ and Xs′,r′ = Ca(ψ(S), aXS,R1
, . . . , aXS,Rv ) and Xs′,r′ 6∈ TC ]

=
∑

(s′,r′)∈J

Pr
X←expr3

(S,R1,...,Rv)←Z

[S 6= s′ and Xs′,r′ = Ca(ψ(S), aXS,R1
, . . . , aXS,Rv ) and Xs′,r′ 6∈ TC ]

=
∑

(s′,r′)∈J

Pr
X←expr3

(S,R1,...,Rv)←Z

[
{
Ca(ψ(S), aXS,R1

, . . . , aXS,Rv ) = Xs′,r′

}
∩
{
Xs′,r′ 6∈ TC

}
∩
{
S 6= s′

}
]

=
∑

(s′,r′)∈J

ps′,r′ .

We use the following notation.

Definition 6.29. Let Fixed = J(z1, . . . , zq) ∪
{
j1, . . . , jq

}
. Let NotFixed = J \ Fixed.

We note that when choosing X ← expr3, for j ∈ Fixed, the variable Xj is fixed, while (Xj)j∈NotFixed

is distributed like |NotFixed | = `−|Fixed | variables that are chosen from a large set without replacement.

Claim 6.30.

• |Fixed | ≤ q · (v + 1).

• There exists h′ : Fixed→ [`A] such that for every j ∈ Fixed,

Pr
X←expr3

[Xj = h′(j)] = 1.
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• Let L = [`A] \ {h′(j) : j ∈ Fixed}, and note that |L| = `a − |Fixed | ≥ `a − q · (v + 1).

In the experiment X ← expr3, the random variable (Xj)j∈NotFixed is distributed like ` − |Fixed |
variables chosen from L without replacement.

Proof. (of Claim 6.30) The first item follows because by definition: |J(z1, . . . , zq)| ≤ q · v, and so
|Fixed | ≤ q · v + v = q · (v + 1). The second item follows by the definition of a simple event. For
the third item, we recal that X ← X is distributed like ` = |J | variables chosen from [`A] without replace-
ment. After conditioning on the event E, the value of Xj for j ∈ Fixed have been fixed to h′(j). This
means that the remaining values can no longer take the values in {h′(j) : j ∈ Fixed}, but are free to take
the remaining values.

We will now show an upper bound on ps′,r′ . The bounds will depend on whether or not (s′, r′) ∈ Fixed.

Claim 6.31. If (s′, r′) ∈ NotFixed then ps′,r′ ≤ 1
`A−(q+1)·(v+1) ≤

1
NcA−N10·cs+2 .

Proof. Let (s′, r′) ∈ NotFixed. This intuitively means that Xs′,r′ has not been fixed, and is therefore
unlikely to be predicted by Ca.

More formally, we first note that for every (s, r1, . . . , rv) ∈ Z such that s 6= s′, and every v distinct
values xs,r1 , . . . , xs,rv ∈ [`A], the distribution

X ′ = (X ← expr3 | Xs,r1 = xs,r1 , . . . , Xs,rv = xs,rv)

satisfies that X ′s′,r′ is uniformly distributed over L \ {xs,r1 , . . . , xs,rv}, which is a set of size at least |L| − v
(which by Claim 6.30 is at least `A − q · (v + 1)− v ≥ `A − (q + 1) · (v + 1)). It follows that:

Pr
X←expr3

[Ca(ψ(s), aXs,r1 , . . . , aXs,rv ) = Xs′,r′ ] ≤
1

`A − (q + 1) · (v + 1)
,

(This is because the expression of the left hand side is fixed).
We can now conclude that for random variables S 6= s′ and R1, . . . , Rv that are chosen independently

of X , the inequality above also holds. More specifically, that:

Pr
X←expr3

(S,R1,...,Rv)←Z

[Ca(ψ(S), aXS,R1
, . . . , aXS,Rv ) = Xs′,r′ | S 6= s′] ≤ 1

`A − (q + 1) · (v + 1)
. (7)

This follows because having conditioned on {S 6= s′} (and using the fact that X and S are independent) the
probability above is a convex combination of the probabilities considered in the previous inequality.

We are now ready to prove the bound.

ps′,r′ = Pr
X←expr3

(S,R1,...,Rv)←Z

[
{
Ca(ψ(S), aXS,R1

, . . . , aXS,Rv ) = Xs′,r′

}
∩
{
Xs′,r′ 6∈ TC

}
∩
{
S 6= s′

}
]

≤ Pr
X←expr3

(S,R1,...,Rv)←Z

[
{
Ca(ψ(S), aXS,R1

, . . . , aXS,Rv ) = Xs′,r′

}
∩
{
S 6= s′

}
]

≤ Pr
X←expr3

(S,R1,...,Rv)←Z

[Ca(ψ(S), aXS,R1
, . . . , aXS,Rv ) = Xs′,r′ | S 6= s′]

≤ 1

`A − (q + 1) · (v + 1)

≤ 1

N cA −N10·cs+2
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where the penultimate inequality follows from (7), and the final inequality follows for large enough N
because `A = N cA , q + 1 ≤ t = N10·cs and v ≤ N .

Claim 6.32. If (s′, r′) ∈ Fixed then ps′,r′ ≤ 1
NcH + N10·cs+4

Nck+cd
.

Proof. Let (s′, r′) ∈ Fixed. By Claim 6.30 this means that for X ← expr3, Xs′,r′ is fixed to some value
xs′,r′ ∈ [`A].

ps′,r′ = Pr
X←expr3

(S,R1,...,Rv)←Z

[
{
Ca(ψ(S), aXS,R1

, . . . , aXS,Rv ) = Xs′,r′

}
∩
{
Xs′,r′ 6∈ TC

}
∩
{
S 6= s′

}
]

≤ Pr
X←expr3

(S,R1,...,Rv)←Z

[
{
Ca(ψ(S), aXS,R1

, . . . , aXS,Rv ) = Xs′,r′

}
∩
{
Xs′,r′ 6∈ TC

}
]

≤ Pr
X←expr3

(S,R1,...,Rv)←Z

[
{
Ca(ψ(S), aXS,R1

, . . . , aXS,Rv ) = xs′,r′
}
∩
{
xs′,r′ 6∈ TC

}
],

≤ Pr
X←expr3

(S,R1,...,Rv)←Z

[Ca(ψ(S), aXS,R1
, . . . , aXS,Rv ) = xs′,r′ ],

where we can assume that xs′,r′ 6∈ TC (as otherwise the probability is zero). We recall that by the definition
of TC (Definition 6.18), we have that:

Pr
Y1,...,Yv

wor← [`A]

S←{0,1}ck·logN

[
Ca(ψ(S), aY1 , . . . , aYv) = xs′,r′

]
<

1

N cH
.

The difference between the two considered probabilities is that:

• In the first one the indices of a are XS,R1 , . . . , XS,Rv where X ← expr3, (S,R1, . . . , Rv)← Z . Let
us denote this distribution by Q1, . . . , Qv.

• In the second one the indices of a are Y1, . . . , Yv
wor← [`A].

Let η ≥ 0 be the statistical distance between Q1, . . . , Qv and Y1, . . . , Yv. It follows that:

ps′,r′ ≤ Pr
X←expr3

(S,R1,...,Rv)←Z

[Ca(ψ(S), aXS,R1
, . . . , aXS,Rv ) = xs′,r′ ]

≤ Pr
Y1,...,Yv

wor← [`A]

S←{0,1}ck·logN

[
Ca(ψ(S), aY1 , . . . , aYv) = xs′,r′

]
+ η

<
1

N cH
+ η.

It remains to bound η. For this purpose, we will introduce a hybrid distribution Y ′1 , . . . , Y
′
v

wor← [L].

• Let η1 be the statistical distance between Q1, . . . , Qv and Y ′1 , . . . , Y
′
v .

• Let η2 be the statistical distance between Y ′1 , . . . , Y
′
v and Y1, . . . , Yv.
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To bound η1 we notice that for every choice of (s, r1, . . . , rv) ∈ Z such that for every i ∈ [v], (s, ri) ∈
NotFixed, by Claim 6.30, the distribution of Xs,r1 , . . . , Xs,rv for X ← expr3 is identical to Y ′1 , . . . , Y

′
v .

This means that:

η1 ≤ Pr
(S,R1,...,Rv)←Z

[∃i ∈ [v] s.t. (S,Ri) ∈ Fixed]

≤
∑
i∈[v]

Pr
(S,R1,...,Rv)←Z

[(S,Ri) ∈ Fixed]

≤ v · |Fixed |
`

≤ N10·cs+3

N ck+cd
,

where the last inequality follows because v ≤ N , |Fixed | ≤ q · (v + 1) ≤ t · N2 ≤ N10·cs+2, and
` = N ck+cd .

To bound η2 we observe that both distributions Y ′1 , . . . , Y
′
v and Y1, . . . , Yv are chosen without replace-

ment but from different sets. The former chooses from L ⊆ [`A] (which by Lemma 6.30 is of size at least
`A− q · (v+ 1)) and the latter chooses from [`A]. Therefore the statistical distance η2 is bounded as follows:

η2 ≤ Pr
Y1,...,Yv

wor← [`A]

[∃i ∈ [v] : Yi ∈ [`A] \ L]

≤
∑
i∈[v]

Pr
Y1,...,Yv

wor← [`A]

[Yi ∈ [`A] \ L]

≤ v · q · (v + 1)

`A

≤ N10·cs+3

N cA
,

where the last inequality follows because v ≤ N , q ≤ t ≤ N10·cs and `A = N cA . Overall, we get that:

η ≤ η1 + η2 ≤
N10·cs+3

N ck+cd
+
N10·cs+3

N cA
≤ N10·cs+4

N ck+cd
,

where the last inequality is using the requirement that N cA = `A ≥ ` = N ck+cd .

Putting everything together, we get that:

Pr
X←expr3
Z←Z

[W (X,Z) = 1] =
∑

(s′,r′)∈J

ps′,r′

=
∑

(s′,r′)∈NotFixed

ps′,r′ +
∑

(s′,r′)∈Fixed

ps′,r′

≤ ` · 1

N cA −N10·cs+2
+ q · (v + 1) · ( 1

N cH
+
N10·cs+4

N ck+cd
)

≤ N ck+cd

N cA −N10·cs+2
+N10·cs+2 · ( 1

N cH
+
N10·cs+4

N ck+cd
)

≤ N−cρ

3
,
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where the first inequality follows from Claim 6.31 and Claim 6.32, the penultimate inequality follows be-
cause ` = N ck+cd , v ≤ N and q ≤ t = N10·cs , and the final inequality follows from the requirements of
Lemma 6.10.

7 A Monte-Carlo construction of stochastic codes for poly-size circuits

In this section we prove our main result, providing an explicit Monte-Carlo construction of stochastic codes
for poly-size circuits, proving Theorem 1.1. We start by restating the theorem in a more precise way:

Theorem 7.1 (Explicit stochastic codes for poly-size channels). For every constants p < 1
4 , c > 1, and for

every sufficiently small constant ε > 0, there exists a constant d, such that for every sufficiently large N ,
there is a Monte-Carlo stochastic code for CktN

c

p with:

• Rate R ≥ 1−H(p)− ε.
• Success probability 1− 1

Nc .

• Nd bits of Monte-Carlo randomness.

• Monte-Carlo error 1
Nc .

Furthermore, the Monte-Carlo construction is explicit.

Recall, that a Monte-Carlo explicit construction means that there is a pre-processing stage in which a
uniform string y of polynomial length Nd is chosen, and hardwired (once and for all) to the encoding and
decoding algorithms (Enc,Dec). It is guaranteed that with probability 1 − 1

Nc over the choice of y, the
algorithms (Enc,Dec) form a stochastic code for CktN

c

p with success 1 − 1
Nc . Furthermore, Enc and Dec

run in time Nd.
In the remainder of the section we prove Theorem 7.1 (recall that an overview of this proof is given in

Section 2). In Section 7.1 we present our construction. In Section 7.2 we compare our construction to those
used in previous work. The proof is given in Section 7.3.

7.1 The construction

In this section we present our construction of stochastic codes for bounded channels. The construction is
detailed in Four figures: Figure 1 lists parameters, Figure 2 lists ingredients that we use, Figure 3 describes
the encoding algorithm, and Figure 4 describes the decoding algorithm.

We start with some notation and definitions. We remark that an intuitive explanation of the construction
appears in Section 2.

Partitioning codewords into control blocks and data blocks. The construction will think of codewords
c ∈ {0, 1}N as being composed of n = nctrl + ndata blocks of length b = N/n. We specify the precise
choices of n, b, nctrl, ndata in Figure 1.

We now set up some notation. Given a subset I ⊆ [n] of nctrl distinct indices, we can decompose c into
its data part cdata ∈ {0, 1}Ndata=ndata·b and its control part cctrl ∈ {0, 1}Nctrl=nctrl·b. Similarly, given strings
cdata and cctrl we can prepare the codeword c (which we denote by (cdata, cctrl)

I by the reverse operation.
This is stated formally in the definition below.
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Figure 1: Parameters for stochastic code

In this figure we make some of the parameter choices for the construction of Theorem 7.1.

We are given constants:

• 0 < p < 1
4 - The fraction of errors we need to recover from.

• ε > 0 - We will construct a stochastic code Enc with output length N , and rate R ≥ 1 −H(p) − ε. We assume
that ε > 0 is sufficiently small in terms of p.

• c - We are aiming to construct a stochastic code for circuits of size N c with success 1− ν for ν = 1
Nc .

Other parameters that we choose:

• N - The length (in bits) of the codeword. Throughout, we assume that N is sufficiently large, and that other
parameters are chosen as a function of N .

• Let b = cb · logN , where cb is a constant that we choose later in Figure 2.
• Let n = N/b. We split the N output bits of the codeword to n blocks of length b.
• Let nctrl = n0.1 be the number of “control blocks”, and ndata = n− nctrl be the number of “data blocks”.
• Let Nctrl = b · nctrl and Ndata = b · ndata. (Note that: n = nctrl + ndata, N = Nctrl +Ndata).
• Let c0 > 1 be a sufficiently large universal constant that we will choose in the proof of Theorem 7.1.

We use these choices to choose ingredients (a sampler, a PRG, a pseudorandomly chosen permutation, a control code, and
a BSC code) that will be used in the construction. This choice is made in Figure 2.

Definition 7.2 (Data and control portion of a codeword). We view strings c ∈ {0, 1}N as composed of n
blocks of length b = N/n, so that c ∈ ({0, 1}b)n, and ci denotes the b bit long i’th block of c.

Let I = {i1, . . . , inctrl
} ⊆ [n] be a subset of indices of size nctrl.

• Given strings cdata ∈ {0, 1}Ndata and cctrl ∈ {0, 1}Nctrl we define an N bit string c denoted by
(cdata, cctrl)

I as follows: We think of cdata, cctrl, c as being composed of blocks of length b (that is
cdata ∈ ({0, 1}b)ndata , cctrl ∈ ({0, 1}b)nctrl and c ∈ ({0, 1}b)n). We enumerate the indices in [n] \ I

by j1, . . . , jndata
and set c` =

{
(cctrl)k if ` = ik for some k;
(cdata)k if ` = jk for some k

• Given a string c ∈ {0, 1}N (which we think of as c ∈ ({0, 1}b)n) we define strings cIdata, c
I
ctrl by

cIctrl = c|I and cIdata = c|[n]\I , (namely the strings restricted to the indices in I , [n] \ I , respectively).

We omit the superscript I when it is clear from the context.

7.2 Comparison of the construction to earlier work

Our construction builds on ideas from earlier work by Guruswami and Smith [GS16]. It also incorporates
ideas that were introduced later in [SS21a, KSS19, SS21b], as well as several key new ideas.

Loosely speaking, the construction imitates the list-decodable codes of Guruswami and Smith [GS16]
and then applies additional ideas to trim the list to a single candidate. We have already described our high
level approach for trimming the list in Section 2. Our approach of using evasiveness for discarding incorrect
candidates S̄i that are uncorrelated with S is inspired by the recent work of Shaltiel and Silbak [SS21b]
on codes for small space channels. However, in [SS21b] channels are significantly weaker, which leads
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Figure 2: Ingredients for stochastic code

In Figure 1 we specified parameters that are used by the construction. More specifically, when given constants p, ε, c, and
a specified codeword length N , we have chosen parameters n, b, nctrl, ndata, Nctrl, Ndata that were chosen as a function
of previous choices, and of constants cb, c0 ≥ 1, that were not yet specified. In this figure, we will specify the ingredients
that will be used in our construction, and choose cb. The constant c0 will be chosen in the proof.

Parameter choices for applying Theorem 6.5: We choose a constant cs = c + c0 and will apply Theorem 6.5 with
cs and cρ = cs to obtain a constant cH . At this point, Theorem 6.5 allows us to choose additional constants

cγ , ck, cε ≥ 1 and β > 0. We choose: β =
1
4−p

8 , cγ = cs = c+ c0. We will choose ck and cε later on, and continue
with the consequences of Theorem 6.5 after this choice is made.

Ingredients:

BSC code: Let pBSC = p · (1 + ε
10 ). We apply Theorem 5.7 using pBSC, ε/3, Ndata, cs + cH + c0 as choices

for p, ε,N, c, respectively, to obtain a code. Theorem 5.7 gives an explicit Monte-Carlo construction of
codes, and we will use part of the polynomially many random bits of our Monte-Carlo construction to obtain
an encoding map EncBSC : {0, 1}RBSC·Ndata → {0, 1}Ndata , and a decoding map DecBSC : {0, 1}Ndata →
{0, 1}RBSC·Ndata∪{fail}, forRBSC = 1−H(pBSC)−ε/3. We can guarantee that with probability 1− 1

10·Nc ,
the obtained code satisfies the properties listed in Theorem 5.7. Theorem 5.7 also provides a constantD, such
that the encoding and decoding run in time ND. We choose cε = cH + cs +D + c0.

Averaging Sampler: We use Theorem 3.6 to obtain a ( 1
ncs ,

1
ncs )-sampler with distinct samples Samp :

{0, 1}dsamp → [n]nctrl . We indeed meet the condition that the number of samples nctrl = n0.1 ≥ 2(logn)0.1 .
By Theorem 3.6 we have an explicit construction with seed length dsamp = O(log n) = O(logN) (where
the hidden constat depends on earlier choices of constants).

PRG against circuits: We will use Proposition 3.3 to obtain a PRG. Theorem 3.3 gives an explicit Monte-Carlo
construction of PRGs, and we will use part of the polynomially many random bits of our Monte-Carlo
construction to obtain a function G : {0, 1}dPRG → {0, 1}N2

. We can guarantee that with probability
1 − 1

10·Nc , the obtained function G is a 1
Ncε -PRG against circuits of size N cε , with dPRG = O(logN)

(where the hidden constat depends on earlier choices of constants). We will sometimes view G as a function
that outputs only Ndata bits by truncating the output to length Ndata.

Pseudorandomly chosen permutation: Let πG : {0, 1}dPRG × [Ndata] → [Ndata] be the function defined in
Definition 3.4.

Length of control string: Let `′ = max(dPRG, dsamp). Let ` = 3 · `′ and let ck ≥ 1 be a sufficiently large
constant so that ` ≤ ck · log n. This means that we can w.l.o.g. have that dsamp = dPRG = `′. This
choice is made so that a “control string” (that will consist of three seeds for G, πG and Samp) have length
` = ck · logN .

SS-non-malleable code: Having chosen cε and ck, we can now continue choosing parameters in the application
of Theorem 6.5. We can continue the application of Theorem 6.5 and conclude that by Theorem 6.5 there
exist constants cd, cb such that we can obtain a code Encctrl : {0, 1}ck·logN ×{0, 1}cd·logN → {0, 1}cb·logN

that satisfies the properties guaranteed in Theorem 6.5. In particular, we will choose the parameter v to be
nctrl, and the function ψ(s) = (Samp(ssamp), π−1

sπ , G(sPRG)). Note that Theorem 6.5 only gives an ex-
plicit Monte-Carlo construction of the code (Encctrl,Decctrl). However, we are shooting for a Monte-Carlo
construction and we will use part of the polynomially many random bits of our Monte-Carlo construction
to obtain the code (Encctrl,Decctrl). We can guarantee that with probability 1 − N−(cγ) ≥ 1 − 1

10·Nc , the
obtained code satisfies the properties listed above. Finally, we set d = cd · logN .
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Figure 3: Encoding algorithm for stochastic code

Preperations: In this figure we use the parameters and ingredients of Figures 1 and Figure 2 to define the stochas-
tic encoding map. The encoding map will encode messages of length RBSC ·Ndata, and will output words
of length N . This gives that it will have rate R = RBSC·Ndata

N . The stochastic encoding map and will use a
seed of length `+ nctrl · d.

Definition: We define Enc : {0, 1}R·N × {0, 1}`+nctrl·d → {0, 1}N as follows:

Input:
• A message m ∈ {0, 1}RBSC·Ndata .
• A “random coin” for the stochastic encoding that consists of: a string s = (ssamp, sπ, sPRG) and
r1, . . . , rnctrl

∈ {0, 1}d, where ssamp, sπ, sPRG ∈ {0, 1}`
′

so that s ∈ {0, 1}`,
Output: A codeword c = Enc(m; (s, r1, . . . , rnctrl

)) of length N .
Operation:

Determine control blocks: Apply Samp(ssamp) to generate control = {i1, . . . , inctrl
} ⊆ [n].

These blocks will be called “control blocks”, and the remaining ndata blocks will be called
“data blocks”.

Prepare data part: We prepare a string cdata of length Ndata as follows:
• Encode m by x = EncBSC(m).
• Generate anNdata bit string y by reordering theNdata bits of the encoding using the (inverse

of) the permutation πsπ (·) = πG(sπ, ·). More precisely, y = π−1
sπ (x) = π−1

sπ (EncBSC(m)).
• Mask y using PRG. That is, cdata = y⊕G(sPRG) = π−1

sπ (EncBSC(m))⊕G(sPRG). (Here
we truncate the output of G to length Ndata).

Prepare control part: We prepare a string cctrl of length Nctrl (which we view as nctrl blocks of
length b) as follows:
• (cctrl)j = Encctrl(s, rj).

Merge data and control parts: We prepare the final output codeword c ∈ {0, 1}N by merging
cdata and cctrl. That is, c = (cdata, cctrl)

control.

to different considerations, as channels are sufficiently strong to run decoding algorithms for some of the
components.

The use of SS-non-malleability and evasiveness will dictate that we need to modify the “list-decoding
part” of the construction. Let us point where our construction deviates from that of Guruswami and Smith
[GS16].

Using SS-non-malleable codes: We use the SS-non-malleable codes of Theorem 6.5 as control codes. This
will be crucial for discarding candidate control strings S̄i that are correlated with S (as we have
already explained in detail in Section 2). This use comes at a cost. We are forced to use control
strings of length ` = O(log n). This is much shorter than what was used by previous work [GS16,
SS21a, KSS19, SS21b]. Consequently, we have to modify the construction in order to accomodate
this requirement.

• We can no longer use polylog(n)-wise independent permutations, as sampling such a permu-
tation requires ω(log n) bits. We will instead use the pseudorandom generator G to sample a
permutation that is pseudorandomly chosen, but does not have the information theoretic proper-
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Figure 4: Decoding algorithm for stochastic code

Definition: We define Dec : {0, 1}N → {0, 1}R·N ∪ {fail} as follows:

Input: A “received word” v̄ ∈ {0, 1}N .
Output: A message m̄ ∈ {0, 1}R·N or fail.
Operation of decoding algorithm: On input v̄ ∈ {0, 1}N :

Compute control candidates: For i ∈ [n], let s̄i = Decctrl(v̄i). (Here v̄i is the i’th block of v̄).
Let candidates = {s̄i : i ∈ [n]}.

Compute valid candidates: We say that s̄ is successful, if when computing the procedure
DecodeUsingCandidate(s̄) (that is defined below) we obtain m̄(s̄) 6= fail.

Output message: If there exists a single s∗ ∈ candidates that is successful, output m̄(s∗). Other-
wise, output fail.

Internal procedure DecodeUsingCandidate: On input s̄ ∈ {0, 1}` (which we think of as a candidate for
the control string) this procedure works as follows:

Determine control blocks: Apply Samp(s̄samp) to generate control = {̄i1, . . . , īnctrl
}. Compute

v̄data = v̄control
data .

Unmask PRG: Compute ȳ = v̄data⊕G(s̄PRG). (Here we truncate the output of G to length Ndata).
Reverse permutation: Let x̄ be the Ndata bit string obtained by “undoing” the permutation. More

precisely, let πs̄π (·) = πG(s̄π, ·), and let x̄ = πs̄π (ȳ) = πs̄π (v̄data ⊕G(s̄PRG)).
Decode data: Compute m̄ = DecBSC(x̄).
output: We use m̄(s̄) to denote the answer m̄ when DecodeUsingCandidate is applied on s̄.

ties of polylog(n)-wise independent permutations. See discussion in Section 5.2. This creates
some complications, as we will need to balance the running times/sizes of pseudorandom com-
ponents carefully, so that each one is pseudorandom against the next one.
• We also need to use a sampler with improved parameters, and a tighter analysis.
• We are not able to use the control code as an inner code in a “bigger code” as was done in

[GS16, SS21a]. This pushes us to change the number of control blocks nctrl to be much smaller
than the number of control blocks used in earlier works, and requires more care.

Using codes for BSCp that are evasive for Cktn
c

p : We use the evasive codes of Theorem 5.7. This is cru-
cial for discarding control strings S̄i that are not correlated with S (as we have already explained in
detail in Section 2). This use comes at a cost, as the decoding of this code is less efficient than codes
that were used earlier, and we need to be careful and arrange that the pseudorandomness properties of
G and Encctrl are against circuits which are sufficiently large to compute this decoding algorithm.

More specifically, the running time of the encoding and decoding algorithms EncBSC,DecBSC isND,
whereD is not a universal constant, but rather a constant that depends on other parameters (See Figure
2). This will create complications, as we will want certain pseudorandomness properties to hold with
respect to circuits of size ND, and will have to make sure that we choose constants and parameters in
an order that allows this.
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7.3 Proof of Theorem 7.1

This section is devoted to proving Theorem 7.1, and show the correctness of the main construction.

The setup: Throughout the remainder of the section, we fix the setup of Theorem 7.1. Specifically, let
0 ≤ p < 1

4 , c ≥ 1 be constants, and let ε > 0 be a sufficiently small constant. We use these choices to set
up the parameters and ingredients as explained in Figure 1 and Figure 2. The choices in Figure 1 allow us
to choose a universal constant c0 > 1 that we will choose later. Let N be sufficiently large. We set ν = 1

Nc

to be the required error parameter.
We are using three ingredients that are obtained by a Monte-Carlo construction. More specifically, as ex-

plained in Figure 2, we use a Monte-Carlo construction to choose (EncBSC,DecBSC),G and (Encctrl,Decctrl).
All Monte-Carlo constructions are explicit and have Monte-Carlo error that is smaller than 1

10·Nc . Therefore,
by a union bound, we can assume that following their choices, the code (EncBSC,DecBSC), the function G
and the code (Encctrl,Decctrl) satisfy the properties listed in Figure 2.

Let Enc : {0, 1}RN × {0, 1}`+nctrl·d → {0, 1}N and Dec : {0, 1}N → {0, 1}RN ∪ {fail} be the
functions specified in Figures 3 and Figure 4 using the ingredients and parameter choices in Figure 1 and
Figure 2. Overall, by construction, the algorithms (Enc,Dec) run in time polynomial in n.

Bounding The Rate. By Figure 3, the rate R of Enc is given by:

R =
RBSC ·Ndata

N

=
(1−H(pBSC)− ε

3) · (1− nctrl
n ) ·N

N

≥ (1−H(p)− ε

10
− ε

3
) · (1− ε

10
)

≥ 1−H(p)− ε,

where the third line follows because nctrl = n0.1, and using Equation (3) from Section 3, we have that:

H(pBSC) = H(p · (1 +
ε

10
)) ≤ H(p) +

ε

10
.

Road map for arguing the correctness of decoding. The main part in proving Theorem 7.1 is showing
that the decoding algorithm is correct. The remainder of this section is devoted to this proof, and in this
section we give a roadmap of this proof.

The setup:

• Let m ∈ {0, 1}RN be a message.

• Let C : {0, 1}N → {0, 1}N be a channel in CktN
c

p

We will keep these choices of m,C fixed throughout this section.
We need to show that w.h.p. the message m is decoded correctly when applying encoding, channel

and decoding. We will refer to this experiment as the encoding/decoding experiment, and will denote it by
expred(m,C). In this experiment, S ∈ {0, 1}` and R ∈ ({0, 1}d)nctrl are chosen uniformly at random.
Z = Enc(m; (S,R)) is the codeword, E = C(Z) is the error pattern chosen by the channel, V̄ = Z ⊕ E
is the received word given to the decoding, and M̄ = Dec(V̄ ) is the message returned by the decoding. We
use the convention that capital letters denote the random variables associated with small letters used in the
construction, and a complete specification of experiment expred(m,C) is given in Figure 5.
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Figure 5: The encoding/decoding experiment expred(m,C).

Parameters: A message m ∈ {0, 1}RN and a channel C ∈ Cktn
c

p .

Encoding phase: Choose uniformly at random S ∈ {0, 1}` and R ∈ ({0, 1}d)nctrl , and let Z = Enc(m,S,R).
More specifically, divide S into three parts of length `′ = `/3, so that S = (Ssamp, SPRG, Sπ) and perform
the following:

• CONTROL = {I1 < . . . < Inctrl
} = Samp(Ssamp).

• We denote the elements of [n] \ CONTROL by {W1, . . . ,Wndata
}.

• x = EncBSC(m)

• Y = π−1
Sπ

(x).

• Z ∈ {0, 1}N is defined as follows:

– ZCONTROL
data = Y ⊕G(SPRG).

– ZCONTROL
ctrl is defined as follows: for every j ∈ [nctrl], ZIj = Encctrl(S,Rj).

Channel phase: Let E = C(Z) and V̄ = Z ⊕ E.
Decoding phase: Let M̄ = Dec(V̄ ). More specifically:

Compute candidates:
• For every i ∈ [n], let S̄i = Decctrl(V̄i).
• Let CANDIDATES =

{
S̄i : i ∈ [n]

}
.

Decode using candidates: For every s̄ ∈ CANDIDATES, compute DecodeUsingCandidate(s̄), more
specifically:

• Let CONTROL(s̄) = Samp(s̄samp) and compute V̄data(s̄) = V̄ (s̄)CONTROL
data .

• Let Ȳ (s̄) = V̄data(s̄)⊕G(s̄PRG).
• Let X̄(s̄) = πs̄π (Ȳ (s̄)).
• Let M̄(s̄) = DecBSC(X̄(s̄)).

Compute valid candidates: For every s̄ ∈ CANDIDATES, determine whether s̄ is successful, that is, if
M̄(s̄) 6= fail.

Output message: If there exists a single s̄ ∈ CANDIDATES that is successful, we denote it by S∗ and
the final output is M̄ = M̄(S∗), otherwise we set S∗ = fail and M̄ = fail.

In order to complete the proof of Theorem 7.1 we need to show that the probability that the decoded
message M̄ is equal to m is large. More precisely, that:

Pr
expred(m,C)

[M̄ = m] ≥ 1− ν. (8)

Recall that in the experiment, every candidate control string s̄ ∈ CANDIDATES is used to produce a
candidate message M̄(s̄).

The correct control string is one of the candidates. We first claim that w.h.p. the correct control string S
is in CANDIDATES and that when decoding using this candidate we obtain the correct messagem. (Loosely
speaking, the earlier work of [GS16, SS21a] that obtained list-decoding, stopped here, and outputted the list
of messages

{
M̄(s̄) : s̄ ∈ CANDIDATES

}
). The next lemma is stating that this list indeed contains the
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original message m.

Lemma 7.3 (The correct control string is one of the candidates).

Pr
expred(m,C)

[S ∈ CANDIDATES and M̄(S) = m] ≥ 1− ν/2.

Loosely speaking, this is supposed to follow by the correctness of the list-decoding algorithm of [GS16]
(with modifications in [SS21a, KSS19]) which guarantees that the correct candidate control string appears
in the list CANDIDATES, and that when decoding with this candidate, the original message m is obtained.
We explain the technique of previous work [GS16, SS21a, KSS19, SS21b] and prove Lemma 7.3 in Section
7.3.3. The argument is very similar to that used in the aforementioned previous work, but one has to be more
careful, because of the reasons explained in Section 7.2.

All incorrect candidates are unsuccessful. The main contribution of this paper is that we achieve unique
decoding. That is, we will show that w.h.p. only the candidate S is successful. Meaning that our decoding
algorithm has that w.h.p. S∗ = S (and we identify the correct candidate). This is formally stated in the next
lemma.

Lemma 7.4 (Only the correct candidate survives).

Pr
expred(m,C)

[S∗ = S] ≥ 1− ν/2.

Together, Lemmata 7.3 and 7.4 imply that with probability at least 1 − ν, we have that S∗ = S and
M̄ = M̄(S∗) = M̄(S) = m. This means that (8) holds, and the correct message is decoded with probability
1− ν, concluding the proof of Theorem 7.1.

The argument for proving Lemma 7.4. We now explain how to prove Lemma 7.4. We will first use the
SS-non-malleability of Encctrl to prove the following lemma:

Lemma 7.5 (Using SS-non-malleability). There exists a set H ⊆ {0, 1}ck·logN of size at most N cH+1 such
that:

Pr
expred(m,C)

[∃i ∈ [n] : S̄i 6∈ H ∪ {S} ∪ {fail}] < N−(cs−1).

The proof of Lemma 7.5 appears in Section 7.3.1, and implements the intuition regarding SS-non-
malleability explained in Section 2.3.

Next we will use the evasiveness property of Dec to show that for every fixed s̄ ∈ {0, 1}ck·logN , the
probability that the procedure DecodeUsingCandidate(s̄) will not fail is small, where the probability is in
expred(m,C).

Lemma 7.6 (Using evasiveness). For every fixed s̄ ∈ {0, 1}ck·logN ,

Pr
expred(m,C)

[DecodeUsingCandidate(s̄) 6= fail] ≤ N−(cH+c+c0).

The proof of Lemma 7.6 appears in Section 7.3.2 and implements the intuition regarding evasiveness
explained in Section 2.3.

Putting the two lemmas together, we conclude that it is unlikely that there exists i ∈ [n] such that S̄i is
successful, and S̄i 6= S. This is done fortmally in the next claim.
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Claim 7.7.

Pr
expred(m,C)

[∃i ∈ [n] : DecodeUsingCandidate(S̄i) 6= fail, and S̄i 6= S] < ν/2.

Proof. Let:

P = Pr
expred(m,C)

[∃i ∈ [n] : DecodeUsingCandidate(S̄i) 6= fail and S̄i 6= S].

We have that:

P ≤ Pr
expred(m,C)

[∃i ∈ [n] : S̄i 6∈ H ∪ {S} ∪ {fail}] + Pr
expred(m,C)

[∃s̄ ∈ H : DecodeUsingCandidate(s̄) 6= fail]

≤ N−(cs−1) +
∑
s̄∈H

Pr
expred(m,C)

[DecodeUsingCandidate(s̄) 6= fail]

≤ N−(cs−1) +N cH+1 ·N−(cH+c+c0)

≤ ν

2
,

where the second inequality is by Lemma 7.5, the third inequality is by Lemma 7.6, and the final inequality
follows because ν = N−c, and we have chosen cs = c + c0, and we can choose c0 to be sufficiently large
so that the inequality holds.

We are now ready to prove Lemma 7.4.

Proof. (of Lemma 7.4) By Lemma 7.3 we have that:

Pr
expred(m,C)

[∃i : S̄i = S and DecodeUsingCandidate(S̄i) = m 6= fail] ≥ 1− ν/2.

Combining this with Claim 7.7 we have that except with probability ν, we have that in expred(m,C) the
two events below occur:

•
{
∃i ∈ [n] : S̄i = S and S̄i is successful

}
.

•
{
∀i ∈ [n] : either S̄i = S or S̄i is not suceessful

}
.

When these two events occur, we have that there is a unique s̄ ∈ CANDIDATES that is successful, and
S∗ = s̄ = S.

This concludes the proof of Theorem 7.1. It remains to prove the lemmas that appeared inside the proof,
and this is done in the next sections.

7.3.1 Using SS-non-malleability: Proof of Lemma 7.5

We need to define a set H ⊆ {0, 1}ck·logN of size N cH+1. We will use the channel circuit C to define n
adversaries C1, . . . , Cn for the SS-non-malleability property of Encctrl. Recall, that any such adversary Ci

to the SS-non-malleability is expecting to receive input of the form:

ψ(S),Encctrl(S,R1), . . . ,Encctrl(S,Rv),
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for a uniformly chosen S ← {0, 1}ck·logN . Intuitively, such an adversary is trying to produce a string that
will be decoded by Decctrl to a string S′ 6= S that is “correlated” with S. In our setting, we have chosen
v = nctrl and

ψ(s) = (Samp(ssamp), π−1
sπ , G(sPRG)).

We now define the adversary Ci:

Definition 7.8. For every i ∈ [n], we define a function Ci as follows:

Input: The adversary Ci receives:

• nctrl distinct indices {i1, . . . , inctrl
} ⊆ [n]. (This is supposed to be Samp(Ssamp)).

• Ndata distinct indices {j1, . . . , jNdata
} ⊆ [Ndata]. (This is supposed to be a description of the

permutation π−1
Sπ

, which is given by ji = π−1
sπ (i)).

• A string g ∈ {0, 1}Ndata . (This is supposed to be G(SPRG)).
• v = nctrl strings e1, . . . , ev. (These are supposed to be Encctrl(S,R1), . . . ,Encctrl(S,Rv)).

Operation: The adversary Ci is hardwired with the fixed messagem, the fixed string EncBSC(m), and the
circuit C. It will act as follows:

Simulate an encoding: Note that if the inputs to Ci are as intended, then Ci can prepare z =
Enc(m; (S,R1, . . . , Rn)) by following the same procedure that Enc uses. (A key observation is
that Ci does not need to compute Encctrl, πG, Samp, G or EncBSC. Therefore, simulating the
encoding can be computed by a circuit of size N c1 for a universal constant c1).

Simulate the channel: The adversary will compute e = C(z) and v̄ = z ⊕ e. (This is what the
channel C does on the encoding, and if the inputs to Ci are as intended, then this is a simulation
of V̄ from expred(m,C)).

Output the i’th block: Output v̄i. (If the inputs to Ci are as intended, then this is a simulation of
V̄i from expred(m,C)).

We record the following obvious properties of the adversary Ci:

Claim 7.9. There exists a universal constant c1 such that For every i ∈ [n], Ci is a circuit of size N c+N c1 ,
and furthermore:

• Let S,R1, . . . , Rv be chosen as in expred(m,C). For every i ∈ [n], if Ci receives the input:

ψ(S),Encctrl(S,R1), . . . ,Encctrl(S,Rv),

then it outputs V̄i.

• In particular, it follows that the decoded control block in the decoding process in expred(m,C) is:

S̄i = Decctrl(C
i(ψ(S),Encctrl(S,R1), . . . ,Encctrl(S,Rv))).

Recall that we have chosen cs = c+c0. We will choose the constant c0 to be sufficiently large so that the
size of Ci is bounded by N cs . This means that using the SS-non-malleability property of the code Encctrl

we have that for every i ∈ [n], there exists a set HCi ⊆ {0, 1}ck·logN with |HCi | ≤ N cH , such that

Pr
S←{0,1}ck·logN

R1,...,Rv←{0,1}
cd·logN

[Dec(Ci(ψ(S),Encctrl(S,R1), . . . ,Encctrl(S,Rv))) 6∈ HCi ∪ {S} ∪ {fail}] < N−cρ ,

68



and recall that we have chosen cρ = cs. By Claim 7.9, we get that for every i ∈ [n]:

Pr
expred(m,C)

[S̄i 6∈ HCi ∪ {S} ∪ {fail}] < N−cs .

We define:
H =

⋃
i∈[n]

HCi .

It follows that |H| ≤ n ·N cH ≤ N cH+1, and by a union bound over the n ≤ N choices for i ∈ [n], we get
that:

Pr
expred(m,C)

[∃i ∈ [n] : S̄i 6∈ H ∪ {S} ∪ {fail}] ≤
∑
i∈[n]

Pr
expred(m,C)

[S̄i 6∈ HCi ∪ {S} ∪ {fail}]

< n ·N−cs

≤ N−(cs−1),

and Lemma 7.5 follows.

7.3.2 Using evasiveness: Proof of Lemma 7.6

Fix some s̄ ∈ {0, 1}ck·logN . We are interested in the operation of DecodeUsingCandidate(s̄). The output of
DecodeUsingCandidate(s̄) can be viewed as the following function of the “codeword” z as follows:

Definition 7.10 (The function Cs̄). We define a function Cs̄ : {0, 1}N → {0, 1}. On input z ∈ {0, 1}N ,
Cs̄(z) acts as follows:

Simulate channel: Compute e = C(z), and v̄ = z ⊕ C(z).

Simulate DecodeUsingCandidate(s̄): Simulate the operation of DecodeUsingCandidate(s̄) on v̄. More
precisely, perform the operations “Determine control blocks”, ”Unmask PRG” “Reverese Permuta-
tion” and “Decode data”, precisely as described in the description of DecodeUsingCandidate that
appears in Figure 4. If the procedure DecodeUsingCandidate outputs fail, then output 1, and other-
wise output zero.

This definition is made so that:

Pr
expred(m,C)

[DecodeUsingCandidate(s̄) = fail] = Pr
expred(m,C)

[Cs̄(Z) = 1]. (9)

An important observation is that Cs̄ does not need to compute Decctrl. We also point out that as s̄ is a
fixed string, an implementation of Cs̄ by a circuit, can be hardwired with Samp(s̄samp), G(s̄PRG) and πs̄π .
This means that Cs̄ does not need to compute the functions Samp and G. The only nontrivial computation
performed by Cs̄ is applying C and applying the algorithm DecBSC. The former is computable by a size
N c circuit, and the latter is computable by a circuit of size ND (where D was chosen in figure 2). We have
made sure to choose cε ≥ D + c + c0, where c0 is a sufficiently large constant. We can conclude that by
choosing c0 to be sufficiently large:

Claim 7.11. Cs̄ is a circuit of size at most N cε−3.
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We will also need the following claim:

Lemma 7.12 (Pseudorandomness of encoding). For every message m ∈ {0, 1}RN , sampler seed ssamp ∈
{0, 1}`′ and permutation seed sπ ∈ {0, 1}`

′
, let V = Enc(m; (sπ, ssamp, SPRG, R1, · · · , Rnctrl)) be a

random variable (defined over the probability space where SPRG, R1, · · · , Rnctrl are chosen uniformly and
independently). V is N−(cε−3)-pseudorandom for circuits of size N cε−3.

Proof. We assume for contradiction that there exists a circuit D of size N cε−3

|Pr[D(V ) = 1]− Pr[D(UN ) = 1]| > N−(cε−3).

We will prove that one of the following holds:

• There exists a size N cε circuit C : {0, 1}Ndata → {0, 1} such that:

|Pr[C(G(SPRG)) = 1]− Pr[C(UNdata
) = 1]| > N−cε .

• There exists z′ ∈ {0, 1}` and a size N cε circuit C : {0, 1}b → {0, 1}, such that:

|Pr[C(Encctrl(z
′, Ud)) = 1]− Pr[C(Ub) = 1]| > N−cε .

This suffices, as the lemma follows by the pseudorandomness properties of the G and Encctrl.
We now prove that one of the two items hold. We partition V into V = (Vdata, Vctrl)

Samp(ssamp).
We have that D distinguishes V = (Vdata, Vctrl) from UN = (Udata, Uctrl) with probability greater than
N−(cε−3), we do a hybrid argument and consider the hybrid distribution H = (Vdata, Uctrl). It follows that:

• Either D distinguishes H from UN with probability N−(cε−3)/2,

• or, D distinguishes H from V with probability N−(cε−3)/2.

In the first case, we have that Vdata and Uctrl are independent, and an averaging argument gives that
there exists a fixed value v′ctrl, such that D distinguishes (Udata, v

′
ctrl) from (Vdata, v

′
ctrl) with probabil-

ity N−(cε−3)/2. This gives that there exists a size N cε−3 circuit C : {0, 1}Ndata → {0, 1} such that the first
item holds.

In the second case, we have that m and sπ are fixed and therefore the string y = π−1
sπ (EncBSC(m)) used

in the encoding algorithm is also fixed. The encoding algorithm computes the data part by xoring y with
G(SPRG) and therefore Vdata = G(SPRG)⊕ y. By an averaging argument, there exists a fixing s′PRG such
that D distinguishes ((G(s′PRG)⊕ y), Uctrl) from (((G(s′PRG)⊕ y), Vctrl)|SPRG = s′PRG) with probability
N−(cε−3)/2.

We get that there exists a size N cε−3 circuit C ′ : {0, 1}nctrl·d → {0, 1} such that D′ distinguishes Uctrl

from V ′ctrl = (Vctrl|SPRG = s′PRG).
Recall that the encoding procedure prepares the j’th block of the control part cctrl, by Encctrl(s, rj).
Having fixed SPRG = s′PRG the only random variables that remain unfixed in V ′ctrl are R1, . . . , Rnctrl

.
This means that there exists s′ ∈ {0, 1}` such that (V ′ctrl)j = Encctrl(s

′, Rj) and in particular, the nctrl

blocks are independent. We have that D′ distinguishes V ′ctrl from Uctrl with probability N−(cε−3)/2, and
by a standard hybrid argument, there exists a circuit C of size N cε−3 such that C distinguishes (V ′ctrl)j =

Encctrl(s
′, Rj) from uniform with probability N−(cε−3)

2·nctrl
≥ N−cε and the second item follows.
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In particular the encoding Z in expred(m,C) in which Ssamp, Sπ are chosen uniformly, is also pseudo-
random. This implies that:

| Pr
expred(m,C)

[Cs̄(Z) = 1]− Pr[Cs̄(UN ) = 1]| ≤ N−(cε−3). (10)

The input string z ∈ {0, 1}n toCs̄ can be divided into its control and data parts, using I = Samp(s̄samp).
Recall that we use zIctrl and zIdata for these two parts, and omit I when it is clear from the context. We will
now consider a version of Cs̄ in which the control part is already fixed, and only the data part is given as
input.

Definition 7.13. Let I = Samp(s̄samp). For every w ∈ {0, 1}Nctrl , we define Cs̄,w : {0, 1}Ndata → {0, 1}
by:

Cs̄,w(x) = C((w, x)I).

This definition is made so that for every y ∈ {0, 1}N , Cs̄(y) = Cs̄,yctrl
(ydata). Note that for z ∈

{0, 1}Ndata , we can view the operation of Cs̄,w(z) as follows:

• In the “simulate channel” step, z is modified by a size N c channel

Cw(z) := C((w, z)I)data

to produce v̄data.

Note that Cw is a channel that induces pN errors, and the size of Cw is bounded by N c + N c1 for a
universal constant c1. Therefore, as cs = c + c0 for a a sufficiently large constant, we have that the
size of Cw is bounded by cs.

• in the “simulate DecodeUsingCandidate(s̄)” step, we perform the following:

– Unmask the PRG: ȳ = v̄data ⊕ g, for the fixed string g = G(s̄PRG).
– Reverse the permutation: x̄ = π(ȳ) for the fixed permutation π = πs̄π .
– Decode the BSC code: m̄ = DecBSC(x̄).

This intuitively means that in the experiment Cs̄,w(Z), where Z ← UNdata
, we come very close to

reproducing the evasiveness experiment of Section 5. More precisely, we can imagine a version of the
evasiveness experiment as follows:

• A channel Cw (defined above) which is a circuit of sizeN cs that induces at most pN errors, is applied
on Z ← UNdata

to produce the corrupted word V̄data = Z ⊕ Cw(Z).

• The decoding algorithm DecBSC is applied on the corrupted word, and we check whether DecBSC

outputs fail.

The only difference between the latter experiment and our scenario, is that in our scenario there are two
intermediate steps between the two operations in the evasiveness experiment: The corrupted word V̄data is
xored with a fixed string g, and permuted using a fixed permutation π. More precisely, DecBSC is applied
on π(V̄data ⊕ g) rather than on V̄data.

Intuitively, this difference is immaterial, because the two actions considered above (xoring with a fixed
string, and permuting with a fixed distribution) preserve the uniform distribution UNdata

, and therefore can
be ignored. A formal way to see this is that these two operations can be “hardwired” into the circuit Cw as
follows:
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• We defineZ ′ = π(Z⊕g). Note that forZ ← UNdata
, Z ′ is also distributed uniformly over {0, 1}Ndata .

• Fix some w ∈ {0, 1}Nctrl , and let us denote Cw by D, in order to avoid clutter, and not carry w in the
notation. We define D′ : {0, 1}Ndata → {0, 1}Ndata as follows:

D′(z′) = π(D(π−1(z′)⊕ g)).

We are assuming that C ∈ CktN
c

p , which gives that D outputs strings with Hamming weight at most pN .
Note that by definition, D′ also outputs strings with Hamming weight at most pN . The definition of Z ′ and
D′ is made so that:

Z ′ ⊕D′(Z ′) = π(Z ⊕ g)⊕ π(D(π−1(π(Z ⊕ g))⊕ g))

= π(Z ⊕ g)⊕ π(D(Z ⊕ g ⊕ g))

= π(Z ⊕ g)⊕ π(D(Z))

= π(Z ⊕D(Z)⊕ g)

In other words, we can imagine that the uniform random variable chosen in the evasiveness experiment is
Z ′ (which is also uniformly distributed over {0, 1}Ndata), and that the channel is D′. We have that D′ is a
circuit of size N cs which induces at most pN errors. Let us express pN as p′ ·Ndata (because the fraction
of errors is measured as a precentage of the length).

pN = (p · N

Ndata
) ·Ndata = p · (1 +

nctrl

n
) ·Ndata ≤ p · (1 +

ε

10
)Ndata = pBSC ·Ndata.

It follows that D′ ∈ CktN
cs

pBSC
is a circuit that cannot break the evasiveness of (EncBSC,DecBSC).

The distribution V̄ ′ = Z ′⊕D′(Z ′) is precisely the distribution π(Z ⊕D(Z)⊕ g) that is obtained in the
experiment D(Z).

Therefore, by the choices made in Figure 2, using Theorem 5.7, that guarantees the evasiveness of
(EncBSC,DecBSC) against CktN

cs

pBSC
, we can conclude that for every choice of w ∈ {0, 1}Nctrl .

Pr
Z←UNdata

[Cs̄,w(Z) = 1] = Pr
Z←UNdata

[DecBSC(π(Z ⊕D(Z)⊕ g)) 6= fail]

≤ Pr
Z←UNdata

,Z′=π(Z⊕g)
[DecBSC(Z ′ ⊕D′(Z ′)) 6= fail]

≤ N−(cs+cH+c0)
data ,

where the first inequality follows by the definition of Cs̄,w. The second inequality follows by the previous
discussion, and the third inequality follows by Theorem 5.7, and by the choices made in Figure 2. We are
finally ready to prove Lemma 7.6.

Pr
expred(m,C)

[DecodeUsingCandidate(s̄) = fail] = Pr
expred(m,C)

[Cs̄(Z) = 1]

≤ Pr[Cs̄(UN ) = 1] +N−(cε−3)

= Pr
W←UNctrl

,Z←UNdata

[Cs̄,W (Z) = 1] +N−(cε−3)

≤ max
w←{0,1}Nctrl

(
Pr

Z←UNdata

[Cs̄,w(Z) = 1]

)
+N−(cε−3)

≤ N−(cs+cH+c0)
data +N−(cε−3)

≤ N−(cH+c+c0),
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for large enough N , where the first line follows by (9), the second line follows by (10), the third line follows
by the definition of Cs̄,w, and the last line by the choice of cε, and because cs > c, using that Ndata ≥ N/2.

7.3.3 The correct control string is one of the candidates: Proof of Lemma 7.3

The proof of Lemma 7.3 is very similar to the corresponding proofs in earlier works [GS16, SS21a, KSS19]
that achieved list-decoding, rather than unique deocding. We cannot directly cite these proofs, as our con-
struction has some differences compared to the aforementioned previous work (and these differences are
necessary to make the unique-decoding go through). Nevertheless, the argument that we present here is
essentially identical to previous work, modulu these modifications.

Definition 7.14 (Milestone function). We define a function A : {0, 1}`′ × {0, 1}`′ × {0, 1}N → {0, 1}
as follows: On inputs ssamp, sπ ∈ {0, 1}`

′
and e ∈ {0, 1}n, A(ssamp, sπ, e) outputs one iff there exists

i ∈ I = Samp(ssamp) such that wt(ei) ≤ p+ 1
Ncs , and

DecBSC(EncBSC(m)⊕ πsπ(eIdata)) = m.

We define Assamp,sπ(e) = A(ssamp, sπ, e).

A is designed so that in the experiment expred(m,C):

• A(Ssamp, Sπ, C(Z)) checks whether there exists a control block i ∈ I = Samp(Ssamp) on which the
i’th block Ei = C(Z)i of the error vector E = C(Z), has low weight. If this happens then:

S̄i = Decctrl(V̄i) = Decctrl(Zi ⊕ C(Z)i) = Decctrl(Encctrl(S,Ri)⊕ Ei),

will be correctly decoded to S. (This is because Decctrl can decode from
1
2
−β
2 ≥ p+ 1

Ncs errors).

• Furthermore, that when continuing the decoding in expred(m,C) using the candidate S̄i = S, the
original message m will be decoded. (Note that the noise pattern that is applied to EncBSC for fixed
e, during the decoding by DecBSC is indeed πsπ(e)).

By this discussion we have that:

Pr
expred(m,C)

[S ∈ CANDIDATES and M̄(S) = m] ≥ Pr
expred(m,C)

[A(Ssamp, Sπ, C(Z)) = 1]. (11)

On the other hand, the construction of Enc and Dec was set up so that, decoding is successful against
additive channels. This is stated next.

Lemma 7.15. For every e ∈ {0, 1}N with wt(e) ≤ p,

Pr
Ssamp,Sπ←{0,1}`′

[A(Ssamp, Sπ, e) = 1] ≥ 1−N−cs −N−(cε−1).

Proof. We will now analyze what happens in this scenario, where e ∈ {0, 1}N is fixed, and Ssamp, Sπ are
uniform.

To prove the lemma, we make the following definition. For every i ∈ [n], let f(i) = wt(ei). By the
properties of the Sampler, we have that when choosing Ssamp ← {0, 1}`

′
, and taking {i1, . . . , inctrl

} =
Samp(Ssamp), the probability that

1

nctrl
·
∑

j∈[nctrl]

f(ij) > p+
1

N cs
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is at most 1
Ncs . (This follows by the choice of parameters of the Sampler Samp in Figure 1 using Theorem

3.6). When this event occurs, there must exist j such that f(ij) = wt(eij ) ≤ p+ 1
Ncs , and the first condition

in the definition of A is met.
We now show that the second condition is met w.h.p. over the choice of Sπ ← {0, 1}`′ . This is

essentially the scenario for which DecBSC was designed (see Theorem 5.5 and Figure 1) of decoding from
a pseudorandomly chosen permutation. More precisely, the weight of e is pN , and even if all the pN ones
in e end up in eIdata then the fraction of ones in the data part of e is at most:

pN

Ndata
= p · 1

1− nctrl
n

≤ p · (1 +
ε

10
) = pBSC,

where the last inequality holds for large enough N , by our choice that nctrl = n0.1 ≥ N0.05. In Fig-
ure 2, we have set up the code (EncBSC,DecBSC) to decode from Perm

UniPermNdata
pBSC , and because πSπ is

pseudorandomly chosen (with error N−cε), rather than uniformly chosen, we get decoding error

2−Ω(n0.09) +N−cε ≤ N−(cε−1),

for sufficiently large N . Here, we make use of the fact that G fools circuits of size N cε , and we have chosen
cε ≥ D + c0, This gives that for every fixing sSamp of SSamp, DecBSC (which is of size ND) does not
distinguish between uniform and pseudorandomly chosen permutations.

Overall, by a union bound, we have that:

Pr
Zsamp,Zπ←{0,1}`′

[A(Ssamp, Sπ, e) = 1] ≥ 1−N−cs −N−(cε−1),

as required.

We would like to argue that Lemma 7.15 implies a bound in the scenario considered in (11). For this
purpose, we observe that for every fixed values ssamp, sπ ∈ {0, 1}`

′
:

• The function T (e) = Assamp,sπ(C(e)) can be computed by a circuit of sizeN cε−3. This is because for
fixed ssamp, sπ, such a circuit can be hardwired with Samp(ssamp) and πsπ , and the only nontrivial
operations that such a circuit needs to compute are C and DecBSC which can be computed by circuits
of size N c and ND (respectively). We have made sure to choose cε ≥ c + D + c0 for a sufficiently
large constant c0, so that the total size of T can be bounded by cε − 3.

• The distributionZ ← expred(m,C) conditioned on the event {Ssamp = ssamp, Sπ = sπ} isN−(cε−3)-
pseudorandom against circuits of size N cε−3. (We have already argued that this is the case in Lemma
7.12).

It follows that for every fixed values ssamp, sπ ∈ {0, 1}`
′
:

| Pr
expred(m,C)

[Assamp,sπ(C(Z)) = 1 | Ssamp = ssamp, Sπ = sπ]− Pr[Assamp,sπ(C(UN )) = 1]| ≤ N−(cε−3).

(12)
We are now ready to prove Lemma 7.3. Let:

P = Pr
expred(m,C)

[S ∈ CANDIDATES and M̄(S) = m].

74



P ≥ Pr
expred(m,C)

[ASsamp,Sπ(C(Z)) = 1]

= Essamp,sπ←{0,1}`′

[
Pr

expred(m,C)
[ASsamp,Sπ(C(Z)) = 1 | Ssamp = ssamp, Sπ = sπ]

]
≥ Essamp,sπ←{0,1}`′

[
Pr

expred(m,C)
[ASsamp,Sπ(C(Un)) = 1 | Ssamp = ssamp, Sπ = sπ]−N−(cε−3)

]
= Essamp,sπ←{0,1}`′

[
Pr[Assamp,sπ(C(Un)) = 1]

]
−N−(cε−3)

= Pr
Ssamp,Sπ←{0,1}`′

[A(Ssamp, Sπ, C(Un)) = 1]−N−(cε−3)

≥ 1−N−cs −N−(cε−1) −N−(cε−3)

≥ 1− ν/2,

where the first line is by (11), the third line is by (12), the fifth line is by Lemma 7.15, and the final inequality
is because ν = N−c and we can choose the constant c0 so that cs and cε − 3 are larger than c.

8 An analysis of random stochastic codes

In this section we prove Theorem 1.2, showing that a random stochastic code with rate approaching 1−H(p)

is good against any class C ⊆ Hamp which contains “few” channels (where “few” means 22O(n)
). One

example is the class Cktn
c

p (or even Ckt2O(n)

p ).
We stress that this is not obvious, and was not known before. We also stress that this result by itself

does not imply an explicit (or Monte-Carlo explicit) construction. See Section 1.2 for a discussion on
the difference between random constructions and explicit Monte-Carlo construction. We start by restating
Theorem 1.2 in a more precise way.

Theorem 8.1 (Random stochastic codes that decode against small families). For every constants 0 ≤ p < 1
4

and ε > 0, there exist constants α > 0 and cd > 0, such that for R = 1 − H(p) − ε, and for every
sufficiently large n, the following holds: Let C ⊆ Hamp be a class of functions that contains at most 22α·n

functions, and let Enc : {0, 1}Rn × {0, 1}cd·n → {0, 1}n be chosen uniformly from all such functions. Let
Dec : {0, 1}n → {0, 1}Rn, be the map that on input v ∈ {0, 1}n, finds m ∈ {0, 1}k, and s ∈ {0, 1}d, such
that δ(v,Enc(m, s)) is minimal (breaking ties arbitrarily). With probability 1 − 2−2α·n over the choice of
Enc, (Enc,Dec) is a code for C with success probability 1− 2−α·n.

8.1 Proof of Theorem 8.1

We will use the methodology explained in Section 4. This proof has some a similar flavor to the proof given
in Section 5.6 that random codes are evasive.

8.1.1 Preparations for the methodology of Section 4

The setup: Let 0 < p < 1
4 be a constant, let ε > 0 be a sufficiently small constant, and let n be an integer

(that we are allowed to assume that is sufficiently large).
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Some notation: Let R = 1−H(p)− ε, k = Rn, d = cd ·n for a constant cd that we will choose later on.
Let K = 2k, D = 2D and L = K ·D.

Throughout this proof we will identify strings m ∈ {0, 1}k with numbers m ∈ [K], and strings
s ∈ {0, 1}d with numbers s ∈ [D]. Let J = {0, 1}k × {0, 1}d. For j ∈ J , we will use the no-
tation (j1, j2) to denote its two parts, and will identify j with numbers in [L] in the obvious way. Let
Jm =

{
j ∈ J : j1 = m

}
.

We will use the following notation for the probability space of choosing Enc.

Experiment expr: A random code.

• Let X = ({0, 1}n)L(ds). Namely the set of all L distinct tuples (x1, . . . , xL) ∈ {0, 1}n.

• Let X ← X be a uniform element X = (X1, . . . , XL) from X .

• Let Enc(j) = Xj , namely Enc(m, s) = X(m,s).

8.1.2 The game of a channel C

Following the recipe in Section 4 we now define a game for a channel C.

Definition 8.2 (The game of a channel C). Given C ∈ C, x ∈ X , m ∈ {0, 1}k and j ∈ Jm, we say that C
wins on x,m, j if

∃j̄ 6= j : δ(xj ⊕ C(xj), xj̄) ≤ p.

To make the notation easier, we define WC,m(x, j) = 1 iff C wins on x,m, j.

Note when considering the code Enc defined by x, if Dec(xj ⊕ C(xj)) 6= m then C wins on x,m, j.
This means that whenever C is able to make Dec decode incorrectly, when corrupting some xj which is an
encoding of s, then C wins. (Note that we could have also required that j̄ 6∈ Jm, but we don’t bother to do
so).

Let α > 0 be a sufficiently small constants that we will choose later. We will shoot for “decoding error”
ν = 2−α·n. Definition 8.2 is made so that the task of proving Theorem 8.1 reduces to the task of proving
that:

Pr
X←X

[
∃C∃m : C ∈ C,m ∈ {0, 1}k s.t. Pr

j←Jm

[
WC,m(X, j) = 1

]
> 2−α·n

]
< 2−2α·n .

This will follow by a union bound if we can prove that for every one of the 22α·n choices of C ∈ C and
every one of the 2k choices of m ∈ {0, 1}k:

Pr
X←X

[
Pr

j←Jm

[
WC,m(X, j) = 1

]
> 2−α·n

]
<

2−2α·n

22α·n · 2k
= 2−(k+2·2αn).

Let us fix some choice of C ∈ C and m ∈ {0, 1}k. Let Z = Jm and let:

Wavg(x) =
1

|Z|
·
∑
z∈Z

WC,m(x, z),

as is done in Lemma 4.1. We would like to use Lemma 4.1. For that purpose we choose t = 22α·n, so that
(using the fact that k ≤ n) it is sufficient to prove that:

Pr
X←X

[Wavg(X) > 2−α·n] ≤ e−t. (13)
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We will use Lemma 4.1 choosing δ = 2, and µ = 2−α·n

3 (so that (1 + δ) ·µ = 2−α·n). We need to verify
that we meet the condition on t in Lemma 4.1, and indeed we will make sure that:

t = 22·α·n ≤ µ · δ ·D
2

=
2(cd−α)·n

3
,

by choosing the constant α > 0 to be smaller than say cd/5. Using Lemma 4.1, it follows that in order to
prove that (13) holds, it is sufficient to prove the following claim:

Claim 8.3. For every integer 0 ≤ q < t,

Pr
X;Z←Z

Z1,...,Zq
wor← Z

[W (X,Z) = 1 |W (X,Z1) = . . . = W (X,Zq) = 1] ≤ µ,

We therefore focus our attention on proving Claim 8.3, and the lemma will follow once we prove Claim
8.3.

8.1.3 Using the recipe of Section 4: proof of Claim 8.3

Fix some 0 ≤ q < t. We will now show that we can express the event {W (X,Z1) = . . . = W (X,Zq) = 1}
as a disjoint union of “simple events”.

More specifically, the event {W (X,Z1) = . . . = W (X,Zq) = 1} can be viewed as a subset T ⊆ X ×
Zq by setting:

T = {(x; z1, . . . , zq) : W (x, z1) = . . . = W (x, zq) = 1} .

We will now show that T can be expressed as a disjoint union of “simple events”. Loosely speaking, a
simple event E is a subset E ⊆ T in which z1, . . . , zq, as well as several xj’s are fixed, in a very specific
way.

Definition 8.4 (Simple event). For every choice of:

• z1, . . . , zq ∈ Z = Jm.

• A function h : [q]→ {0, 1}n

• j1, . . . , jq ∈ J such that for every g ∈ [q], zg 6= jg.

We define a set E ⊆ X × Zq (called the simple event induced by z1, . . . , zq, h and j1, . . . , jq). The event
E is defined by:

E = D × {(z1, . . . , zq)} ,

where D is the set of all x ∈ X such that for every g ∈ [q]:

• xjg = h(g).

• δ(xjg , xzg ⊕ C(xzg)) ≤ p.

• For every u < jg, δ(xu, xzg ⊕ C(xzg)) > p. (Recall that we identify zg ∈ J with a number in [L].

We will say that a simple event E is nontrivial if

Pr
X←X ,Z1,...,Zq

wor←Z
[(X,Z1, . . . , Zq) ∈ E] > 0.
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Experiment expr2: conditioning on a simple event. We will be interested in the distribution obtained by
conditioning the distribution (X ← X , Z1, . . . , Zq

wor← Z) on {(X,Z1, . . . , Zq) ∈ E} for a nontrivial simple
eventE induced by z1, . . . , zq, h and j1, . . . , jq. Let us denote this experiment by expr2(z1, . . . , zq;h; j1, . . . , jq).
We observe that for (X,Z1, . . . , Zq)← expr2(z1, . . . , zq;h; j1, . . . , jq) we have that for every g ∈ [q]:

• Zg is fixed to zg and zg 6= jg.

• Xjg is fixed to xjq = h(g), such that δ(xjg , xzg ⊕ C(xzg)) ≤ p (which means that W (x, zg) = 1 and
C wins on x,m, zg).

• jg is the smallest index u for which δ(xjg , xzg⊕C(xzg)) ≤ p, or in other words, that for every u < jg,
Pr[δ(xu, xzg ⊕ C(xzg)) > p] = 1.

This means that X ← expr2(z1, . . . , zq;h; j1, . . . , jq) is distributed as follows:

• For u ∈ {j1, . . . , jq}, Xu is fixed to a value h(g) in the Hamming ball of radius p around Xzg ⊕
C(Xzg).

• For u 6∈ {j1, . . . , jq}, Xu is uniformly distributed over a subset of {0, 1}n, which is of size at least
2n − q · 2H(p)·n − q. This is because Xu is uniform given the following two restrictions:

– Xu does not belong to a Hamming ball of relative radius p around some Xzg ⊕Xzg where the
corresponding index jg > u.
There are at most q choices for g, and each one rules out a Hamming ball of relative radius p,
which is a set of size at most 2H(p)·n.

– Xu cannot take the values of xj1 , . . . , xjq . This means that at most an additional q values are not
available.

Overall out of the initial 2n values, at most q · 2H(p)·n + q are no longer available, but Xu is free to
take any of the remaining values.

• Furthermore, if u 6∈ {j1, . . . , jq} and j 6= u, we have that for every possible fixing a ∈ {0, 1}n for
Xj , the distribution (Xu|Xj = a) is uniform over a set of size at least 2n − q · 2H(p)·n − q − 1.

This is because, the condition that {Xj = a} can at worst, affect Xu in that one more slot (the value
a) is not available.

We can also conclude that:

• Every simple event E, satisfies E ⊆ T = {W (X,Z1) = . . . = W (X,Zq) = 1}. This is because by
definition on every (x, z1, . . . , zq) ∈ E, W (x, z1) = . . . = W (x, zq) = 1.

• Every two simple events are either equal or disjoint. This is because in order for two simple events
to have a non-empty intersection, the two events must agree on z1, . . . , zq. They also must agree on
j1, . . . , jq, because if they don’t agree on some jg, then one of the two simple events will use a larger
jg, enforcing that for all u < jg, δ(xu, xzg ⊕ C(xzj )) > p, and this cannot occur on the other simple
event. Once they agree on j1, . . . , jq, they must also (by definition) agree on h.

The discussion above implies that:

• The event T = {W (X,Z1) = . . . = W (X,Zq) = 1} is a disjoint union of nontrivial simple events.
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• In order to show that:

Pr
X←X ,Z←Z
Z1,...,Zq

wor← Z

[W (X,Z) = 1 |W (X,Z1) = . . . = W (X,Zq) = 1] ≤ µ,

it is sufficient to show that for every choice of nontrivial simple event E that is induced by some
z1, . . . , zq, h and j1, . . . , jq:

Pr
X←X ,Z←Z
Z1,...,Zq

wor← Z

[W (X,Z) = 1 | (X,Z1, . . . , Zq) ∈ E] ≤ µ,

• Simplifying the expression above, it is sufficient to show the following for every choice of nontrivial
simple event E that is induced by some z1, . . . , zq, h and j1, . . . , jq:

Pr
X←expr2(z1,...,zq ;h;j1,...,jq)

Z←Z

[W (X,Z) = 1] ≤ µ. (14)

In the remainder of the proof, we will prove that (14) holds. We will fix some nontrivial simple event E
that is induced by some z1, . . . , zq, h and j1, . . . , jq, and to avoid clutter, we will define:

expr2 = expr2(z1, . . . , zq;h; j1, . . . , jq).

We are interested in bounding:

Pr
X←expr2
Z←Z

[W (X,Z) = 1] = Pr
X←expr2
Z←Z

[∃j 6= Z : δ(Xj , XZ ⊕ C(XZ)) ≤ p].

The two next claims bound this probability for a specific j, depending on whether j ∈ {j1, . . . , jq} or
j 6∈ {j1, . . . , jq}.

Claim 8.5. For every g ∈ [q],

Pr
X←expr2
Z←Z

[δ(Xjg , XZ ⊕ C(XZ)) ≤ p and Z 6= jg] ≤ 2 · 2−(1−H(2p))·n + 2−(cd−2α)n

Proof. Recall that for X ← expr2, Xjg is fixed to h(g). Let

P = Pr
X←expr2
Z←Z

[δ(Xjg , XZ ⊕ C(XZ)) ≤ p and Z 6= jg].
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It follows that:

P = Pr
X←expr2
Z←Z

[δ(h(g), XZ ⊕ C(XZ)) ≤ p and Z 6= jg]

=
∑

z∈Z\{jg}

Pr
X←expr2
Z←Z

[δ(h(g), XZ ⊕ C(XZ)) ≤ p and Z = z]

=
∑

z∈Z\{jg}

Pr
X←expr2
Z←Z

[δ(h(g), Xz ⊕ C(Xz)) ≤ p | Z = z] · Pr
Z←Z

[Z = z]

=
∑

z∈Z\{jg}

Pr
X←expr2

[δ(h(g), Xz ⊕ C(Xz)) ≤ p] · Pr
Z←Z

[Z = z]

≤
∑

z∈Z\{j1,...,jq}

Pr
X←expr2

[δ(h(g), Xz ⊕ C(Xz)) ≤ p] · Pr
Z←Z

[Z = z] +
q

D

≤
∑

z∈Z\{j1,...,jq}

Pr
X←expr2

[δ(h(g), Xz) ≤ 2 · p] · Pr
Z←Z

[Z = z] +
q

D

≤ max
z∈Z\{j1,...,jq}

(
Pr

X←expr2

[δ(h(g), Xz) ≤ 2 · p]
)

+
t

2cd·n

≤ 2H(2p)·n

2n − q · 2H(p)·n−q−1
+ 22·αn−cd·n

≤ 2 · 2−(1−H(2p))·n + 2−(cd−2α)n,

where the fourth line follows because X and Z are independent, the fifth line follows because Z is uni-
form over Z which is of size D, the sixth line follows because using the fact that C ∈ C ⊆ Hamp, we
have that δ(Xz, Xz ⊕ C(Xz)) ≤ p, and then the sixth line follows by the triangle inequality, that is, that
δ(h(g), Xz ⊕ C(Xz)) ≤ p implies δ(h(g), Xz) ≤ 2p. Finally, the penultimate line follows because for
z ∈ J \ {j1, . . . , jq}, we have that Xz is uniform over a set of size at least 2n − q · 2H(p)·n − q − 1.

Claim 8.6. For every j ∈ J \ {j1, . . . , jq},

Pr
X←expr2
Z←Z

[δ(Xj , XZ ⊕ C(XZ)) ≤ p and Z 6= j] ≤ 2 · 2−(1−H(p))·n

Proof. Recall that for X ← expr2, and j ∈ J \ {j1, . . . , jq}, we have that Xj is uniform over a set of
size at least 2n − q · 2H(p)·n − q − 1. Furthermore, this is still the case even after conditioning on the event{
Xj′ = a

}
for every j′ 6= j and a ∈ {0, 1}n. It follows that:

Pr
X←expr2
Z←Z

[δ(Xj , XZ ⊕ C(XZ)) ≤ p and Z 6= j] ≤ max
z∈Z\{j}

(
Pr

X←expr2

[δ(Xj , XZ ⊕ C(XZ)) ≤ p | Z = z]

)
≤ max

z∈Z\{j}

(
Pr

X←expr2

[δ(Xj , Xz ⊕ C(Xz)) ≤ p]
)

≤ 2H(p)·n

2n − q · 2H(p)·n − q − 1

≤ 2 · 2−(1−H(p))·n,

where the second line follows because X,Z are independent, and the last line follows because q ≤ t =
22·α·n, p < 1

4 , and we can take α > 0 to be sufficiently small, so that t · 2H(p)·n + t ≤ 2n−1.

80



We are finally ready to prove Claim 8.3.

Pr
X←expr2
Z←Z

[W (X,Z) = 1] = Pr
X←expr2
Z←Z

[∃j 6= Z : δ(Xj , XZ ⊕ C(XZ)) ≤ p]

≤
∑
j∈J

Pr
X←expr2
Z←Z

[δ(Xj , XZ ⊕ C(XZ)) ≤ p and Z 6= j]

≤
∑

j∈{j1,...,jq}

Pr
X←expr2
Z←Z

[δ(Xj , XZ ⊕ C(XZ)) ≤ p and Z 6= j]

+
∑

j∈J\{j1,...,jq}

Pr
X←expr2
Z←Z

[δ(Xj , XZ ⊕ C(XZ)) ≤ p and Z 6= j]

≤ q ·
(

2 · 2−(1−H(2p))·n + 2−(cd−2α)n
)

+ L · 2 · 2−(1−H(p))·n

≤ q ·
(

2 · 2−O(ε2)·n + 2−(cd−2α)n
)

+ 2 · 2−(ε−cd)·n

≤ 22·α·n ·
(

2 · 2−O(ε2)·n + 2−(cd−2α)n
)

+ 2 · 2−(ε−cd)·n

≤ µ,

where the fourth line follows using Claim 8.5 and Claim 8.6, the fifth line follows because we can choose ε
to be sufficiently small so that p+ε < 1

4 , which gives that 2p < 1
2−2ε, andH(1

2−2ε) ≤ 1−O(ε2), the fifth
line also uses that L = K ·D = 2(1−H(p)−ε)·n+cd·n, the penultimate line follows because q < t = 22·α·n,
and the final line follows because µ = 2−α·n

3 , and given p and ε, we are free to choose α > 0 and cd > 0
with the requirements that α > 0 is sufficiently small, and that cd ≥ 10 ·α. We can fulfil these requirements
by choosing cd to be sufficiently small so that ε− cd ≥ α, and then choosing α > 0 to be sufficiently small
so that 10 · α ≤ cd and ε2 ≥ 2α.

Remark 8.7 (Random codes with rate 1−H(p)− o(1) for p = 1
2 − o(1)). It can be seen by this proof, that

it was not crucial that p and ε are constants if one allows α not to be a constant. The computation above
shows that one can take for exdample, p = 1

2 − o(1), and ε = o(1), as long as p + ε < 1
4 and α = o(1)

is chosen to be sufficiently small so that the argument above can be repeated. Loosely speaking, it will be
sufficient that the volume of a Hamming ball of radius 1

2 − ε is sufficiently small compared to 2(1−O(α))·n.
We omit the details.
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